subr_witness.c revision 72376
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 * $FreeBSD: head/sys/kern/subr_witness.c 72376 2001-02-12 00:20:08Z jake $
31 */
32
33/*
34 * Machine independent bits of mutex implementation and implementation of
35 * `witness' structure & related debugging routines.
36 */
37
38/*
39 *	Main Entry: witness
40 *	Pronunciation: 'wit-n&s
41 *	Function: noun
42 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43 *	    testimony, witness, from 2wit
44 *	Date: before 12th century
45 *	1 : attestation of a fact or event : TESTIMONY
46 *	2 : one that gives evidence; specifically : one who testifies in
47 *	    a cause or before a judicial tribunal
48 *	3 : one asked to be present at a transaction so as to be able to
49 *	    testify to its having taken place
50 *	4 : one who has personal knowledge of something
51 *	5 a : something serving as evidence or proof : SIGN
52 *	  b : public affirmation by word or example of usually
53 *	      religious faith or conviction <the heroic witness to divine
54 *	      life -- Pilot>
55 *	6 capitalized : a member of the Jehovah's Witnesses
56 */
57
58#include "opt_ddb.h"
59#include "opt_witness.h"
60
61#include <sys/param.h>
62#include <sys/bus.h>
63#include <sys/kernel.h>
64#include <sys/malloc.h>
65#include <sys/proc.h>
66#include <sys/sysctl.h>
67#include <sys/systm.h>
68#include <sys/vmmeter.h>
69#include <sys/ktr.h>
70
71#include <machine/atomic.h>
72#include <machine/bus.h>
73#include <machine/clock.h>
74#include <machine/cpu.h>
75
76#include <ddb/ddb.h>
77
78#include <vm/vm.h>
79#include <vm/vm_extern.h>
80
81#include <sys/mutex.h>
82
83/*
84 * The WITNESS-enabled mutex debug structure.
85 */
86#ifdef WITNESS
87struct mtx_debug {
88	struct witness	*mtxd_witness;
89	LIST_ENTRY(mtx)	mtxd_held;
90	const char	*mtxd_file;
91	int		mtxd_line;
92};
93
94#define mtx_held	mtx_debug->mtxd_held
95#define	mtx_file	mtx_debug->mtxd_file
96#define	mtx_line	mtx_debug->mtxd_line
97#define	mtx_witness	mtx_debug->mtxd_witness
98#endif	/* WITNESS */
99
100/*
101 * Internal utility macros.
102 */
103#define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
104
105#define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
106	: (struct proc *)((m)->mtx_lock & MTX_FLAGMASK))
107
108#define RETIP(x)		*(((uintptr_t *)(&x)) - 1)
109#define SET_PRIO(p, pri)	(p)->p_pri.pri_level = (pri)
110
111/*
112 * Early WITNESS-enabled declarations.
113 */
114#ifdef WITNESS
115
116/*
117 * Internal WITNESS routines which must be prototyped early.
118 *
119 * XXX: When/if witness code is cleaned up, it would be wise to place all
120 *	witness prototyping early in this file.
121 */
122static void witness_init(struct mtx *, int flag);
123static void witness_destroy(struct mtx *);
124static void witness_display(void(*)(const char *fmt, ...));
125
126MALLOC_DEFINE(M_WITNESS, "witness", "witness mtx_debug structure");
127
128/* All mutexes in system (used for debug/panic) */
129static struct mtx_debug all_mtx_debug = { NULL, {NULL, NULL}, NULL, 0 };
130
131/*
132 * This global is set to 0 once it becomes safe to use the witness code.
133 */
134static int witness_cold = 1;
135
136#else	/* WITNESS */
137
138/* XXX XXX XXX
139 * flag++ is sleazoid way of shuting up warning
140 */
141#define witness_init(m, flag) flag++
142#define witness_destroy(m)
143#define witness_try_enter(m, t, f, l)
144#endif	/* WITNESS */
145
146/*
147 * All mutex locks in system are kept on the all_mtx list.
148 */
149static struct mtx all_mtx = { MTX_UNOWNED, 0, 0, 0, "All mutexes queue head",
150	TAILQ_HEAD_INITIALIZER(all_mtx.mtx_blocked),
151	{ NULL, NULL }, &all_mtx, &all_mtx,
152#ifdef WITNESS
153	&all_mtx_debug
154#else
155	NULL
156#endif
157	 };
158
159/*
160 * Global variables for book keeping.
161 */
162static int	mtx_cur_cnt;
163static int	mtx_max_cnt;
164
165/*
166 * Couple of strings for KTR_LOCK tracing in order to avoid duplicates.
167 */
168char	STR_mtx_lock_slp[] = "GOT (sleep) %s [%p] r=%d at %s:%d";
169char	STR_mtx_unlock_slp[] = "REL (sleep) %s [%p] r=%d at %s:%d";
170char	STR_mtx_lock_spn[] = "GOT (spin) %s [%p] r=%d at %s:%d";
171char	STR_mtx_unlock_spn[] = "REL (spin) %s [%p] r=%d at %s:%d";
172
173/*
174 * Prototypes for non-exported routines.
175 *
176 * NOTE: Prototypes for witness routines are placed at the bottom of the file.
177 */
178static void	propagate_priority(struct proc *);
179
180static void
181propagate_priority(struct proc *p)
182{
183	int pri = p->p_pri.pri_level;
184	struct mtx *m = p->p_blocked;
185
186	mtx_assert(&sched_lock, MA_OWNED);
187	for (;;) {
188		struct proc *p1;
189
190		p = mtx_owner(m);
191
192		if (p == NULL) {
193			/*
194			 * This really isn't quite right. Really
195			 * ought to bump priority of process that
196			 * next acquires the mutex.
197			 */
198			MPASS(m->mtx_lock == MTX_CONTESTED);
199			return;
200		}
201
202		MPASS(p->p_magic == P_MAGIC);
203		KASSERT(p->p_stat != SSLEEP, ("sleeping process owns a mutex"));
204		if (p->p_pri.pri_level <= pri)
205			return;
206
207		/*
208		 * Bump this process' priority.
209		 */
210		SET_PRIO(p, pri);
211
212		/*
213		 * If lock holder is actually running, just bump priority.
214		 */
215		if (p->p_oncpu != 0xff) {
216			MPASS(p->p_stat == SRUN || p->p_stat == SZOMB);
217			return;
218		}
219
220		/*
221		 * If on run queue move to new run queue, and
222		 * quit.
223		 */
224		if (p->p_stat == SRUN) {
225			MPASS(p->p_blocked == NULL);
226			remrunqueue(p);
227			setrunqueue(p);
228			return;
229		}
230
231		/*
232		 * If we aren't blocked on a mutex, we should be.
233		 */
234		KASSERT(p->p_stat == SMTX, (
235		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
236		    p->p_pid, p->p_comm, p->p_stat,
237		    m->mtx_description));
238
239		/*
240		 * Pick up the mutex that p is blocked on.
241		 */
242		m = p->p_blocked;
243		MPASS(m != NULL);
244
245		/*
246		 * Check if the proc needs to be moved up on
247		 * the blocked chain
248		 */
249		if (p == TAILQ_FIRST(&m->mtx_blocked)) {
250			continue;
251		}
252
253		p1 = TAILQ_PREV(p, procqueue, p_procq);
254		if (p1->p_pri.pri_level <= pri) {
255			continue;
256		}
257
258		/*
259		 * Remove proc from blocked chain and determine where
260		 * it should be moved up to.  Since we know that p1 has
261		 * a lower priority than p, we know that at least one
262		 * process in the chain has a lower priority and that
263		 * p1 will thus not be NULL after the loop.
264		 */
265		TAILQ_REMOVE(&m->mtx_blocked, p, p_procq);
266		TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq) {
267			MPASS(p1->p_magic == P_MAGIC);
268			if (p1->p_pri.pri_level > pri)
269				break;
270		}
271
272		MPASS(p1 != NULL);
273		TAILQ_INSERT_BEFORE(p1, p, p_procq);
274		CTR4(KTR_LOCK,
275		    "propagate_priority: p %p moved before %p on [%p] %s",
276		    p, p1, m, m->mtx_description);
277	}
278}
279
280/*
281 * The important part of mtx_trylock{,_flags}()
282 * Tries to acquire lock `m.' We do NOT handle recursion here; we assume that
283 * if we're called, it's because we know we don't already own this lock.
284 */
285int
286_mtx_trylock(struct mtx *m, int opts, const char *file, int line)
287{
288	int rval;
289
290	MPASS(CURPROC != NULL);
291
292	/*
293	 * _mtx_trylock does not accept MTX_NOSWITCH option.
294	 */
295	KASSERT((opts & MTX_NOSWITCH) == 0,
296	    ("mtx_trylock() called with invalid option flag(s) %d", opts));
297
298	rval = _obtain_lock(m, CURTHD);
299
300#ifdef WITNESS
301	if (rval && m->mtx_witness != NULL) {
302		/*
303		 * We do not handle recursion in _mtx_trylock; see the
304		 * note at the top of the routine.
305		 */
306		KASSERT(!mtx_recursed(m),
307		    ("mtx_trylock() called on a recursed mutex"));
308		witness_try_enter(m, (opts | m->mtx_flags), file, line);
309	}
310#endif	/* WITNESS */
311
312	if ((opts & MTX_QUIET) == 0)
313		CTR5(KTR_LOCK, "TRY_ENTER %s [%p] result=%d at %s:%d",
314		    m->mtx_description, m, rval, file, line);
315
316	return rval;
317}
318
319/*
320 * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
321 *
322 * We call this if the lock is either contested (i.e. we need to go to
323 * sleep waiting for it), or if we need to recurse on it.
324 */
325void
326_mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
327{
328	struct proc *p = CURPROC;
329
330	if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)p) {
331		m->mtx_recurse++;
332		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
333		if ((opts & MTX_QUIET) == 0)
334			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
335		return;
336	}
337
338	if ((opts & MTX_QUIET) == 0)
339		CTR3(KTR_LOCK, "_mtx_lock_sleep: %p contested (lock=%p) [%p]",
340		    m, (void *)m->mtx_lock, (void *)RETIP(m));
341
342	/*
343	 * Save our priority. Even though p_nativepri is protected by
344	 * sched_lock, we don't obtain it here as it can be expensive.
345	 * Since this is the only place p_nativepri is set, and since two
346	 * CPUs will not be executing the same process concurrently, we know
347	 * that no other CPU is going to be messing with this. Also,
348	 * p_nativepri is only read when we are blocked on a mutex, so that
349	 * can't be happening right now either.
350	 */
351	p->p_pri.pri_native = p->p_pri.pri_level;
352
353	while (!_obtain_lock(m, p)) {
354		uintptr_t v;
355		struct proc *p1;
356
357		mtx_lock_spin(&sched_lock);
358		/*
359		 * Check if the lock has been released while spinning for
360		 * the sched_lock.
361		 */
362		if ((v = m->mtx_lock) == MTX_UNOWNED) {
363			mtx_unlock_spin(&sched_lock);
364			continue;
365		}
366
367		/*
368		 * The mutex was marked contested on release. This means that
369		 * there are processes blocked on it.
370		 */
371		if (v == MTX_CONTESTED) {
372			p1 = TAILQ_FIRST(&m->mtx_blocked);
373			MPASS(p1 != NULL);
374			m->mtx_lock = (uintptr_t)p | MTX_CONTESTED;
375
376			if (p1->p_pri.pri_level < p->p_pri.pri_level)
377				SET_PRIO(p, p1->p_pri.pri_level);
378			mtx_unlock_spin(&sched_lock);
379			return;
380		}
381
382		/*
383		 * If the mutex isn't already contested and a failure occurs
384		 * setting the contested bit, the mutex was either released
385		 * or the state of the MTX_RECURSED bit changed.
386		 */
387		if ((v & MTX_CONTESTED) == 0 &&
388		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
389			(void *)(v | MTX_CONTESTED))) {
390			mtx_unlock_spin(&sched_lock);
391			continue;
392		}
393
394		/*
395		 * We deffinately must sleep for this lock.
396		 */
397		mtx_assert(m, MA_NOTOWNED);
398
399#ifdef notyet
400		/*
401		 * If we're borrowing an interrupted thread's VM context, we
402		 * must clean up before going to sleep.
403		 */
404		if (p->p_flag & (P_ITHD | P_SITHD)) {
405			ithd_t *it = (ithd_t *)p;
406
407			if (it->it_interrupted) {
408				if ((opts & MTX_QUIET) == 0)
409					CTR2(KTR_LOCK,
410				    "_mtx_lock_sleep: 0x%x interrupted 0x%x",
411					    it, it->it_interrupted);
412				intr_thd_fixup(it);
413			}
414		}
415#endif
416
417		/*
418		 * Put us on the list of threads blocked on this mutex.
419		 */
420		if (TAILQ_EMPTY(&m->mtx_blocked)) {
421			p1 = (struct proc *)(m->mtx_lock & MTX_FLAGMASK);
422			LIST_INSERT_HEAD(&p1->p_contested, m, mtx_contested);
423			TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq);
424		} else {
425			TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq)
426				if (p1->p_pri.pri_level > p->p_pri.pri_level)
427					break;
428			if (p1)
429				TAILQ_INSERT_BEFORE(p1, p, p_procq);
430			else
431				TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq);
432		}
433
434		/*
435		 * Save who we're blocked on.
436		 */
437		p->p_blocked = m;
438		p->p_mtxname = m->mtx_description;
439		p->p_stat = SMTX;
440		propagate_priority(p);
441
442		if ((opts & MTX_QUIET) == 0)
443			CTR3(KTR_LOCK,
444			    "_mtx_lock_sleep: p %p blocked on [%p] %s", p, m,
445			    m->mtx_description);
446
447		mi_switch();
448
449		if ((opts & MTX_QUIET) == 0)
450			CTR3(KTR_LOCK,
451			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
452			  p, m, m->mtx_description);
453
454		mtx_unlock_spin(&sched_lock);
455	}
456
457	return;
458}
459
460/*
461 * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
462 *
463 * This is only called if we need to actually spin for the lock. Recursion
464 * is handled inline.
465 */
466void
467_mtx_lock_spin(struct mtx *m, int opts, u_int mtx_intr, const char *file,
468	       int line)
469{
470	int i = 0;
471
472	if ((opts & MTX_QUIET) == 0)
473		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
474
475	for (;;) {
476		if (_obtain_lock(m, CURPROC))
477			break;
478
479		while (m->mtx_lock != MTX_UNOWNED) {
480			if (i++ < 1000000)
481				continue;
482			if (i++ < 6000000)
483				DELAY(1);
484#ifdef DDB
485			else if (!db_active)
486#else
487			else
488#endif
489			panic("spin lock %s held by %p for > 5 seconds",
490			    m->mtx_description, (void *)m->mtx_lock);
491		}
492	}
493
494	m->mtx_saveintr = mtx_intr;
495	if ((opts & MTX_QUIET) == 0)
496		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
497
498	return;
499}
500
501/*
502 * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
503 *
504 * We are only called here if the lock is recursed or contested (i.e. we
505 * need to wake up a blocked thread).
506 */
507void
508_mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
509{
510	struct proc *p, *p1;
511	struct mtx *m1;
512	int pri;
513
514	p = CURPROC;
515	MPASS4(mtx_owned(m), "mtx_owned(mpp)", file, line);
516
517	if (mtx_recursed(m)) {
518		if (--(m->mtx_recurse) == 0)
519			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
520		if ((opts & MTX_QUIET) == 0)
521			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
522		return;
523	}
524
525	mtx_lock_spin(&sched_lock);
526	if ((opts & MTX_QUIET) == 0)
527		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
528
529	p1 = TAILQ_FIRST(&m->mtx_blocked);
530	MPASS(p->p_magic == P_MAGIC);
531	MPASS(p1->p_magic == P_MAGIC);
532
533	TAILQ_REMOVE(&m->mtx_blocked, p1, p_procq);
534
535	if (TAILQ_EMPTY(&m->mtx_blocked)) {
536		LIST_REMOVE(m, mtx_contested);
537		_release_lock_quick(m);
538		if ((opts & MTX_QUIET) == 0)
539			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
540	} else
541		atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED);
542
543	pri = PRI_MAX;
544	LIST_FOREACH(m1, &p->p_contested, mtx_contested) {
545		int cp = TAILQ_FIRST(&m1->mtx_blocked)->p_pri.pri_level;
546		if (cp < pri)
547			pri = cp;
548	}
549
550	if (pri > p->p_pri.pri_native)
551		pri = p->p_pri.pri_native;
552	SET_PRIO(p, pri);
553
554	if ((opts & MTX_QUIET) == 0)
555		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
556		    m, p1);
557
558	p1->p_blocked = NULL;
559	p1->p_mtxname = NULL;
560	p1->p_stat = SRUN;
561	setrunqueue(p1);
562
563	if ((opts & MTX_NOSWITCH) == 0 && p1->p_pri.pri_level < pri) {
564#ifdef notyet
565		if (p->p_flag & (P_ITHD | P_SITHD)) {
566			ithd_t *it = (ithd_t *)p;
567
568			if (it->it_interrupted) {
569				if ((opts & MTX_QUIET) == 0)
570					CTR2(KTR_LOCK,
571				    "_mtx_unlock_sleep: 0x%x interrupted 0x%x",
572					    it, it->it_interrupted);
573				intr_thd_fixup(it);
574			}
575		}
576#endif
577		setrunqueue(p);
578		if ((opts & MTX_QUIET) == 0)
579			CTR2(KTR_LOCK,
580			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
581			    (void *)m->mtx_lock);
582
583		mi_switch();
584		if ((opts & MTX_QUIET) == 0)
585			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
586			    m, (void *)m->mtx_lock);
587	}
588
589	mtx_unlock_spin(&sched_lock);
590
591	return;
592}
593
594/*
595 * All the unlocking of MTX_SPIN locks is done inline.
596 * See the _rel_spin_lock() macro for the details.
597 */
598
599/*
600 * The INVARIANTS-enabled mtx_assert()
601 */
602#ifdef INVARIANTS
603void
604_mtx_assert(struct mtx *m, int what, const char *file, int line)
605{
606	switch ((what)) {
607	case MA_OWNED:
608	case MA_OWNED | MA_RECURSED:
609	case MA_OWNED | MA_NOTRECURSED:
610		if (!mtx_owned((m)))
611			panic("mutex %s not owned at %s:%d",
612			    (m)->mtx_description, file, line);
613		if (mtx_recursed((m))) {
614			if (((what) & MA_NOTRECURSED) != 0)
615				panic("mutex %s recursed at %s:%d",
616				    (m)->mtx_description, file, line);
617		} else if (((what) & MA_RECURSED) != 0) {
618			panic("mutex %s unrecursed at %s:%d",
619			    (m)->mtx_description, file, line);
620		}
621		break;
622	case MA_NOTOWNED:
623		if (mtx_owned((m)))
624			panic("mutex %s owned at %s:%d",
625			    (m)->mtx_description, file, line);
626		break;
627	default:
628		panic("unknown mtx_assert at %s:%d", file, line);
629	}
630}
631#endif
632
633/*
634 * The MUTEX_DEBUG-enabled mtx_validate()
635 */
636#define MV_DESTROY	0	/* validate before destory */
637#define MV_INIT		1	/* validate before init */
638
639#ifdef MUTEX_DEBUG
640
641int mtx_validate __P((struct mtx *, int));
642
643int
644mtx_validate(struct mtx *m, int when)
645{
646	struct mtx *mp;
647	int i;
648	int retval = 0;
649
650#ifdef WITNESS
651	if (witness_cold)
652		return 0;
653#endif
654	if (m == &all_mtx || cold)
655		return 0;
656
657	mtx_lock(&all_mtx);
658/*
659 * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
660 * we can re-enable the kernacc() checks.
661 */
662#ifndef __alpha__
663	MPASS(kernacc((caddr_t)all_mtx.mtx_next, sizeof(uintptr_t),
664	    VM_PROT_READ) == 1);
665#endif
666	MPASS(all_mtx.mtx_next->mtx_prev == &all_mtx);
667	for (i = 0, mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next) {
668#ifndef __alpha__
669		if (kernacc((caddr_t)mp->mtx_next, sizeof(uintptr_t),
670		    VM_PROT_READ) != 1) {
671			panic("mtx_validate: mp=%p mp->mtx_next=%p",
672			    mp, mp->mtx_next);
673		}
674#endif
675		i++;
676		if (i > mtx_cur_cnt) {
677			panic("mtx_validate: too many in chain, known=%d\n",
678			    mtx_cur_cnt);
679		}
680	}
681	MPASS(i == mtx_cur_cnt);
682	switch (when) {
683	case MV_DESTROY:
684		for (mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next)
685			if (mp == m)
686				break;
687		MPASS(mp == m);
688		break;
689	case MV_INIT:
690		for (mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next)
691		if (mp == m) {
692			/*
693			 * Not good. This mutex already exists.
694			 */
695			printf("re-initing existing mutex %s\n",
696			    m->mtx_description);
697			MPASS(m->mtx_lock == MTX_UNOWNED);
698			retval = 1;
699		}
700	}
701	mtx_unlock(&all_mtx);
702	return (retval);
703}
704#endif
705
706/*
707 * Mutex initialization routine; initialize lock `m' of type contained in
708 * `opts' with options contained in `opts' and description `description.'
709 * Place on "all_mtx" queue.
710 */
711void
712mtx_init(struct mtx *m, const char *description, int opts)
713{
714
715	if ((opts & MTX_QUIET) == 0)
716		CTR2(KTR_LOCK, "mtx_init %p (%s)", m, description);
717
718#ifdef MUTEX_DEBUG
719	/* Diagnostic and error correction */
720	if (mtx_validate(m, MV_INIT))
721		return;
722#endif
723
724	bzero((void *)m, sizeof *m);
725	TAILQ_INIT(&m->mtx_blocked);
726
727#ifdef WITNESS
728	if (!witness_cold) {
729		m->mtx_debug = malloc(sizeof(struct mtx_debug),
730		    M_WITNESS, M_NOWAIT | M_ZERO);
731		MPASS(m->mtx_debug != NULL);
732	}
733#endif
734
735	m->mtx_description = description;
736	m->mtx_flags = opts;
737	m->mtx_lock = MTX_UNOWNED;
738
739	/* Put on all mutex queue */
740	mtx_lock(&all_mtx);
741	m->mtx_next = &all_mtx;
742	m->mtx_prev = all_mtx.mtx_prev;
743	m->mtx_prev->mtx_next = m;
744	all_mtx.mtx_prev = m;
745	if (++mtx_cur_cnt > mtx_max_cnt)
746		mtx_max_cnt = mtx_cur_cnt;
747	mtx_unlock(&all_mtx);
748
749#ifdef WITNESS
750	if (!witness_cold)
751		witness_init(m, opts);
752#endif
753}
754
755/*
756 * Remove lock `m' from all_mtx queue.
757 */
758void
759mtx_destroy(struct mtx *m)
760{
761
762#ifdef WITNESS
763	KASSERT(!witness_cold, ("%s: Cannot destroy while still cold\n",
764	    __FUNCTION__));
765#endif
766
767	CTR2(KTR_LOCK, "mtx_destroy %p (%s)", m, m->mtx_description);
768
769#ifdef MUTEX_DEBUG
770	if (m->mtx_next == NULL)
771		panic("mtx_destroy: %p (%s) already destroyed",
772		    m, m->mtx_description);
773
774	if (!mtx_owned(m)) {
775		MPASS(m->mtx_lock == MTX_UNOWNED);
776	} else {
777		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
778	}
779
780	/* diagnostic */
781	mtx_validate(m, MV_DESTROY);
782#endif
783
784#ifdef WITNESS
785	if (m->mtx_witness)
786		witness_destroy(m);
787#endif /* WITNESS */
788
789	/* Remove from the all mutex queue */
790	mtx_lock(&all_mtx);
791	m->mtx_next->mtx_prev = m->mtx_prev;
792	m->mtx_prev->mtx_next = m->mtx_next;
793
794#ifdef MUTEX_DEBUG
795	m->mtx_next = m->mtx_prev = NULL;
796#endif
797
798#ifdef WITNESS
799	free(m->mtx_debug, M_WITNESS);
800	m->mtx_debug = NULL;
801#endif
802
803	mtx_cur_cnt--;
804	mtx_unlock(&all_mtx);
805}
806
807
808/*
809 * The WITNESS-enabled diagnostic code.
810 */
811#ifdef WITNESS
812static void
813witness_fixup(void *dummy __unused)
814{
815	struct mtx *mp;
816
817	/*
818	 * We have to release Giant before initializing its witness
819	 * structure so that WITNESS doesn't get confused.
820	 */
821	mtx_unlock(&Giant);
822	mtx_assert(&Giant, MA_NOTOWNED);
823
824	mtx_lock(&all_mtx);
825
826	/* Iterate through all mutexes and finish up mutex initialization. */
827	for (mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next) {
828
829		mp->mtx_debug = malloc(sizeof(struct mtx_debug),
830		    M_WITNESS, M_NOWAIT | M_ZERO);
831		MPASS(mp->mtx_debug != NULL);
832
833		witness_init(mp, mp->mtx_flags);
834	}
835	mtx_unlock(&all_mtx);
836
837	/* Mark the witness code as being ready for use. */
838	atomic_store_rel_int(&witness_cold, 0);
839
840	mtx_lock(&Giant);
841}
842SYSINIT(wtnsfxup, SI_SUB_MUTEX, SI_ORDER_FIRST, witness_fixup, NULL)
843
844#define WITNESS_COUNT 200
845#define	WITNESS_NCHILDREN 2
846
847int witness_watch = 1;
848
849struct witness {
850	struct witness	*w_next;
851	const char	*w_description;
852	const char	*w_file;
853	int		 w_line;
854	struct witness	*w_morechildren;
855	u_char		 w_childcnt;
856	u_char		 w_Giant_squawked:1;
857	u_char		 w_other_squawked:1;
858	u_char		 w_same_squawked:1;
859	u_char		 w_spin:1;	/* MTX_SPIN type mutex. */
860	u_int		 w_level;
861	struct witness	*w_children[WITNESS_NCHILDREN];
862};
863
864struct witness_blessed {
865	char 	*b_lock1;
866	char	*b_lock2;
867};
868
869#ifdef DDB
870/*
871 * When DDB is enabled and witness_ddb is set to 1, it will cause the system to
872 * drop into kdebug() when:
873 *	- a lock heirarchy violation occurs
874 *	- locks are held when going to sleep.
875 */
876int	witness_ddb;
877#ifdef WITNESS_DDB
878TUNABLE_INT_DECL("debug.witness_ddb", 1, witness_ddb);
879#else
880TUNABLE_INT_DECL("debug.witness_ddb", 0, witness_ddb);
881#endif
882SYSCTL_INT(_debug, OID_AUTO, witness_ddb, CTLFLAG_RW, &witness_ddb, 0, "");
883#endif /* DDB */
884
885int	witness_skipspin;
886#ifdef WITNESS_SKIPSPIN
887TUNABLE_INT_DECL("debug.witness_skipspin", 1, witness_skipspin);
888#else
889TUNABLE_INT_DECL("debug.witness_skipspin", 0, witness_skipspin);
890#endif
891SYSCTL_INT(_debug, OID_AUTO, witness_skipspin, CTLFLAG_RD, &witness_skipspin, 0,
892    "");
893
894/*
895 * Witness-enabled globals
896 */
897static struct mtx	w_mtx;
898static struct witness	*w_free;
899static struct witness	*w_all;
900static int		 w_inited;
901static int		 witness_dead;	/* fatal error, probably no memory */
902
903static struct witness	 w_data[WITNESS_COUNT];
904
905/*
906 * Internal witness routine prototypes
907 */
908static struct witness *enroll(const char *description, int flag);
909static int itismychild(struct witness *parent, struct witness *child);
910static void removechild(struct witness *parent, struct witness *child);
911static int isitmychild(struct witness *parent, struct witness *child);
912static int isitmydescendant(struct witness *parent, struct witness *child);
913static int dup_ok(struct witness *);
914static int blessed(struct witness *, struct witness *);
915static void
916    witness_displaydescendants(void(*)(const char *fmt, ...), struct witness *);
917static void witness_leveldescendents(struct witness *parent, int level);
918static void witness_levelall(void);
919static struct witness * witness_get(void);
920static void witness_free(struct witness *m);
921
922static char *ignore_list[] = {
923	"witness lock",
924	NULL
925};
926
927static char *spin_order_list[] = {
928#if defined(__i386__) && defined (SMP)
929	"com",
930#endif
931	"sio",
932#ifdef __i386__
933	"cy",
934#endif
935	"sched lock",
936#ifdef __i386__
937	"clk",
938#endif
939	"callout",
940	/*
941	 * leaf locks
942	 */
943	"ithread table lock",
944	"ithread list lock",
945#ifdef SMP
946#ifdef __i386__
947	"ap boot",
948	"imen",
949#endif
950	"smp rendezvous",
951#endif
952	NULL
953};
954
955static char *order_list[] = {
956	"Giant", "proctree", "allproc", "process lock", "uidinfo hash",
957	    "uidinfo struct", NULL,
958	NULL
959};
960
961static char *dup_list[] = {
962	NULL
963};
964
965static char *sleep_list[] = {
966	"Giant",
967	NULL
968};
969
970/*
971 * Pairs of locks which have been blessed
972 * Don't complain about order problems with blessed locks
973 */
974static struct witness_blessed blessed_list[] = {
975};
976static int blessed_count =
977	sizeof(blessed_list) / sizeof(struct witness_blessed);
978
979static void
980witness_init(struct mtx *m, int flag)
981{
982	m->mtx_witness = enroll(m->mtx_description, flag);
983}
984
985static void
986witness_destroy(struct mtx *m)
987{
988	struct mtx *m1;
989	struct proc *p;
990	p = CURPROC;
991	LIST_FOREACH(m1, &p->p_heldmtx, mtx_held) {
992		if (m1 == m) {
993			LIST_REMOVE(m, mtx_held);
994			break;
995		}
996	}
997	return;
998
999}
1000
1001static void
1002witness_display(void(*prnt)(const char *fmt, ...))
1003{
1004	struct witness *w, *w1;
1005	int level, found;
1006
1007	KASSERT(!witness_cold, ("%s: witness_cold\n", __FUNCTION__));
1008	witness_levelall();
1009
1010	/*
1011	 * First, handle sleep mutexes which have been acquired at least
1012	 * once.
1013	 */
1014	prnt("Sleep mutexes:\n");
1015	for (w = w_all; w; w = w->w_next) {
1016		if (w->w_file == NULL || w->w_spin)
1017			continue;
1018		for (w1 = w_all; w1; w1 = w1->w_next) {
1019			if (isitmychild(w1, w))
1020				break;
1021		}
1022		if (w1 != NULL)
1023			continue;
1024		/*
1025		 * This lock has no anscestors, display its descendants.
1026		 */
1027		witness_displaydescendants(prnt, w);
1028	}
1029
1030	/*
1031	 * Now do spin mutexes which have been acquired at least once.
1032	 */
1033	prnt("\nSpin mutexes:\n");
1034	level = 0;
1035	while (level < sizeof(spin_order_list) / sizeof(char *)) {
1036		found = 0;
1037		for (w = w_all; w; w = w->w_next) {
1038			if (w->w_file == NULL || !w->w_spin)
1039				continue;
1040			if (w->w_level == 1 << level) {
1041				witness_displaydescendants(prnt, w);
1042				level++;
1043				found = 1;
1044			}
1045		}
1046		if (found == 0)
1047			level++;
1048	}
1049
1050	/*
1051	 * Finally, any mutexes which have not been acquired yet.
1052	 */
1053	prnt("\nMutexes which were never acquired:\n");
1054	for (w = w_all; w; w = w->w_next) {
1055		if (w->w_file != NULL)
1056			continue;
1057		prnt("%s\n", w->w_description);
1058	}
1059}
1060
1061void
1062witness_enter(struct mtx *m, int flags, const char *file, int line)
1063{
1064	struct witness *w, *w1;
1065	struct mtx *m1;
1066	struct proc *p;
1067	int i;
1068#ifdef DDB
1069	int go_into_ddb = 0;
1070#endif /* DDB */
1071
1072	if (witness_cold || m->mtx_witness == NULL || panicstr)
1073		return;
1074	w = m->mtx_witness;
1075	p = CURPROC;
1076
1077	if (flags & MTX_SPIN) {
1078		if ((m->mtx_flags & MTX_SPIN) == 0)
1079			panic("mutex_enter: MTX_SPIN on MTX_DEF mutex %s @"
1080			    " %s:%d", m->mtx_description, file, line);
1081		if (mtx_recursed(m)) {
1082			if ((m->mtx_flags & MTX_RECURSE) == 0)
1083				panic("mutex_enter: recursion on non-recursive"
1084				    " mutex %s @ %s:%d", m->mtx_description,
1085				    file, line);
1086			return;
1087		}
1088		mtx_lock_spin_flags(&w_mtx, MTX_QUIET);
1089		i = PCPU_GET(witness_spin_check);
1090		if (i != 0 && w->w_level < i) {
1091			mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1092			panic("mutex_enter(%s:%x, MTX_SPIN) out of order @"
1093			    " %s:%d already holding %s:%x",
1094			    m->mtx_description, w->w_level, file, line,
1095			    spin_order_list[ffs(i)-1], i);
1096		}
1097		PCPU_SET(witness_spin_check, i | w->w_level);
1098		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1099		w->w_file = file;
1100		w->w_line = line;
1101		m->mtx_line = line;
1102		m->mtx_file = file;
1103		return;
1104	}
1105	if ((m->mtx_flags & MTX_SPIN) != 0)
1106		panic("mutex_enter: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
1107		    m->mtx_description, file, line);
1108
1109	if (mtx_recursed(m)) {
1110		if ((m->mtx_flags & MTX_RECURSE) == 0)
1111			panic("mutex_enter: recursion on non-recursive"
1112			    " mutex %s @ %s:%d", m->mtx_description,
1113			    file, line);
1114		return;
1115	}
1116	if (witness_dead)
1117		goto out;
1118	if (cold)
1119		goto out;
1120
1121	if (!mtx_legal2block())
1122		panic("blockable mtx_lock() of %s when not legal @ %s:%d",
1123			    m->mtx_description, file, line);
1124	/*
1125	 * Is this the first mutex acquired
1126	 */
1127	if ((m1 = LIST_FIRST(&p->p_heldmtx)) == NULL)
1128		goto out;
1129
1130	if ((w1 = m1->mtx_witness) == w) {
1131		if (w->w_same_squawked || dup_ok(w))
1132			goto out;
1133		w->w_same_squawked = 1;
1134		printf("acquring duplicate lock of same type: \"%s\"\n",
1135			m->mtx_description);
1136		printf(" 1st @ %s:%d\n", w->w_file, w->w_line);
1137		printf(" 2nd @ %s:%d\n", file, line);
1138#ifdef DDB
1139		go_into_ddb = 1;
1140#endif /* DDB */
1141		goto out;
1142	}
1143	MPASS(!mtx_owned(&w_mtx));
1144	mtx_lock_spin_flags(&w_mtx, MTX_QUIET);
1145	/*
1146	 * If we have a known higher number just say ok
1147	 */
1148	if (witness_watch > 1 && w->w_level > w1->w_level) {
1149		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1150		goto out;
1151	}
1152	if (isitmydescendant(m1->mtx_witness, w)) {
1153		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1154		goto out;
1155	}
1156	for (i = 0; m1 != NULL; m1 = LIST_NEXT(m1, mtx_held), i++) {
1157
1158		MPASS(i < 200);
1159		w1 = m1->mtx_witness;
1160		if (isitmydescendant(w, w1)) {
1161			mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1162			if (blessed(w, w1))
1163				goto out;
1164			if (m1 == &Giant) {
1165				if (w1->w_Giant_squawked)
1166					goto out;
1167				else
1168					w1->w_Giant_squawked = 1;
1169			} else {
1170				if (w1->w_other_squawked)
1171					goto out;
1172				else
1173					w1->w_other_squawked = 1;
1174			}
1175			printf("lock order reversal\n");
1176			printf(" 1st %s last acquired @ %s:%d\n",
1177			    w->w_description, w->w_file, w->w_line);
1178			printf(" 2nd %p %s @ %s:%d\n",
1179			    m1, w1->w_description, w1->w_file, w1->w_line);
1180			printf(" 3rd %p %s @ %s:%d\n",
1181			    m, w->w_description, file, line);
1182#ifdef DDB
1183			go_into_ddb = 1;
1184#endif /* DDB */
1185			goto out;
1186		}
1187	}
1188	m1 = LIST_FIRST(&p->p_heldmtx);
1189	if (!itismychild(m1->mtx_witness, w))
1190		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1191
1192out:
1193#ifdef DDB
1194	if (witness_ddb && go_into_ddb)
1195		Debugger("witness_enter");
1196#endif /* DDB */
1197	w->w_file = file;
1198	w->w_line = line;
1199	m->mtx_line = line;
1200	m->mtx_file = file;
1201
1202	/*
1203	 * If this pays off it likely means that a mutex being witnessed
1204	 * is acquired in hardclock. Put it in the ignore list. It is
1205	 * likely not the mutex this assert fails on.
1206	 */
1207	MPASS(m->mtx_held.le_prev == NULL);
1208	LIST_INSERT_HEAD(&p->p_heldmtx, (struct mtx*)m, mtx_held);
1209}
1210
1211void
1212witness_try_enter(struct mtx *m, int flags, const char *file, int line)
1213{
1214	struct proc *p;
1215	struct witness *w = m->mtx_witness;
1216
1217	if (witness_cold)
1218		return;
1219	if (panicstr)
1220		return;
1221	if (flags & MTX_SPIN) {
1222		if ((m->mtx_flags & MTX_SPIN) == 0)
1223			panic("mutex_try_enter: "
1224			    "MTX_SPIN on MTX_DEF mutex %s @ %s:%d",
1225			    m->mtx_description, file, line);
1226		if (mtx_recursed(m)) {
1227			if ((m->mtx_flags & MTX_RECURSE) == 0)
1228				panic("mutex_try_enter: recursion on"
1229				    " non-recursive mutex %s @ %s:%d",
1230				    m->mtx_description, file, line);
1231			return;
1232		}
1233		mtx_lock_spin_flags(&w_mtx, MTX_QUIET);
1234		PCPU_SET(witness_spin_check,
1235		    PCPU_GET(witness_spin_check) | w->w_level);
1236		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1237		w->w_file = file;
1238		w->w_line = line;
1239		m->mtx_line = line;
1240		m->mtx_file = file;
1241		return;
1242	}
1243
1244	if ((m->mtx_flags & MTX_SPIN) != 0)
1245		panic("mutex_try_enter: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
1246		    m->mtx_description, file, line);
1247
1248	if (mtx_recursed(m)) {
1249		if ((m->mtx_flags & MTX_RECURSE) == 0)
1250			panic("mutex_try_enter: recursion on non-recursive"
1251			    " mutex %s @ %s:%d", m->mtx_description, file,
1252			    line);
1253		return;
1254	}
1255	w->w_file = file;
1256	w->w_line = line;
1257	m->mtx_line = line;
1258	m->mtx_file = file;
1259	p = CURPROC;
1260	MPASS(m->mtx_held.le_prev == NULL);
1261	LIST_INSERT_HEAD(&p->p_heldmtx, (struct mtx*)m, mtx_held);
1262}
1263
1264void
1265witness_exit(struct mtx *m, int flags, const char *file, int line)
1266{
1267	struct witness *w;
1268
1269	if (witness_cold || m->mtx_witness == NULL || panicstr)
1270		return;
1271	w = m->mtx_witness;
1272
1273	if (flags & MTX_SPIN) {
1274		if ((m->mtx_flags & MTX_SPIN) == 0)
1275			panic("mutex_exit: MTX_SPIN on MTX_DEF mutex %s @"
1276			    " %s:%d", m->mtx_description, file, line);
1277		if (mtx_recursed(m)) {
1278			if ((m->mtx_flags & MTX_RECURSE) == 0)
1279				panic("mutex_exit: recursion on non-recursive"
1280				    " mutex %s @ %s:%d", m->mtx_description,
1281				    file, line);
1282			return;
1283		}
1284		mtx_lock_spin_flags(&w_mtx, MTX_QUIET);
1285		PCPU_SET(witness_spin_check,
1286		    PCPU_GET(witness_spin_check) & ~w->w_level);
1287		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1288		return;
1289	}
1290	if ((m->mtx_flags & MTX_SPIN) != 0)
1291		panic("mutex_exit: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
1292		    m->mtx_description, file, line);
1293
1294	if (mtx_recursed(m)) {
1295		if ((m->mtx_flags & MTX_RECURSE) == 0)
1296			panic("mutex_exit: recursion on non-recursive"
1297			    " mutex %s @ %s:%d", m->mtx_description,
1298			    file, line);
1299		return;
1300	}
1301
1302	if ((flags & MTX_NOSWITCH) == 0 && !mtx_legal2block() && !cold)
1303		panic("switchable mtx_unlock() of %s when not legal @ %s:%d",
1304			    m->mtx_description, file, line);
1305	LIST_REMOVE(m, mtx_held);
1306	m->mtx_held.le_prev = NULL;
1307}
1308
1309int
1310witness_sleep(int check_only, struct mtx *mtx, const char *file, int line)
1311{
1312	struct mtx *m;
1313	struct proc *p;
1314	char **sleep;
1315	int n = 0;
1316
1317	KASSERT(!witness_cold, ("%s: witness_cold\n", __FUNCTION__));
1318	p = CURPROC;
1319	LIST_FOREACH(m, &p->p_heldmtx, mtx_held) {
1320		if (m == mtx)
1321			continue;
1322		for (sleep = sleep_list; *sleep!= NULL; sleep++)
1323			if (strcmp(m->mtx_description, *sleep) == 0)
1324				goto next;
1325		if (n == 0)
1326			printf("Whee!\n");
1327		printf("%s:%d: %s with \"%s\" locked from %s:%d\n",
1328			file, line, check_only ? "could sleep" : "sleeping",
1329			m->mtx_description,
1330			m->mtx_witness->w_file, m->mtx_witness->w_line);
1331		n++;
1332	next:
1333	}
1334#ifdef DDB
1335	if (witness_ddb && n)
1336		Debugger("witness_sleep");
1337#endif /* DDB */
1338	return (n);
1339}
1340
1341static struct witness *
1342enroll(const char *description, int flag)
1343{
1344	int i;
1345	struct witness *w, *w1;
1346	char **ignore;
1347	char **order;
1348
1349	if (!witness_watch)
1350		return (NULL);
1351	for (ignore = ignore_list; *ignore != NULL; ignore++)
1352		if (strcmp(description, *ignore) == 0)
1353			return (NULL);
1354
1355	if (w_inited == 0) {
1356		mtx_init(&w_mtx, "witness lock", MTX_SPIN);
1357		for (i = 0; i < WITNESS_COUNT; i++) {
1358			w = &w_data[i];
1359			witness_free(w);
1360		}
1361		w_inited = 1;
1362		for (order = order_list; *order != NULL; order++) {
1363			w = enroll(*order, MTX_DEF);
1364			w->w_file = "order list";
1365			for (order++; *order != NULL; order++) {
1366				w1 = enroll(*order, MTX_DEF);
1367				w1->w_file = "order list";
1368				itismychild(w, w1);
1369				w = w1;
1370    	    	    	}
1371		}
1372	}
1373	if ((flag & MTX_SPIN) && witness_skipspin)
1374		return (NULL);
1375	mtx_lock_spin_flags(&w_mtx, MTX_QUIET);
1376	for (w = w_all; w; w = w->w_next) {
1377		if (strcmp(description, w->w_description) == 0) {
1378			mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1379			return (w);
1380		}
1381	}
1382	if ((w = witness_get()) == NULL)
1383		return (NULL);
1384	w->w_next = w_all;
1385	w_all = w;
1386	w->w_description = description;
1387	mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1388	if (flag & MTX_SPIN) {
1389		w->w_spin = 1;
1390
1391		i = 1;
1392		for (order = spin_order_list; *order != NULL; order++) {
1393			if (strcmp(description, *order) == 0)
1394				break;
1395			i <<= 1;
1396		}
1397		if (*order == NULL)
1398			panic("spin lock %s not in order list", description);
1399		w->w_level = i;
1400	}
1401
1402	return (w);
1403}
1404
1405static int
1406itismychild(struct witness *parent, struct witness *child)
1407{
1408	static int recursed;
1409
1410	/*
1411	 * Insert "child" after "parent"
1412	 */
1413	while (parent->w_morechildren)
1414		parent = parent->w_morechildren;
1415
1416	if (parent->w_childcnt == WITNESS_NCHILDREN) {
1417		if ((parent->w_morechildren = witness_get()) == NULL)
1418			return (1);
1419		parent = parent->w_morechildren;
1420	}
1421	MPASS(child != NULL);
1422	parent->w_children[parent->w_childcnt++] = child;
1423	/*
1424	 * now prune whole tree
1425	 */
1426	if (recursed)
1427		return (0);
1428	recursed = 1;
1429	for (child = w_all; child != NULL; child = child->w_next) {
1430		for (parent = w_all; parent != NULL;
1431		    parent = parent->w_next) {
1432			if (!isitmychild(parent, child))
1433				continue;
1434			removechild(parent, child);
1435			if (isitmydescendant(parent, child))
1436				continue;
1437			itismychild(parent, child);
1438		}
1439	}
1440	recursed = 0;
1441	witness_levelall();
1442	return (0);
1443}
1444
1445static void
1446removechild(struct witness *parent, struct witness *child)
1447{
1448	struct witness *w, *w1;
1449	int i;
1450
1451	for (w = parent; w != NULL; w = w->w_morechildren)
1452		for (i = 0; i < w->w_childcnt; i++)
1453			if (w->w_children[i] == child)
1454				goto found;
1455	return;
1456found:
1457	for (w1 = w; w1->w_morechildren != NULL; w1 = w1->w_morechildren)
1458		continue;
1459	w->w_children[i] = w1->w_children[--w1->w_childcnt];
1460	MPASS(w->w_children[i] != NULL);
1461
1462	if (w1->w_childcnt != 0)
1463		return;
1464
1465	if (w1 == parent)
1466		return;
1467	for (w = parent; w->w_morechildren != w1; w = w->w_morechildren)
1468		continue;
1469	w->w_morechildren = 0;
1470	witness_free(w1);
1471}
1472
1473static int
1474isitmychild(struct witness *parent, struct witness *child)
1475{
1476	struct witness *w;
1477	int i;
1478
1479	for (w = parent; w != NULL; w = w->w_morechildren) {
1480		for (i = 0; i < w->w_childcnt; i++) {
1481			if (w->w_children[i] == child)
1482				return (1);
1483		}
1484	}
1485	return (0);
1486}
1487
1488static int
1489isitmydescendant(struct witness *parent, struct witness *child)
1490{
1491	struct witness *w;
1492	int i;
1493	int j;
1494
1495	for (j = 0, w = parent; w != NULL; w = w->w_morechildren, j++) {
1496		MPASS(j < 1000);
1497		for (i = 0; i < w->w_childcnt; i++) {
1498			if (w->w_children[i] == child)
1499				return (1);
1500		}
1501		for (i = 0; i < w->w_childcnt; i++) {
1502			if (isitmydescendant(w->w_children[i], child))
1503				return (1);
1504		}
1505	}
1506	return (0);
1507}
1508
1509void
1510witness_levelall (void)
1511{
1512	struct witness *w, *w1;
1513
1514	for (w = w_all; w; w = w->w_next)
1515		if (!(w->w_spin))
1516			w->w_level = 0;
1517	for (w = w_all; w; w = w->w_next) {
1518		if (w->w_spin)
1519			continue;
1520		for (w1 = w_all; w1; w1 = w1->w_next) {
1521			if (isitmychild(w1, w))
1522				break;
1523		}
1524		if (w1 != NULL)
1525			continue;
1526		witness_leveldescendents(w, 0);
1527	}
1528}
1529
1530static void
1531witness_leveldescendents(struct witness *parent, int level)
1532{
1533	int i;
1534	struct witness *w;
1535
1536	if (parent->w_level < level)
1537		parent->w_level = level;
1538	level++;
1539	for (w = parent; w != NULL; w = w->w_morechildren)
1540		for (i = 0; i < w->w_childcnt; i++)
1541			witness_leveldescendents(w->w_children[i], level);
1542}
1543
1544static void
1545witness_displaydescendants(void(*prnt)(const char *fmt, ...),
1546			   struct witness *parent)
1547{
1548	struct witness *w;
1549	int i;
1550	int level;
1551
1552	level = parent->w_spin ? ffs(parent->w_level) : parent->w_level;
1553
1554	prnt("%d", level);
1555	if (level < 10)
1556		prnt(" ");
1557	for (i = 0; i < level; i++)
1558		prnt(" ");
1559	prnt("%s", parent->w_description);
1560	if (parent->w_file != NULL)
1561		prnt(" -- last acquired @ %s:%d\n", parent->w_file,
1562		    parent->w_line);
1563
1564	for (w = parent; w != NULL; w = w->w_morechildren)
1565		for (i = 0; i < w->w_childcnt; i++)
1566			    witness_displaydescendants(prnt, w->w_children[i]);
1567    }
1568
1569static int
1570dup_ok(struct witness *w)
1571{
1572	char **dup;
1573
1574	for (dup = dup_list; *dup!= NULL; dup++)
1575		if (strcmp(w->w_description, *dup) == 0)
1576			return (1);
1577	return (0);
1578}
1579
1580static int
1581blessed(struct witness *w1, struct witness *w2)
1582{
1583	int i;
1584	struct witness_blessed *b;
1585
1586	for (i = 0; i < blessed_count; i++) {
1587		b = &blessed_list[i];
1588		if (strcmp(w1->w_description, b->b_lock1) == 0) {
1589			if (strcmp(w2->w_description, b->b_lock2) == 0)
1590				return (1);
1591			continue;
1592		}
1593		if (strcmp(w1->w_description, b->b_lock2) == 0)
1594			if (strcmp(w2->w_description, b->b_lock1) == 0)
1595				return (1);
1596	}
1597	return (0);
1598}
1599
1600static struct witness *
1601witness_get()
1602{
1603	struct witness *w;
1604
1605	if ((w = w_free) == NULL) {
1606		witness_dead = 1;
1607		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1608		printf("witness exhausted\n");
1609		return (NULL);
1610	}
1611	w_free = w->w_next;
1612	bzero(w, sizeof(*w));
1613	return (w);
1614}
1615
1616static void
1617witness_free(struct witness *w)
1618{
1619	w->w_next = w_free;
1620	w_free = w;
1621}
1622
1623int
1624witness_list(struct proc *p)
1625{
1626	struct mtx *m;
1627	int nheld;
1628
1629	KASSERT(!witness_cold, ("%s: witness_cold\n", __FUNCTION__));
1630	nheld = 0;
1631	LIST_FOREACH(m, &p->p_heldmtx, mtx_held) {
1632		printf("\t\"%s\" (%p) locked at %s:%d\n",
1633		    m->mtx_description, m,
1634		    m->mtx_witness->w_file, m->mtx_witness->w_line);
1635		nheld++;
1636	}
1637
1638	return (nheld);
1639}
1640
1641#ifdef DDB
1642
1643DB_SHOW_COMMAND(mutexes, db_witness_list)
1644{
1645
1646	witness_list(CURPROC);
1647}
1648
1649DB_SHOW_COMMAND(witness, db_witness_display)
1650{
1651
1652	witness_display(db_printf);
1653}
1654#endif
1655
1656void
1657witness_save(struct mtx *m, const char **filep, int *linep)
1658{
1659
1660	KASSERT(!witness_cold, ("%s: witness_cold\n", __FUNCTION__));
1661	if (m->mtx_witness == NULL)
1662		return;
1663
1664	*filep = m->mtx_witness->w_file;
1665	*linep = m->mtx_witness->w_line;
1666}
1667
1668void
1669witness_restore(struct mtx *m, const char *file, int line)
1670{
1671
1672	KASSERT(!witness_cold, ("%s: witness_cold\n", __FUNCTION__));
1673	if (m->mtx_witness == NULL)
1674		return;
1675
1676	m->mtx_witness->w_file = file;
1677	m->mtx_witness->w_line = line;
1678}
1679
1680#endif	/* WITNESS */
1681