subr_witness.c revision 228424
1/*-
2 * Copyright (c) 2008 Isilon Systems, Inc.
3 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4 * Copyright (c) 1998 Berkeley Software Design, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Berkeley Software Design Inc's name may not be used to endorse or
16 *    promote products derived from this software without specific prior
17 *    written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33 */
34
35/*
36 * Implementation of the `witness' lock verifier.  Originally implemented for
37 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38 * classes in FreeBSD.
39 */
40
41/*
42 *	Main Entry: witness
43 *	Pronunciation: 'wit-n&s
44 *	Function: noun
45 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
46 *	    testimony, witness, from 2wit
47 *	Date: before 12th century
48 *	1 : attestation of a fact or event : TESTIMONY
49 *	2 : one that gives evidence; specifically : one who testifies in
50 *	    a cause or before a judicial tribunal
51 *	3 : one asked to be present at a transaction so as to be able to
52 *	    testify to its having taken place
53 *	4 : one who has personal knowledge of something
54 *	5 a : something serving as evidence or proof : SIGN
55 *	  b : public affirmation by word or example of usually
56 *	      religious faith or conviction <the heroic witness to divine
57 *	      life -- Pilot>
58 *	6 capitalized : a member of the Jehovah's Witnesses
59 */
60
61/*
62 * Special rules concerning Giant and lock orders:
63 *
64 * 1) Giant must be acquired before any other mutexes.  Stated another way,
65 *    no other mutex may be held when Giant is acquired.
66 *
67 * 2) Giant must be released when blocking on a sleepable lock.
68 *
69 * This rule is less obvious, but is a result of Giant providing the same
70 * semantics as spl().  Basically, when a thread sleeps, it must release
71 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72 * 2).
73 *
74 * 3) Giant may be acquired before or after sleepable locks.
75 *
76 * This rule is also not quite as obvious.  Giant may be acquired after
77 * a sleepable lock because it is a non-sleepable lock and non-sleepable
78 * locks may always be acquired while holding a sleepable lock.  The second
79 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83 * execute.  Thus, acquiring Giant both before and after a sleepable lock
84 * will not result in a lock order reversal.
85 */
86
87#include <sys/cdefs.h>
88__FBSDID("$FreeBSD: head/sys/kern/subr_witness.c 228424 2011-12-11 21:02:01Z avg $");
89
90#include "opt_ddb.h"
91#include "opt_hwpmc_hooks.h"
92#include "opt_stack.h"
93#include "opt_witness.h"
94
95#include <sys/param.h>
96#include <sys/bus.h>
97#include <sys/kdb.h>
98#include <sys/kernel.h>
99#include <sys/ktr.h>
100#include <sys/lock.h>
101#include <sys/malloc.h>
102#include <sys/mutex.h>
103#include <sys/priv.h>
104#include <sys/proc.h>
105#include <sys/sbuf.h>
106#include <sys/sched.h>
107#include <sys/stack.h>
108#include <sys/sysctl.h>
109#include <sys/systm.h>
110
111#ifdef DDB
112#include <ddb/ddb.h>
113#endif
114
115#include <machine/stdarg.h>
116
117#if !defined(DDB) && !defined(STACK)
118#error "DDB or STACK options are required for WITNESS"
119#endif
120
121/* Note that these traces do not work with KTR_ALQ. */
122#if 0
123#define	KTR_WITNESS	KTR_SUBSYS
124#else
125#define	KTR_WITNESS	0
126#endif
127
128#define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
129#define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
130#define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
131
132/* Define this to check for blessed mutexes */
133#undef BLESSING
134
135#define	WITNESS_COUNT 		1024
136#define	WITNESS_CHILDCOUNT 	(WITNESS_COUNT * 4)
137#define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
138#define	WITNESS_PENDLIST	768
139
140/* Allocate 256 KB of stack data space */
141#define	WITNESS_LO_DATA_COUNT	2048
142
143/* Prime, gives load factor of ~2 at full load */
144#define	WITNESS_LO_HASH_SIZE	1021
145
146/*
147 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148 * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149 * probably be safe for the most part, but it's still a SWAG.
150 */
151#define	LOCK_NCHILDREN	5
152#define	LOCK_CHILDCOUNT	2048
153
154#define	MAX_W_NAME	64
155
156#define	BADSTACK_SBUF_SIZE	(256 * WITNESS_COUNT)
157#define	FULLGRAPH_SBUF_SIZE	512
158
159/*
160 * These flags go in the witness relationship matrix and describe the
161 * relationship between any two struct witness objects.
162 */
163#define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
164#define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165#define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166#define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167#define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168#define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169#define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170#define	WITNESS_RELATED_MASK						\
171	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172#define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173					  * observed. */
174#define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175#define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176#define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178/* Descendant to ancestor flags */
179#define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
180
181/* Ancestor to descendant flags */
182#define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
183
184#define	WITNESS_INDEX_ASSERT(i)						\
185	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186
187static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189/*
190 * Lock instances.  A lock instance is the data associated with a lock while
191 * it is held by witness.  For example, a lock instance will hold the
192 * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193 * are held in a per-cpu list while sleep locks are held in per-thread list.
194 */
195struct lock_instance {
196	struct lock_object	*li_lock;
197	const char		*li_file;
198	int			li_line;
199	u_int			li_flags;
200};
201
202/*
203 * A simple list type used to build the list of locks held by a thread
204 * or CPU.  We can't simply embed the list in struct lock_object since a
205 * lock may be held by more than one thread if it is a shared lock.  Locks
206 * are added to the head of the list, so we fill up each list entry from
207 * "the back" logically.  To ease some of the arithmetic, we actually fill
208 * in each list entry the normal way (children[0] then children[1], etc.) but
209 * when we traverse the list we read children[count-1] as the first entry
210 * down to children[0] as the final entry.
211 */
212struct lock_list_entry {
213	struct lock_list_entry	*ll_next;
214	struct lock_instance	ll_children[LOCK_NCHILDREN];
215	u_int			ll_count;
216};
217
218/*
219 * The main witness structure. One of these per named lock type in the system
220 * (for example, "vnode interlock").
221 */
222struct witness {
223	char  			w_name[MAX_W_NAME];
224	uint32_t 		w_index;  /* Index in the relationship matrix */
225	struct lock_class	*w_class;
226	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
227	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
228	struct witness		*w_hash_next; /* Linked list in hash buckets. */
229	const char		*w_file; /* File where last acquired */
230	uint32_t 		w_line; /* Line where last acquired */
231	uint32_t 		w_refcount;
232	uint16_t 		w_num_ancestors; /* direct/indirect
233						  * ancestor count */
234	uint16_t 		w_num_descendants; /* direct/indirect
235						    * descendant count */
236	int16_t 		w_ddb_level;
237	unsigned		w_displayed:1;
238	unsigned		w_reversed:1;
239};
240
241STAILQ_HEAD(witness_list, witness);
242
243/*
244 * The witness hash table. Keys are witness names (const char *), elements are
245 * witness objects (struct witness *).
246 */
247struct witness_hash {
248	struct witness	*wh_array[WITNESS_HASH_SIZE];
249	uint32_t	wh_size;
250	uint32_t	wh_count;
251};
252
253/*
254 * Key type for the lock order data hash table.
255 */
256struct witness_lock_order_key {
257	uint16_t	from;
258	uint16_t	to;
259};
260
261struct witness_lock_order_data {
262	struct stack			wlod_stack;
263	struct witness_lock_order_key	wlod_key;
264	struct witness_lock_order_data	*wlod_next;
265};
266
267/*
268 * The witness lock order data hash table. Keys are witness index tuples
269 * (struct witness_lock_order_key), elements are lock order data objects
270 * (struct witness_lock_order_data).
271 */
272struct witness_lock_order_hash {
273	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
274	u_int	wloh_size;
275	u_int	wloh_count;
276};
277
278#ifdef BLESSING
279struct witness_blessed {
280	const char	*b_lock1;
281	const char	*b_lock2;
282};
283#endif
284
285struct witness_pendhelp {
286	const char		*wh_type;
287	struct lock_object	*wh_lock;
288};
289
290struct witness_order_list_entry {
291	const char		*w_name;
292	struct lock_class	*w_class;
293};
294
295/*
296 * Returns 0 if one of the locks is a spin lock and the other is not.
297 * Returns 1 otherwise.
298 */
299static __inline int
300witness_lock_type_equal(struct witness *w1, struct witness *w2)
301{
302
303	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305}
306
307static __inline int
308witness_lock_order_key_empty(const struct witness_lock_order_key *key)
309{
310
311	return (key->from == 0 && key->to == 0);
312}
313
314static __inline int
315witness_lock_order_key_equal(const struct witness_lock_order_key *a,
316    const struct witness_lock_order_key *b)
317{
318
319	return (a->from == b->from && a->to == b->to);
320}
321
322static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
323		    const char *fname);
324#ifdef KDB
325static void	_witness_debugger(int cond, const char *msg);
326#endif
327static void	adopt(struct witness *parent, struct witness *child);
328#ifdef BLESSING
329static int	blessed(struct witness *, struct witness *);
330#endif
331static void	depart(struct witness *w);
332static struct witness	*enroll(const char *description,
333			    struct lock_class *lock_class);
334static struct lock_instance	*find_instance(struct lock_list_entry *list,
335				    const struct lock_object *lock);
336static int	isitmychild(struct witness *parent, struct witness *child);
337static int	isitmydescendant(struct witness *parent, struct witness *child);
338static void	itismychild(struct witness *parent, struct witness *child);
339static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
340static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
341static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
342static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
343#ifdef DDB
344static void	witness_ddb_compute_levels(void);
345static void	witness_ddb_display(int(*)(const char *fmt, ...));
346static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
347		    struct witness *, int indent);
348static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
349		    struct witness_list *list);
350static void	witness_ddb_level_descendants(struct witness *parent, int l);
351static void	witness_ddb_list(struct thread *td);
352#endif
353static void	witness_free(struct witness *m);
354static struct witness	*witness_get(void);
355static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
356static struct witness	*witness_hash_get(const char *key);
357static void	witness_hash_put(struct witness *w);
358static void	witness_init_hash_tables(void);
359static void	witness_increment_graph_generation(void);
360static void	witness_lock_list_free(struct lock_list_entry *lle);
361static struct lock_list_entry	*witness_lock_list_get(void);
362static int	witness_lock_order_add(struct witness *parent,
363		    struct witness *child);
364static int	witness_lock_order_check(struct witness *parent,
365		    struct witness *child);
366static struct witness_lock_order_data	*witness_lock_order_get(
367					    struct witness *parent,
368					    struct witness *child);
369static void	witness_list_lock(struct lock_instance *instance,
370		    int (*prnt)(const char *fmt, ...));
371static void	witness_setflag(struct lock_object *lock, int flag, int set);
372
373#ifdef KDB
374#define	witness_debugger(c)	_witness_debugger(c, __func__)
375#else
376#define	witness_debugger(c)
377#endif
378
379static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
380    "Witness Locking");
381
382/*
383 * If set to 0, lock order checking is disabled.  If set to -1,
384 * witness is completely disabled.  Otherwise witness performs full
385 * lock order checking for all locks.  At runtime, lock order checking
386 * may be toggled.  However, witness cannot be reenabled once it is
387 * completely disabled.
388 */
389static int witness_watch = 1;
390TUNABLE_INT("debug.witness.watch", &witness_watch);
391SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
392    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
393
394#ifdef KDB
395/*
396 * When KDB is enabled and witness_kdb is 1, it will cause the system
397 * to drop into kdebug() when:
398 *	- a lock hierarchy violation occurs
399 *	- locks are held when going to sleep.
400 */
401#ifdef WITNESS_KDB
402int	witness_kdb = 1;
403#else
404int	witness_kdb = 0;
405#endif
406TUNABLE_INT("debug.witness.kdb", &witness_kdb);
407SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
408
409/*
410 * When KDB is enabled and witness_trace is 1, it will cause the system
411 * to print a stack trace:
412 *	- a lock hierarchy violation occurs
413 *	- locks are held when going to sleep.
414 */
415int	witness_trace = 1;
416TUNABLE_INT("debug.witness.trace", &witness_trace);
417SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
418#endif /* KDB */
419
420#ifdef WITNESS_SKIPSPIN
421int	witness_skipspin = 1;
422#else
423int	witness_skipspin = 0;
424#endif
425TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
426SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
427    0, "");
428
429/*
430 * Call this to print out the relations between locks.
431 */
432SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
433    NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
434
435/*
436 * Call this to print out the witness faulty stacks.
437 */
438SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
439    NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
440
441static struct mtx w_mtx;
442
443/* w_list */
444static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
445static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
446
447/* w_typelist */
448static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
449static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
450
451/* lock list */
452static struct lock_list_entry *w_lock_list_free = NULL;
453static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
454static u_int pending_cnt;
455
456static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
457SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
458SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
459SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
460    "");
461
462static struct witness *w_data;
463static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
464static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
465static struct witness_hash w_hash;	/* The witness hash table. */
466
467/* The lock order data hash */
468static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
469static struct witness_lock_order_data *w_lofree = NULL;
470static struct witness_lock_order_hash w_lohash;
471static int w_max_used_index = 0;
472static unsigned int w_generation = 0;
473static const char w_notrunning[] = "Witness not running\n";
474static const char w_stillcold[] = "Witness is still cold\n";
475
476
477static struct witness_order_list_entry order_lists[] = {
478	/*
479	 * sx locks
480	 */
481	{ "proctree", &lock_class_sx },
482	{ "allproc", &lock_class_sx },
483	{ "allprison", &lock_class_sx },
484	{ NULL, NULL },
485	/*
486	 * Various mutexes
487	 */
488	{ "Giant", &lock_class_mtx_sleep },
489	{ "pipe mutex", &lock_class_mtx_sleep },
490	{ "sigio lock", &lock_class_mtx_sleep },
491	{ "process group", &lock_class_mtx_sleep },
492	{ "process lock", &lock_class_mtx_sleep },
493	{ "session", &lock_class_mtx_sleep },
494	{ "uidinfo hash", &lock_class_rw },
495#ifdef	HWPMC_HOOKS
496	{ "pmc-sleep", &lock_class_mtx_sleep },
497#endif
498	{ "time lock", &lock_class_mtx_sleep },
499	{ NULL, NULL },
500	/*
501	 * Sockets
502	 */
503	{ "accept", &lock_class_mtx_sleep },
504	{ "so_snd", &lock_class_mtx_sleep },
505	{ "so_rcv", &lock_class_mtx_sleep },
506	{ "sellck", &lock_class_mtx_sleep },
507	{ NULL, NULL },
508	/*
509	 * Routing
510	 */
511	{ "so_rcv", &lock_class_mtx_sleep },
512	{ "radix node head", &lock_class_rw },
513	{ "rtentry", &lock_class_mtx_sleep },
514	{ "ifaddr", &lock_class_mtx_sleep },
515	{ NULL, NULL },
516	/*
517	 * IPv4 multicast:
518	 * protocol locks before interface locks, after UDP locks.
519	 */
520	{ "udpinp", &lock_class_rw },
521	{ "in_multi_mtx", &lock_class_mtx_sleep },
522	{ "igmp_mtx", &lock_class_mtx_sleep },
523	{ "if_addr_mtx", &lock_class_mtx_sleep },
524	{ NULL, NULL },
525	/*
526	 * IPv6 multicast:
527	 * protocol locks before interface locks, after UDP locks.
528	 */
529	{ "udpinp", &lock_class_rw },
530	{ "in6_multi_mtx", &lock_class_mtx_sleep },
531	{ "mld_mtx", &lock_class_mtx_sleep },
532	{ "if_addr_mtx", &lock_class_mtx_sleep },
533	{ NULL, NULL },
534	/*
535	 * UNIX Domain Sockets
536	 */
537	{ "unp_global_rwlock", &lock_class_rw },
538	{ "unp_list_lock", &lock_class_mtx_sleep },
539	{ "unp", &lock_class_mtx_sleep },
540	{ "so_snd", &lock_class_mtx_sleep },
541	{ NULL, NULL },
542	/*
543	 * UDP/IP
544	 */
545	{ "udp", &lock_class_rw },
546	{ "udpinp", &lock_class_rw },
547	{ "so_snd", &lock_class_mtx_sleep },
548	{ NULL, NULL },
549	/*
550	 * TCP/IP
551	 */
552	{ "tcp", &lock_class_rw },
553	{ "tcpinp", &lock_class_rw },
554	{ "so_snd", &lock_class_mtx_sleep },
555	{ NULL, NULL },
556	/*
557	 * netatalk
558	 */
559	{ "ddp_list_mtx", &lock_class_mtx_sleep },
560	{ "ddp_mtx", &lock_class_mtx_sleep },
561	{ NULL, NULL },
562	/*
563	 * BPF
564	 */
565	{ "bpf global lock", &lock_class_mtx_sleep },
566	{ "bpf interface lock", &lock_class_mtx_sleep },
567	{ "bpf cdev lock", &lock_class_mtx_sleep },
568	{ NULL, NULL },
569	/*
570	 * NFS server
571	 */
572	{ "nfsd_mtx", &lock_class_mtx_sleep },
573	{ "so_snd", &lock_class_mtx_sleep },
574	{ NULL, NULL },
575
576	/*
577	 * IEEE 802.11
578	 */
579	{ "802.11 com lock", &lock_class_mtx_sleep},
580	{ NULL, NULL },
581	/*
582	 * Network drivers
583	 */
584	{ "network driver", &lock_class_mtx_sleep},
585	{ NULL, NULL },
586
587	/*
588	 * Netgraph
589	 */
590	{ "ng_node", &lock_class_mtx_sleep },
591	{ "ng_worklist", &lock_class_mtx_sleep },
592	{ NULL, NULL },
593	/*
594	 * CDEV
595	 */
596	{ "system map", &lock_class_mtx_sleep },
597	{ "vm page queue mutex", &lock_class_mtx_sleep },
598	{ "vnode interlock", &lock_class_mtx_sleep },
599	{ "cdev", &lock_class_mtx_sleep },
600	{ NULL, NULL },
601	/*
602	 * VM
603	 *
604	 */
605	{ "vm object", &lock_class_mtx_sleep },
606	{ "page lock", &lock_class_mtx_sleep },
607	{ "vm page queue mutex", &lock_class_mtx_sleep },
608	{ "pmap", &lock_class_mtx_sleep },
609	{ NULL, NULL },
610	/*
611	 * kqueue/VFS interaction
612	 */
613	{ "kqueue", &lock_class_mtx_sleep },
614	{ "struct mount mtx", &lock_class_mtx_sleep },
615	{ "vnode interlock", &lock_class_mtx_sleep },
616	{ NULL, NULL },
617	/*
618	 * ZFS locking
619	 */
620	{ "dn->dn_mtx", &lock_class_sx },
621	{ "dr->dt.di.dr_mtx", &lock_class_sx },
622	{ "db->db_mtx", &lock_class_sx },
623	{ NULL, NULL },
624	/*
625	 * spin locks
626	 */
627#ifdef SMP
628	{ "ap boot", &lock_class_mtx_spin },
629#endif
630	{ "rm.mutex_mtx", &lock_class_mtx_spin },
631	{ "sio", &lock_class_mtx_spin },
632	{ "scrlock", &lock_class_mtx_spin },
633#ifdef __i386__
634	{ "cy", &lock_class_mtx_spin },
635#endif
636#ifdef __sparc64__
637	{ "pcib_mtx", &lock_class_mtx_spin },
638	{ "rtc_mtx", &lock_class_mtx_spin },
639#endif
640	{ "scc_hwmtx", &lock_class_mtx_spin },
641	{ "uart_hwmtx", &lock_class_mtx_spin },
642	{ "fast_taskqueue", &lock_class_mtx_spin },
643	{ "intr table", &lock_class_mtx_spin },
644#ifdef	HWPMC_HOOKS
645	{ "pmc-per-proc", &lock_class_mtx_spin },
646#endif
647	{ "process slock", &lock_class_mtx_spin },
648	{ "sleepq chain", &lock_class_mtx_spin },
649	{ "umtx lock", &lock_class_mtx_spin },
650	{ "rm_spinlock", &lock_class_mtx_spin },
651	{ "turnstile chain", &lock_class_mtx_spin },
652	{ "turnstile lock", &lock_class_mtx_spin },
653	{ "sched lock", &lock_class_mtx_spin },
654	{ "td_contested", &lock_class_mtx_spin },
655	{ "callout", &lock_class_mtx_spin },
656	{ "entropy harvest mutex", &lock_class_mtx_spin },
657	{ "syscons video lock", &lock_class_mtx_spin },
658#ifdef SMP
659	{ "smp rendezvous", &lock_class_mtx_spin },
660#endif
661#ifdef __powerpc__
662	{ "tlb0", &lock_class_mtx_spin },
663#endif
664	/*
665	 * leaf locks
666	 */
667	{ "intrcnt", &lock_class_mtx_spin },
668	{ "icu", &lock_class_mtx_spin },
669#if defined(SMP) && defined(__sparc64__)
670	{ "ipi", &lock_class_mtx_spin },
671#endif
672#ifdef __i386__
673	{ "allpmaps", &lock_class_mtx_spin },
674	{ "descriptor tables", &lock_class_mtx_spin },
675#endif
676	{ "clk", &lock_class_mtx_spin },
677	{ "cpuset", &lock_class_mtx_spin },
678	{ "mprof lock", &lock_class_mtx_spin },
679	{ "zombie lock", &lock_class_mtx_spin },
680	{ "ALD Queue", &lock_class_mtx_spin },
681#ifdef __ia64__
682	{ "MCA spin lock", &lock_class_mtx_spin },
683#endif
684#if defined(__i386__) || defined(__amd64__)
685	{ "pcicfg", &lock_class_mtx_spin },
686	{ "NDIS thread lock", &lock_class_mtx_spin },
687#endif
688	{ "tw_osl_io_lock", &lock_class_mtx_spin },
689	{ "tw_osl_q_lock", &lock_class_mtx_spin },
690	{ "tw_cl_io_lock", &lock_class_mtx_spin },
691	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
692	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
693#ifdef	HWPMC_HOOKS
694	{ "pmc-leaf", &lock_class_mtx_spin },
695#endif
696	{ "blocked lock", &lock_class_mtx_spin },
697	{ NULL, NULL },
698	{ NULL, NULL }
699};
700
701#ifdef BLESSING
702/*
703 * Pairs of locks which have been blessed
704 * Don't complain about order problems with blessed locks
705 */
706static struct witness_blessed blessed_list[] = {
707};
708static int blessed_count =
709	sizeof(blessed_list) / sizeof(struct witness_blessed);
710#endif
711
712/*
713 * This global is set to 0 once it becomes safe to use the witness code.
714 */
715static int witness_cold = 1;
716
717/*
718 * This global is set to 1 once the static lock orders have been enrolled
719 * so that a warning can be issued for any spin locks enrolled later.
720 */
721static int witness_spin_warn = 0;
722
723/* Trim useless garbage from filenames. */
724static const char *
725fixup_filename(const char *file)
726{
727
728	if (file == NULL)
729		return (NULL);
730	while (strncmp(file, "../", 3) == 0)
731		file += 3;
732	return (file);
733}
734
735/*
736 * The WITNESS-enabled diagnostic code.  Note that the witness code does
737 * assume that the early boot is single-threaded at least until after this
738 * routine is completed.
739 */
740static void
741witness_initialize(void *dummy __unused)
742{
743	struct lock_object *lock;
744	struct witness_order_list_entry *order;
745	struct witness *w, *w1;
746	int i;
747
748	w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
749	    M_NOWAIT | M_ZERO);
750
751	/*
752	 * We have to release Giant before initializing its witness
753	 * structure so that WITNESS doesn't get confused.
754	 */
755	mtx_unlock(&Giant);
756	mtx_assert(&Giant, MA_NOTOWNED);
757
758	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
759	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
760	    MTX_NOWITNESS | MTX_NOPROFILE);
761	for (i = WITNESS_COUNT - 1; i >= 0; i--) {
762		w = &w_data[i];
763		memset(w, 0, sizeof(*w));
764		w_data[i].w_index = i;	/* Witness index never changes. */
765		witness_free(w);
766	}
767	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
768	    ("%s: Invalid list of free witness objects", __func__));
769
770	/* Witness with index 0 is not used to aid in debugging. */
771	STAILQ_REMOVE_HEAD(&w_free, w_list);
772	w_free_cnt--;
773
774	memset(w_rmatrix, 0,
775	    (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
776
777	for (i = 0; i < LOCK_CHILDCOUNT; i++)
778		witness_lock_list_free(&w_locklistdata[i]);
779	witness_init_hash_tables();
780
781	/* First add in all the specified order lists. */
782	for (order = order_lists; order->w_name != NULL; order++) {
783		w = enroll(order->w_name, order->w_class);
784		if (w == NULL)
785			continue;
786		w->w_file = "order list";
787		for (order++; order->w_name != NULL; order++) {
788			w1 = enroll(order->w_name, order->w_class);
789			if (w1 == NULL)
790				continue;
791			w1->w_file = "order list";
792			itismychild(w, w1);
793			w = w1;
794		}
795	}
796	witness_spin_warn = 1;
797
798	/* Iterate through all locks and add them to witness. */
799	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
800		lock = pending_locks[i].wh_lock;
801		KASSERT(lock->lo_flags & LO_WITNESS,
802		    ("%s: lock %s is on pending list but not LO_WITNESS",
803		    __func__, lock->lo_name));
804		lock->lo_witness = enroll(pending_locks[i].wh_type,
805		    LOCK_CLASS(lock));
806	}
807
808	/* Mark the witness code as being ready for use. */
809	witness_cold = 0;
810
811	mtx_lock(&Giant);
812}
813SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
814    NULL);
815
816void
817witness_init(struct lock_object *lock, const char *type)
818{
819	struct lock_class *class;
820
821	/* Various sanity checks. */
822	class = LOCK_CLASS(lock);
823	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
824	    (class->lc_flags & LC_RECURSABLE) == 0)
825		panic("%s: lock (%s) %s can not be recursable", __func__,
826		    class->lc_name, lock->lo_name);
827	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
828	    (class->lc_flags & LC_SLEEPABLE) == 0)
829		panic("%s: lock (%s) %s can not be sleepable", __func__,
830		    class->lc_name, lock->lo_name);
831	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
832	    (class->lc_flags & LC_UPGRADABLE) == 0)
833		panic("%s: lock (%s) %s can not be upgradable", __func__,
834		    class->lc_name, lock->lo_name);
835
836	/*
837	 * If we shouldn't watch this lock, then just clear lo_witness.
838	 * Otherwise, if witness_cold is set, then it is too early to
839	 * enroll this lock, so defer it to witness_initialize() by adding
840	 * it to the pending_locks list.  If it is not too early, then enroll
841	 * the lock now.
842	 */
843	if (witness_watch < 1 || panicstr != NULL ||
844	    (lock->lo_flags & LO_WITNESS) == 0)
845		lock->lo_witness = NULL;
846	else if (witness_cold) {
847		pending_locks[pending_cnt].wh_lock = lock;
848		pending_locks[pending_cnt++].wh_type = type;
849		if (pending_cnt > WITNESS_PENDLIST)
850			panic("%s: pending locks list is too small, bump it\n",
851			    __func__);
852	} else
853		lock->lo_witness = enroll(type, class);
854}
855
856void
857witness_destroy(struct lock_object *lock)
858{
859	struct lock_class *class;
860	struct witness *w;
861
862	class = LOCK_CLASS(lock);
863
864	if (witness_cold)
865		panic("lock (%s) %s destroyed while witness_cold",
866		    class->lc_name, lock->lo_name);
867
868	/* XXX: need to verify that no one holds the lock */
869	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
870		return;
871	w = lock->lo_witness;
872
873	mtx_lock_spin(&w_mtx);
874	MPASS(w->w_refcount > 0);
875	w->w_refcount--;
876
877	if (w->w_refcount == 0)
878		depart(w);
879	mtx_unlock_spin(&w_mtx);
880}
881
882#ifdef DDB
883static void
884witness_ddb_compute_levels(void)
885{
886	struct witness *w;
887
888	/*
889	 * First clear all levels.
890	 */
891	STAILQ_FOREACH(w, &w_all, w_list)
892		w->w_ddb_level = -1;
893
894	/*
895	 * Look for locks with no parents and level all their descendants.
896	 */
897	STAILQ_FOREACH(w, &w_all, w_list) {
898
899		/* If the witness has ancestors (is not a root), skip it. */
900		if (w->w_num_ancestors > 0)
901			continue;
902		witness_ddb_level_descendants(w, 0);
903	}
904}
905
906static void
907witness_ddb_level_descendants(struct witness *w, int l)
908{
909	int i;
910
911	if (w->w_ddb_level >= l)
912		return;
913
914	w->w_ddb_level = l;
915	l++;
916
917	for (i = 1; i <= w_max_used_index; i++) {
918		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
919			witness_ddb_level_descendants(&w_data[i], l);
920	}
921}
922
923static void
924witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
925    struct witness *w, int indent)
926{
927	int i;
928
929 	for (i = 0; i < indent; i++)
930 		prnt(" ");
931	prnt("%s (type: %s, depth: %d, active refs: %d)",
932	     w->w_name, w->w_class->lc_name,
933	     w->w_ddb_level, w->w_refcount);
934 	if (w->w_displayed) {
935 		prnt(" -- (already displayed)\n");
936 		return;
937 	}
938 	w->w_displayed = 1;
939	if (w->w_file != NULL && w->w_line != 0)
940		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
941		    w->w_line);
942	else
943		prnt(" -- never acquired\n");
944	indent++;
945	WITNESS_INDEX_ASSERT(w->w_index);
946	for (i = 1; i <= w_max_used_index; i++) {
947		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
948			witness_ddb_display_descendants(prnt, &w_data[i],
949			    indent);
950	}
951}
952
953static void
954witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
955    struct witness_list *list)
956{
957	struct witness *w;
958
959	STAILQ_FOREACH(w, list, w_typelist) {
960		if (w->w_file == NULL || w->w_ddb_level > 0)
961			continue;
962
963		/* This lock has no anscestors - display its descendants. */
964		witness_ddb_display_descendants(prnt, w, 0);
965	}
966}
967
968static void
969witness_ddb_display(int(*prnt)(const char *fmt, ...))
970{
971	struct witness *w;
972
973	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
974	witness_ddb_compute_levels();
975
976	/* Clear all the displayed flags. */
977	STAILQ_FOREACH(w, &w_all, w_list)
978		w->w_displayed = 0;
979
980	/*
981	 * First, handle sleep locks which have been acquired at least
982	 * once.
983	 */
984	prnt("Sleep locks:\n");
985	witness_ddb_display_list(prnt, &w_sleep);
986
987	/*
988	 * Now do spin locks which have been acquired at least once.
989	 */
990	prnt("\nSpin locks:\n");
991	witness_ddb_display_list(prnt, &w_spin);
992
993	/*
994	 * Finally, any locks which have not been acquired yet.
995	 */
996	prnt("\nLocks which were never acquired:\n");
997	STAILQ_FOREACH(w, &w_all, w_list) {
998		if (w->w_file != NULL || w->w_refcount == 0)
999			continue;
1000		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1001		    w->w_class->lc_name, w->w_ddb_level);
1002	}
1003}
1004#endif /* DDB */
1005
1006int
1007witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1008{
1009
1010	if (witness_watch == -1 || panicstr != NULL)
1011		return (0);
1012
1013	/* Require locks that witness knows about. */
1014	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1015	    lock2->lo_witness == NULL)
1016		return (EINVAL);
1017
1018	mtx_assert(&w_mtx, MA_NOTOWNED);
1019	mtx_lock_spin(&w_mtx);
1020
1021	/*
1022	 * If we already have either an explicit or implied lock order that
1023	 * is the other way around, then return an error.
1024	 */
1025	if (witness_watch &&
1026	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1027		mtx_unlock_spin(&w_mtx);
1028		return (EDOOFUS);
1029	}
1030
1031	/* Try to add the new order. */
1032	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1033	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1034	itismychild(lock1->lo_witness, lock2->lo_witness);
1035	mtx_unlock_spin(&w_mtx);
1036	return (0);
1037}
1038
1039void
1040witness_checkorder(struct lock_object *lock, int flags, const char *file,
1041    int line, struct lock_object *interlock)
1042{
1043	struct lock_list_entry *lock_list, *lle;
1044	struct lock_instance *lock1, *lock2, *plock;
1045	struct lock_class *class;
1046	struct witness *w, *w1;
1047	struct thread *td;
1048	int i, j;
1049
1050	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1051	    panicstr != NULL)
1052		return;
1053
1054	w = lock->lo_witness;
1055	class = LOCK_CLASS(lock);
1056	td = curthread;
1057
1058	if (class->lc_flags & LC_SLEEPLOCK) {
1059
1060		/*
1061		 * Since spin locks include a critical section, this check
1062		 * implicitly enforces a lock order of all sleep locks before
1063		 * all spin locks.
1064		 */
1065		if (td->td_critnest != 0 && !kdb_active)
1066			panic("blockable sleep lock (%s) %s @ %s:%d",
1067			    class->lc_name, lock->lo_name,
1068			    fixup_filename(file), line);
1069
1070		/*
1071		 * If this is the first lock acquired then just return as
1072		 * no order checking is needed.
1073		 */
1074		lock_list = td->td_sleeplocks;
1075		if (lock_list == NULL || lock_list->ll_count == 0)
1076			return;
1077	} else {
1078
1079		/*
1080		 * If this is the first lock, just return as no order
1081		 * checking is needed.  Avoid problems with thread
1082		 * migration pinning the thread while checking if
1083		 * spinlocks are held.  If at least one spinlock is held
1084		 * the thread is in a safe path and it is allowed to
1085		 * unpin it.
1086		 */
1087		sched_pin();
1088		lock_list = PCPU_GET(spinlocks);
1089		if (lock_list == NULL || lock_list->ll_count == 0) {
1090			sched_unpin();
1091			return;
1092		}
1093		sched_unpin();
1094	}
1095
1096	/*
1097	 * Check to see if we are recursing on a lock we already own.  If
1098	 * so, make sure that we don't mismatch exclusive and shared lock
1099	 * acquires.
1100	 */
1101	lock1 = find_instance(lock_list, lock);
1102	if (lock1 != NULL) {
1103		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1104		    (flags & LOP_EXCLUSIVE) == 0) {
1105			printf("shared lock of (%s) %s @ %s:%d\n",
1106			    class->lc_name, lock->lo_name,
1107			    fixup_filename(file), line);
1108			printf("while exclusively locked from %s:%d\n",
1109			    fixup_filename(lock1->li_file), lock1->li_line);
1110			panic("share->excl");
1111		}
1112		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1113		    (flags & LOP_EXCLUSIVE) != 0) {
1114			printf("exclusive lock of (%s) %s @ %s:%d\n",
1115			    class->lc_name, lock->lo_name,
1116			    fixup_filename(file), line);
1117			printf("while share locked from %s:%d\n",
1118			    fixup_filename(lock1->li_file), lock1->li_line);
1119			panic("excl->share");
1120		}
1121		return;
1122	}
1123
1124	/*
1125	 * Find the previously acquired lock, but ignore interlocks.
1126	 */
1127	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1128	if (interlock != NULL && plock->li_lock == interlock) {
1129		if (lock_list->ll_count > 1)
1130			plock =
1131			    &lock_list->ll_children[lock_list->ll_count - 2];
1132		else {
1133			lle = lock_list->ll_next;
1134
1135			/*
1136			 * The interlock is the only lock we hold, so
1137			 * simply return.
1138			 */
1139			if (lle == NULL)
1140				return;
1141			plock = &lle->ll_children[lle->ll_count - 1];
1142		}
1143	}
1144
1145	/*
1146	 * Try to perform most checks without a lock.  If this succeeds we
1147	 * can skip acquiring the lock and return success.
1148	 */
1149	w1 = plock->li_lock->lo_witness;
1150	if (witness_lock_order_check(w1, w))
1151		return;
1152
1153	/*
1154	 * Check for duplicate locks of the same type.  Note that we only
1155	 * have to check for this on the last lock we just acquired.  Any
1156	 * other cases will be caught as lock order violations.
1157	 */
1158	mtx_lock_spin(&w_mtx);
1159	witness_lock_order_add(w1, w);
1160	if (w1 == w) {
1161		i = w->w_index;
1162		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1163		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1164		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1165			w->w_reversed = 1;
1166			mtx_unlock_spin(&w_mtx);
1167			printf(
1168			    "acquiring duplicate lock of same type: \"%s\"\n",
1169			    w->w_name);
1170			printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1171			    fixup_filename(plock->li_file), plock->li_line);
1172			printf(" 2nd %s @ %s:%d\n", lock->lo_name,
1173			    fixup_filename(file), line);
1174			witness_debugger(1);
1175		} else
1176			mtx_unlock_spin(&w_mtx);
1177		return;
1178	}
1179	mtx_assert(&w_mtx, MA_OWNED);
1180
1181	/*
1182	 * If we know that the lock we are acquiring comes after
1183	 * the lock we most recently acquired in the lock order tree,
1184	 * then there is no need for any further checks.
1185	 */
1186	if (isitmychild(w1, w))
1187		goto out;
1188
1189	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1190		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1191
1192			MPASS(j < WITNESS_COUNT);
1193			lock1 = &lle->ll_children[i];
1194
1195			/*
1196			 * Ignore the interlock the first time we see it.
1197			 */
1198			if (interlock != NULL && interlock == lock1->li_lock) {
1199				interlock = NULL;
1200				continue;
1201			}
1202
1203			/*
1204			 * If this lock doesn't undergo witness checking,
1205			 * then skip it.
1206			 */
1207			w1 = lock1->li_lock->lo_witness;
1208			if (w1 == NULL) {
1209				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1210				    ("lock missing witness structure"));
1211				continue;
1212			}
1213
1214			/*
1215			 * If we are locking Giant and this is a sleepable
1216			 * lock, then skip it.
1217			 */
1218			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1219			    lock == &Giant.lock_object)
1220				continue;
1221
1222			/*
1223			 * If we are locking a sleepable lock and this lock
1224			 * is Giant, then skip it.
1225			 */
1226			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1227			    lock1->li_lock == &Giant.lock_object)
1228				continue;
1229
1230			/*
1231			 * If we are locking a sleepable lock and this lock
1232			 * isn't sleepable, we want to treat it as a lock
1233			 * order violation to enfore a general lock order of
1234			 * sleepable locks before non-sleepable locks.
1235			 */
1236			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1237			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1238				goto reversal;
1239
1240			/*
1241			 * If we are locking Giant and this is a non-sleepable
1242			 * lock, then treat it as a reversal.
1243			 */
1244			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1245			    lock == &Giant.lock_object)
1246				goto reversal;
1247
1248			/*
1249			 * Check the lock order hierarchy for a reveresal.
1250			 */
1251			if (!isitmydescendant(w, w1))
1252				continue;
1253		reversal:
1254
1255			/*
1256			 * We have a lock order violation, check to see if it
1257			 * is allowed or has already been yelled about.
1258			 */
1259#ifdef BLESSING
1260
1261			/*
1262			 * If the lock order is blessed, just bail.  We don't
1263			 * look for other lock order violations though, which
1264			 * may be a bug.
1265			 */
1266			if (blessed(w, w1))
1267				goto out;
1268#endif
1269
1270			/* Bail if this violation is known */
1271			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1272				goto out;
1273
1274			/* Record this as a violation */
1275			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1276			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1277			w->w_reversed = w1->w_reversed = 1;
1278			witness_increment_graph_generation();
1279			mtx_unlock_spin(&w_mtx);
1280
1281			/*
1282			 * Ok, yell about it.
1283			 */
1284			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1285			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1286				printf(
1287		"lock order reversal: (sleepable after non-sleepable)\n");
1288			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1289			    && lock == &Giant.lock_object)
1290				printf(
1291		"lock order reversal: (Giant after non-sleepable)\n");
1292			else
1293				printf("lock order reversal:\n");
1294
1295			/*
1296			 * Try to locate an earlier lock with
1297			 * witness w in our list.
1298			 */
1299			do {
1300				lock2 = &lle->ll_children[i];
1301				MPASS(lock2->li_lock != NULL);
1302				if (lock2->li_lock->lo_witness == w)
1303					break;
1304				if (i == 0 && lle->ll_next != NULL) {
1305					lle = lle->ll_next;
1306					i = lle->ll_count - 1;
1307					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1308				} else
1309					i--;
1310			} while (i >= 0);
1311			if (i < 0) {
1312				printf(" 1st %p %s (%s) @ %s:%d\n",
1313				    lock1->li_lock, lock1->li_lock->lo_name,
1314				    w1->w_name, fixup_filename(lock1->li_file),
1315				    lock1->li_line);
1316				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1317				    lock->lo_name, w->w_name,
1318				    fixup_filename(file), line);
1319			} else {
1320				printf(" 1st %p %s (%s) @ %s:%d\n",
1321				    lock2->li_lock, lock2->li_lock->lo_name,
1322				    lock2->li_lock->lo_witness->w_name,
1323				    fixup_filename(lock2->li_file),
1324				    lock2->li_line);
1325				printf(" 2nd %p %s (%s) @ %s:%d\n",
1326				    lock1->li_lock, lock1->li_lock->lo_name,
1327				    w1->w_name, fixup_filename(lock1->li_file),
1328				    lock1->li_line);
1329				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1330				    lock->lo_name, w->w_name,
1331				    fixup_filename(file), line);
1332			}
1333			witness_debugger(1);
1334			return;
1335		}
1336	}
1337
1338	/*
1339	 * If requested, build a new lock order.  However, don't build a new
1340	 * relationship between a sleepable lock and Giant if it is in the
1341	 * wrong direction.  The correct lock order is that sleepable locks
1342	 * always come before Giant.
1343	 */
1344	if (flags & LOP_NEWORDER &&
1345	    !(plock->li_lock == &Giant.lock_object &&
1346	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1347		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1348		    w->w_name, plock->li_lock->lo_witness->w_name);
1349		itismychild(plock->li_lock->lo_witness, w);
1350	}
1351out:
1352	mtx_unlock_spin(&w_mtx);
1353}
1354
1355void
1356witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1357{
1358	struct lock_list_entry **lock_list, *lle;
1359	struct lock_instance *instance;
1360	struct witness *w;
1361	struct thread *td;
1362
1363	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1364	    panicstr != NULL)
1365		return;
1366	w = lock->lo_witness;
1367	td = curthread;
1368
1369	/* Determine lock list for this lock. */
1370	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1371		lock_list = &td->td_sleeplocks;
1372	else
1373		lock_list = PCPU_PTR(spinlocks);
1374
1375	/* Check to see if we are recursing on a lock we already own. */
1376	instance = find_instance(*lock_list, lock);
1377	if (instance != NULL) {
1378		instance->li_flags++;
1379		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1380		    td->td_proc->p_pid, lock->lo_name,
1381		    instance->li_flags & LI_RECURSEMASK);
1382		instance->li_file = file;
1383		instance->li_line = line;
1384		return;
1385	}
1386
1387	/* Update per-witness last file and line acquire. */
1388	w->w_file = file;
1389	w->w_line = line;
1390
1391	/* Find the next open lock instance in the list and fill it. */
1392	lle = *lock_list;
1393	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1394		lle = witness_lock_list_get();
1395		if (lle == NULL)
1396			return;
1397		lle->ll_next = *lock_list;
1398		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1399		    td->td_proc->p_pid, lle);
1400		*lock_list = lle;
1401	}
1402	instance = &lle->ll_children[lle->ll_count++];
1403	instance->li_lock = lock;
1404	instance->li_line = line;
1405	instance->li_file = file;
1406	if ((flags & LOP_EXCLUSIVE) != 0)
1407		instance->li_flags = LI_EXCLUSIVE;
1408	else
1409		instance->li_flags = 0;
1410	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1411	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1412}
1413
1414void
1415witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1416{
1417	struct lock_instance *instance;
1418	struct lock_class *class;
1419
1420	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1421	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1422		return;
1423	class = LOCK_CLASS(lock);
1424	if (witness_watch) {
1425		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1426			panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1427			    class->lc_name, lock->lo_name,
1428			    fixup_filename(file), line);
1429		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1430			panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1431			    class->lc_name, lock->lo_name,
1432			    fixup_filename(file), line);
1433	}
1434	instance = find_instance(curthread->td_sleeplocks, lock);
1435	if (instance == NULL)
1436		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1437		    class->lc_name, lock->lo_name,
1438		    fixup_filename(file), line);
1439	if (witness_watch) {
1440		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1441			panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1442			    class->lc_name, lock->lo_name,
1443			    fixup_filename(file), line);
1444		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1445			panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1446			    class->lc_name, lock->lo_name,
1447			    instance->li_flags & LI_RECURSEMASK,
1448			    fixup_filename(file), line);
1449	}
1450	instance->li_flags |= LI_EXCLUSIVE;
1451}
1452
1453void
1454witness_downgrade(struct lock_object *lock, int flags, const char *file,
1455    int line)
1456{
1457	struct lock_instance *instance;
1458	struct lock_class *class;
1459
1460	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1461	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1462		return;
1463	class = LOCK_CLASS(lock);
1464	if (witness_watch) {
1465		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1466		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1467			    class->lc_name, lock->lo_name,
1468			    fixup_filename(file), line);
1469		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1470			panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1471			    class->lc_name, lock->lo_name,
1472			    fixup_filename(file), line);
1473	}
1474	instance = find_instance(curthread->td_sleeplocks, lock);
1475	if (instance == NULL)
1476		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1477		    class->lc_name, lock->lo_name,
1478		    fixup_filename(file), line);
1479	if (witness_watch) {
1480		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1481			panic("downgrade of shared lock (%s) %s @ %s:%d",
1482			    class->lc_name, lock->lo_name,
1483			    fixup_filename(file), line);
1484		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1485			panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1486			    class->lc_name, lock->lo_name,
1487			    instance->li_flags & LI_RECURSEMASK,
1488			    fixup_filename(file), line);
1489	}
1490	instance->li_flags &= ~LI_EXCLUSIVE;
1491}
1492
1493void
1494witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1495{
1496	struct lock_list_entry **lock_list, *lle;
1497	struct lock_instance *instance;
1498	struct lock_class *class;
1499	struct thread *td;
1500	register_t s;
1501	int i, j;
1502
1503	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1504		return;
1505	td = curthread;
1506	class = LOCK_CLASS(lock);
1507
1508	/* Find lock instance associated with this lock. */
1509	if (class->lc_flags & LC_SLEEPLOCK)
1510		lock_list = &td->td_sleeplocks;
1511	else
1512		lock_list = PCPU_PTR(spinlocks);
1513	lle = *lock_list;
1514	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1515		for (i = 0; i < (*lock_list)->ll_count; i++) {
1516			instance = &(*lock_list)->ll_children[i];
1517			if (instance->li_lock == lock)
1518				goto found;
1519		}
1520
1521	/*
1522	 * When disabling WITNESS through witness_watch we could end up in
1523	 * having registered locks in the td_sleeplocks queue.
1524	 * We have to make sure we flush these queues, so just search for
1525	 * eventual register locks and remove them.
1526	 */
1527	if (witness_watch > 0)
1528		panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1529		    lock->lo_name, fixup_filename(file), line);
1530	else
1531		return;
1532found:
1533
1534	/* First, check for shared/exclusive mismatches. */
1535	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1536	    (flags & LOP_EXCLUSIVE) == 0) {
1537		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1538		    lock->lo_name, fixup_filename(file), line);
1539		printf("while exclusively locked from %s:%d\n",
1540		    fixup_filename(instance->li_file), instance->li_line);
1541		panic("excl->ushare");
1542	}
1543	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1544	    (flags & LOP_EXCLUSIVE) != 0) {
1545		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1546		    lock->lo_name, fixup_filename(file), line);
1547		printf("while share locked from %s:%d\n",
1548		    fixup_filename(instance->li_file),
1549		    instance->li_line);
1550		panic("share->uexcl");
1551	}
1552	/* If we are recursed, unrecurse. */
1553	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1554		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1555		    td->td_proc->p_pid, instance->li_lock->lo_name,
1556		    instance->li_flags);
1557		instance->li_flags--;
1558		return;
1559	}
1560	/* The lock is now being dropped, check for NORELEASE flag */
1561	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1562		printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1563		    lock->lo_name, fixup_filename(file), line);
1564		panic("lock marked norelease");
1565	}
1566
1567	/* Otherwise, remove this item from the list. */
1568	s = intr_disable();
1569	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1570	    td->td_proc->p_pid, instance->li_lock->lo_name,
1571	    (*lock_list)->ll_count - 1);
1572	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1573		(*lock_list)->ll_children[j] =
1574		    (*lock_list)->ll_children[j + 1];
1575	(*lock_list)->ll_count--;
1576	intr_restore(s);
1577
1578	/*
1579	 * In order to reduce contention on w_mtx, we want to keep always an
1580	 * head object into lists so that frequent allocation from the
1581	 * free witness pool (and subsequent locking) is avoided.
1582	 * In order to maintain the current code simple, when the head
1583	 * object is totally unloaded it means also that we do not have
1584	 * further objects in the list, so the list ownership needs to be
1585	 * hand over to another object if the current head needs to be freed.
1586	 */
1587	if ((*lock_list)->ll_count == 0) {
1588		if (*lock_list == lle) {
1589			if (lle->ll_next == NULL)
1590				return;
1591		} else
1592			lle = *lock_list;
1593		*lock_list = lle->ll_next;
1594		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1595		    td->td_proc->p_pid, lle);
1596		witness_lock_list_free(lle);
1597	}
1598}
1599
1600void
1601witness_thread_exit(struct thread *td)
1602{
1603	struct lock_list_entry *lle;
1604	int i, n;
1605
1606	lle = td->td_sleeplocks;
1607	if (lle == NULL || panicstr != NULL)
1608		return;
1609	if (lle->ll_count != 0) {
1610		for (n = 0; lle != NULL; lle = lle->ll_next)
1611			for (i = lle->ll_count - 1; i >= 0; i--) {
1612				if (n == 0)
1613		printf("Thread %p exiting with the following locks held:\n",
1614					    td);
1615				n++;
1616				witness_list_lock(&lle->ll_children[i], printf);
1617
1618			}
1619		panic("Thread %p cannot exit while holding sleeplocks\n", td);
1620	}
1621	witness_lock_list_free(lle);
1622}
1623
1624/*
1625 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1626 * exempt Giant and sleepable locks from the checks as well.  If any
1627 * non-exempt locks are held, then a supplied message is printed to the
1628 * console along with a list of the offending locks.  If indicated in the
1629 * flags then a failure results in a panic as well.
1630 */
1631int
1632witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1633{
1634	struct lock_list_entry *lock_list, *lle;
1635	struct lock_instance *lock1;
1636	struct thread *td;
1637	va_list ap;
1638	int i, n;
1639
1640	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1641		return (0);
1642	n = 0;
1643	td = curthread;
1644	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1645		for (i = lle->ll_count - 1; i >= 0; i--) {
1646			lock1 = &lle->ll_children[i];
1647			if (lock1->li_lock == lock)
1648				continue;
1649			if (flags & WARN_GIANTOK &&
1650			    lock1->li_lock == &Giant.lock_object)
1651				continue;
1652			if (flags & WARN_SLEEPOK &&
1653			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1654				continue;
1655			if (n == 0) {
1656				va_start(ap, fmt);
1657				vprintf(fmt, ap);
1658				va_end(ap);
1659				printf(" with the following");
1660				if (flags & WARN_SLEEPOK)
1661					printf(" non-sleepable");
1662				printf(" locks held:\n");
1663			}
1664			n++;
1665			witness_list_lock(lock1, printf);
1666		}
1667
1668	/*
1669	 * Pin the thread in order to avoid problems with thread migration.
1670	 * Once that all verifies are passed about spinlocks ownership,
1671	 * the thread is in a safe path and it can be unpinned.
1672	 */
1673	sched_pin();
1674	lock_list = PCPU_GET(spinlocks);
1675	if (lock_list != NULL && lock_list->ll_count != 0) {
1676		sched_unpin();
1677
1678		/*
1679		 * We should only have one spinlock and as long as
1680		 * the flags cannot match for this locks class,
1681		 * check if the first spinlock is the one curthread
1682		 * should hold.
1683		 */
1684		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1685		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1686		    lock1->li_lock == lock && n == 0)
1687			return (0);
1688
1689		va_start(ap, fmt);
1690		vprintf(fmt, ap);
1691		va_end(ap);
1692		printf(" with the following");
1693		if (flags & WARN_SLEEPOK)
1694			printf(" non-sleepable");
1695		printf(" locks held:\n");
1696		n += witness_list_locks(&lock_list, printf);
1697	} else
1698		sched_unpin();
1699	if (flags & WARN_PANIC && n)
1700		panic("%s", __func__);
1701	else
1702		witness_debugger(n);
1703	return (n);
1704}
1705
1706const char *
1707witness_file(struct lock_object *lock)
1708{
1709	struct witness *w;
1710
1711	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1712		return ("?");
1713	w = lock->lo_witness;
1714	return (w->w_file);
1715}
1716
1717int
1718witness_line(struct lock_object *lock)
1719{
1720	struct witness *w;
1721
1722	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1723		return (0);
1724	w = lock->lo_witness;
1725	return (w->w_line);
1726}
1727
1728static struct witness *
1729enroll(const char *description, struct lock_class *lock_class)
1730{
1731	struct witness *w;
1732	struct witness_list *typelist;
1733
1734	MPASS(description != NULL);
1735
1736	if (witness_watch == -1 || panicstr != NULL)
1737		return (NULL);
1738	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1739		if (witness_skipspin)
1740			return (NULL);
1741		else
1742			typelist = &w_spin;
1743	} else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1744		typelist = &w_sleep;
1745	else
1746		panic("lock class %s is not sleep or spin",
1747		    lock_class->lc_name);
1748
1749	mtx_lock_spin(&w_mtx);
1750	w = witness_hash_get(description);
1751	if (w)
1752		goto found;
1753	if ((w = witness_get()) == NULL)
1754		return (NULL);
1755	MPASS(strlen(description) < MAX_W_NAME);
1756	strcpy(w->w_name, description);
1757	w->w_class = lock_class;
1758	w->w_refcount = 1;
1759	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1760	if (lock_class->lc_flags & LC_SPINLOCK) {
1761		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1762		w_spin_cnt++;
1763	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1764		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1765		w_sleep_cnt++;
1766	}
1767
1768	/* Insert new witness into the hash */
1769	witness_hash_put(w);
1770	witness_increment_graph_generation();
1771	mtx_unlock_spin(&w_mtx);
1772	return (w);
1773found:
1774	w->w_refcount++;
1775	mtx_unlock_spin(&w_mtx);
1776	if (lock_class != w->w_class)
1777		panic(
1778			"lock (%s) %s does not match earlier (%s) lock",
1779			description, lock_class->lc_name,
1780			w->w_class->lc_name);
1781	return (w);
1782}
1783
1784static void
1785depart(struct witness *w)
1786{
1787	struct witness_list *list;
1788
1789	MPASS(w->w_refcount == 0);
1790	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1791		list = &w_sleep;
1792		w_sleep_cnt--;
1793	} else {
1794		list = &w_spin;
1795		w_spin_cnt--;
1796	}
1797	/*
1798	 * Set file to NULL as it may point into a loadable module.
1799	 */
1800	w->w_file = NULL;
1801	w->w_line = 0;
1802	witness_increment_graph_generation();
1803}
1804
1805
1806static void
1807adopt(struct witness *parent, struct witness *child)
1808{
1809	int pi, ci, i, j;
1810
1811	if (witness_cold == 0)
1812		mtx_assert(&w_mtx, MA_OWNED);
1813
1814	/* If the relationship is already known, there's no work to be done. */
1815	if (isitmychild(parent, child))
1816		return;
1817
1818	/* When the structure of the graph changes, bump up the generation. */
1819	witness_increment_graph_generation();
1820
1821	/*
1822	 * The hard part ... create the direct relationship, then propagate all
1823	 * indirect relationships.
1824	 */
1825	pi = parent->w_index;
1826	ci = child->w_index;
1827	WITNESS_INDEX_ASSERT(pi);
1828	WITNESS_INDEX_ASSERT(ci);
1829	MPASS(pi != ci);
1830	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1831	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1832
1833	/*
1834	 * If parent was not already an ancestor of child,
1835	 * then we increment the descendant and ancestor counters.
1836	 */
1837	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1838		parent->w_num_descendants++;
1839		child->w_num_ancestors++;
1840	}
1841
1842	/*
1843	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1844	 * an ancestor of 'pi' during this loop.
1845	 */
1846	for (i = 1; i <= w_max_used_index; i++) {
1847		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1848		    (i != pi))
1849			continue;
1850
1851		/* Find each descendant of 'i' and mark it as a descendant. */
1852		for (j = 1; j <= w_max_used_index; j++) {
1853
1854			/*
1855			 * Skip children that are already marked as
1856			 * descendants of 'i'.
1857			 */
1858			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1859				continue;
1860
1861			/*
1862			 * We are only interested in descendants of 'ci'. Note
1863			 * that 'ci' itself is counted as a descendant of 'ci'.
1864			 */
1865			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1866			    (j != ci))
1867				continue;
1868			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1869			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1870			w_data[i].w_num_descendants++;
1871			w_data[j].w_num_ancestors++;
1872
1873			/*
1874			 * Make sure we aren't marking a node as both an
1875			 * ancestor and descendant. We should have caught
1876			 * this as a lock order reversal earlier.
1877			 */
1878			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1879			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1880				printf("witness rmatrix paradox! [%d][%d]=%d "
1881				    "both ancestor and descendant\n",
1882				    i, j, w_rmatrix[i][j]);
1883				kdb_backtrace();
1884				printf("Witness disabled.\n");
1885				witness_watch = -1;
1886			}
1887			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1888			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1889				printf("witness rmatrix paradox! [%d][%d]=%d "
1890				    "both ancestor and descendant\n",
1891				    j, i, w_rmatrix[j][i]);
1892				kdb_backtrace();
1893				printf("Witness disabled.\n");
1894				witness_watch = -1;
1895			}
1896		}
1897	}
1898}
1899
1900static void
1901itismychild(struct witness *parent, struct witness *child)
1902{
1903
1904	MPASS(child != NULL && parent != NULL);
1905	if (witness_cold == 0)
1906		mtx_assert(&w_mtx, MA_OWNED);
1907
1908	if (!witness_lock_type_equal(parent, child)) {
1909		if (witness_cold == 0)
1910			mtx_unlock_spin(&w_mtx);
1911		panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1912		    "the same lock type", __func__, parent->w_name,
1913		    parent->w_class->lc_name, child->w_name,
1914		    child->w_class->lc_name);
1915	}
1916	adopt(parent, child);
1917}
1918
1919/*
1920 * Generic code for the isitmy*() functions. The rmask parameter is the
1921 * expected relationship of w1 to w2.
1922 */
1923static int
1924_isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1925{
1926	unsigned char r1, r2;
1927	int i1, i2;
1928
1929	i1 = w1->w_index;
1930	i2 = w2->w_index;
1931	WITNESS_INDEX_ASSERT(i1);
1932	WITNESS_INDEX_ASSERT(i2);
1933	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1934	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1935
1936	/* The flags on one better be the inverse of the flags on the other */
1937	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1938		(WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1939		printf("%s: rmatrix mismatch between %s (index %d) and %s "
1940		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
1941		    "w_rmatrix[%d][%d] == %hhx\n",
1942		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1943		    i2, i1, r2);
1944		kdb_backtrace();
1945		printf("Witness disabled.\n");
1946		witness_watch = -1;
1947	}
1948	return (r1 & rmask);
1949}
1950
1951/*
1952 * Checks if @child is a direct child of @parent.
1953 */
1954static int
1955isitmychild(struct witness *parent, struct witness *child)
1956{
1957
1958	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1959}
1960
1961/*
1962 * Checks if @descendant is a direct or inderect descendant of @ancestor.
1963 */
1964static int
1965isitmydescendant(struct witness *ancestor, struct witness *descendant)
1966{
1967
1968	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1969	    __func__));
1970}
1971
1972#ifdef BLESSING
1973static int
1974blessed(struct witness *w1, struct witness *w2)
1975{
1976	int i;
1977	struct witness_blessed *b;
1978
1979	for (i = 0; i < blessed_count; i++) {
1980		b = &blessed_list[i];
1981		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1982			if (strcmp(w2->w_name, b->b_lock2) == 0)
1983				return (1);
1984			continue;
1985		}
1986		if (strcmp(w1->w_name, b->b_lock2) == 0)
1987			if (strcmp(w2->w_name, b->b_lock1) == 0)
1988				return (1);
1989	}
1990	return (0);
1991}
1992#endif
1993
1994static struct witness *
1995witness_get(void)
1996{
1997	struct witness *w;
1998	int index;
1999
2000	if (witness_cold == 0)
2001		mtx_assert(&w_mtx, MA_OWNED);
2002
2003	if (witness_watch == -1) {
2004		mtx_unlock_spin(&w_mtx);
2005		return (NULL);
2006	}
2007	if (STAILQ_EMPTY(&w_free)) {
2008		witness_watch = -1;
2009		mtx_unlock_spin(&w_mtx);
2010		printf("WITNESS: unable to allocate a new witness object\n");
2011		return (NULL);
2012	}
2013	w = STAILQ_FIRST(&w_free);
2014	STAILQ_REMOVE_HEAD(&w_free, w_list);
2015	w_free_cnt--;
2016	index = w->w_index;
2017	MPASS(index > 0 && index == w_max_used_index+1 &&
2018	    index < WITNESS_COUNT);
2019	bzero(w, sizeof(*w));
2020	w->w_index = index;
2021	if (index > w_max_used_index)
2022		w_max_used_index = index;
2023	return (w);
2024}
2025
2026static void
2027witness_free(struct witness *w)
2028{
2029
2030	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2031	w_free_cnt++;
2032}
2033
2034static struct lock_list_entry *
2035witness_lock_list_get(void)
2036{
2037	struct lock_list_entry *lle;
2038
2039	if (witness_watch == -1)
2040		return (NULL);
2041	mtx_lock_spin(&w_mtx);
2042	lle = w_lock_list_free;
2043	if (lle == NULL) {
2044		witness_watch = -1;
2045		mtx_unlock_spin(&w_mtx);
2046		printf("%s: witness exhausted\n", __func__);
2047		return (NULL);
2048	}
2049	w_lock_list_free = lle->ll_next;
2050	mtx_unlock_spin(&w_mtx);
2051	bzero(lle, sizeof(*lle));
2052	return (lle);
2053}
2054
2055static void
2056witness_lock_list_free(struct lock_list_entry *lle)
2057{
2058
2059	mtx_lock_spin(&w_mtx);
2060	lle->ll_next = w_lock_list_free;
2061	w_lock_list_free = lle;
2062	mtx_unlock_spin(&w_mtx);
2063}
2064
2065static struct lock_instance *
2066find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2067{
2068	struct lock_list_entry *lle;
2069	struct lock_instance *instance;
2070	int i;
2071
2072	for (lle = list; lle != NULL; lle = lle->ll_next)
2073		for (i = lle->ll_count - 1; i >= 0; i--) {
2074			instance = &lle->ll_children[i];
2075			if (instance->li_lock == lock)
2076				return (instance);
2077		}
2078	return (NULL);
2079}
2080
2081static void
2082witness_list_lock(struct lock_instance *instance,
2083    int (*prnt)(const char *fmt, ...))
2084{
2085	struct lock_object *lock;
2086
2087	lock = instance->li_lock;
2088	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2089	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2090	if (lock->lo_witness->w_name != lock->lo_name)
2091		prnt(" (%s)", lock->lo_witness->w_name);
2092	prnt(" r = %d (%p) locked @ %s:%d\n",
2093	    instance->li_flags & LI_RECURSEMASK, lock,
2094	    fixup_filename(instance->li_file), instance->li_line);
2095}
2096
2097#ifdef DDB
2098static int
2099witness_thread_has_locks(struct thread *td)
2100{
2101
2102	if (td->td_sleeplocks == NULL)
2103		return (0);
2104	return (td->td_sleeplocks->ll_count != 0);
2105}
2106
2107static int
2108witness_proc_has_locks(struct proc *p)
2109{
2110	struct thread *td;
2111
2112	FOREACH_THREAD_IN_PROC(p, td) {
2113		if (witness_thread_has_locks(td))
2114			return (1);
2115	}
2116	return (0);
2117}
2118#endif
2119
2120int
2121witness_list_locks(struct lock_list_entry **lock_list,
2122    int (*prnt)(const char *fmt, ...))
2123{
2124	struct lock_list_entry *lle;
2125	int i, nheld;
2126
2127	nheld = 0;
2128	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2129		for (i = lle->ll_count - 1; i >= 0; i--) {
2130			witness_list_lock(&lle->ll_children[i], prnt);
2131			nheld++;
2132		}
2133	return (nheld);
2134}
2135
2136/*
2137 * This is a bit risky at best.  We call this function when we have timed
2138 * out acquiring a spin lock, and we assume that the other CPU is stuck
2139 * with this lock held.  So, we go groveling around in the other CPU's
2140 * per-cpu data to try to find the lock instance for this spin lock to
2141 * see when it was last acquired.
2142 */
2143void
2144witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2145    int (*prnt)(const char *fmt, ...))
2146{
2147	struct lock_instance *instance;
2148	struct pcpu *pc;
2149
2150	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2151		return;
2152	pc = pcpu_find(owner->td_oncpu);
2153	instance = find_instance(pc->pc_spinlocks, lock);
2154	if (instance != NULL)
2155		witness_list_lock(instance, prnt);
2156}
2157
2158void
2159witness_save(struct lock_object *lock, const char **filep, int *linep)
2160{
2161	struct lock_list_entry *lock_list;
2162	struct lock_instance *instance;
2163	struct lock_class *class;
2164
2165	/*
2166	 * This function is used independently in locking code to deal with
2167	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2168	 * is gone.
2169	 */
2170	if (SCHEDULER_STOPPED())
2171		return;
2172	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2173	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2174		return;
2175	class = LOCK_CLASS(lock);
2176	if (class->lc_flags & LC_SLEEPLOCK)
2177		lock_list = curthread->td_sleeplocks;
2178	else {
2179		if (witness_skipspin)
2180			return;
2181		lock_list = PCPU_GET(spinlocks);
2182	}
2183	instance = find_instance(lock_list, lock);
2184	if (instance == NULL)
2185		panic("%s: lock (%s) %s not locked", __func__,
2186		    class->lc_name, lock->lo_name);
2187	*filep = instance->li_file;
2188	*linep = instance->li_line;
2189}
2190
2191void
2192witness_restore(struct lock_object *lock, const char *file, int line)
2193{
2194	struct lock_list_entry *lock_list;
2195	struct lock_instance *instance;
2196	struct lock_class *class;
2197
2198	/*
2199	 * This function is used independently in locking code to deal with
2200	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2201	 * is gone.
2202	 */
2203	if (SCHEDULER_STOPPED())
2204		return;
2205	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2206	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2207		return;
2208	class = LOCK_CLASS(lock);
2209	if (class->lc_flags & LC_SLEEPLOCK)
2210		lock_list = curthread->td_sleeplocks;
2211	else {
2212		if (witness_skipspin)
2213			return;
2214		lock_list = PCPU_GET(spinlocks);
2215	}
2216	instance = find_instance(lock_list, lock);
2217	if (instance == NULL)
2218		panic("%s: lock (%s) %s not locked", __func__,
2219		    class->lc_name, lock->lo_name);
2220	lock->lo_witness->w_file = file;
2221	lock->lo_witness->w_line = line;
2222	instance->li_file = file;
2223	instance->li_line = line;
2224}
2225
2226void
2227witness_assert(const struct lock_object *lock, int flags, const char *file,
2228    int line)
2229{
2230#ifdef INVARIANT_SUPPORT
2231	struct lock_instance *instance;
2232	struct lock_class *class;
2233
2234	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2235		return;
2236	class = LOCK_CLASS(lock);
2237	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2238		instance = find_instance(curthread->td_sleeplocks, lock);
2239	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2240		instance = find_instance(PCPU_GET(spinlocks), lock);
2241	else {
2242		panic("Lock (%s) %s is not sleep or spin!",
2243		    class->lc_name, lock->lo_name);
2244	}
2245	switch (flags) {
2246	case LA_UNLOCKED:
2247		if (instance != NULL)
2248			panic("Lock (%s) %s locked @ %s:%d.",
2249			    class->lc_name, lock->lo_name,
2250			    fixup_filename(file), line);
2251		break;
2252	case LA_LOCKED:
2253	case LA_LOCKED | LA_RECURSED:
2254	case LA_LOCKED | LA_NOTRECURSED:
2255	case LA_SLOCKED:
2256	case LA_SLOCKED | LA_RECURSED:
2257	case LA_SLOCKED | LA_NOTRECURSED:
2258	case LA_XLOCKED:
2259	case LA_XLOCKED | LA_RECURSED:
2260	case LA_XLOCKED | LA_NOTRECURSED:
2261		if (instance == NULL) {
2262			panic("Lock (%s) %s not locked @ %s:%d.",
2263			    class->lc_name, lock->lo_name,
2264			    fixup_filename(file), line);
2265			break;
2266		}
2267		if ((flags & LA_XLOCKED) != 0 &&
2268		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2269			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2270			    class->lc_name, lock->lo_name,
2271			    fixup_filename(file), line);
2272		if ((flags & LA_SLOCKED) != 0 &&
2273		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2274			panic("Lock (%s) %s exclusively locked @ %s:%d.",
2275			    class->lc_name, lock->lo_name,
2276			    fixup_filename(file), line);
2277		if ((flags & LA_RECURSED) != 0 &&
2278		    (instance->li_flags & LI_RECURSEMASK) == 0)
2279			panic("Lock (%s) %s not recursed @ %s:%d.",
2280			    class->lc_name, lock->lo_name,
2281			    fixup_filename(file), line);
2282		if ((flags & LA_NOTRECURSED) != 0 &&
2283		    (instance->li_flags & LI_RECURSEMASK) != 0)
2284			panic("Lock (%s) %s recursed @ %s:%d.",
2285			    class->lc_name, lock->lo_name,
2286			    fixup_filename(file), line);
2287		break;
2288	default:
2289		panic("Invalid lock assertion at %s:%d.",
2290		    fixup_filename(file), line);
2291
2292	}
2293#endif	/* INVARIANT_SUPPORT */
2294}
2295
2296static void
2297witness_setflag(struct lock_object *lock, int flag, int set)
2298{
2299	struct lock_list_entry *lock_list;
2300	struct lock_instance *instance;
2301	struct lock_class *class;
2302
2303	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2304		return;
2305	class = LOCK_CLASS(lock);
2306	if (class->lc_flags & LC_SLEEPLOCK)
2307		lock_list = curthread->td_sleeplocks;
2308	else {
2309		if (witness_skipspin)
2310			return;
2311		lock_list = PCPU_GET(spinlocks);
2312	}
2313	instance = find_instance(lock_list, lock);
2314	if (instance == NULL)
2315		panic("%s: lock (%s) %s not locked", __func__,
2316		    class->lc_name, lock->lo_name);
2317
2318	if (set)
2319		instance->li_flags |= flag;
2320	else
2321		instance->li_flags &= ~flag;
2322}
2323
2324void
2325witness_norelease(struct lock_object *lock)
2326{
2327
2328	witness_setflag(lock, LI_NORELEASE, 1);
2329}
2330
2331void
2332witness_releaseok(struct lock_object *lock)
2333{
2334
2335	witness_setflag(lock, LI_NORELEASE, 0);
2336}
2337
2338#ifdef DDB
2339static void
2340witness_ddb_list(struct thread *td)
2341{
2342
2343	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2344	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2345
2346	if (witness_watch < 1)
2347		return;
2348
2349	witness_list_locks(&td->td_sleeplocks, db_printf);
2350
2351	/*
2352	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2353	 * if td is currently executing on some other CPU and holds spin locks
2354	 * as we won't display those locks.  If we had a MI way of getting
2355	 * the per-cpu data for a given cpu then we could use
2356	 * td->td_oncpu to get the list of spinlocks for this thread
2357	 * and "fix" this.
2358	 *
2359	 * That still wouldn't really fix this unless we locked the scheduler
2360	 * lock or stopped the other CPU to make sure it wasn't changing the
2361	 * list out from under us.  It is probably best to just not try to
2362	 * handle threads on other CPU's for now.
2363	 */
2364	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2365		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2366}
2367
2368DB_SHOW_COMMAND(locks, db_witness_list)
2369{
2370	struct thread *td;
2371
2372	if (have_addr)
2373		td = db_lookup_thread(addr, TRUE);
2374	else
2375		td = kdb_thread;
2376	witness_ddb_list(td);
2377}
2378
2379DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2380{
2381	struct thread *td;
2382	struct proc *p;
2383
2384	/*
2385	 * It would be nice to list only threads and processes that actually
2386	 * held sleep locks, but that information is currently not exported
2387	 * by WITNESS.
2388	 */
2389	FOREACH_PROC_IN_SYSTEM(p) {
2390		if (!witness_proc_has_locks(p))
2391			continue;
2392		FOREACH_THREAD_IN_PROC(p, td) {
2393			if (!witness_thread_has_locks(td))
2394				continue;
2395			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2396			    p->p_comm, td, td->td_tid);
2397			witness_ddb_list(td);
2398		}
2399	}
2400}
2401DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2402
2403DB_SHOW_COMMAND(witness, db_witness_display)
2404{
2405
2406	witness_ddb_display(db_printf);
2407}
2408#endif
2409
2410static int
2411sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2412{
2413	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2414	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2415	struct sbuf *sb;
2416	u_int w_rmatrix1, w_rmatrix2;
2417	int error, generation, i, j;
2418
2419	tmp_data1 = NULL;
2420	tmp_data2 = NULL;
2421	tmp_w1 = NULL;
2422	tmp_w2 = NULL;
2423	if (witness_watch < 1) {
2424		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2425		return (error);
2426	}
2427	if (witness_cold) {
2428		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2429		return (error);
2430	}
2431	error = 0;
2432	sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2433	if (sb == NULL)
2434		return (ENOMEM);
2435
2436	/* Allocate and init temporary storage space. */
2437	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2438	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2439	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2440	    M_WAITOK | M_ZERO);
2441	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2442	    M_WAITOK | M_ZERO);
2443	stack_zero(&tmp_data1->wlod_stack);
2444	stack_zero(&tmp_data2->wlod_stack);
2445
2446restart:
2447	mtx_lock_spin(&w_mtx);
2448	generation = w_generation;
2449	mtx_unlock_spin(&w_mtx);
2450	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2451	    w_lohash.wloh_count);
2452	for (i = 1; i < w_max_used_index; i++) {
2453		mtx_lock_spin(&w_mtx);
2454		if (generation != w_generation) {
2455			mtx_unlock_spin(&w_mtx);
2456
2457			/* The graph has changed, try again. */
2458			req->oldidx = 0;
2459			sbuf_clear(sb);
2460			goto restart;
2461		}
2462
2463		w1 = &w_data[i];
2464		if (w1->w_reversed == 0) {
2465			mtx_unlock_spin(&w_mtx);
2466			continue;
2467		}
2468
2469		/* Copy w1 locally so we can release the spin lock. */
2470		*tmp_w1 = *w1;
2471		mtx_unlock_spin(&w_mtx);
2472
2473		if (tmp_w1->w_reversed == 0)
2474			continue;
2475		for (j = 1; j < w_max_used_index; j++) {
2476			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2477				continue;
2478
2479			mtx_lock_spin(&w_mtx);
2480			if (generation != w_generation) {
2481				mtx_unlock_spin(&w_mtx);
2482
2483				/* The graph has changed, try again. */
2484				req->oldidx = 0;
2485				sbuf_clear(sb);
2486				goto restart;
2487			}
2488
2489			w2 = &w_data[j];
2490			data1 = witness_lock_order_get(w1, w2);
2491			data2 = witness_lock_order_get(w2, w1);
2492
2493			/*
2494			 * Copy information locally so we can release the
2495			 * spin lock.
2496			 */
2497			*tmp_w2 = *w2;
2498			w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2499			w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2500
2501			if (data1) {
2502				stack_zero(&tmp_data1->wlod_stack);
2503				stack_copy(&data1->wlod_stack,
2504				    &tmp_data1->wlod_stack);
2505			}
2506			if (data2 && data2 != data1) {
2507				stack_zero(&tmp_data2->wlod_stack);
2508				stack_copy(&data2->wlod_stack,
2509				    &tmp_data2->wlod_stack);
2510			}
2511			mtx_unlock_spin(&w_mtx);
2512
2513			sbuf_printf(sb,
2514	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2515			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2516			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2517#if 0
2518 			sbuf_printf(sb,
2519			"w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2520 			    tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2521 			    tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2522#endif
2523			if (data1) {
2524				sbuf_printf(sb,
2525			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2526				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2527				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2528				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2529				sbuf_printf(sb, "\n");
2530			}
2531			if (data2 && data2 != data1) {
2532				sbuf_printf(sb,
2533			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2534				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2535				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2536				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2537				sbuf_printf(sb, "\n");
2538			}
2539		}
2540	}
2541	mtx_lock_spin(&w_mtx);
2542	if (generation != w_generation) {
2543		mtx_unlock_spin(&w_mtx);
2544
2545		/*
2546		 * The graph changed while we were printing stack data,
2547		 * try again.
2548		 */
2549		req->oldidx = 0;
2550		sbuf_clear(sb);
2551		goto restart;
2552	}
2553	mtx_unlock_spin(&w_mtx);
2554
2555	/* Free temporary storage space. */
2556	free(tmp_data1, M_TEMP);
2557	free(tmp_data2, M_TEMP);
2558	free(tmp_w1, M_TEMP);
2559	free(tmp_w2, M_TEMP);
2560
2561	sbuf_finish(sb);
2562	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2563	sbuf_delete(sb);
2564
2565	return (error);
2566}
2567
2568static int
2569sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2570{
2571	struct witness *w;
2572	struct sbuf *sb;
2573	int error;
2574
2575	if (witness_watch < 1) {
2576		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2577		return (error);
2578	}
2579	if (witness_cold) {
2580		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2581		return (error);
2582	}
2583	error = 0;
2584
2585	error = sysctl_wire_old_buffer(req, 0);
2586	if (error != 0)
2587		return (error);
2588	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2589	if (sb == NULL)
2590		return (ENOMEM);
2591	sbuf_printf(sb, "\n");
2592
2593	mtx_lock_spin(&w_mtx);
2594	STAILQ_FOREACH(w, &w_all, w_list)
2595		w->w_displayed = 0;
2596	STAILQ_FOREACH(w, &w_all, w_list)
2597		witness_add_fullgraph(sb, w);
2598	mtx_unlock_spin(&w_mtx);
2599
2600	/*
2601	 * Close the sbuf and return to userland.
2602	 */
2603	error = sbuf_finish(sb);
2604	sbuf_delete(sb);
2605
2606	return (error);
2607}
2608
2609static int
2610sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2611{
2612	int error, value;
2613
2614	value = witness_watch;
2615	error = sysctl_handle_int(oidp, &value, 0, req);
2616	if (error != 0 || req->newptr == NULL)
2617		return (error);
2618	if (value > 1 || value < -1 ||
2619	    (witness_watch == -1 && value != witness_watch))
2620		return (EINVAL);
2621	witness_watch = value;
2622	return (0);
2623}
2624
2625static void
2626witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2627{
2628	int i;
2629
2630	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2631		return;
2632	w->w_displayed = 1;
2633
2634	WITNESS_INDEX_ASSERT(w->w_index);
2635	for (i = 1; i <= w_max_used_index; i++) {
2636		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2637			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2638			    w_data[i].w_name);
2639			witness_add_fullgraph(sb, &w_data[i]);
2640		}
2641	}
2642}
2643
2644/*
2645 * A simple hash function. Takes a key pointer and a key size. If size == 0,
2646 * interprets the key as a string and reads until the null
2647 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2648 * hash value computed from the key.
2649 */
2650static uint32_t
2651witness_hash_djb2(const uint8_t *key, uint32_t size)
2652{
2653	unsigned int hash = 5381;
2654	int i;
2655
2656	/* hash = hash * 33 + key[i] */
2657	if (size)
2658		for (i = 0; i < size; i++)
2659			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2660	else
2661		for (i = 0; key[i] != 0; i++)
2662			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2663
2664	return (hash);
2665}
2666
2667
2668/*
2669 * Initializes the two witness hash tables. Called exactly once from
2670 * witness_initialize().
2671 */
2672static void
2673witness_init_hash_tables(void)
2674{
2675	int i;
2676
2677	MPASS(witness_cold);
2678
2679	/* Initialize the hash tables. */
2680	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2681		w_hash.wh_array[i] = NULL;
2682
2683	w_hash.wh_size = WITNESS_HASH_SIZE;
2684	w_hash.wh_count = 0;
2685
2686	/* Initialize the lock order data hash. */
2687	w_lofree = NULL;
2688	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2689		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2690		w_lodata[i].wlod_next = w_lofree;
2691		w_lofree = &w_lodata[i];
2692	}
2693	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2694	w_lohash.wloh_count = 0;
2695	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2696		w_lohash.wloh_array[i] = NULL;
2697}
2698
2699static struct witness *
2700witness_hash_get(const char *key)
2701{
2702	struct witness *w;
2703	uint32_t hash;
2704
2705	MPASS(key != NULL);
2706	if (witness_cold == 0)
2707		mtx_assert(&w_mtx, MA_OWNED);
2708	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2709	w = w_hash.wh_array[hash];
2710	while (w != NULL) {
2711		if (strcmp(w->w_name, key) == 0)
2712			goto out;
2713		w = w->w_hash_next;
2714	}
2715
2716out:
2717	return (w);
2718}
2719
2720static void
2721witness_hash_put(struct witness *w)
2722{
2723	uint32_t hash;
2724
2725	MPASS(w != NULL);
2726	MPASS(w->w_name != NULL);
2727	if (witness_cold == 0)
2728		mtx_assert(&w_mtx, MA_OWNED);
2729	KASSERT(witness_hash_get(w->w_name) == NULL,
2730	    ("%s: trying to add a hash entry that already exists!", __func__));
2731	KASSERT(w->w_hash_next == NULL,
2732	    ("%s: w->w_hash_next != NULL", __func__));
2733
2734	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2735	w->w_hash_next = w_hash.wh_array[hash];
2736	w_hash.wh_array[hash] = w;
2737	w_hash.wh_count++;
2738}
2739
2740
2741static struct witness_lock_order_data *
2742witness_lock_order_get(struct witness *parent, struct witness *child)
2743{
2744	struct witness_lock_order_data *data = NULL;
2745	struct witness_lock_order_key key;
2746	unsigned int hash;
2747
2748	MPASS(parent != NULL && child != NULL);
2749	key.from = parent->w_index;
2750	key.to = child->w_index;
2751	WITNESS_INDEX_ASSERT(key.from);
2752	WITNESS_INDEX_ASSERT(key.to);
2753	if ((w_rmatrix[parent->w_index][child->w_index]
2754	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2755		goto out;
2756
2757	hash = witness_hash_djb2((const char*)&key,
2758	    sizeof(key)) % w_lohash.wloh_size;
2759	data = w_lohash.wloh_array[hash];
2760	while (data != NULL) {
2761		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2762			break;
2763		data = data->wlod_next;
2764	}
2765
2766out:
2767	return (data);
2768}
2769
2770/*
2771 * Verify that parent and child have a known relationship, are not the same,
2772 * and child is actually a child of parent.  This is done without w_mtx
2773 * to avoid contention in the common case.
2774 */
2775static int
2776witness_lock_order_check(struct witness *parent, struct witness *child)
2777{
2778
2779	if (parent != child &&
2780	    w_rmatrix[parent->w_index][child->w_index]
2781	    & WITNESS_LOCK_ORDER_KNOWN &&
2782	    isitmychild(parent, child))
2783		return (1);
2784
2785	return (0);
2786}
2787
2788static int
2789witness_lock_order_add(struct witness *parent, struct witness *child)
2790{
2791	struct witness_lock_order_data *data = NULL;
2792	struct witness_lock_order_key key;
2793	unsigned int hash;
2794
2795	MPASS(parent != NULL && child != NULL);
2796	key.from = parent->w_index;
2797	key.to = child->w_index;
2798	WITNESS_INDEX_ASSERT(key.from);
2799	WITNESS_INDEX_ASSERT(key.to);
2800	if (w_rmatrix[parent->w_index][child->w_index]
2801	    & WITNESS_LOCK_ORDER_KNOWN)
2802		return (1);
2803
2804	hash = witness_hash_djb2((const char*)&key,
2805	    sizeof(key)) % w_lohash.wloh_size;
2806	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2807	data = w_lofree;
2808	if (data == NULL)
2809		return (0);
2810	w_lofree = data->wlod_next;
2811	data->wlod_next = w_lohash.wloh_array[hash];
2812	data->wlod_key = key;
2813	w_lohash.wloh_array[hash] = data;
2814	w_lohash.wloh_count++;
2815	stack_zero(&data->wlod_stack);
2816	stack_save(&data->wlod_stack);
2817	return (1);
2818}
2819
2820/* Call this whenver the structure of the witness graph changes. */
2821static void
2822witness_increment_graph_generation(void)
2823{
2824
2825	if (witness_cold == 0)
2826		mtx_assert(&w_mtx, MA_OWNED);
2827	w_generation++;
2828}
2829
2830#ifdef KDB
2831static void
2832_witness_debugger(int cond, const char *msg)
2833{
2834
2835	if (witness_trace && cond)
2836		kdb_backtrace();
2837	if (witness_kdb && cond)
2838		kdb_enter(KDB_WHY_WITNESS, msg);
2839}
2840#endif
2841