subr_witness.c revision 226294
1/*-
2 * Copyright (c) 2008 Isilon Systems, Inc.
3 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4 * Copyright (c) 1998 Berkeley Software Design, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Berkeley Software Design Inc's name may not be used to endorse or
16 *    promote products derived from this software without specific prior
17 *    written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33 */
34
35/*
36 * Implementation of the `witness' lock verifier.  Originally implemented for
37 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38 * classes in FreeBSD.
39 */
40
41/*
42 *	Main Entry: witness
43 *	Pronunciation: 'wit-n&s
44 *	Function: noun
45 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
46 *	    testimony, witness, from 2wit
47 *	Date: before 12th century
48 *	1 : attestation of a fact or event : TESTIMONY
49 *	2 : one that gives evidence; specifically : one who testifies in
50 *	    a cause or before a judicial tribunal
51 *	3 : one asked to be present at a transaction so as to be able to
52 *	    testify to its having taken place
53 *	4 : one who has personal knowledge of something
54 *	5 a : something serving as evidence or proof : SIGN
55 *	  b : public affirmation by word or example of usually
56 *	      religious faith or conviction <the heroic witness to divine
57 *	      life -- Pilot>
58 *	6 capitalized : a member of the Jehovah's Witnesses
59 */
60
61/*
62 * Special rules concerning Giant and lock orders:
63 *
64 * 1) Giant must be acquired before any other mutexes.  Stated another way,
65 *    no other mutex may be held when Giant is acquired.
66 *
67 * 2) Giant must be released when blocking on a sleepable lock.
68 *
69 * This rule is less obvious, but is a result of Giant providing the same
70 * semantics as spl().  Basically, when a thread sleeps, it must release
71 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72 * 2).
73 *
74 * 3) Giant may be acquired before or after sleepable locks.
75 *
76 * This rule is also not quite as obvious.  Giant may be acquired after
77 * a sleepable lock because it is a non-sleepable lock and non-sleepable
78 * locks may always be acquired while holding a sleepable lock.  The second
79 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83 * execute.  Thus, acquiring Giant both before and after a sleepable lock
84 * will not result in a lock order reversal.
85 */
86
87#include <sys/cdefs.h>
88__FBSDID("$FreeBSD: head/sys/kern/subr_witness.c 226294 2011-10-12 09:21:02Z adrian $");
89
90#include "opt_ddb.h"
91#include "opt_hwpmc_hooks.h"
92#include "opt_stack.h"
93#include "opt_witness.h"
94
95#include <sys/param.h>
96#include <sys/bus.h>
97#include <sys/kdb.h>
98#include <sys/kernel.h>
99#include <sys/ktr.h>
100#include <sys/lock.h>
101#include <sys/malloc.h>
102#include <sys/mutex.h>
103#include <sys/priv.h>
104#include <sys/proc.h>
105#include <sys/sbuf.h>
106#include <sys/sched.h>
107#include <sys/stack.h>
108#include <sys/sysctl.h>
109#include <sys/systm.h>
110
111#ifdef DDB
112#include <ddb/ddb.h>
113#endif
114
115#include <machine/stdarg.h>
116
117#if !defined(DDB) && !defined(STACK)
118#error "DDB or STACK options are required for WITNESS"
119#endif
120
121/* Note that these traces do not work with KTR_ALQ. */
122#if 0
123#define	KTR_WITNESS	KTR_SUBSYS
124#else
125#define	KTR_WITNESS	0
126#endif
127
128#define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
129#define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
130#define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
131
132/* Define this to check for blessed mutexes */
133#undef BLESSING
134
135#define	WITNESS_COUNT 		1024
136#define	WITNESS_CHILDCOUNT 	(WITNESS_COUNT * 4)
137#define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
138#define	WITNESS_PENDLIST	768
139
140/* Allocate 256 KB of stack data space */
141#define	WITNESS_LO_DATA_COUNT	2048
142
143/* Prime, gives load factor of ~2 at full load */
144#define	WITNESS_LO_HASH_SIZE	1021
145
146/*
147 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148 * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149 * probably be safe for the most part, but it's still a SWAG.
150 */
151#define	LOCK_NCHILDREN	5
152#define	LOCK_CHILDCOUNT	2048
153
154#define	MAX_W_NAME	64
155
156#define	BADSTACK_SBUF_SIZE	(256 * WITNESS_COUNT)
157#define	FULLGRAPH_SBUF_SIZE	512
158
159/*
160 * These flags go in the witness relationship matrix and describe the
161 * relationship between any two struct witness objects.
162 */
163#define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
164#define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165#define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166#define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167#define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168#define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169#define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170#define	WITNESS_RELATED_MASK						\
171	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172#define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173					  * observed. */
174#define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175#define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176#define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178/* Descendant to ancestor flags */
179#define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
180
181/* Ancestor to descendant flags */
182#define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
183
184#define	WITNESS_INDEX_ASSERT(i)						\
185	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186
187MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189/*
190 * Lock instances.  A lock instance is the data associated with a lock while
191 * it is held by witness.  For example, a lock instance will hold the
192 * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193 * are held in a per-cpu list while sleep locks are held in per-thread list.
194 */
195struct lock_instance {
196	struct lock_object	*li_lock;
197	const char		*li_file;
198	int			li_line;
199	u_int			li_flags;
200};
201
202/*
203 * A simple list type used to build the list of locks held by a thread
204 * or CPU.  We can't simply embed the list in struct lock_object since a
205 * lock may be held by more than one thread if it is a shared lock.  Locks
206 * are added to the head of the list, so we fill up each list entry from
207 * "the back" logically.  To ease some of the arithmetic, we actually fill
208 * in each list entry the normal way (children[0] then children[1], etc.) but
209 * when we traverse the list we read children[count-1] as the first entry
210 * down to children[0] as the final entry.
211 */
212struct lock_list_entry {
213	struct lock_list_entry	*ll_next;
214	struct lock_instance	ll_children[LOCK_NCHILDREN];
215	u_int			ll_count;
216};
217
218/*
219 * The main witness structure. One of these per named lock type in the system
220 * (for example, "vnode interlock").
221 */
222struct witness {
223	char  			w_name[MAX_W_NAME];
224	uint32_t 		w_index;  /* Index in the relationship matrix */
225	struct lock_class	*w_class;
226	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
227	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
228	struct witness		*w_hash_next; /* Linked list in hash buckets. */
229	const char		*w_file; /* File where last acquired */
230	uint32_t 		w_line; /* Line where last acquired */
231	uint32_t 		w_refcount;
232	uint16_t 		w_num_ancestors; /* direct/indirect
233						  * ancestor count */
234	uint16_t 		w_num_descendants; /* direct/indirect
235						    * descendant count */
236	int16_t 		w_ddb_level;
237	unsigned		w_displayed:1;
238	unsigned		w_reversed:1;
239};
240
241STAILQ_HEAD(witness_list, witness);
242
243/*
244 * The witness hash table. Keys are witness names (const char *), elements are
245 * witness objects (struct witness *).
246 */
247struct witness_hash {
248	struct witness	*wh_array[WITNESS_HASH_SIZE];
249	uint32_t	wh_size;
250	uint32_t	wh_count;
251};
252
253/*
254 * Key type for the lock order data hash table.
255 */
256struct witness_lock_order_key {
257	uint16_t	from;
258	uint16_t	to;
259};
260
261struct witness_lock_order_data {
262	struct stack			wlod_stack;
263	struct witness_lock_order_key	wlod_key;
264	struct witness_lock_order_data	*wlod_next;
265};
266
267/*
268 * The witness lock order data hash table. Keys are witness index tuples
269 * (struct witness_lock_order_key), elements are lock order data objects
270 * (struct witness_lock_order_data).
271 */
272struct witness_lock_order_hash {
273	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
274	u_int	wloh_size;
275	u_int	wloh_count;
276};
277
278#ifdef BLESSING
279struct witness_blessed {
280	const char	*b_lock1;
281	const char	*b_lock2;
282};
283#endif
284
285struct witness_pendhelp {
286	const char		*wh_type;
287	struct lock_object	*wh_lock;
288};
289
290struct witness_order_list_entry {
291	const char		*w_name;
292	struct lock_class	*w_class;
293};
294
295/*
296 * Returns 0 if one of the locks is a spin lock and the other is not.
297 * Returns 1 otherwise.
298 */
299static __inline int
300witness_lock_type_equal(struct witness *w1, struct witness *w2)
301{
302
303	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305}
306
307static __inline int
308witness_lock_order_key_empty(const struct witness_lock_order_key *key)
309{
310
311	return (key->from == 0 && key->to == 0);
312}
313
314static __inline int
315witness_lock_order_key_equal(const struct witness_lock_order_key *a,
316    const struct witness_lock_order_key *b)
317{
318
319	return (a->from == b->from && a->to == b->to);
320}
321
322static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
323		    const char *fname);
324#ifdef KDB
325static void	_witness_debugger(int cond, const char *msg);
326#endif
327static void	adopt(struct witness *parent, struct witness *child);
328#ifdef BLESSING
329static int	blessed(struct witness *, struct witness *);
330#endif
331static void	depart(struct witness *w);
332static struct witness	*enroll(const char *description,
333			    struct lock_class *lock_class);
334static struct lock_instance	*find_instance(struct lock_list_entry *list,
335				    struct lock_object *lock);
336static int	isitmychild(struct witness *parent, struct witness *child);
337static int	isitmydescendant(struct witness *parent, struct witness *child);
338static void	itismychild(struct witness *parent, struct witness *child);
339static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
340static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
341static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
342static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
343#ifdef DDB
344static void	witness_ddb_compute_levels(void);
345static void	witness_ddb_display(int(*)(const char *fmt, ...));
346static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
347		    struct witness *, int indent);
348static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
349		    struct witness_list *list);
350static void	witness_ddb_level_descendants(struct witness *parent, int l);
351static void	witness_ddb_list(struct thread *td);
352#endif
353static void	witness_free(struct witness *m);
354static struct witness	*witness_get(void);
355static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
356static struct witness	*witness_hash_get(const char *key);
357static void	witness_hash_put(struct witness *w);
358static void	witness_init_hash_tables(void);
359static void	witness_increment_graph_generation(void);
360static void	witness_lock_list_free(struct lock_list_entry *lle);
361static struct lock_list_entry	*witness_lock_list_get(void);
362static int	witness_lock_order_add(struct witness *parent,
363		    struct witness *child);
364static int	witness_lock_order_check(struct witness *parent,
365		    struct witness *child);
366static struct witness_lock_order_data	*witness_lock_order_get(
367					    struct witness *parent,
368					    struct witness *child);
369static void	witness_list_lock(struct lock_instance *instance,
370		    int (*prnt)(const char *fmt, ...));
371static void	witness_setflag(struct lock_object *lock, int flag, int set);
372
373#ifdef KDB
374#define	witness_debugger(c)	_witness_debugger(c, __func__)
375#else
376#define	witness_debugger(c)
377#endif
378
379SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, "Witness Locking");
380
381/*
382 * If set to 0, lock order checking is disabled.  If set to -1,
383 * witness is completely disabled.  Otherwise witness performs full
384 * lock order checking for all locks.  At runtime, lock order checking
385 * may be toggled.  However, witness cannot be reenabled once it is
386 * completely disabled.
387 */
388static int witness_watch = 1;
389TUNABLE_INT("debug.witness.watch", &witness_watch);
390SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
391    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
392
393#ifdef KDB
394/*
395 * When KDB is enabled and witness_kdb is 1, it will cause the system
396 * to drop into kdebug() when:
397 *	- a lock hierarchy violation occurs
398 *	- locks are held when going to sleep.
399 */
400#ifdef WITNESS_KDB
401int	witness_kdb = 1;
402#else
403int	witness_kdb = 0;
404#endif
405TUNABLE_INT("debug.witness.kdb", &witness_kdb);
406SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
407
408/*
409 * When KDB is enabled and witness_trace is 1, it will cause the system
410 * to print a stack trace:
411 *	- a lock hierarchy violation occurs
412 *	- locks are held when going to sleep.
413 */
414int	witness_trace = 1;
415TUNABLE_INT("debug.witness.trace", &witness_trace);
416SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
417#endif /* KDB */
418
419#ifdef WITNESS_SKIPSPIN
420int	witness_skipspin = 1;
421#else
422int	witness_skipspin = 0;
423#endif
424TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
425SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
426    0, "");
427
428/*
429 * Call this to print out the relations between locks.
430 */
431SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
432    NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
433
434/*
435 * Call this to print out the witness faulty stacks.
436 */
437SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
438    NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
439
440static struct mtx w_mtx;
441
442/* w_list */
443static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
444static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
445
446/* w_typelist */
447static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
448static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
449
450/* lock list */
451static struct lock_list_entry *w_lock_list_free = NULL;
452static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
453static u_int pending_cnt;
454
455static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
456SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
457SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
458SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
459    "");
460
461static struct witness *w_data;
462static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
463static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
464static struct witness_hash w_hash;	/* The witness hash table. */
465
466/* The lock order data hash */
467static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
468static struct witness_lock_order_data *w_lofree = NULL;
469static struct witness_lock_order_hash w_lohash;
470static int w_max_used_index = 0;
471static unsigned int w_generation = 0;
472static const char w_notrunning[] = "Witness not running\n";
473static const char w_stillcold[] = "Witness is still cold\n";
474
475
476static struct witness_order_list_entry order_lists[] = {
477	/*
478	 * sx locks
479	 */
480	{ "proctree", &lock_class_sx },
481	{ "allproc", &lock_class_sx },
482	{ "allprison", &lock_class_sx },
483	{ NULL, NULL },
484	/*
485	 * Various mutexes
486	 */
487	{ "Giant", &lock_class_mtx_sleep },
488	{ "pipe mutex", &lock_class_mtx_sleep },
489	{ "sigio lock", &lock_class_mtx_sleep },
490	{ "process group", &lock_class_mtx_sleep },
491	{ "process lock", &lock_class_mtx_sleep },
492	{ "session", &lock_class_mtx_sleep },
493	{ "uidinfo hash", &lock_class_rw },
494#ifdef	HWPMC_HOOKS
495	{ "pmc-sleep", &lock_class_mtx_sleep },
496#endif
497	{ "time lock", &lock_class_mtx_sleep },
498	{ NULL, NULL },
499	/*
500	 * Sockets
501	 */
502	{ "accept", &lock_class_mtx_sleep },
503	{ "so_snd", &lock_class_mtx_sleep },
504	{ "so_rcv", &lock_class_mtx_sleep },
505	{ "sellck", &lock_class_mtx_sleep },
506	{ NULL, NULL },
507	/*
508	 * Routing
509	 */
510	{ "so_rcv", &lock_class_mtx_sleep },
511	{ "radix node head", &lock_class_rw },
512	{ "rtentry", &lock_class_mtx_sleep },
513	{ "ifaddr", &lock_class_mtx_sleep },
514	{ NULL, NULL },
515	/*
516	 * IPv4 multicast:
517	 * protocol locks before interface locks, after UDP locks.
518	 */
519	{ "udpinp", &lock_class_rw },
520	{ "in_multi_mtx", &lock_class_mtx_sleep },
521	{ "igmp_mtx", &lock_class_mtx_sleep },
522	{ "if_addr_mtx", &lock_class_mtx_sleep },
523	{ NULL, NULL },
524	/*
525	 * IPv6 multicast:
526	 * protocol locks before interface locks, after UDP locks.
527	 */
528	{ "udpinp", &lock_class_rw },
529	{ "in6_multi_mtx", &lock_class_mtx_sleep },
530	{ "mld_mtx", &lock_class_mtx_sleep },
531	{ "if_addr_mtx", &lock_class_mtx_sleep },
532	{ NULL, NULL },
533	/*
534	 * UNIX Domain Sockets
535	 */
536	{ "unp_global_rwlock", &lock_class_rw },
537	{ "unp_list_lock", &lock_class_mtx_sleep },
538	{ "unp", &lock_class_mtx_sleep },
539	{ "so_snd", &lock_class_mtx_sleep },
540	{ NULL, NULL },
541	/*
542	 * UDP/IP
543	 */
544	{ "udp", &lock_class_rw },
545	{ "udpinp", &lock_class_rw },
546	{ "so_snd", &lock_class_mtx_sleep },
547	{ NULL, NULL },
548	/*
549	 * TCP/IP
550	 */
551	{ "tcp", &lock_class_rw },
552	{ "tcpinp", &lock_class_rw },
553	{ "so_snd", &lock_class_mtx_sleep },
554	{ NULL, NULL },
555	/*
556	 * netatalk
557	 */
558	{ "ddp_list_mtx", &lock_class_mtx_sleep },
559	{ "ddp_mtx", &lock_class_mtx_sleep },
560	{ NULL, NULL },
561	/*
562	 * BPF
563	 */
564	{ "bpf global lock", &lock_class_mtx_sleep },
565	{ "bpf interface lock", &lock_class_mtx_sleep },
566	{ "bpf cdev lock", &lock_class_mtx_sleep },
567	{ NULL, NULL },
568	/*
569	 * NFS server
570	 */
571	{ "nfsd_mtx", &lock_class_mtx_sleep },
572	{ "so_snd", &lock_class_mtx_sleep },
573	{ NULL, NULL },
574
575	/*
576	 * IEEE 802.11
577	 */
578	{ "802.11 com lock", &lock_class_mtx_sleep},
579	{ NULL, NULL },
580	/*
581	 * Network drivers
582	 */
583	{ "network driver", &lock_class_mtx_sleep},
584	{ NULL, NULL },
585
586	/*
587	 * Netgraph
588	 */
589	{ "ng_node", &lock_class_mtx_sleep },
590	{ "ng_worklist", &lock_class_mtx_sleep },
591	{ NULL, NULL },
592	/*
593	 * CDEV
594	 */
595	{ "system map", &lock_class_mtx_sleep },
596	{ "vm page queue mutex", &lock_class_mtx_sleep },
597	{ "vnode interlock", &lock_class_mtx_sleep },
598	{ "cdev", &lock_class_mtx_sleep },
599	{ NULL, NULL },
600	/*
601	 * VM
602	 *
603	 */
604	{ "vm object", &lock_class_mtx_sleep },
605	{ "page lock", &lock_class_mtx_sleep },
606	{ "vm page queue mutex", &lock_class_mtx_sleep },
607	{ "pmap", &lock_class_mtx_sleep },
608	{ NULL, NULL },
609	/*
610	 * kqueue/VFS interaction
611	 */
612	{ "kqueue", &lock_class_mtx_sleep },
613	{ "struct mount mtx", &lock_class_mtx_sleep },
614	{ "vnode interlock", &lock_class_mtx_sleep },
615	{ NULL, NULL },
616	/*
617	 * ZFS locking
618	 */
619	{ "dn->dn_mtx", &lock_class_sx },
620	{ "dr->dt.di.dr_mtx", &lock_class_sx },
621	{ "db->db_mtx", &lock_class_sx },
622	{ NULL, NULL },
623	/*
624	 * spin locks
625	 */
626#ifdef SMP
627	{ "ap boot", &lock_class_mtx_spin },
628#endif
629	{ "rm.mutex_mtx", &lock_class_mtx_spin },
630	{ "sio", &lock_class_mtx_spin },
631	{ "scrlock", &lock_class_mtx_spin },
632#ifdef __i386__
633	{ "cy", &lock_class_mtx_spin },
634#endif
635#ifdef __sparc64__
636	{ "pcib_mtx", &lock_class_mtx_spin },
637	{ "rtc_mtx", &lock_class_mtx_spin },
638#endif
639	{ "scc_hwmtx", &lock_class_mtx_spin },
640	{ "uart_hwmtx", &lock_class_mtx_spin },
641	{ "fast_taskqueue", &lock_class_mtx_spin },
642	{ "intr table", &lock_class_mtx_spin },
643#ifdef	HWPMC_HOOKS
644	{ "pmc-per-proc", &lock_class_mtx_spin },
645#endif
646	{ "process slock", &lock_class_mtx_spin },
647	{ "sleepq chain", &lock_class_mtx_spin },
648	{ "umtx lock", &lock_class_mtx_spin },
649	{ "rm_spinlock", &lock_class_mtx_spin },
650	{ "turnstile chain", &lock_class_mtx_spin },
651	{ "turnstile lock", &lock_class_mtx_spin },
652	{ "sched lock", &lock_class_mtx_spin },
653	{ "td_contested", &lock_class_mtx_spin },
654	{ "callout", &lock_class_mtx_spin },
655	{ "entropy harvest mutex", &lock_class_mtx_spin },
656	{ "syscons video lock", &lock_class_mtx_spin },
657#ifdef SMP
658	{ "smp rendezvous", &lock_class_mtx_spin },
659#endif
660#ifdef __powerpc__
661	{ "tlb0", &lock_class_mtx_spin },
662#endif
663	/*
664	 * leaf locks
665	 */
666	{ "intrcnt", &lock_class_mtx_spin },
667	{ "icu", &lock_class_mtx_spin },
668#if defined(SMP) && defined(__sparc64__)
669	{ "ipi", &lock_class_mtx_spin },
670#endif
671#ifdef __i386__
672	{ "allpmaps", &lock_class_mtx_spin },
673	{ "descriptor tables", &lock_class_mtx_spin },
674#endif
675	{ "clk", &lock_class_mtx_spin },
676	{ "cpuset", &lock_class_mtx_spin },
677	{ "mprof lock", &lock_class_mtx_spin },
678	{ "zombie lock", &lock_class_mtx_spin },
679	{ "ALD Queue", &lock_class_mtx_spin },
680#ifdef __ia64__
681	{ "MCA spin lock", &lock_class_mtx_spin },
682#endif
683#if defined(__i386__) || defined(__amd64__)
684	{ "pcicfg", &lock_class_mtx_spin },
685	{ "NDIS thread lock", &lock_class_mtx_spin },
686#endif
687	{ "tw_osl_io_lock", &lock_class_mtx_spin },
688	{ "tw_osl_q_lock", &lock_class_mtx_spin },
689	{ "tw_cl_io_lock", &lock_class_mtx_spin },
690	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
691	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
692#ifdef	HWPMC_HOOKS
693	{ "pmc-leaf", &lock_class_mtx_spin },
694#endif
695	{ "blocked lock", &lock_class_mtx_spin },
696	{ NULL, NULL },
697	{ NULL, NULL }
698};
699
700#ifdef BLESSING
701/*
702 * Pairs of locks which have been blessed
703 * Don't complain about order problems with blessed locks
704 */
705static struct witness_blessed blessed_list[] = {
706};
707static int blessed_count =
708	sizeof(blessed_list) / sizeof(struct witness_blessed);
709#endif
710
711/*
712 * This global is set to 0 once it becomes safe to use the witness code.
713 */
714static int witness_cold = 1;
715
716/*
717 * This global is set to 1 once the static lock orders have been enrolled
718 * so that a warning can be issued for any spin locks enrolled later.
719 */
720static int witness_spin_warn = 0;
721
722/*
723 * The WITNESS-enabled diagnostic code.  Note that the witness code does
724 * assume that the early boot is single-threaded at least until after this
725 * routine is completed.
726 */
727static void
728witness_initialize(void *dummy __unused)
729{
730	struct lock_object *lock;
731	struct witness_order_list_entry *order;
732	struct witness *w, *w1;
733	int i;
734
735	w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
736	    M_NOWAIT | M_ZERO);
737
738	/*
739	 * We have to release Giant before initializing its witness
740	 * structure so that WITNESS doesn't get confused.
741	 */
742	mtx_unlock(&Giant);
743	mtx_assert(&Giant, MA_NOTOWNED);
744
745	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
746	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
747	    MTX_NOWITNESS | MTX_NOPROFILE);
748	for (i = WITNESS_COUNT - 1; i >= 0; i--) {
749		w = &w_data[i];
750		memset(w, 0, sizeof(*w));
751		w_data[i].w_index = i;	/* Witness index never changes. */
752		witness_free(w);
753	}
754	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
755	    ("%s: Invalid list of free witness objects", __func__));
756
757	/* Witness with index 0 is not used to aid in debugging. */
758	STAILQ_REMOVE_HEAD(&w_free, w_list);
759	w_free_cnt--;
760
761	memset(w_rmatrix, 0,
762	    (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
763
764	for (i = 0; i < LOCK_CHILDCOUNT; i++)
765		witness_lock_list_free(&w_locklistdata[i]);
766	witness_init_hash_tables();
767
768	/* First add in all the specified order lists. */
769	for (order = order_lists; order->w_name != NULL; order++) {
770		w = enroll(order->w_name, order->w_class);
771		if (w == NULL)
772			continue;
773		w->w_file = "order list";
774		for (order++; order->w_name != NULL; order++) {
775			w1 = enroll(order->w_name, order->w_class);
776			if (w1 == NULL)
777				continue;
778			w1->w_file = "order list";
779			itismychild(w, w1);
780			w = w1;
781		}
782	}
783	witness_spin_warn = 1;
784
785	/* Iterate through all locks and add them to witness. */
786	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
787		lock = pending_locks[i].wh_lock;
788		KASSERT(lock->lo_flags & LO_WITNESS,
789		    ("%s: lock %s is on pending list but not LO_WITNESS",
790		    __func__, lock->lo_name));
791		lock->lo_witness = enroll(pending_locks[i].wh_type,
792		    LOCK_CLASS(lock));
793	}
794
795	/* Mark the witness code as being ready for use. */
796	witness_cold = 0;
797
798	mtx_lock(&Giant);
799}
800SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
801    NULL);
802
803void
804witness_init(struct lock_object *lock, const char *type)
805{
806	struct lock_class *class;
807
808	/* Various sanity checks. */
809	class = LOCK_CLASS(lock);
810	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
811	    (class->lc_flags & LC_RECURSABLE) == 0)
812		panic("%s: lock (%s) %s can not be recursable", __func__,
813		    class->lc_name, lock->lo_name);
814	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
815	    (class->lc_flags & LC_SLEEPABLE) == 0)
816		panic("%s: lock (%s) %s can not be sleepable", __func__,
817		    class->lc_name, lock->lo_name);
818	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
819	    (class->lc_flags & LC_UPGRADABLE) == 0)
820		panic("%s: lock (%s) %s can not be upgradable", __func__,
821		    class->lc_name, lock->lo_name);
822
823	/*
824	 * If we shouldn't watch this lock, then just clear lo_witness.
825	 * Otherwise, if witness_cold is set, then it is too early to
826	 * enroll this lock, so defer it to witness_initialize() by adding
827	 * it to the pending_locks list.  If it is not too early, then enroll
828	 * the lock now.
829	 */
830	if (witness_watch < 1 || panicstr != NULL ||
831	    (lock->lo_flags & LO_WITNESS) == 0)
832		lock->lo_witness = NULL;
833	else if (witness_cold) {
834		pending_locks[pending_cnt].wh_lock = lock;
835		pending_locks[pending_cnt++].wh_type = type;
836		if (pending_cnt > WITNESS_PENDLIST)
837			panic("%s: pending locks list is too small, bump it\n",
838			    __func__);
839	} else
840		lock->lo_witness = enroll(type, class);
841}
842
843void
844witness_destroy(struct lock_object *lock)
845{
846	struct lock_class *class;
847	struct witness *w;
848
849	class = LOCK_CLASS(lock);
850
851	if (witness_cold)
852		panic("lock (%s) %s destroyed while witness_cold",
853		    class->lc_name, lock->lo_name);
854
855	/* XXX: need to verify that no one holds the lock */
856	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
857		return;
858	w = lock->lo_witness;
859
860	mtx_lock_spin(&w_mtx);
861	MPASS(w->w_refcount > 0);
862	w->w_refcount--;
863
864	if (w->w_refcount == 0)
865		depart(w);
866	mtx_unlock_spin(&w_mtx);
867}
868
869#ifdef DDB
870static void
871witness_ddb_compute_levels(void)
872{
873	struct witness *w;
874
875	/*
876	 * First clear all levels.
877	 */
878	STAILQ_FOREACH(w, &w_all, w_list)
879		w->w_ddb_level = -1;
880
881	/*
882	 * Look for locks with no parents and level all their descendants.
883	 */
884	STAILQ_FOREACH(w, &w_all, w_list) {
885
886		/* If the witness has ancestors (is not a root), skip it. */
887		if (w->w_num_ancestors > 0)
888			continue;
889		witness_ddb_level_descendants(w, 0);
890	}
891}
892
893static void
894witness_ddb_level_descendants(struct witness *w, int l)
895{
896	int i;
897
898	if (w->w_ddb_level >= l)
899		return;
900
901	w->w_ddb_level = l;
902	l++;
903
904	for (i = 1; i <= w_max_used_index; i++) {
905		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
906			witness_ddb_level_descendants(&w_data[i], l);
907	}
908}
909
910static void
911witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
912    struct witness *w, int indent)
913{
914	int i;
915
916 	for (i = 0; i < indent; i++)
917 		prnt(" ");
918	prnt("%s (type: %s, depth: %d, active refs: %d)",
919	     w->w_name, w->w_class->lc_name,
920	     w->w_ddb_level, w->w_refcount);
921 	if (w->w_displayed) {
922 		prnt(" -- (already displayed)\n");
923 		return;
924 	}
925 	w->w_displayed = 1;
926	if (w->w_file != NULL && w->w_line != 0)
927		prnt(" -- last acquired @ %s:%d\n", w->w_file,
928		    w->w_line);
929	else
930		prnt(" -- never acquired\n");
931	indent++;
932	WITNESS_INDEX_ASSERT(w->w_index);
933	for (i = 1; i <= w_max_used_index; i++) {
934		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
935			witness_ddb_display_descendants(prnt, &w_data[i],
936			    indent);
937	}
938}
939
940static void
941witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
942    struct witness_list *list)
943{
944	struct witness *w;
945
946	STAILQ_FOREACH(w, list, w_typelist) {
947		if (w->w_file == NULL || w->w_ddb_level > 0)
948			continue;
949
950		/* This lock has no anscestors - display its descendants. */
951		witness_ddb_display_descendants(prnt, w, 0);
952	}
953}
954
955static void
956witness_ddb_display(int(*prnt)(const char *fmt, ...))
957{
958	struct witness *w;
959
960	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
961	witness_ddb_compute_levels();
962
963	/* Clear all the displayed flags. */
964	STAILQ_FOREACH(w, &w_all, w_list)
965		w->w_displayed = 0;
966
967	/*
968	 * First, handle sleep locks which have been acquired at least
969	 * once.
970	 */
971	prnt("Sleep locks:\n");
972	witness_ddb_display_list(prnt, &w_sleep);
973
974	/*
975	 * Now do spin locks which have been acquired at least once.
976	 */
977	prnt("\nSpin locks:\n");
978	witness_ddb_display_list(prnt, &w_spin);
979
980	/*
981	 * Finally, any locks which have not been acquired yet.
982	 */
983	prnt("\nLocks which were never acquired:\n");
984	STAILQ_FOREACH(w, &w_all, w_list) {
985		if (w->w_file != NULL || w->w_refcount == 0)
986			continue;
987		prnt("%s (type: %s, depth: %d)\n", w->w_name,
988		    w->w_class->lc_name, w->w_ddb_level);
989	}
990}
991#endif /* DDB */
992
993/* Trim useless garbage from filenames. */
994static const char *
995fixup_filename(const char *file)
996{
997
998	if (file == NULL)
999		return (NULL);
1000	while (strncmp(file, "../", 3) == 0)
1001		file += 3;
1002	return (file);
1003}
1004
1005int
1006witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1007{
1008
1009	if (witness_watch == -1 || panicstr != NULL)
1010		return (0);
1011
1012	/* Require locks that witness knows about. */
1013	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1014	    lock2->lo_witness == NULL)
1015		return (EINVAL);
1016
1017	mtx_assert(&w_mtx, MA_NOTOWNED);
1018	mtx_lock_spin(&w_mtx);
1019
1020	/*
1021	 * If we already have either an explicit or implied lock order that
1022	 * is the other way around, then return an error.
1023	 */
1024	if (witness_watch &&
1025	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1026		mtx_unlock_spin(&w_mtx);
1027		return (EDOOFUS);
1028	}
1029
1030	/* Try to add the new order. */
1031	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1032	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1033	itismychild(lock1->lo_witness, lock2->lo_witness);
1034	mtx_unlock_spin(&w_mtx);
1035	return (0);
1036}
1037
1038void
1039witness_checkorder(struct lock_object *lock, int flags, const char *file,
1040    int line, struct lock_object *interlock)
1041{
1042	struct lock_list_entry *lock_list, *lle;
1043	struct lock_instance *lock1, *lock2, *plock;
1044	struct lock_class *class;
1045	struct witness *w, *w1;
1046	struct thread *td;
1047	int i, j;
1048
1049	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1050	    panicstr != NULL)
1051		return;
1052
1053	w = lock->lo_witness;
1054	class = LOCK_CLASS(lock);
1055	td = curthread;
1056
1057	if (class->lc_flags & LC_SLEEPLOCK) {
1058
1059		/*
1060		 * Since spin locks include a critical section, this check
1061		 * implicitly enforces a lock order of all sleep locks before
1062		 * all spin locks.
1063		 */
1064		if (td->td_critnest != 0 && !kdb_active)
1065			panic("blockable sleep lock (%s) %s @ %s:%d",
1066			    class->lc_name, lock->lo_name,
1067			    fixup_filename(file), line);
1068
1069		/*
1070		 * If this is the first lock acquired then just return as
1071		 * no order checking is needed.
1072		 */
1073		lock_list = td->td_sleeplocks;
1074		if (lock_list == NULL || lock_list->ll_count == 0)
1075			return;
1076	} else {
1077
1078		/*
1079		 * If this is the first lock, just return as no order
1080		 * checking is needed.  Avoid problems with thread
1081		 * migration pinning the thread while checking if
1082		 * spinlocks are held.  If at least one spinlock is held
1083		 * the thread is in a safe path and it is allowed to
1084		 * unpin it.
1085		 */
1086		sched_pin();
1087		lock_list = PCPU_GET(spinlocks);
1088		if (lock_list == NULL || lock_list->ll_count == 0) {
1089			sched_unpin();
1090			return;
1091		}
1092		sched_unpin();
1093	}
1094
1095	/*
1096	 * Check to see if we are recursing on a lock we already own.  If
1097	 * so, make sure that we don't mismatch exclusive and shared lock
1098	 * acquires.
1099	 */
1100	lock1 = find_instance(lock_list, lock);
1101	if (lock1 != NULL) {
1102		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1103		    (flags & LOP_EXCLUSIVE) == 0) {
1104			printf("shared lock of (%s) %s @ %s:%d\n",
1105			    class->lc_name, lock->lo_name,
1106			    fixup_filename(file), line);
1107			printf("while exclusively locked from %s:%d\n",
1108			    fixup_filename(lock1->li_file), lock1->li_line);
1109			panic("share->excl");
1110		}
1111		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1112		    (flags & LOP_EXCLUSIVE) != 0) {
1113			printf("exclusive lock of (%s) %s @ %s:%d\n",
1114			    class->lc_name, lock->lo_name,
1115			    fixup_filename(file), line);
1116			printf("while share locked from %s:%d\n",
1117			    fixup_filename(lock1->li_file), lock1->li_line);
1118			panic("excl->share");
1119		}
1120		return;
1121	}
1122
1123	/*
1124	 * Find the previously acquired lock, but ignore interlocks.
1125	 */
1126	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1127	if (interlock != NULL && plock->li_lock == interlock) {
1128		if (lock_list->ll_count > 1)
1129			plock =
1130			    &lock_list->ll_children[lock_list->ll_count - 2];
1131		else {
1132			lle = lock_list->ll_next;
1133
1134			/*
1135			 * The interlock is the only lock we hold, so
1136			 * simply return.
1137			 */
1138			if (lle == NULL)
1139				return;
1140			plock = &lle->ll_children[lle->ll_count - 1];
1141		}
1142	}
1143
1144	/*
1145	 * Try to perform most checks without a lock.  If this succeeds we
1146	 * can skip acquiring the lock and return success.
1147	 */
1148	w1 = plock->li_lock->lo_witness;
1149	if (witness_lock_order_check(w1, w))
1150		return;
1151
1152	/*
1153	 * Check for duplicate locks of the same type.  Note that we only
1154	 * have to check for this on the last lock we just acquired.  Any
1155	 * other cases will be caught as lock order violations.
1156	 */
1157	mtx_lock_spin(&w_mtx);
1158	witness_lock_order_add(w1, w);
1159	if (w1 == w) {
1160		i = w->w_index;
1161		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1162		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1163		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1164			w->w_reversed = 1;
1165			mtx_unlock_spin(&w_mtx);
1166			printf(
1167			    "acquiring duplicate lock of same type: \"%s\"\n",
1168			    w->w_name);
1169			printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1170			       fixup_filename(plock->li_file), plock->li_line);
1171			printf(" 2nd %s @ %s:%d\n", lock->lo_name,
1172			    fixup_filename(file), line);
1173			witness_debugger(1);
1174		    } else
1175			    mtx_unlock_spin(&w_mtx);
1176		return;
1177	}
1178	mtx_assert(&w_mtx, MA_OWNED);
1179
1180	/*
1181	 * If we know that the lock we are acquiring comes after
1182	 * the lock we most recently acquired in the lock order tree,
1183	 * then there is no need for any further checks.
1184	 */
1185	if (isitmychild(w1, w))
1186		goto out;
1187
1188	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1189		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1190
1191			MPASS(j < WITNESS_COUNT);
1192			lock1 = &lle->ll_children[i];
1193
1194			/*
1195			 * Ignore the interlock the first time we see it.
1196			 */
1197			if (interlock != NULL && interlock == lock1->li_lock) {
1198				interlock = NULL;
1199				continue;
1200			}
1201
1202			/*
1203			 * If this lock doesn't undergo witness checking,
1204			 * then skip it.
1205			 */
1206			w1 = lock1->li_lock->lo_witness;
1207			if (w1 == NULL) {
1208				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1209				    ("lock missing witness structure"));
1210				continue;
1211			}
1212
1213			/*
1214			 * If we are locking Giant and this is a sleepable
1215			 * lock, then skip it.
1216			 */
1217			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1218			    lock == &Giant.lock_object)
1219				continue;
1220
1221			/*
1222			 * If we are locking a sleepable lock and this lock
1223			 * is Giant, then skip it.
1224			 */
1225			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1226			    lock1->li_lock == &Giant.lock_object)
1227				continue;
1228
1229			/*
1230			 * If we are locking a sleepable lock and this lock
1231			 * isn't sleepable, we want to treat it as a lock
1232			 * order violation to enfore a general lock order of
1233			 * sleepable locks before non-sleepable locks.
1234			 */
1235			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1236			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1237				goto reversal;
1238
1239			/*
1240			 * If we are locking Giant and this is a non-sleepable
1241			 * lock, then treat it as a reversal.
1242			 */
1243			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1244			    lock == &Giant.lock_object)
1245				goto reversal;
1246
1247			/*
1248			 * Check the lock order hierarchy for a reveresal.
1249			 */
1250			if (!isitmydescendant(w, w1))
1251				continue;
1252		reversal:
1253
1254			/*
1255			 * We have a lock order violation, check to see if it
1256			 * is allowed or has already been yelled about.
1257			 */
1258#ifdef BLESSING
1259
1260			/*
1261			 * If the lock order is blessed, just bail.  We don't
1262			 * look for other lock order violations though, which
1263			 * may be a bug.
1264			 */
1265			if (blessed(w, w1))
1266				goto out;
1267#endif
1268
1269			/* Bail if this violation is known */
1270			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1271				goto out;
1272
1273			/* Record this as a violation */
1274			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1275			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1276			w->w_reversed = w1->w_reversed = 1;
1277			witness_increment_graph_generation();
1278			mtx_unlock_spin(&w_mtx);
1279
1280			/*
1281			 * Ok, yell about it.
1282			 */
1283			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1284			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1285				printf(
1286		"lock order reversal: (sleepable after non-sleepable)\n");
1287			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1288			    && lock == &Giant.lock_object)
1289				printf(
1290		"lock order reversal: (Giant after non-sleepable)\n");
1291			else
1292				printf("lock order reversal:\n");
1293
1294			/*
1295			 * Try to locate an earlier lock with
1296			 * witness w in our list.
1297			 */
1298			do {
1299				lock2 = &lle->ll_children[i];
1300				MPASS(lock2->li_lock != NULL);
1301				if (lock2->li_lock->lo_witness == w)
1302					break;
1303				if (i == 0 && lle->ll_next != NULL) {
1304					lle = lle->ll_next;
1305					i = lle->ll_count - 1;
1306					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1307				} else
1308					i--;
1309			} while (i >= 0);
1310			if (i < 0) {
1311				printf(" 1st %p %s (%s) @ %s:%d\n",
1312				    lock1->li_lock, lock1->li_lock->lo_name,
1313				    w1->w_name, fixup_filename(lock1->li_file),
1314				    lock1->li_line);
1315				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1316				    lock->lo_name, w->w_name,
1317				    fixup_filename(file), line);
1318			} else {
1319				printf(" 1st %p %s (%s) @ %s:%d\n",
1320				    lock2->li_lock, lock2->li_lock->lo_name,
1321				    lock2->li_lock->lo_witness->w_name,
1322				    fixup_filename(lock2->li_file),
1323				    lock2->li_line);
1324				printf(" 2nd %p %s (%s) @ %s:%d\n",
1325				    lock1->li_lock, lock1->li_lock->lo_name,
1326				    w1->w_name, fixup_filename(lock1->li_file),
1327				    lock1->li_line);
1328				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1329				    lock->lo_name, w->w_name,
1330				    fixup_filename(file), line);
1331			}
1332			witness_debugger(1);
1333			return;
1334		}
1335	}
1336
1337	/*
1338	 * If requested, build a new lock order.  However, don't build a new
1339	 * relationship between a sleepable lock and Giant if it is in the
1340	 * wrong direction.  The correct lock order is that sleepable locks
1341	 * always come before Giant.
1342	 */
1343	if (flags & LOP_NEWORDER &&
1344	    !(plock->li_lock == &Giant.lock_object &&
1345	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1346		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1347		    w->w_name, plock->li_lock->lo_witness->w_name);
1348		itismychild(plock->li_lock->lo_witness, w);
1349	}
1350out:
1351	mtx_unlock_spin(&w_mtx);
1352}
1353
1354void
1355witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1356{
1357	struct lock_list_entry **lock_list, *lle;
1358	struct lock_instance *instance;
1359	struct witness *w;
1360	struct thread *td;
1361
1362	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1363	    panicstr != NULL)
1364		return;
1365	w = lock->lo_witness;
1366	td = curthread;
1367
1368	/* Determine lock list for this lock. */
1369	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1370		lock_list = &td->td_sleeplocks;
1371	else
1372		lock_list = PCPU_PTR(spinlocks);
1373
1374	/* Check to see if we are recursing on a lock we already own. */
1375	instance = find_instance(*lock_list, lock);
1376	if (instance != NULL) {
1377		instance->li_flags++;
1378		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1379		    td->td_proc->p_pid, lock->lo_name,
1380		    instance->li_flags & LI_RECURSEMASK);
1381		instance->li_file = file;
1382		instance->li_line = line;
1383		return;
1384	}
1385
1386	/* Update per-witness last file and line acquire. */
1387	w->w_file = file;
1388	w->w_line = line;
1389
1390	/* Find the next open lock instance in the list and fill it. */
1391	lle = *lock_list;
1392	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1393		lle = witness_lock_list_get();
1394		if (lle == NULL)
1395			return;
1396		lle->ll_next = *lock_list;
1397		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1398		    td->td_proc->p_pid, lle);
1399		*lock_list = lle;
1400	}
1401	instance = &lle->ll_children[lle->ll_count++];
1402	instance->li_lock = lock;
1403	instance->li_line = line;
1404	instance->li_file = file;
1405	if ((flags & LOP_EXCLUSIVE) != 0)
1406		instance->li_flags = LI_EXCLUSIVE;
1407	else
1408		instance->li_flags = 0;
1409	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1410	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1411}
1412
1413void
1414witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1415{
1416	struct lock_instance *instance;
1417	struct lock_class *class;
1418
1419	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1420	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1421		return;
1422	class = LOCK_CLASS(lock);
1423	if (witness_watch) {
1424		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1425			panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1426			    class->lc_name, lock->lo_name,
1427			    fixup_filename(file), line);
1428		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1429			panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1430			    class->lc_name, lock->lo_name,
1431			    fixup_filename(file), line);
1432	}
1433	instance = find_instance(curthread->td_sleeplocks, lock);
1434	if (instance == NULL)
1435		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1436		    class->lc_name, lock->lo_name,
1437		    fixup_filename(file), line);
1438	if (witness_watch) {
1439		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1440			panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1441			    class->lc_name, lock->lo_name,
1442			    fixup_filename(file), line);
1443		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1444			panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1445			    class->lc_name, lock->lo_name,
1446			    instance->li_flags & LI_RECURSEMASK,
1447			    fixup_filename(file), line);
1448	}
1449	instance->li_flags |= LI_EXCLUSIVE;
1450}
1451
1452void
1453witness_downgrade(struct lock_object *lock, int flags, const char *file,
1454    int line)
1455{
1456	struct lock_instance *instance;
1457	struct lock_class *class;
1458
1459	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1460	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1461		return;
1462	class = LOCK_CLASS(lock);
1463	if (witness_watch) {
1464		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1465		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1466			    class->lc_name, lock->lo_name,
1467			    fixup_filename(file), line);
1468		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1469			panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1470			    class->lc_name, lock->lo_name,
1471			    fixup_filename(file), line);
1472	}
1473	instance = find_instance(curthread->td_sleeplocks, lock);
1474	if (instance == NULL)
1475		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1476		    class->lc_name, lock->lo_name,
1477		    fixup_filename(file), line);
1478	if (witness_watch) {
1479		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1480			panic("downgrade of shared lock (%s) %s @ %s:%d",
1481			    class->lc_name, lock->lo_name,
1482			    fixup_filename(file), line);
1483		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1484			panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1485			    class->lc_name, lock->lo_name,
1486			    instance->li_flags & LI_RECURSEMASK, file, line);
1487	}
1488	instance->li_flags &= ~LI_EXCLUSIVE;
1489}
1490
1491void
1492witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1493{
1494	struct lock_list_entry **lock_list, *lle;
1495	struct lock_instance *instance;
1496	struct lock_class *class;
1497	struct thread *td;
1498	register_t s;
1499	int i, j;
1500
1501	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1502		return;
1503	td = curthread;
1504	class = LOCK_CLASS(lock);
1505
1506	/* Find lock instance associated with this lock. */
1507	if (class->lc_flags & LC_SLEEPLOCK)
1508		lock_list = &td->td_sleeplocks;
1509	else
1510		lock_list = PCPU_PTR(spinlocks);
1511	lle = *lock_list;
1512	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1513		for (i = 0; i < (*lock_list)->ll_count; i++) {
1514			instance = &(*lock_list)->ll_children[i];
1515			if (instance->li_lock == lock)
1516				goto found;
1517		}
1518
1519	/*
1520	 * When disabling WITNESS through witness_watch we could end up in
1521	 * having registered locks in the td_sleeplocks queue.
1522	 * We have to make sure we flush these queues, so just search for
1523	 * eventual register locks and remove them.
1524	 */
1525	if (witness_watch > 0)
1526		panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1527		    lock->lo_name, fixup_filename(file), line);
1528	else
1529		return;
1530found:
1531
1532	/* First, check for shared/exclusive mismatches. */
1533	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1534	    (flags & LOP_EXCLUSIVE) == 0) {
1535		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1536		    lock->lo_name,
1537		    fixup_filename(file), line);
1538		printf("while exclusively locked from %s:%d\n",
1539		    fixup_filename(instance->li_file), instance->li_line);
1540		panic("excl->ushare");
1541	}
1542	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1543	    (flags & LOP_EXCLUSIVE) != 0) {
1544		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1545		    lock->lo_name, fixup_filename(file), line);
1546		printf("while share locked from %s:%d\n",
1547		    fixup_filename(instance->li_file),
1548		    instance->li_line);
1549		panic("share->uexcl");
1550	}
1551	/* If we are recursed, unrecurse. */
1552	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1553		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1554		    td->td_proc->p_pid, instance->li_lock->lo_name,
1555		    instance->li_flags);
1556		instance->li_flags--;
1557		return;
1558	}
1559	/* The lock is now being dropped, check for NORELEASE flag */
1560	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1561		printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1562		    lock->lo_name, fixup_filename(file), line);
1563		panic("lock marked norelease");
1564	}
1565
1566	/* Otherwise, remove this item from the list. */
1567	s = intr_disable();
1568	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1569	    td->td_proc->p_pid, instance->li_lock->lo_name,
1570	    (*lock_list)->ll_count - 1);
1571	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1572		(*lock_list)->ll_children[j] =
1573		    (*lock_list)->ll_children[j + 1];
1574	(*lock_list)->ll_count--;
1575	intr_restore(s);
1576
1577	/*
1578	 * In order to reduce contention on w_mtx, we want to keep always an
1579	 * head object into lists so that frequent allocation from the
1580	 * free witness pool (and subsequent locking) is avoided.
1581	 * In order to maintain the current code simple, when the head
1582	 * object is totally unloaded it means also that we do not have
1583	 * further objects in the list, so the list ownership needs to be
1584	 * hand over to another object if the current head needs to be freed.
1585	 */
1586	if ((*lock_list)->ll_count == 0) {
1587		if (*lock_list == lle) {
1588			if (lle->ll_next == NULL)
1589				return;
1590		} else
1591			lle = *lock_list;
1592		*lock_list = lle->ll_next;
1593		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1594		    td->td_proc->p_pid, lle);
1595		witness_lock_list_free(lle);
1596	}
1597}
1598
1599void
1600witness_thread_exit(struct thread *td)
1601{
1602	struct lock_list_entry *lle;
1603	int i, n;
1604
1605	lle = td->td_sleeplocks;
1606	if (lle == NULL || panicstr != NULL)
1607		return;
1608	if (lle->ll_count != 0) {
1609		for (n = 0; lle != NULL; lle = lle->ll_next)
1610			for (i = lle->ll_count - 1; i >= 0; i--) {
1611				if (n == 0)
1612		printf("Thread %p exiting with the following locks held:\n",
1613					    td);
1614				n++;
1615				witness_list_lock(&lle->ll_children[i], printf);
1616
1617			}
1618		panic("Thread %p cannot exit while holding sleeplocks\n", td);
1619	}
1620	witness_lock_list_free(lle);
1621}
1622
1623/*
1624 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1625 * exempt Giant and sleepable locks from the checks as well.  If any
1626 * non-exempt locks are held, then a supplied message is printed to the
1627 * console along with a list of the offending locks.  If indicated in the
1628 * flags then a failure results in a panic as well.
1629 */
1630int
1631witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1632{
1633	struct lock_list_entry *lock_list, *lle;
1634	struct lock_instance *lock1;
1635	struct thread *td;
1636	va_list ap;
1637	int i, n;
1638
1639	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1640		return (0);
1641	n = 0;
1642	td = curthread;
1643	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1644		for (i = lle->ll_count - 1; i >= 0; i--) {
1645			lock1 = &lle->ll_children[i];
1646			if (lock1->li_lock == lock)
1647				continue;
1648			if (flags & WARN_GIANTOK &&
1649			    lock1->li_lock == &Giant.lock_object)
1650				continue;
1651			if (flags & WARN_SLEEPOK &&
1652			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1653				continue;
1654			if (n == 0) {
1655				va_start(ap, fmt);
1656				vprintf(fmt, ap);
1657				va_end(ap);
1658				printf(" with the following");
1659				if (flags & WARN_SLEEPOK)
1660					printf(" non-sleepable");
1661				printf(" locks held:\n");
1662			}
1663			n++;
1664			witness_list_lock(lock1, printf);
1665		}
1666
1667	/*
1668	 * Pin the thread in order to avoid problems with thread migration.
1669	 * Once that all verifies are passed about spinlocks ownership,
1670	 * the thread is in a safe path and it can be unpinned.
1671	 */
1672	sched_pin();
1673	lock_list = PCPU_GET(spinlocks);
1674	if (lock_list != NULL && lock_list->ll_count != 0) {
1675		sched_unpin();
1676
1677		/*
1678		 * We should only have one spinlock and as long as
1679		 * the flags cannot match for this locks class,
1680		 * check if the first spinlock is the one curthread
1681		 * should hold.
1682		 */
1683		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1684		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1685		    lock1->li_lock == lock && n == 0)
1686			return (0);
1687
1688		va_start(ap, fmt);
1689		vprintf(fmt, ap);
1690		va_end(ap);
1691		printf(" with the following");
1692		if (flags & WARN_SLEEPOK)
1693			printf(" non-sleepable");
1694		printf(" locks held:\n");
1695		n += witness_list_locks(&lock_list, printf);
1696	} else
1697		sched_unpin();
1698	if (flags & WARN_PANIC && n)
1699		panic("%s", __func__);
1700	else
1701		witness_debugger(n);
1702	return (n);
1703}
1704
1705const char *
1706witness_file(struct lock_object *lock)
1707{
1708	struct witness *w;
1709
1710	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1711		return ("?");
1712	w = lock->lo_witness;
1713	return (w->w_file);
1714}
1715
1716int
1717witness_line(struct lock_object *lock)
1718{
1719	struct witness *w;
1720
1721	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1722		return (0);
1723	w = lock->lo_witness;
1724	return (w->w_line);
1725}
1726
1727static struct witness *
1728enroll(const char *description, struct lock_class *lock_class)
1729{
1730	struct witness *w;
1731	struct witness_list *typelist;
1732
1733	MPASS(description != NULL);
1734
1735	if (witness_watch == -1 || panicstr != NULL)
1736		return (NULL);
1737	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1738		if (witness_skipspin)
1739			return (NULL);
1740		else
1741			typelist = &w_spin;
1742	} else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1743		typelist = &w_sleep;
1744	else
1745		panic("lock class %s is not sleep or spin",
1746		    lock_class->lc_name);
1747
1748	mtx_lock_spin(&w_mtx);
1749	w = witness_hash_get(description);
1750	if (w)
1751		goto found;
1752	if ((w = witness_get()) == NULL)
1753		return (NULL);
1754	MPASS(strlen(description) < MAX_W_NAME);
1755	strcpy(w->w_name, description);
1756	w->w_class = lock_class;
1757	w->w_refcount = 1;
1758	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1759	if (lock_class->lc_flags & LC_SPINLOCK) {
1760		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1761		w_spin_cnt++;
1762	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1763		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1764		w_sleep_cnt++;
1765	}
1766
1767	/* Insert new witness into the hash */
1768	witness_hash_put(w);
1769	witness_increment_graph_generation();
1770	mtx_unlock_spin(&w_mtx);
1771	return (w);
1772found:
1773	w->w_refcount++;
1774	mtx_unlock_spin(&w_mtx);
1775	if (lock_class != w->w_class)
1776		panic(
1777			"lock (%s) %s does not match earlier (%s) lock",
1778			description, lock_class->lc_name,
1779			w->w_class->lc_name);
1780	return (w);
1781}
1782
1783static void
1784depart(struct witness *w)
1785{
1786	struct witness_list *list;
1787
1788	MPASS(w->w_refcount == 0);
1789	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1790		list = &w_sleep;
1791		w_sleep_cnt--;
1792	} else {
1793		list = &w_spin;
1794		w_spin_cnt--;
1795	}
1796	/*
1797	 * Set file to NULL as it may point into a loadable module.
1798	 */
1799	w->w_file = NULL;
1800	w->w_line = 0;
1801	witness_increment_graph_generation();
1802}
1803
1804
1805static void
1806adopt(struct witness *parent, struct witness *child)
1807{
1808	int pi, ci, i, j;
1809
1810	if (witness_cold == 0)
1811		mtx_assert(&w_mtx, MA_OWNED);
1812
1813	/* If the relationship is already known, there's no work to be done. */
1814	if (isitmychild(parent, child))
1815		return;
1816
1817	/* When the structure of the graph changes, bump up the generation. */
1818	witness_increment_graph_generation();
1819
1820	/*
1821	 * The hard part ... create the direct relationship, then propagate all
1822	 * indirect relationships.
1823	 */
1824	pi = parent->w_index;
1825	ci = child->w_index;
1826	WITNESS_INDEX_ASSERT(pi);
1827	WITNESS_INDEX_ASSERT(ci);
1828	MPASS(pi != ci);
1829	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1830	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1831
1832	/*
1833	 * If parent was not already an ancestor of child,
1834	 * then we increment the descendant and ancestor counters.
1835	 */
1836	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1837		parent->w_num_descendants++;
1838		child->w_num_ancestors++;
1839	}
1840
1841	/*
1842	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1843	 * an ancestor of 'pi' during this loop.
1844	 */
1845	for (i = 1; i <= w_max_used_index; i++) {
1846		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1847		    (i != pi))
1848			continue;
1849
1850		/* Find each descendant of 'i' and mark it as a descendant. */
1851		for (j = 1; j <= w_max_used_index; j++) {
1852
1853			/*
1854			 * Skip children that are already marked as
1855			 * descendants of 'i'.
1856			 */
1857			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1858				continue;
1859
1860			/*
1861			 * We are only interested in descendants of 'ci'. Note
1862			 * that 'ci' itself is counted as a descendant of 'ci'.
1863			 */
1864			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1865			    (j != ci))
1866				continue;
1867			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1868			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1869			w_data[i].w_num_descendants++;
1870			w_data[j].w_num_ancestors++;
1871
1872			/*
1873			 * Make sure we aren't marking a node as both an
1874			 * ancestor and descendant. We should have caught
1875			 * this as a lock order reversal earlier.
1876			 */
1877			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1878			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1879				printf("witness rmatrix paradox! [%d][%d]=%d "
1880				    "both ancestor and descendant\n",
1881				    i, j, w_rmatrix[i][j]);
1882				kdb_backtrace();
1883				printf("Witness disabled.\n");
1884				witness_watch = -1;
1885			}
1886			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1887			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1888				printf("witness rmatrix paradox! [%d][%d]=%d "
1889				    "both ancestor and descendant\n",
1890				    j, i, w_rmatrix[j][i]);
1891				kdb_backtrace();
1892				printf("Witness disabled.\n");
1893				witness_watch = -1;
1894			}
1895		}
1896	}
1897}
1898
1899static void
1900itismychild(struct witness *parent, struct witness *child)
1901{
1902
1903	MPASS(child != NULL && parent != NULL);
1904	if (witness_cold == 0)
1905		mtx_assert(&w_mtx, MA_OWNED);
1906
1907	if (!witness_lock_type_equal(parent, child)) {
1908		if (witness_cold == 0)
1909			mtx_unlock_spin(&w_mtx);
1910		panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1911		    "the same lock type", __func__, parent->w_name,
1912		    parent->w_class->lc_name, child->w_name,
1913		    child->w_class->lc_name);
1914	}
1915	adopt(parent, child);
1916}
1917
1918/*
1919 * Generic code for the isitmy*() functions. The rmask parameter is the
1920 * expected relationship of w1 to w2.
1921 */
1922static int
1923_isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1924{
1925	unsigned char r1, r2;
1926	int i1, i2;
1927
1928	i1 = w1->w_index;
1929	i2 = w2->w_index;
1930	WITNESS_INDEX_ASSERT(i1);
1931	WITNESS_INDEX_ASSERT(i2);
1932	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1933	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1934
1935	/* The flags on one better be the inverse of the flags on the other */
1936	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1937		(WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1938		printf("%s: rmatrix mismatch between %s (index %d) and %s "
1939		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
1940		    "w_rmatrix[%d][%d] == %hhx\n",
1941		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1942		    i2, i1, r2);
1943		kdb_backtrace();
1944		printf("Witness disabled.\n");
1945		witness_watch = -1;
1946	}
1947	return (r1 & rmask);
1948}
1949
1950/*
1951 * Checks if @child is a direct child of @parent.
1952 */
1953static int
1954isitmychild(struct witness *parent, struct witness *child)
1955{
1956
1957	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1958}
1959
1960/*
1961 * Checks if @descendant is a direct or inderect descendant of @ancestor.
1962 */
1963static int
1964isitmydescendant(struct witness *ancestor, struct witness *descendant)
1965{
1966
1967	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1968	    __func__));
1969}
1970
1971#ifdef BLESSING
1972static int
1973blessed(struct witness *w1, struct witness *w2)
1974{
1975	int i;
1976	struct witness_blessed *b;
1977
1978	for (i = 0; i < blessed_count; i++) {
1979		b = &blessed_list[i];
1980		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1981			if (strcmp(w2->w_name, b->b_lock2) == 0)
1982				return (1);
1983			continue;
1984		}
1985		if (strcmp(w1->w_name, b->b_lock2) == 0)
1986			if (strcmp(w2->w_name, b->b_lock1) == 0)
1987				return (1);
1988	}
1989	return (0);
1990}
1991#endif
1992
1993static struct witness *
1994witness_get(void)
1995{
1996	struct witness *w;
1997	int index;
1998
1999	if (witness_cold == 0)
2000		mtx_assert(&w_mtx, MA_OWNED);
2001
2002	if (witness_watch == -1) {
2003		mtx_unlock_spin(&w_mtx);
2004		return (NULL);
2005	}
2006	if (STAILQ_EMPTY(&w_free)) {
2007		witness_watch = -1;
2008		mtx_unlock_spin(&w_mtx);
2009		printf("WITNESS: unable to allocate a new witness object\n");
2010		return (NULL);
2011	}
2012	w = STAILQ_FIRST(&w_free);
2013	STAILQ_REMOVE_HEAD(&w_free, w_list);
2014	w_free_cnt--;
2015	index = w->w_index;
2016	MPASS(index > 0 && index == w_max_used_index+1 &&
2017	    index < WITNESS_COUNT);
2018	bzero(w, sizeof(*w));
2019	w->w_index = index;
2020	if (index > w_max_used_index)
2021		w_max_used_index = index;
2022	return (w);
2023}
2024
2025static void
2026witness_free(struct witness *w)
2027{
2028
2029	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2030	w_free_cnt++;
2031}
2032
2033static struct lock_list_entry *
2034witness_lock_list_get(void)
2035{
2036	struct lock_list_entry *lle;
2037
2038	if (witness_watch == -1)
2039		return (NULL);
2040	mtx_lock_spin(&w_mtx);
2041	lle = w_lock_list_free;
2042	if (lle == NULL) {
2043		witness_watch = -1;
2044		mtx_unlock_spin(&w_mtx);
2045		printf("%s: witness exhausted\n", __func__);
2046		return (NULL);
2047	}
2048	w_lock_list_free = lle->ll_next;
2049	mtx_unlock_spin(&w_mtx);
2050	bzero(lle, sizeof(*lle));
2051	return (lle);
2052}
2053
2054static void
2055witness_lock_list_free(struct lock_list_entry *lle)
2056{
2057
2058	mtx_lock_spin(&w_mtx);
2059	lle->ll_next = w_lock_list_free;
2060	w_lock_list_free = lle;
2061	mtx_unlock_spin(&w_mtx);
2062}
2063
2064static struct lock_instance *
2065find_instance(struct lock_list_entry *list, struct lock_object *lock)
2066{
2067	struct lock_list_entry *lle;
2068	struct lock_instance *instance;
2069	int i;
2070
2071	for (lle = list; lle != NULL; lle = lle->ll_next)
2072		for (i = lle->ll_count - 1; i >= 0; i--) {
2073			instance = &lle->ll_children[i];
2074			if (instance->li_lock == lock)
2075				return (instance);
2076		}
2077	return (NULL);
2078}
2079
2080static void
2081witness_list_lock(struct lock_instance *instance,
2082    int (*prnt)(const char *fmt, ...))
2083{
2084	struct lock_object *lock;
2085
2086	lock = instance->li_lock;
2087	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2088	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2089	if (lock->lo_witness->w_name != lock->lo_name)
2090		prnt(" (%s)", lock->lo_witness->w_name);
2091	prnt(" r = %d (%p) locked @ %s:%d\n",
2092	    instance->li_flags & LI_RECURSEMASK, lock,
2093	    fixup_filename(instance->li_file),
2094	    instance->li_line);
2095}
2096
2097#ifdef DDB
2098static int
2099witness_thread_has_locks(struct thread *td)
2100{
2101
2102	if (td->td_sleeplocks == NULL)
2103		return (0);
2104	return (td->td_sleeplocks->ll_count != 0);
2105}
2106
2107static int
2108witness_proc_has_locks(struct proc *p)
2109{
2110	struct thread *td;
2111
2112	FOREACH_THREAD_IN_PROC(p, td) {
2113		if (witness_thread_has_locks(td))
2114			return (1);
2115	}
2116	return (0);
2117}
2118#endif
2119
2120int
2121witness_list_locks(struct lock_list_entry **lock_list,
2122    int (*prnt)(const char *fmt, ...))
2123{
2124	struct lock_list_entry *lle;
2125	int i, nheld;
2126
2127	nheld = 0;
2128	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2129		for (i = lle->ll_count - 1; i >= 0; i--) {
2130			witness_list_lock(&lle->ll_children[i], prnt);
2131			nheld++;
2132		}
2133	return (nheld);
2134}
2135
2136/*
2137 * This is a bit risky at best.  We call this function when we have timed
2138 * out acquiring a spin lock, and we assume that the other CPU is stuck
2139 * with this lock held.  So, we go groveling around in the other CPU's
2140 * per-cpu data to try to find the lock instance for this spin lock to
2141 * see when it was last acquired.
2142 */
2143void
2144witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2145    int (*prnt)(const char *fmt, ...))
2146{
2147	struct lock_instance *instance;
2148	struct pcpu *pc;
2149
2150	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2151		return;
2152	pc = pcpu_find(owner->td_oncpu);
2153	instance = find_instance(pc->pc_spinlocks, lock);
2154	if (instance != NULL)
2155		witness_list_lock(instance, prnt);
2156}
2157
2158void
2159witness_save(struct lock_object *lock, const char **filep, int *linep)
2160{
2161	struct lock_list_entry *lock_list;
2162	struct lock_instance *instance;
2163	struct lock_class *class;
2164
2165	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2166	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2167		return;
2168	class = LOCK_CLASS(lock);
2169	if (class->lc_flags & LC_SLEEPLOCK)
2170		lock_list = curthread->td_sleeplocks;
2171	else {
2172		if (witness_skipspin)
2173			return;
2174		lock_list = PCPU_GET(spinlocks);
2175	}
2176	instance = find_instance(lock_list, lock);
2177	if (instance == NULL)
2178		panic("%s: lock (%s) %s not locked", __func__,
2179		    class->lc_name, lock->lo_name);
2180	*filep = instance->li_file;
2181	*linep = instance->li_line;
2182}
2183
2184void
2185witness_restore(struct lock_object *lock, const char *file, int line)
2186{
2187	struct lock_list_entry *lock_list;
2188	struct lock_instance *instance;
2189	struct lock_class *class;
2190
2191	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2192	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2193		return;
2194	class = LOCK_CLASS(lock);
2195	if (class->lc_flags & LC_SLEEPLOCK)
2196		lock_list = curthread->td_sleeplocks;
2197	else {
2198		if (witness_skipspin)
2199			return;
2200		lock_list = PCPU_GET(spinlocks);
2201	}
2202	instance = find_instance(lock_list, lock);
2203	if (instance == NULL)
2204		panic("%s: lock (%s) %s not locked", __func__,
2205		    class->lc_name, lock->lo_name);
2206	lock->lo_witness->w_file = file;
2207	lock->lo_witness->w_line = line;
2208	instance->li_file = file;
2209	instance->li_line = line;
2210}
2211
2212void
2213witness_assert(struct lock_object *lock, int flags, const char *file, int line)
2214{
2215#ifdef INVARIANT_SUPPORT
2216	struct lock_instance *instance;
2217	struct lock_class *class;
2218
2219	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2220		return;
2221	class = LOCK_CLASS(lock);
2222	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2223		instance = find_instance(curthread->td_sleeplocks, lock);
2224	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2225		instance = find_instance(PCPU_GET(spinlocks), lock);
2226	else {
2227		panic("Lock (%s) %s is not sleep or spin!",
2228		    class->lc_name, lock->lo_name);
2229	}
2230	switch (flags) {
2231	case LA_UNLOCKED:
2232		if (instance != NULL)
2233			panic("Lock (%s) %s locked @ %s:%d.",
2234			    class->lc_name, lock->lo_name,
2235			    fixup_filename(file), line);
2236		break;
2237	case LA_LOCKED:
2238	case LA_LOCKED | LA_RECURSED:
2239	case LA_LOCKED | LA_NOTRECURSED:
2240	case LA_SLOCKED:
2241	case LA_SLOCKED | LA_RECURSED:
2242	case LA_SLOCKED | LA_NOTRECURSED:
2243	case LA_XLOCKED:
2244	case LA_XLOCKED | LA_RECURSED:
2245	case LA_XLOCKED | LA_NOTRECURSED:
2246		if (instance == NULL) {
2247			panic("Lock (%s) %s not locked @ %s:%d.",
2248			    class->lc_name, lock->lo_name,
2249			    fixup_filename(file), line);
2250			break;
2251		}
2252		if ((flags & LA_XLOCKED) != 0 &&
2253		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2254			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2255			    class->lc_name, lock->lo_name,
2256			    fixup_filename(file), line);
2257		if ((flags & LA_SLOCKED) != 0 &&
2258		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2259			panic("Lock (%s) %s exclusively locked @ %s:%d.",
2260			    class->lc_name, lock->lo_name,
2261			    fixup_filename(file), line);
2262		if ((flags & LA_RECURSED) != 0 &&
2263		    (instance->li_flags & LI_RECURSEMASK) == 0)
2264			panic("Lock (%s) %s not recursed @ %s:%d.",
2265			    class->lc_name, lock->lo_name,
2266			    fixup_filename(file), line);
2267		if ((flags & LA_NOTRECURSED) != 0 &&
2268		    (instance->li_flags & LI_RECURSEMASK) != 0)
2269			panic("Lock (%s) %s recursed @ %s:%d.",
2270			    class->lc_name, lock->lo_name,
2271			    fixup_filename(file), line);
2272		break;
2273	default:
2274		panic("Invalid lock assertion at %s:%d.",
2275		    fixup_filename(file), line);
2276
2277	}
2278#endif	/* INVARIANT_SUPPORT */
2279}
2280
2281static void
2282witness_setflag(struct lock_object *lock, int flag, int set)
2283{
2284	struct lock_list_entry *lock_list;
2285	struct lock_instance *instance;
2286	struct lock_class *class;
2287
2288	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2289		return;
2290	class = LOCK_CLASS(lock);
2291	if (class->lc_flags & LC_SLEEPLOCK)
2292		lock_list = curthread->td_sleeplocks;
2293	else {
2294		if (witness_skipspin)
2295			return;
2296		lock_list = PCPU_GET(spinlocks);
2297	}
2298	instance = find_instance(lock_list, lock);
2299	if (instance == NULL)
2300		panic("%s: lock (%s) %s not locked", __func__,
2301		    class->lc_name, lock->lo_name);
2302
2303	if (set)
2304		instance->li_flags |= flag;
2305	else
2306		instance->li_flags &= ~flag;
2307}
2308
2309void
2310witness_norelease(struct lock_object *lock)
2311{
2312
2313	witness_setflag(lock, LI_NORELEASE, 1);
2314}
2315
2316void
2317witness_releaseok(struct lock_object *lock)
2318{
2319
2320	witness_setflag(lock, LI_NORELEASE, 0);
2321}
2322
2323#ifdef DDB
2324static void
2325witness_ddb_list(struct thread *td)
2326{
2327
2328	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2329	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2330
2331	if (witness_watch < 1)
2332		return;
2333
2334	witness_list_locks(&td->td_sleeplocks, db_printf);
2335
2336	/*
2337	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2338	 * if td is currently executing on some other CPU and holds spin locks
2339	 * as we won't display those locks.  If we had a MI way of getting
2340	 * the per-cpu data for a given cpu then we could use
2341	 * td->td_oncpu to get the list of spinlocks for this thread
2342	 * and "fix" this.
2343	 *
2344	 * That still wouldn't really fix this unless we locked the scheduler
2345	 * lock or stopped the other CPU to make sure it wasn't changing the
2346	 * list out from under us.  It is probably best to just not try to
2347	 * handle threads on other CPU's for now.
2348	 */
2349	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2350		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2351}
2352
2353DB_SHOW_COMMAND(locks, db_witness_list)
2354{
2355	struct thread *td;
2356
2357	if (have_addr)
2358		td = db_lookup_thread(addr, TRUE);
2359	else
2360		td = kdb_thread;
2361	witness_ddb_list(td);
2362}
2363
2364DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2365{
2366	struct thread *td;
2367	struct proc *p;
2368
2369	/*
2370	 * It would be nice to list only threads and processes that actually
2371	 * held sleep locks, but that information is currently not exported
2372	 * by WITNESS.
2373	 */
2374	FOREACH_PROC_IN_SYSTEM(p) {
2375		if (!witness_proc_has_locks(p))
2376			continue;
2377		FOREACH_THREAD_IN_PROC(p, td) {
2378			if (!witness_thread_has_locks(td))
2379				continue;
2380			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2381			    p->p_comm, td, td->td_tid);
2382			witness_ddb_list(td);
2383		}
2384	}
2385}
2386DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2387
2388DB_SHOW_COMMAND(witness, db_witness_display)
2389{
2390
2391	witness_ddb_display(db_printf);
2392}
2393#endif
2394
2395static int
2396sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2397{
2398	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2399	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2400	struct sbuf *sb;
2401	u_int w_rmatrix1, w_rmatrix2;
2402	int error, generation, i, j;
2403
2404	tmp_data1 = NULL;
2405	tmp_data2 = NULL;
2406	tmp_w1 = NULL;
2407	tmp_w2 = NULL;
2408	if (witness_watch < 1) {
2409		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2410		return (error);
2411	}
2412	if (witness_cold) {
2413		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2414		return (error);
2415	}
2416	error = 0;
2417	sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2418	if (sb == NULL)
2419		return (ENOMEM);
2420
2421	/* Allocate and init temporary storage space. */
2422	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2423	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2424	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2425	    M_WAITOK | M_ZERO);
2426	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2427	    M_WAITOK | M_ZERO);
2428	stack_zero(&tmp_data1->wlod_stack);
2429	stack_zero(&tmp_data2->wlod_stack);
2430
2431restart:
2432	mtx_lock_spin(&w_mtx);
2433	generation = w_generation;
2434	mtx_unlock_spin(&w_mtx);
2435	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2436	    w_lohash.wloh_count);
2437	for (i = 1; i < w_max_used_index; i++) {
2438		mtx_lock_spin(&w_mtx);
2439		if (generation != w_generation) {
2440			mtx_unlock_spin(&w_mtx);
2441
2442			/* The graph has changed, try again. */
2443			req->oldidx = 0;
2444			sbuf_clear(sb);
2445			goto restart;
2446		}
2447
2448		w1 = &w_data[i];
2449		if (w1->w_reversed == 0) {
2450			mtx_unlock_spin(&w_mtx);
2451			continue;
2452		}
2453
2454		/* Copy w1 locally so we can release the spin lock. */
2455		*tmp_w1 = *w1;
2456		mtx_unlock_spin(&w_mtx);
2457
2458		if (tmp_w1->w_reversed == 0)
2459			continue;
2460		for (j = 1; j < w_max_used_index; j++) {
2461			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2462				continue;
2463
2464			mtx_lock_spin(&w_mtx);
2465			if (generation != w_generation) {
2466				mtx_unlock_spin(&w_mtx);
2467
2468				/* The graph has changed, try again. */
2469				req->oldidx = 0;
2470				sbuf_clear(sb);
2471				goto restart;
2472			}
2473
2474			w2 = &w_data[j];
2475			data1 = witness_lock_order_get(w1, w2);
2476			data2 = witness_lock_order_get(w2, w1);
2477
2478			/*
2479			 * Copy information locally so we can release the
2480			 * spin lock.
2481			 */
2482			*tmp_w2 = *w2;
2483			w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2484			w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2485
2486			if (data1) {
2487				stack_zero(&tmp_data1->wlod_stack);
2488				stack_copy(&data1->wlod_stack,
2489				    &tmp_data1->wlod_stack);
2490			}
2491			if (data2 && data2 != data1) {
2492				stack_zero(&tmp_data2->wlod_stack);
2493				stack_copy(&data2->wlod_stack,
2494				    &tmp_data2->wlod_stack);
2495			}
2496			mtx_unlock_spin(&w_mtx);
2497
2498			sbuf_printf(sb,
2499	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2500			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2501			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2502#if 0
2503 			sbuf_printf(sb,
2504			"w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2505 			    tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2506 			    tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2507#endif
2508			if (data1) {
2509				sbuf_printf(sb,
2510			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2511				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2512				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2513				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2514				sbuf_printf(sb, "\n");
2515			}
2516			if (data2 && data2 != data1) {
2517				sbuf_printf(sb,
2518			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2519				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2520				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2521				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2522				sbuf_printf(sb, "\n");
2523			}
2524		}
2525	}
2526	mtx_lock_spin(&w_mtx);
2527	if (generation != w_generation) {
2528		mtx_unlock_spin(&w_mtx);
2529
2530		/*
2531		 * The graph changed while we were printing stack data,
2532		 * try again.
2533		 */
2534		req->oldidx = 0;
2535		sbuf_clear(sb);
2536		goto restart;
2537	}
2538	mtx_unlock_spin(&w_mtx);
2539
2540	/* Free temporary storage space. */
2541	free(tmp_data1, M_TEMP);
2542	free(tmp_data2, M_TEMP);
2543	free(tmp_w1, M_TEMP);
2544	free(tmp_w2, M_TEMP);
2545
2546	sbuf_finish(sb);
2547	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2548	sbuf_delete(sb);
2549
2550	return (error);
2551}
2552
2553static int
2554sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2555{
2556	struct witness *w;
2557	struct sbuf *sb;
2558	int error;
2559
2560	if (witness_watch < 1) {
2561		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2562		return (error);
2563	}
2564	if (witness_cold) {
2565		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2566		return (error);
2567	}
2568	error = 0;
2569
2570	error = sysctl_wire_old_buffer(req, 0);
2571	if (error != 0)
2572		return (error);
2573	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2574	if (sb == NULL)
2575		return (ENOMEM);
2576	sbuf_printf(sb, "\n");
2577
2578	mtx_lock_spin(&w_mtx);
2579	STAILQ_FOREACH(w, &w_all, w_list)
2580		w->w_displayed = 0;
2581	STAILQ_FOREACH(w, &w_all, w_list)
2582		witness_add_fullgraph(sb, w);
2583	mtx_unlock_spin(&w_mtx);
2584
2585	/*
2586	 * Close the sbuf and return to userland.
2587	 */
2588	error = sbuf_finish(sb);
2589	sbuf_delete(sb);
2590
2591	return (error);
2592}
2593
2594static int
2595sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2596{
2597	int error, value;
2598
2599	value = witness_watch;
2600	error = sysctl_handle_int(oidp, &value, 0, req);
2601	if (error != 0 || req->newptr == NULL)
2602		return (error);
2603	if (value > 1 || value < -1 ||
2604	    (witness_watch == -1 && value != witness_watch))
2605		return (EINVAL);
2606	witness_watch = value;
2607	return (0);
2608}
2609
2610static void
2611witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2612{
2613	int i;
2614
2615	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2616		return;
2617	w->w_displayed = 1;
2618
2619	WITNESS_INDEX_ASSERT(w->w_index);
2620	for (i = 1; i <= w_max_used_index; i++) {
2621		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2622			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2623			    w_data[i].w_name);
2624			witness_add_fullgraph(sb, &w_data[i]);
2625		}
2626	}
2627}
2628
2629/*
2630 * A simple hash function. Takes a key pointer and a key size. If size == 0,
2631 * interprets the key as a string and reads until the null
2632 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2633 * hash value computed from the key.
2634 */
2635static uint32_t
2636witness_hash_djb2(const uint8_t *key, uint32_t size)
2637{
2638	unsigned int hash = 5381;
2639	int i;
2640
2641	/* hash = hash * 33 + key[i] */
2642	if (size)
2643		for (i = 0; i < size; i++)
2644			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2645	else
2646		for (i = 0; key[i] != 0; i++)
2647			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2648
2649	return (hash);
2650}
2651
2652
2653/*
2654 * Initializes the two witness hash tables. Called exactly once from
2655 * witness_initialize().
2656 */
2657static void
2658witness_init_hash_tables(void)
2659{
2660	int i;
2661
2662	MPASS(witness_cold);
2663
2664	/* Initialize the hash tables. */
2665	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2666		w_hash.wh_array[i] = NULL;
2667
2668	w_hash.wh_size = WITNESS_HASH_SIZE;
2669	w_hash.wh_count = 0;
2670
2671	/* Initialize the lock order data hash. */
2672	w_lofree = NULL;
2673	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2674		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2675		w_lodata[i].wlod_next = w_lofree;
2676		w_lofree = &w_lodata[i];
2677	}
2678	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2679	w_lohash.wloh_count = 0;
2680	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2681		w_lohash.wloh_array[i] = NULL;
2682}
2683
2684static struct witness *
2685witness_hash_get(const char *key)
2686{
2687	struct witness *w;
2688	uint32_t hash;
2689
2690	MPASS(key != NULL);
2691	if (witness_cold == 0)
2692		mtx_assert(&w_mtx, MA_OWNED);
2693	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2694	w = w_hash.wh_array[hash];
2695	while (w != NULL) {
2696		if (strcmp(w->w_name, key) == 0)
2697			goto out;
2698		w = w->w_hash_next;
2699	}
2700
2701out:
2702	return (w);
2703}
2704
2705static void
2706witness_hash_put(struct witness *w)
2707{
2708	uint32_t hash;
2709
2710	MPASS(w != NULL);
2711	MPASS(w->w_name != NULL);
2712	if (witness_cold == 0)
2713		mtx_assert(&w_mtx, MA_OWNED);
2714	KASSERT(witness_hash_get(w->w_name) == NULL,
2715	    ("%s: trying to add a hash entry that already exists!", __func__));
2716	KASSERT(w->w_hash_next == NULL,
2717	    ("%s: w->w_hash_next != NULL", __func__));
2718
2719	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2720	w->w_hash_next = w_hash.wh_array[hash];
2721	w_hash.wh_array[hash] = w;
2722	w_hash.wh_count++;
2723}
2724
2725
2726static struct witness_lock_order_data *
2727witness_lock_order_get(struct witness *parent, struct witness *child)
2728{
2729	struct witness_lock_order_data *data = NULL;
2730	struct witness_lock_order_key key;
2731	unsigned int hash;
2732
2733	MPASS(parent != NULL && child != NULL);
2734	key.from = parent->w_index;
2735	key.to = child->w_index;
2736	WITNESS_INDEX_ASSERT(key.from);
2737	WITNESS_INDEX_ASSERT(key.to);
2738	if ((w_rmatrix[parent->w_index][child->w_index]
2739	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2740		goto out;
2741
2742	hash = witness_hash_djb2((const char*)&key,
2743	    sizeof(key)) % w_lohash.wloh_size;
2744	data = w_lohash.wloh_array[hash];
2745	while (data != NULL) {
2746		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2747			break;
2748		data = data->wlod_next;
2749	}
2750
2751out:
2752	return (data);
2753}
2754
2755/*
2756 * Verify that parent and child have a known relationship, are not the same,
2757 * and child is actually a child of parent.  This is done without w_mtx
2758 * to avoid contention in the common case.
2759 */
2760static int
2761witness_lock_order_check(struct witness *parent, struct witness *child)
2762{
2763
2764	if (parent != child &&
2765	    w_rmatrix[parent->w_index][child->w_index]
2766	    & WITNESS_LOCK_ORDER_KNOWN &&
2767	    isitmychild(parent, child))
2768		return (1);
2769
2770	return (0);
2771}
2772
2773static int
2774witness_lock_order_add(struct witness *parent, struct witness *child)
2775{
2776	struct witness_lock_order_data *data = NULL;
2777	struct witness_lock_order_key key;
2778	unsigned int hash;
2779
2780	MPASS(parent != NULL && child != NULL);
2781	key.from = parent->w_index;
2782	key.to = child->w_index;
2783	WITNESS_INDEX_ASSERT(key.from);
2784	WITNESS_INDEX_ASSERT(key.to);
2785	if (w_rmatrix[parent->w_index][child->w_index]
2786	    & WITNESS_LOCK_ORDER_KNOWN)
2787		return (1);
2788
2789	hash = witness_hash_djb2((const char*)&key,
2790	    sizeof(key)) % w_lohash.wloh_size;
2791	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2792	data = w_lofree;
2793	if (data == NULL)
2794		return (0);
2795	w_lofree = data->wlod_next;
2796	data->wlod_next = w_lohash.wloh_array[hash];
2797	data->wlod_key = key;
2798	w_lohash.wloh_array[hash] = data;
2799	w_lohash.wloh_count++;
2800	stack_zero(&data->wlod_stack);
2801	stack_save(&data->wlod_stack);
2802	return (1);
2803}
2804
2805/* Call this whenver the structure of the witness graph changes. */
2806static void
2807witness_increment_graph_generation(void)
2808{
2809
2810	if (witness_cold == 0)
2811		mtx_assert(&w_mtx, MA_OWNED);
2812	w_generation++;
2813}
2814
2815#ifdef KDB
2816static void
2817_witness_debugger(int cond, const char *msg)
2818{
2819
2820	if (witness_trace && cond)
2821		kdb_backtrace();
2822	if (witness_kdb && cond)
2823		kdb_enter(KDB_WHY_WITNESS, msg);
2824}
2825#endif
2826