subr_witness.c revision 210611
1/*-
2 * Copyright (c) 2008 Isilon Systems, Inc.
3 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4 * Copyright (c) 1998 Berkeley Software Design, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Berkeley Software Design Inc's name may not be used to endorse or
16 *    promote products derived from this software without specific prior
17 *    written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33 */
34
35/*
36 * Implementation of the `witness' lock verifier.  Originally implemented for
37 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38 * classes in FreeBSD.
39 */
40
41/*
42 *	Main Entry: witness
43 *	Pronunciation: 'wit-n&s
44 *	Function: noun
45 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
46 *	    testimony, witness, from 2wit
47 *	Date: before 12th century
48 *	1 : attestation of a fact or event : TESTIMONY
49 *	2 : one that gives evidence; specifically : one who testifies in
50 *	    a cause or before a judicial tribunal
51 *	3 : one asked to be present at a transaction so as to be able to
52 *	    testify to its having taken place
53 *	4 : one who has personal knowledge of something
54 *	5 a : something serving as evidence or proof : SIGN
55 *	  b : public affirmation by word or example of usually
56 *	      religious faith or conviction <the heroic witness to divine
57 *	      life -- Pilot>
58 *	6 capitalized : a member of the Jehovah's Witnesses
59 */
60
61/*
62 * Special rules concerning Giant and lock orders:
63 *
64 * 1) Giant must be acquired before any other mutexes.  Stated another way,
65 *    no other mutex may be held when Giant is acquired.
66 *
67 * 2) Giant must be released when blocking on a sleepable lock.
68 *
69 * This rule is less obvious, but is a result of Giant providing the same
70 * semantics as spl().  Basically, when a thread sleeps, it must release
71 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72 * 2).
73 *
74 * 3) Giant may be acquired before or after sleepable locks.
75 *
76 * This rule is also not quite as obvious.  Giant may be acquired after
77 * a sleepable lock because it is a non-sleepable lock and non-sleepable
78 * locks may always be acquired while holding a sleepable lock.  The second
79 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83 * execute.  Thus, acquiring Giant both before and after a sleepable lock
84 * will not result in a lock order reversal.
85 */
86
87#include <sys/cdefs.h>
88__FBSDID("$FreeBSD: head/sys/kern/subr_witness.c 210611 2010-07-29 16:13:26Z rpaulo $");
89
90#include "opt_ddb.h"
91#include "opt_hwpmc_hooks.h"
92#include "opt_stack.h"
93#include "opt_witness.h"
94
95#include <sys/param.h>
96#include <sys/bus.h>
97#include <sys/kdb.h>
98#include <sys/kernel.h>
99#include <sys/ktr.h>
100#include <sys/lock.h>
101#include <sys/malloc.h>
102#include <sys/mutex.h>
103#include <sys/priv.h>
104#include <sys/proc.h>
105#include <sys/sbuf.h>
106#include <sys/sched.h>
107#include <sys/stack.h>
108#include <sys/sysctl.h>
109#include <sys/systm.h>
110
111#ifdef DDB
112#include <ddb/ddb.h>
113#endif
114
115#include <machine/stdarg.h>
116
117#if !defined(DDB) && !defined(STACK)
118#error "DDB or STACK options are required for WITNESS"
119#endif
120
121/* Note that these traces do not work with KTR_ALQ. */
122#if 0
123#define	KTR_WITNESS	KTR_SUBSYS
124#else
125#define	KTR_WITNESS	0
126#endif
127
128#define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
129#define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
130#define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
131
132/* Define this to check for blessed mutexes */
133#undef BLESSING
134
135#define	WITNESS_COUNT 		1024
136#define	WITNESS_CHILDCOUNT 	(WITNESS_COUNT * 4)
137#define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
138#define	WITNESS_PENDLIST	768
139
140/* Allocate 256 KB of stack data space */
141#define	WITNESS_LO_DATA_COUNT	2048
142
143/* Prime, gives load factor of ~2 at full load */
144#define	WITNESS_LO_HASH_SIZE	1021
145
146/*
147 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148 * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149 * probably be safe for the most part, but it's still a SWAG.
150 */
151#define	LOCK_NCHILDREN	5
152#define	LOCK_CHILDCOUNT	2048
153
154#define	MAX_W_NAME	64
155
156#define	BADSTACK_SBUF_SIZE	(256 * WITNESS_COUNT)
157#define	CYCLEGRAPH_SBUF_SIZE	8192
158#define	FULLGRAPH_SBUF_SIZE	32768
159
160/*
161 * These flags go in the witness relationship matrix and describe the
162 * relationship between any two struct witness objects.
163 */
164#define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
165#define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166#define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167#define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168#define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169#define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170#define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171#define	WITNESS_RELATED_MASK						\
172	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173#define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174					  * observed. */
175#define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176#define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177#define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179/* Descendant to ancestor flags */
180#define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
181
182/* Ancestor to descendant flags */
183#define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
184
185#define	WITNESS_INDEX_ASSERT(i)						\
186	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
187
188MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190/*
191 * Lock instances.  A lock instance is the data associated with a lock while
192 * it is held by witness.  For example, a lock instance will hold the
193 * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194 * are held in a per-cpu list while sleep locks are held in per-thread list.
195 */
196struct lock_instance {
197	struct lock_object	*li_lock;
198	const char		*li_file;
199	int			li_line;
200	u_int			li_flags;
201};
202
203/*
204 * A simple list type used to build the list of locks held by a thread
205 * or CPU.  We can't simply embed the list in struct lock_object since a
206 * lock may be held by more than one thread if it is a shared lock.  Locks
207 * are added to the head of the list, so we fill up each list entry from
208 * "the back" logically.  To ease some of the arithmetic, we actually fill
209 * in each list entry the normal way (children[0] then children[1], etc.) but
210 * when we traverse the list we read children[count-1] as the first entry
211 * down to children[0] as the final entry.
212 */
213struct lock_list_entry {
214	struct lock_list_entry	*ll_next;
215	struct lock_instance	ll_children[LOCK_NCHILDREN];
216	u_int			ll_count;
217};
218
219/*
220 * The main witness structure. One of these per named lock type in the system
221 * (for example, "vnode interlock").
222 */
223struct witness {
224	char  			w_name[MAX_W_NAME];
225	uint32_t 		w_index;  /* Index in the relationship matrix */
226	struct lock_class	*w_class;
227	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
228	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
229	struct witness		*w_hash_next; /* Linked list in hash buckets. */
230	const char		*w_file; /* File where last acquired */
231	uint32_t 		w_line; /* Line where last acquired */
232	uint32_t 		w_refcount;
233	uint16_t 		w_num_ancestors; /* direct/indirect
234						  * ancestor count */
235	uint16_t 		w_num_descendants; /* direct/indirect
236						    * descendant count */
237	int16_t 		w_ddb_level;
238	unsigned		w_displayed:1;
239	unsigned		w_reversed:1;
240};
241
242STAILQ_HEAD(witness_list, witness);
243
244/*
245 * The witness hash table. Keys are witness names (const char *), elements are
246 * witness objects (struct witness *).
247 */
248struct witness_hash {
249	struct witness	*wh_array[WITNESS_HASH_SIZE];
250	uint32_t	wh_size;
251	uint32_t	wh_count;
252};
253
254/*
255 * Key type for the lock order data hash table.
256 */
257struct witness_lock_order_key {
258	uint16_t	from;
259	uint16_t	to;
260};
261
262struct witness_lock_order_data {
263	struct stack			wlod_stack;
264	struct witness_lock_order_key	wlod_key;
265	struct witness_lock_order_data	*wlod_next;
266};
267
268/*
269 * The witness lock order data hash table. Keys are witness index tuples
270 * (struct witness_lock_order_key), elements are lock order data objects
271 * (struct witness_lock_order_data).
272 */
273struct witness_lock_order_hash {
274	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
275	u_int	wloh_size;
276	u_int	wloh_count;
277};
278
279#ifdef BLESSING
280struct witness_blessed {
281	const char	*b_lock1;
282	const char	*b_lock2;
283};
284#endif
285
286struct witness_pendhelp {
287	const char		*wh_type;
288	struct lock_object	*wh_lock;
289};
290
291struct witness_order_list_entry {
292	const char		*w_name;
293	struct lock_class	*w_class;
294};
295
296/*
297 * Returns 0 if one of the locks is a spin lock and the other is not.
298 * Returns 1 otherwise.
299 */
300static __inline int
301witness_lock_type_equal(struct witness *w1, struct witness *w2)
302{
303
304	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
306}
307
308static __inline int
309witness_lock_order_key_empty(const struct witness_lock_order_key *key)
310{
311
312	return (key->from == 0 && key->to == 0);
313}
314
315static __inline int
316witness_lock_order_key_equal(const struct witness_lock_order_key *a,
317    const struct witness_lock_order_key *b)
318{
319
320	return (a->from == b->from && a->to == b->to);
321}
322
323static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
324		    const char *fname);
325#ifdef KDB
326static void	_witness_debugger(int cond, const char *msg);
327#endif
328static void	adopt(struct witness *parent, struct witness *child);
329#ifdef BLESSING
330static int	blessed(struct witness *, struct witness *);
331#endif
332static void	depart(struct witness *w);
333static struct witness	*enroll(const char *description,
334			    struct lock_class *lock_class);
335static struct lock_instance	*find_instance(struct lock_list_entry *list,
336				    struct lock_object *lock);
337static int	isitmychild(struct witness *parent, struct witness *child);
338static int	isitmydescendant(struct witness *parent, struct witness *child);
339static void	itismychild(struct witness *parent, struct witness *child);
340static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
341static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
342static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
343static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
344#ifdef DDB
345static void	witness_ddb_compute_levels(void);
346static void	witness_ddb_display(int(*)(const char *fmt, ...));
347static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
348		    struct witness *, int indent);
349static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
350		    struct witness_list *list);
351static void	witness_ddb_level_descendants(struct witness *parent, int l);
352static void	witness_ddb_list(struct thread *td);
353#endif
354static void	witness_free(struct witness *m);
355static struct witness	*witness_get(void);
356static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
357static struct witness	*witness_hash_get(const char *key);
358static void	witness_hash_put(struct witness *w);
359static void	witness_init_hash_tables(void);
360static void	witness_increment_graph_generation(void);
361static void	witness_lock_list_free(struct lock_list_entry *lle);
362static struct lock_list_entry	*witness_lock_list_get(void);
363static int	witness_lock_order_add(struct witness *parent,
364		    struct witness *child);
365static int	witness_lock_order_check(struct witness *parent,
366		    struct witness *child);
367static struct witness_lock_order_data	*witness_lock_order_get(
368					    struct witness *parent,
369					    struct witness *child);
370static void	witness_list_lock(struct lock_instance *instance,
371		    int (*prnt)(const char *fmt, ...));
372static void	witness_setflag(struct lock_object *lock, int flag, int set);
373
374#ifdef KDB
375#define	witness_debugger(c)	_witness_debugger(c, __func__)
376#else
377#define	witness_debugger(c)
378#endif
379
380SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, "Witness Locking");
381
382/*
383 * If set to 0, lock order checking is disabled.  If set to -1,
384 * witness is completely disabled.  Otherwise witness performs full
385 * lock order checking for all locks.  At runtime, lock order checking
386 * may be toggled.  However, witness cannot be reenabled once it is
387 * completely disabled.
388 */
389static int witness_watch = 1;
390TUNABLE_INT("debug.witness.watch", &witness_watch);
391SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
392    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
393
394#ifdef KDB
395/*
396 * When KDB is enabled and witness_kdb is 1, it will cause the system
397 * to drop into kdebug() when:
398 *	- a lock hierarchy violation occurs
399 *	- locks are held when going to sleep.
400 */
401#ifdef WITNESS_KDB
402int	witness_kdb = 1;
403#else
404int	witness_kdb = 0;
405#endif
406TUNABLE_INT("debug.witness.kdb", &witness_kdb);
407SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
408
409/*
410 * When KDB is enabled and witness_trace is 1, it will cause the system
411 * to print a stack trace:
412 *	- a lock hierarchy violation occurs
413 *	- locks are held when going to sleep.
414 */
415int	witness_trace = 1;
416TUNABLE_INT("debug.witness.trace", &witness_trace);
417SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
418#endif /* KDB */
419
420#ifdef WITNESS_SKIPSPIN
421int	witness_skipspin = 1;
422#else
423int	witness_skipspin = 0;
424#endif
425TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
426SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
427    0, "");
428
429/*
430 * Call this to print out the relations between locks.
431 */
432SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
433    NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
434
435/*
436 * Call this to print out the witness faulty stacks.
437 */
438SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
439    NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
440
441static struct mtx w_mtx;
442
443/* w_list */
444static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
445static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
446
447/* w_typelist */
448static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
449static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
450
451/* lock list */
452static struct lock_list_entry *w_lock_list_free = NULL;
453static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
454static u_int pending_cnt;
455
456static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
457SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
458SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
459SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
460    "");
461
462static struct witness *w_data;
463static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
464static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
465static struct witness_hash w_hash;	/* The witness hash table. */
466
467/* The lock order data hash */
468static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
469static struct witness_lock_order_data *w_lofree = NULL;
470static struct witness_lock_order_hash w_lohash;
471static int w_max_used_index = 0;
472static unsigned int w_generation = 0;
473static const char w_notrunning[] = "Witness not running\n";
474static const char w_stillcold[] = "Witness is still cold\n";
475
476
477static struct witness_order_list_entry order_lists[] = {
478	/*
479	 * sx locks
480	 */
481	{ "proctree", &lock_class_sx },
482	{ "allproc", &lock_class_sx },
483	{ "allprison", &lock_class_sx },
484	{ NULL, NULL },
485	/*
486	 * Various mutexes
487	 */
488	{ "Giant", &lock_class_mtx_sleep },
489	{ "pipe mutex", &lock_class_mtx_sleep },
490	{ "sigio lock", &lock_class_mtx_sleep },
491	{ "process group", &lock_class_mtx_sleep },
492	{ "process lock", &lock_class_mtx_sleep },
493	{ "session", &lock_class_mtx_sleep },
494	{ "uidinfo hash", &lock_class_rw },
495#ifdef	HWPMC_HOOKS
496	{ "pmc-sleep", &lock_class_mtx_sleep },
497#endif
498	{ "time lock", &lock_class_mtx_sleep },
499	{ NULL, NULL },
500	/*
501	 * Sockets
502	 */
503	{ "accept", &lock_class_mtx_sleep },
504	{ "so_snd", &lock_class_mtx_sleep },
505	{ "so_rcv", &lock_class_mtx_sleep },
506	{ "sellck", &lock_class_mtx_sleep },
507	{ NULL, NULL },
508	/*
509	 * Routing
510	 */
511	{ "so_rcv", &lock_class_mtx_sleep },
512	{ "radix node head", &lock_class_rw },
513	{ "rtentry", &lock_class_mtx_sleep },
514	{ "ifaddr", &lock_class_mtx_sleep },
515	{ NULL, NULL },
516	/*
517	 * IPv4 multicast:
518	 * protocol locks before interface locks, after UDP locks.
519	 */
520	{ "udpinp", &lock_class_rw },
521	{ "in_multi_mtx", &lock_class_mtx_sleep },
522	{ "igmp_mtx", &lock_class_mtx_sleep },
523	{ "if_addr_mtx", &lock_class_mtx_sleep },
524	{ NULL, NULL },
525	/*
526	 * IPv6 multicast:
527	 * protocol locks before interface locks, after UDP locks.
528	 */
529	{ "udpinp", &lock_class_rw },
530	{ "in6_multi_mtx", &lock_class_mtx_sleep },
531	{ "mld_mtx", &lock_class_mtx_sleep },
532	{ "if_addr_mtx", &lock_class_mtx_sleep },
533	{ NULL, NULL },
534	/*
535	 * UNIX Domain Sockets
536	 */
537	{ "unp_global_rwlock", &lock_class_rw },
538	{ "unp_list_lock", &lock_class_mtx_sleep },
539	{ "unp", &lock_class_mtx_sleep },
540	{ "so_snd", &lock_class_mtx_sleep },
541	{ NULL, NULL },
542	/*
543	 * UDP/IP
544	 */
545	{ "udp", &lock_class_rw },
546	{ "udpinp", &lock_class_rw },
547	{ "so_snd", &lock_class_mtx_sleep },
548	{ NULL, NULL },
549	/*
550	 * TCP/IP
551	 */
552	{ "tcp", &lock_class_rw },
553	{ "tcpinp", &lock_class_rw },
554	{ "so_snd", &lock_class_mtx_sleep },
555	{ NULL, NULL },
556	/*
557	 * netatalk
558	 */
559	{ "ddp_list_mtx", &lock_class_mtx_sleep },
560	{ "ddp_mtx", &lock_class_mtx_sleep },
561	{ NULL, NULL },
562	/*
563	 * BPF
564	 */
565	{ "bpf global lock", &lock_class_mtx_sleep },
566	{ "bpf interface lock", &lock_class_mtx_sleep },
567	{ "bpf cdev lock", &lock_class_mtx_sleep },
568	{ NULL, NULL },
569	/*
570	 * NFS server
571	 */
572	{ "nfsd_mtx", &lock_class_mtx_sleep },
573	{ "so_snd", &lock_class_mtx_sleep },
574	{ NULL, NULL },
575
576	/*
577	 * IEEE 802.11
578	 */
579	{ "802.11 com lock", &lock_class_mtx_sleep},
580	{ NULL, NULL },
581	/*
582	 * Network drivers
583	 */
584	{ "network driver", &lock_class_mtx_sleep},
585	{ NULL, NULL },
586
587	/*
588	 * Netgraph
589	 */
590	{ "ng_node", &lock_class_mtx_sleep },
591	{ "ng_worklist", &lock_class_mtx_sleep },
592	{ NULL, NULL },
593	/*
594	 * CDEV
595	 */
596	{ "system map", &lock_class_mtx_sleep },
597	{ "vm page queue mutex", &lock_class_mtx_sleep },
598	{ "vnode interlock", &lock_class_mtx_sleep },
599	{ "cdev", &lock_class_mtx_sleep },
600	{ NULL, NULL },
601	/*
602	 * VM
603	 *
604	 */
605	{ "vm object", &lock_class_mtx_sleep },
606	{ "page lock", &lock_class_mtx_sleep },
607	{ "vm page queue mutex", &lock_class_mtx_sleep },
608	{ "pmap", &lock_class_mtx_sleep },
609	{ NULL, NULL },
610	/*
611	 * kqueue/VFS interaction
612	 */
613	{ "kqueue", &lock_class_mtx_sleep },
614	{ "struct mount mtx", &lock_class_mtx_sleep },
615	{ "vnode interlock", &lock_class_mtx_sleep },
616	{ NULL, NULL },
617	/*
618	 * ZFS locking
619	 */
620	{ "dn->dn_mtx", &lock_class_sx },
621	{ "dr->dt.di.dr_mtx", &lock_class_sx },
622	{ "db->db_mtx", &lock_class_sx },
623	{ NULL, NULL },
624	/*
625	 * spin locks
626	 */
627#ifdef SMP
628	{ "ap boot", &lock_class_mtx_spin },
629#endif
630	{ "rm.mutex_mtx", &lock_class_mtx_spin },
631	{ "sio", &lock_class_mtx_spin },
632	{ "scrlock", &lock_class_mtx_spin },
633#ifdef __i386__
634	{ "cy", &lock_class_mtx_spin },
635#endif
636#ifdef __sparc64__
637	{ "pcib_mtx", &lock_class_mtx_spin },
638	{ "rtc_mtx", &lock_class_mtx_spin },
639#endif
640	{ "scc_hwmtx", &lock_class_mtx_spin },
641	{ "uart_hwmtx", &lock_class_mtx_spin },
642	{ "fast_taskqueue", &lock_class_mtx_spin },
643	{ "intr table", &lock_class_mtx_spin },
644#ifdef	HWPMC_HOOKS
645	{ "pmc-per-proc", &lock_class_mtx_spin },
646#endif
647	{ "process slock", &lock_class_mtx_spin },
648	{ "sleepq chain", &lock_class_mtx_spin },
649	{ "umtx lock", &lock_class_mtx_spin },
650	{ "rm_spinlock", &lock_class_mtx_spin },
651	{ "turnstile chain", &lock_class_mtx_spin },
652	{ "turnstile lock", &lock_class_mtx_spin },
653	{ "sched lock", &lock_class_mtx_spin },
654	{ "td_contested", &lock_class_mtx_spin },
655	{ "callout", &lock_class_mtx_spin },
656	{ "entropy harvest mutex", &lock_class_mtx_spin },
657	{ "syscons video lock", &lock_class_mtx_spin },
658#ifdef SMP
659	{ "smp rendezvous", &lock_class_mtx_spin },
660#endif
661#ifdef __powerpc__
662	{ "tlb0", &lock_class_mtx_spin },
663#endif
664	/*
665	 * leaf locks
666	 */
667	{ "intrcnt", &lock_class_mtx_spin },
668	{ "icu", &lock_class_mtx_spin },
669#if defined(SMP) && defined(__sparc64__)
670	{ "ipi", &lock_class_mtx_spin },
671#endif
672#ifdef __i386__
673	{ "allpmaps", &lock_class_mtx_spin },
674	{ "descriptor tables", &lock_class_mtx_spin },
675#endif
676	{ "clk", &lock_class_mtx_spin },
677	{ "cpuset", &lock_class_mtx_spin },
678	{ "mprof lock", &lock_class_mtx_spin },
679	{ "zombie lock", &lock_class_mtx_spin },
680	{ "ALD Queue", &lock_class_mtx_spin },
681#ifdef __ia64__
682	{ "MCA spin lock", &lock_class_mtx_spin },
683#endif
684#if defined(__i386__) || defined(__amd64__)
685	{ "pcicfg", &lock_class_mtx_spin },
686	{ "NDIS thread lock", &lock_class_mtx_spin },
687#endif
688	{ "tw_osl_io_lock", &lock_class_mtx_spin },
689	{ "tw_osl_q_lock", &lock_class_mtx_spin },
690	{ "tw_cl_io_lock", &lock_class_mtx_spin },
691	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
692	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
693#ifdef	HWPMC_HOOKS
694	{ "pmc-leaf", &lock_class_mtx_spin },
695#endif
696	{ "blocked lock", &lock_class_mtx_spin },
697	{ NULL, NULL },
698	{ NULL, NULL }
699};
700
701#ifdef BLESSING
702/*
703 * Pairs of locks which have been blessed
704 * Don't complain about order problems with blessed locks
705 */
706static struct witness_blessed blessed_list[] = {
707};
708static int blessed_count =
709	sizeof(blessed_list) / sizeof(struct witness_blessed);
710#endif
711
712/*
713 * This global is set to 0 once it becomes safe to use the witness code.
714 */
715static int witness_cold = 1;
716
717/*
718 * This global is set to 1 once the static lock orders have been enrolled
719 * so that a warning can be issued for any spin locks enrolled later.
720 */
721static int witness_spin_warn = 0;
722
723/*
724 * The WITNESS-enabled diagnostic code.  Note that the witness code does
725 * assume that the early boot is single-threaded at least until after this
726 * routine is completed.
727 */
728static void
729witness_initialize(void *dummy __unused)
730{
731	struct lock_object *lock;
732	struct witness_order_list_entry *order;
733	struct witness *w, *w1;
734	int i;
735
736	w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
737	    M_NOWAIT | M_ZERO);
738
739	/*
740	 * We have to release Giant before initializing its witness
741	 * structure so that WITNESS doesn't get confused.
742	 */
743	mtx_unlock(&Giant);
744	mtx_assert(&Giant, MA_NOTOWNED);
745
746	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
747	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
748	    MTX_NOWITNESS | MTX_NOPROFILE);
749	for (i = WITNESS_COUNT - 1; i >= 0; i--) {
750		w = &w_data[i];
751		memset(w, 0, sizeof(*w));
752		w_data[i].w_index = i;	/* Witness index never changes. */
753		witness_free(w);
754	}
755	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
756	    ("%s: Invalid list of free witness objects", __func__));
757
758	/* Witness with index 0 is not used to aid in debugging. */
759	STAILQ_REMOVE_HEAD(&w_free, w_list);
760	w_free_cnt--;
761
762	memset(w_rmatrix, 0,
763	    (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
764
765	for (i = 0; i < LOCK_CHILDCOUNT; i++)
766		witness_lock_list_free(&w_locklistdata[i]);
767	witness_init_hash_tables();
768
769	/* First add in all the specified order lists. */
770	for (order = order_lists; order->w_name != NULL; order++) {
771		w = enroll(order->w_name, order->w_class);
772		if (w == NULL)
773			continue;
774		w->w_file = "order list";
775		for (order++; order->w_name != NULL; order++) {
776			w1 = enroll(order->w_name, order->w_class);
777			if (w1 == NULL)
778				continue;
779			w1->w_file = "order list";
780			itismychild(w, w1);
781			w = w1;
782		}
783	}
784	witness_spin_warn = 1;
785
786	/* Iterate through all locks and add them to witness. */
787	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
788		lock = pending_locks[i].wh_lock;
789		KASSERT(lock->lo_flags & LO_WITNESS,
790		    ("%s: lock %s is on pending list but not LO_WITNESS",
791		    __func__, lock->lo_name));
792		lock->lo_witness = enroll(pending_locks[i].wh_type,
793		    LOCK_CLASS(lock));
794	}
795
796	/* Mark the witness code as being ready for use. */
797	witness_cold = 0;
798
799	mtx_lock(&Giant);
800}
801SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
802    NULL);
803
804void
805witness_init(struct lock_object *lock, const char *type)
806{
807	struct lock_class *class;
808
809	/* Various sanity checks. */
810	class = LOCK_CLASS(lock);
811	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
812	    (class->lc_flags & LC_RECURSABLE) == 0)
813		panic("%s: lock (%s) %s can not be recursable", __func__,
814		    class->lc_name, lock->lo_name);
815	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
816	    (class->lc_flags & LC_SLEEPABLE) == 0)
817		panic("%s: lock (%s) %s can not be sleepable", __func__,
818		    class->lc_name, lock->lo_name);
819	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
820	    (class->lc_flags & LC_UPGRADABLE) == 0)
821		panic("%s: lock (%s) %s can not be upgradable", __func__,
822		    class->lc_name, lock->lo_name);
823
824	/*
825	 * If we shouldn't watch this lock, then just clear lo_witness.
826	 * Otherwise, if witness_cold is set, then it is too early to
827	 * enroll this lock, so defer it to witness_initialize() by adding
828	 * it to the pending_locks list.  If it is not too early, then enroll
829	 * the lock now.
830	 */
831	if (witness_watch < 1 || panicstr != NULL ||
832	    (lock->lo_flags & LO_WITNESS) == 0)
833		lock->lo_witness = NULL;
834	else if (witness_cold) {
835		pending_locks[pending_cnt].wh_lock = lock;
836		pending_locks[pending_cnt++].wh_type = type;
837		if (pending_cnt > WITNESS_PENDLIST)
838			panic("%s: pending locks list is too small, bump it\n",
839			    __func__);
840	} else
841		lock->lo_witness = enroll(type, class);
842}
843
844void
845witness_destroy(struct lock_object *lock)
846{
847	struct lock_class *class;
848	struct witness *w;
849
850	class = LOCK_CLASS(lock);
851
852	if (witness_cold)
853		panic("lock (%s) %s destroyed while witness_cold",
854		    class->lc_name, lock->lo_name);
855
856	/* XXX: need to verify that no one holds the lock */
857	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
858		return;
859	w = lock->lo_witness;
860
861	mtx_lock_spin(&w_mtx);
862	MPASS(w->w_refcount > 0);
863	w->w_refcount--;
864
865	if (w->w_refcount == 0)
866		depart(w);
867	mtx_unlock_spin(&w_mtx);
868}
869
870#ifdef DDB
871static void
872witness_ddb_compute_levels(void)
873{
874	struct witness *w;
875
876	/*
877	 * First clear all levels.
878	 */
879	STAILQ_FOREACH(w, &w_all, w_list)
880		w->w_ddb_level = -1;
881
882	/*
883	 * Look for locks with no parents and level all their descendants.
884	 */
885	STAILQ_FOREACH(w, &w_all, w_list) {
886
887		/* If the witness has ancestors (is not a root), skip it. */
888		if (w->w_num_ancestors > 0)
889			continue;
890		witness_ddb_level_descendants(w, 0);
891	}
892}
893
894static void
895witness_ddb_level_descendants(struct witness *w, int l)
896{
897	int i;
898
899	if (w->w_ddb_level >= l)
900		return;
901
902	w->w_ddb_level = l;
903	l++;
904
905	for (i = 1; i <= w_max_used_index; i++) {
906		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
907			witness_ddb_level_descendants(&w_data[i], l);
908	}
909}
910
911static void
912witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
913    struct witness *w, int indent)
914{
915	int i;
916
917 	for (i = 0; i < indent; i++)
918 		prnt(" ");
919	prnt("%s (type: %s, depth: %d, active refs: %d)",
920	     w->w_name, w->w_class->lc_name,
921	     w->w_ddb_level, w->w_refcount);
922 	if (w->w_displayed) {
923 		prnt(" -- (already displayed)\n");
924 		return;
925 	}
926 	w->w_displayed = 1;
927	if (w->w_file != NULL && w->w_line != 0)
928		prnt(" -- last acquired @ %s:%d\n", w->w_file,
929		    w->w_line);
930	else
931		prnt(" -- never acquired\n");
932	indent++;
933	WITNESS_INDEX_ASSERT(w->w_index);
934	for (i = 1; i <= w_max_used_index; i++) {
935		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
936			witness_ddb_display_descendants(prnt, &w_data[i],
937			    indent);
938	}
939}
940
941static void
942witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
943    struct witness_list *list)
944{
945	struct witness *w;
946
947	STAILQ_FOREACH(w, list, w_typelist) {
948		if (w->w_file == NULL || w->w_ddb_level > 0)
949			continue;
950
951		/* This lock has no anscestors - display its descendants. */
952		witness_ddb_display_descendants(prnt, w, 0);
953	}
954}
955
956static void
957witness_ddb_display(int(*prnt)(const char *fmt, ...))
958{
959	struct witness *w;
960
961	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
962	witness_ddb_compute_levels();
963
964	/* Clear all the displayed flags. */
965	STAILQ_FOREACH(w, &w_all, w_list)
966		w->w_displayed = 0;
967
968	/*
969	 * First, handle sleep locks which have been acquired at least
970	 * once.
971	 */
972	prnt("Sleep locks:\n");
973	witness_ddb_display_list(prnt, &w_sleep);
974
975	/*
976	 * Now do spin locks which have been acquired at least once.
977	 */
978	prnt("\nSpin locks:\n");
979	witness_ddb_display_list(prnt, &w_spin);
980
981	/*
982	 * Finally, any locks which have not been acquired yet.
983	 */
984	prnt("\nLocks which were never acquired:\n");
985	STAILQ_FOREACH(w, &w_all, w_list) {
986		if (w->w_file != NULL || w->w_refcount == 0)
987			continue;
988		prnt("%s (type: %s, depth: %d)\n", w->w_name,
989		    w->w_class->lc_name, w->w_ddb_level);
990	}
991}
992#endif /* DDB */
993
994/* Trim useless garbage from filenames. */
995static const char *
996fixup_filename(const char *file)
997{
998
999	if (file == NULL)
1000		return (NULL);
1001	while (strncmp(file, "../", 3) == 0)
1002		file += 3;
1003	return (file);
1004}
1005
1006int
1007witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1008{
1009
1010	if (witness_watch == -1 || panicstr != NULL)
1011		return (0);
1012
1013	/* Require locks that witness knows about. */
1014	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1015	    lock2->lo_witness == NULL)
1016		return (EINVAL);
1017
1018	mtx_assert(&w_mtx, MA_NOTOWNED);
1019	mtx_lock_spin(&w_mtx);
1020
1021	/*
1022	 * If we already have either an explicit or implied lock order that
1023	 * is the other way around, then return an error.
1024	 */
1025	if (witness_watch &&
1026	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1027		mtx_unlock_spin(&w_mtx);
1028		return (EDOOFUS);
1029	}
1030
1031	/* Try to add the new order. */
1032	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1033	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1034	itismychild(lock1->lo_witness, lock2->lo_witness);
1035	mtx_unlock_spin(&w_mtx);
1036	return (0);
1037}
1038
1039void
1040witness_checkorder(struct lock_object *lock, int flags, const char *file,
1041    int line, struct lock_object *interlock)
1042{
1043	struct lock_list_entry *lock_list, *lle;
1044	struct lock_instance *lock1, *lock2, *plock;
1045	struct lock_class *class;
1046	struct witness *w, *w1;
1047	struct thread *td;
1048	int i, j;
1049
1050	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1051	    panicstr != NULL)
1052		return;
1053
1054	w = lock->lo_witness;
1055	class = LOCK_CLASS(lock);
1056	td = curthread;
1057	file = fixup_filename(file);
1058
1059	if (class->lc_flags & LC_SLEEPLOCK) {
1060
1061		/*
1062		 * Since spin locks include a critical section, this check
1063		 * implicitly enforces a lock order of all sleep locks before
1064		 * all spin locks.
1065		 */
1066		if (td->td_critnest != 0 && !kdb_active)
1067			panic("blockable sleep lock (%s) %s @ %s:%d",
1068			    class->lc_name, lock->lo_name, file, line);
1069
1070		/*
1071		 * If this is the first lock acquired then just return as
1072		 * no order checking is needed.
1073		 */
1074		lock_list = td->td_sleeplocks;
1075		if (lock_list == NULL || lock_list->ll_count == 0)
1076			return;
1077	} else {
1078
1079		/*
1080		 * If this is the first lock, just return as no order
1081		 * checking is needed.  Avoid problems with thread
1082		 * migration pinning the thread while checking if
1083		 * spinlocks are held.  If at least one spinlock is held
1084		 * the thread is in a safe path and it is allowed to
1085		 * unpin it.
1086		 */
1087		sched_pin();
1088		lock_list = PCPU_GET(spinlocks);
1089		if (lock_list == NULL || lock_list->ll_count == 0) {
1090			sched_unpin();
1091			return;
1092		}
1093		sched_unpin();
1094	}
1095
1096	/*
1097	 * Check to see if we are recursing on a lock we already own.  If
1098	 * so, make sure that we don't mismatch exclusive and shared lock
1099	 * acquires.
1100	 */
1101	lock1 = find_instance(lock_list, lock);
1102	if (lock1 != NULL) {
1103		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1104		    (flags & LOP_EXCLUSIVE) == 0) {
1105			printf("shared lock of (%s) %s @ %s:%d\n",
1106			    class->lc_name, lock->lo_name, file, line);
1107			printf("while exclusively locked from %s:%d\n",
1108			    lock1->li_file, lock1->li_line);
1109			panic("share->excl");
1110		}
1111		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1112		    (flags & LOP_EXCLUSIVE) != 0) {
1113			printf("exclusive lock of (%s) %s @ %s:%d\n",
1114			    class->lc_name, lock->lo_name, file, line);
1115			printf("while share locked from %s:%d\n",
1116			    lock1->li_file, lock1->li_line);
1117			panic("excl->share");
1118		}
1119		return;
1120	}
1121
1122	/*
1123	 * Find the previously acquired lock, but ignore interlocks.
1124	 */
1125	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1126	if (interlock != NULL && plock->li_lock == interlock) {
1127		if (lock_list->ll_count > 1)
1128			plock =
1129			    &lock_list->ll_children[lock_list->ll_count - 2];
1130		else {
1131			lle = lock_list->ll_next;
1132
1133			/*
1134			 * The interlock is the only lock we hold, so
1135			 * simply return.
1136			 */
1137			if (lle == NULL)
1138				return;
1139			plock = &lle->ll_children[lle->ll_count - 1];
1140		}
1141	}
1142
1143	/*
1144	 * Try to perform most checks without a lock.  If this succeeds we
1145	 * can skip acquiring the lock and return success.
1146	 */
1147	w1 = plock->li_lock->lo_witness;
1148	if (witness_lock_order_check(w1, w))
1149		return;
1150
1151	/*
1152	 * Check for duplicate locks of the same type.  Note that we only
1153	 * have to check for this on the last lock we just acquired.  Any
1154	 * other cases will be caught as lock order violations.
1155	 */
1156	mtx_lock_spin(&w_mtx);
1157	witness_lock_order_add(w1, w);
1158	if (w1 == w) {
1159		i = w->w_index;
1160		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1161		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1162		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1163			w->w_reversed = 1;
1164			mtx_unlock_spin(&w_mtx);
1165			printf(
1166			    "acquiring duplicate lock of same type: \"%s\"\n",
1167			    w->w_name);
1168			printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1169			       plock->li_file, plock->li_line);
1170			printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
1171			witness_debugger(1);
1172		    } else
1173			    mtx_unlock_spin(&w_mtx);
1174		return;
1175	}
1176	mtx_assert(&w_mtx, MA_OWNED);
1177
1178	/*
1179	 * If we know that the the lock we are acquiring comes after
1180	 * the lock we most recently acquired in the lock order tree,
1181	 * then there is no need for any further checks.
1182	 */
1183	if (isitmychild(w1, w))
1184		goto out;
1185
1186	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1187		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1188
1189			MPASS(j < WITNESS_COUNT);
1190			lock1 = &lle->ll_children[i];
1191
1192			/*
1193			 * Ignore the interlock the first time we see it.
1194			 */
1195			if (interlock != NULL && interlock == lock1->li_lock) {
1196				interlock = NULL;
1197				continue;
1198			}
1199
1200			/*
1201			 * If this lock doesn't undergo witness checking,
1202			 * then skip it.
1203			 */
1204			w1 = lock1->li_lock->lo_witness;
1205			if (w1 == NULL) {
1206				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1207				    ("lock missing witness structure"));
1208				continue;
1209			}
1210
1211			/*
1212			 * If we are locking Giant and this is a sleepable
1213			 * lock, then skip it.
1214			 */
1215			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1216			    lock == &Giant.lock_object)
1217				continue;
1218
1219			/*
1220			 * If we are locking a sleepable lock and this lock
1221			 * is Giant, then skip it.
1222			 */
1223			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1224			    lock1->li_lock == &Giant.lock_object)
1225				continue;
1226
1227			/*
1228			 * If we are locking a sleepable lock and this lock
1229			 * isn't sleepable, we want to treat it as a lock
1230			 * order violation to enfore a general lock order of
1231			 * sleepable locks before non-sleepable locks.
1232			 */
1233			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1234			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1235				goto reversal;
1236
1237			/*
1238			 * If we are locking Giant and this is a non-sleepable
1239			 * lock, then treat it as a reversal.
1240			 */
1241			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1242			    lock == &Giant.lock_object)
1243				goto reversal;
1244
1245			/*
1246			 * Check the lock order hierarchy for a reveresal.
1247			 */
1248			if (!isitmydescendant(w, w1))
1249				continue;
1250		reversal:
1251
1252			/*
1253			 * We have a lock order violation, check to see if it
1254			 * is allowed or has already been yelled about.
1255			 */
1256#ifdef BLESSING
1257
1258			/*
1259			 * If the lock order is blessed, just bail.  We don't
1260			 * look for other lock order violations though, which
1261			 * may be a bug.
1262			 */
1263			if (blessed(w, w1))
1264				goto out;
1265#endif
1266
1267			/* Bail if this violation is known */
1268			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1269				goto out;
1270
1271			/* Record this as a violation */
1272			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1273			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1274			w->w_reversed = w1->w_reversed = 1;
1275			witness_increment_graph_generation();
1276			mtx_unlock_spin(&w_mtx);
1277
1278			/*
1279			 * Ok, yell about it.
1280			 */
1281			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1282			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1283				printf(
1284		"lock order reversal: (sleepable after non-sleepable)\n");
1285			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1286			    && lock == &Giant.lock_object)
1287				printf(
1288		"lock order reversal: (Giant after non-sleepable)\n");
1289			else
1290				printf("lock order reversal:\n");
1291
1292			/*
1293			 * Try to locate an earlier lock with
1294			 * witness w in our list.
1295			 */
1296			do {
1297				lock2 = &lle->ll_children[i];
1298				MPASS(lock2->li_lock != NULL);
1299				if (lock2->li_lock->lo_witness == w)
1300					break;
1301				if (i == 0 && lle->ll_next != NULL) {
1302					lle = lle->ll_next;
1303					i = lle->ll_count - 1;
1304					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1305				} else
1306					i--;
1307			} while (i >= 0);
1308			if (i < 0) {
1309				printf(" 1st %p %s (%s) @ %s:%d\n",
1310				    lock1->li_lock, lock1->li_lock->lo_name,
1311				    w1->w_name, lock1->li_file, lock1->li_line);
1312				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1313				    lock->lo_name, w->w_name, file, line);
1314			} else {
1315				printf(" 1st %p %s (%s) @ %s:%d\n",
1316				    lock2->li_lock, lock2->li_lock->lo_name,
1317				    lock2->li_lock->lo_witness->w_name,
1318				    lock2->li_file, lock2->li_line);
1319				printf(" 2nd %p %s (%s) @ %s:%d\n",
1320				    lock1->li_lock, lock1->li_lock->lo_name,
1321				    w1->w_name, lock1->li_file, lock1->li_line);
1322				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1323				    lock->lo_name, w->w_name, file, line);
1324			}
1325			witness_debugger(1);
1326			return;
1327		}
1328	}
1329
1330	/*
1331	 * If requested, build a new lock order.  However, don't build a new
1332	 * relationship between a sleepable lock and Giant if it is in the
1333	 * wrong direction.  The correct lock order is that sleepable locks
1334	 * always come before Giant.
1335	 */
1336	if (flags & LOP_NEWORDER &&
1337	    !(plock->li_lock == &Giant.lock_object &&
1338	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1339		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1340		    w->w_name, plock->li_lock->lo_witness->w_name);
1341		itismychild(plock->li_lock->lo_witness, w);
1342	}
1343out:
1344	mtx_unlock_spin(&w_mtx);
1345}
1346
1347void
1348witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1349{
1350	struct lock_list_entry **lock_list, *lle;
1351	struct lock_instance *instance;
1352	struct witness *w;
1353	struct thread *td;
1354
1355	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1356	    panicstr != NULL)
1357		return;
1358	w = lock->lo_witness;
1359	td = curthread;
1360	file = fixup_filename(file);
1361
1362	/* Determine lock list for this lock. */
1363	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1364		lock_list = &td->td_sleeplocks;
1365	else
1366		lock_list = PCPU_PTR(spinlocks);
1367
1368	/* Check to see if we are recursing on a lock we already own. */
1369	instance = find_instance(*lock_list, lock);
1370	if (instance != NULL) {
1371		instance->li_flags++;
1372		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1373		    td->td_proc->p_pid, lock->lo_name,
1374		    instance->li_flags & LI_RECURSEMASK);
1375		instance->li_file = file;
1376		instance->li_line = line;
1377		return;
1378	}
1379
1380	/* Update per-witness last file and line acquire. */
1381	w->w_file = file;
1382	w->w_line = line;
1383
1384	/* Find the next open lock instance in the list and fill it. */
1385	lle = *lock_list;
1386	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1387		lle = witness_lock_list_get();
1388		if (lle == NULL)
1389			return;
1390		lle->ll_next = *lock_list;
1391		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1392		    td->td_proc->p_pid, lle);
1393		*lock_list = lle;
1394	}
1395	instance = &lle->ll_children[lle->ll_count++];
1396	instance->li_lock = lock;
1397	instance->li_line = line;
1398	instance->li_file = file;
1399	if ((flags & LOP_EXCLUSIVE) != 0)
1400		instance->li_flags = LI_EXCLUSIVE;
1401	else
1402		instance->li_flags = 0;
1403	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1404	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1405}
1406
1407void
1408witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1409{
1410	struct lock_instance *instance;
1411	struct lock_class *class;
1412
1413	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1414	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1415		return;
1416	class = LOCK_CLASS(lock);
1417	file = fixup_filename(file);
1418	if (witness_watch) {
1419		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1420			panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1421			    class->lc_name, lock->lo_name, file, line);
1422		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1423			panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1424			    class->lc_name, lock->lo_name, file, line);
1425	}
1426	instance = find_instance(curthread->td_sleeplocks, lock);
1427	if (instance == NULL)
1428		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1429		    class->lc_name, lock->lo_name, file, line);
1430	if (witness_watch) {
1431		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1432			panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1433			    class->lc_name, lock->lo_name, file, line);
1434		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1435			panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1436			    class->lc_name, lock->lo_name,
1437			    instance->li_flags & LI_RECURSEMASK, file, line);
1438	}
1439	instance->li_flags |= LI_EXCLUSIVE;
1440}
1441
1442void
1443witness_downgrade(struct lock_object *lock, int flags, const char *file,
1444    int line)
1445{
1446	struct lock_instance *instance;
1447	struct lock_class *class;
1448
1449	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1450	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1451		return;
1452	class = LOCK_CLASS(lock);
1453	file = fixup_filename(file);
1454	if (witness_watch) {
1455		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1456		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1457			    class->lc_name, lock->lo_name, file, line);
1458		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1459			panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1460			    class->lc_name, lock->lo_name, file, line);
1461	}
1462	instance = find_instance(curthread->td_sleeplocks, lock);
1463	if (instance == NULL)
1464		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1465		    class->lc_name, lock->lo_name, file, line);
1466	if (witness_watch) {
1467		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1468			panic("downgrade of shared lock (%s) %s @ %s:%d",
1469			    class->lc_name, lock->lo_name, file, line);
1470		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1471			panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1472			    class->lc_name, lock->lo_name,
1473			    instance->li_flags & LI_RECURSEMASK, file, line);
1474	}
1475	instance->li_flags &= ~LI_EXCLUSIVE;
1476}
1477
1478void
1479witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1480{
1481	struct lock_list_entry **lock_list, *lle;
1482	struct lock_instance *instance;
1483	struct lock_class *class;
1484	struct thread *td;
1485	register_t s;
1486	int i, j;
1487
1488	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1489		return;
1490	td = curthread;
1491	class = LOCK_CLASS(lock);
1492	file = fixup_filename(file);
1493
1494	/* Find lock instance associated with this lock. */
1495	if (class->lc_flags & LC_SLEEPLOCK)
1496		lock_list = &td->td_sleeplocks;
1497	else
1498		lock_list = PCPU_PTR(spinlocks);
1499	lle = *lock_list;
1500	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1501		for (i = 0; i < (*lock_list)->ll_count; i++) {
1502			instance = &(*lock_list)->ll_children[i];
1503			if (instance->li_lock == lock)
1504				goto found;
1505		}
1506
1507	/*
1508	 * When disabling WITNESS through witness_watch we could end up in
1509	 * having registered locks in the td_sleeplocks queue.
1510	 * We have to make sure we flush these queues, so just search for
1511	 * eventual register locks and remove them.
1512	 */
1513	if (witness_watch > 0)
1514		panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1515		    lock->lo_name, file, line);
1516	else
1517		return;
1518found:
1519
1520	/* First, check for shared/exclusive mismatches. */
1521	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1522	    (flags & LOP_EXCLUSIVE) == 0) {
1523		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1524		    lock->lo_name, file, line);
1525		printf("while exclusively locked from %s:%d\n",
1526		    instance->li_file, instance->li_line);
1527		panic("excl->ushare");
1528	}
1529	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1530	    (flags & LOP_EXCLUSIVE) != 0) {
1531		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1532		    lock->lo_name, file, line);
1533		printf("while share locked from %s:%d\n", instance->li_file,
1534		    instance->li_line);
1535		panic("share->uexcl");
1536	}
1537	/* If we are recursed, unrecurse. */
1538	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1539		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1540		    td->td_proc->p_pid, instance->li_lock->lo_name,
1541		    instance->li_flags);
1542		instance->li_flags--;
1543		return;
1544	}
1545	/* The lock is now being dropped, check for NORELEASE flag */
1546	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1547		printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1548		    lock->lo_name, file, line);
1549		panic("lock marked norelease");
1550	}
1551
1552	/* Otherwise, remove this item from the list. */
1553	s = intr_disable();
1554	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1555	    td->td_proc->p_pid, instance->li_lock->lo_name,
1556	    (*lock_list)->ll_count - 1);
1557	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1558		(*lock_list)->ll_children[j] =
1559		    (*lock_list)->ll_children[j + 1];
1560	(*lock_list)->ll_count--;
1561	intr_restore(s);
1562
1563	/*
1564	 * In order to reduce contention on w_mtx, we want to keep always an
1565	 * head object into lists so that frequent allocation from the
1566	 * free witness pool (and subsequent locking) is avoided.
1567	 * In order to maintain the current code simple, when the head
1568	 * object is totally unloaded it means also that we do not have
1569	 * further objects in the list, so the list ownership needs to be
1570	 * hand over to another object if the current head needs to be freed.
1571	 */
1572	if ((*lock_list)->ll_count == 0) {
1573		if (*lock_list == lle) {
1574			if (lle->ll_next == NULL)
1575				return;
1576		} else
1577			lle = *lock_list;
1578		*lock_list = lle->ll_next;
1579		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1580		    td->td_proc->p_pid, lle);
1581		witness_lock_list_free(lle);
1582	}
1583}
1584
1585void
1586witness_thread_exit(struct thread *td)
1587{
1588	struct lock_list_entry *lle;
1589	int i, n;
1590
1591	lle = td->td_sleeplocks;
1592	if (lle == NULL || panicstr != NULL)
1593		return;
1594	if (lle->ll_count != 0) {
1595		for (n = 0; lle != NULL; lle = lle->ll_next)
1596			for (i = lle->ll_count - 1; i >= 0; i--) {
1597				if (n == 0)
1598		printf("Thread %p exiting with the following locks held:\n",
1599					    td);
1600				n++;
1601				witness_list_lock(&lle->ll_children[i], printf);
1602
1603			}
1604		panic("Thread %p cannot exit while holding sleeplocks\n", td);
1605	}
1606	witness_lock_list_free(lle);
1607}
1608
1609/*
1610 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1611 * exempt Giant and sleepable locks from the checks as well.  If any
1612 * non-exempt locks are held, then a supplied message is printed to the
1613 * console along with a list of the offending locks.  If indicated in the
1614 * flags then a failure results in a panic as well.
1615 */
1616int
1617witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1618{
1619	struct lock_list_entry *lock_list, *lle;
1620	struct lock_instance *lock1;
1621	struct thread *td;
1622	va_list ap;
1623	int i, n;
1624
1625	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1626		return (0);
1627	n = 0;
1628	td = curthread;
1629	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1630		for (i = lle->ll_count - 1; i >= 0; i--) {
1631			lock1 = &lle->ll_children[i];
1632			if (lock1->li_lock == lock)
1633				continue;
1634			if (flags & WARN_GIANTOK &&
1635			    lock1->li_lock == &Giant.lock_object)
1636				continue;
1637			if (flags & WARN_SLEEPOK &&
1638			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1639				continue;
1640			if (n == 0) {
1641				va_start(ap, fmt);
1642				vprintf(fmt, ap);
1643				va_end(ap);
1644				printf(" with the following");
1645				if (flags & WARN_SLEEPOK)
1646					printf(" non-sleepable");
1647				printf(" locks held:\n");
1648			}
1649			n++;
1650			witness_list_lock(lock1, printf);
1651		}
1652
1653	/*
1654	 * Pin the thread in order to avoid problems with thread migration.
1655	 * Once that all verifies are passed about spinlocks ownership,
1656	 * the thread is in a safe path and it can be unpinned.
1657	 */
1658	sched_pin();
1659	lock_list = PCPU_GET(spinlocks);
1660	if (lock_list != NULL && lock_list->ll_count != 0) {
1661		sched_unpin();
1662
1663		/*
1664		 * We should only have one spinlock and as long as
1665		 * the flags cannot match for this locks class,
1666		 * check if the first spinlock is the one curthread
1667		 * should hold.
1668		 */
1669		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1670		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1671		    lock1->li_lock == lock && n == 0)
1672			return (0);
1673
1674		va_start(ap, fmt);
1675		vprintf(fmt, ap);
1676		va_end(ap);
1677		printf(" with the following");
1678		if (flags & WARN_SLEEPOK)
1679			printf(" non-sleepable");
1680		printf(" locks held:\n");
1681		n += witness_list_locks(&lock_list, printf);
1682	} else
1683		sched_unpin();
1684	if (flags & WARN_PANIC && n)
1685		panic("%s", __func__);
1686	else
1687		witness_debugger(n);
1688	return (n);
1689}
1690
1691const char *
1692witness_file(struct lock_object *lock)
1693{
1694	struct witness *w;
1695
1696	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1697		return ("?");
1698	w = lock->lo_witness;
1699	return (w->w_file);
1700}
1701
1702int
1703witness_line(struct lock_object *lock)
1704{
1705	struct witness *w;
1706
1707	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1708		return (0);
1709	w = lock->lo_witness;
1710	return (w->w_line);
1711}
1712
1713static struct witness *
1714enroll(const char *description, struct lock_class *lock_class)
1715{
1716	struct witness *w;
1717	struct witness_list *typelist;
1718
1719	MPASS(description != NULL);
1720
1721	if (witness_watch == -1 || panicstr != NULL)
1722		return (NULL);
1723	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1724		if (witness_skipspin)
1725			return (NULL);
1726		else
1727			typelist = &w_spin;
1728	} else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1729		typelist = &w_sleep;
1730	else
1731		panic("lock class %s is not sleep or spin",
1732		    lock_class->lc_name);
1733
1734	mtx_lock_spin(&w_mtx);
1735	w = witness_hash_get(description);
1736	if (w)
1737		goto found;
1738	if ((w = witness_get()) == NULL)
1739		return (NULL);
1740	MPASS(strlen(description) < MAX_W_NAME);
1741	strcpy(w->w_name, description);
1742	w->w_class = lock_class;
1743	w->w_refcount = 1;
1744	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1745	if (lock_class->lc_flags & LC_SPINLOCK) {
1746		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1747		w_spin_cnt++;
1748	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1749		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1750		w_sleep_cnt++;
1751	}
1752
1753	/* Insert new witness into the hash */
1754	witness_hash_put(w);
1755	witness_increment_graph_generation();
1756	mtx_unlock_spin(&w_mtx);
1757	return (w);
1758found:
1759	w->w_refcount++;
1760	mtx_unlock_spin(&w_mtx);
1761	if (lock_class != w->w_class)
1762		panic(
1763			"lock (%s) %s does not match earlier (%s) lock",
1764			description, lock_class->lc_name,
1765			w->w_class->lc_name);
1766	return (w);
1767}
1768
1769static void
1770depart(struct witness *w)
1771{
1772	struct witness_list *list;
1773
1774	MPASS(w->w_refcount == 0);
1775	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1776		list = &w_sleep;
1777		w_sleep_cnt--;
1778	} else {
1779		list = &w_spin;
1780		w_spin_cnt--;
1781	}
1782	/*
1783	 * Set file to NULL as it may point into a loadable module.
1784	 */
1785	w->w_file = NULL;
1786	w->w_line = 0;
1787	witness_increment_graph_generation();
1788}
1789
1790
1791static void
1792adopt(struct witness *parent, struct witness *child)
1793{
1794	int pi, ci, i, j;
1795
1796	if (witness_cold == 0)
1797		mtx_assert(&w_mtx, MA_OWNED);
1798
1799	/* If the relationship is already known, there's no work to be done. */
1800	if (isitmychild(parent, child))
1801		return;
1802
1803	/* When the structure of the graph changes, bump up the generation. */
1804	witness_increment_graph_generation();
1805
1806	/*
1807	 * The hard part ... create the direct relationship, then propagate all
1808	 * indirect relationships.
1809	 */
1810	pi = parent->w_index;
1811	ci = child->w_index;
1812	WITNESS_INDEX_ASSERT(pi);
1813	WITNESS_INDEX_ASSERT(ci);
1814	MPASS(pi != ci);
1815	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1816	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1817
1818	/*
1819	 * If parent was not already an ancestor of child,
1820	 * then we increment the descendant and ancestor counters.
1821	 */
1822	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1823		parent->w_num_descendants++;
1824		child->w_num_ancestors++;
1825	}
1826
1827	/*
1828	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1829	 * an ancestor of 'pi' during this loop.
1830	 */
1831	for (i = 1; i <= w_max_used_index; i++) {
1832		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1833		    (i != pi))
1834			continue;
1835
1836		/* Find each descendant of 'i' and mark it as a descendant. */
1837		for (j = 1; j <= w_max_used_index; j++) {
1838
1839			/*
1840			 * Skip children that are already marked as
1841			 * descendants of 'i'.
1842			 */
1843			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1844				continue;
1845
1846			/*
1847			 * We are only interested in descendants of 'ci'. Note
1848			 * that 'ci' itself is counted as a descendant of 'ci'.
1849			 */
1850			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1851			    (j != ci))
1852				continue;
1853			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1854			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1855			w_data[i].w_num_descendants++;
1856			w_data[j].w_num_ancestors++;
1857
1858			/*
1859			 * Make sure we aren't marking a node as both an
1860			 * ancestor and descendant. We should have caught
1861			 * this as a lock order reversal earlier.
1862			 */
1863			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1864			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1865				printf("witness rmatrix paradox! [%d][%d]=%d "
1866				    "both ancestor and descendant\n",
1867				    i, j, w_rmatrix[i][j]);
1868				kdb_backtrace();
1869				printf("Witness disabled.\n");
1870				witness_watch = -1;
1871			}
1872			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1873			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1874				printf("witness rmatrix paradox! [%d][%d]=%d "
1875				    "both ancestor and descendant\n",
1876				    j, i, w_rmatrix[j][i]);
1877				kdb_backtrace();
1878				printf("Witness disabled.\n");
1879				witness_watch = -1;
1880			}
1881		}
1882	}
1883}
1884
1885static void
1886itismychild(struct witness *parent, struct witness *child)
1887{
1888
1889	MPASS(child != NULL && parent != NULL);
1890	if (witness_cold == 0)
1891		mtx_assert(&w_mtx, MA_OWNED);
1892
1893	if (!witness_lock_type_equal(parent, child)) {
1894		if (witness_cold == 0)
1895			mtx_unlock_spin(&w_mtx);
1896		panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1897		    "the same lock type", __func__, parent->w_name,
1898		    parent->w_class->lc_name, child->w_name,
1899		    child->w_class->lc_name);
1900	}
1901	adopt(parent, child);
1902}
1903
1904/*
1905 * Generic code for the isitmy*() functions. The rmask parameter is the
1906 * expected relationship of w1 to w2.
1907 */
1908static int
1909_isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1910{
1911	unsigned char r1, r2;
1912	int i1, i2;
1913
1914	i1 = w1->w_index;
1915	i2 = w2->w_index;
1916	WITNESS_INDEX_ASSERT(i1);
1917	WITNESS_INDEX_ASSERT(i2);
1918	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1919	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1920
1921	/* The flags on one better be the inverse of the flags on the other */
1922	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1923		(WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1924		printf("%s: rmatrix mismatch between %s (index %d) and %s "
1925		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
1926		    "w_rmatrix[%d][%d] == %hhx\n",
1927		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1928		    i2, i1, r2);
1929		kdb_backtrace();
1930		printf("Witness disabled.\n");
1931		witness_watch = -1;
1932	}
1933	return (r1 & rmask);
1934}
1935
1936/*
1937 * Checks if @child is a direct child of @parent.
1938 */
1939static int
1940isitmychild(struct witness *parent, struct witness *child)
1941{
1942
1943	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1944}
1945
1946/*
1947 * Checks if @descendant is a direct or inderect descendant of @ancestor.
1948 */
1949static int
1950isitmydescendant(struct witness *ancestor, struct witness *descendant)
1951{
1952
1953	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1954	    __func__));
1955}
1956
1957#ifdef BLESSING
1958static int
1959blessed(struct witness *w1, struct witness *w2)
1960{
1961	int i;
1962	struct witness_blessed *b;
1963
1964	for (i = 0; i < blessed_count; i++) {
1965		b = &blessed_list[i];
1966		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1967			if (strcmp(w2->w_name, b->b_lock2) == 0)
1968				return (1);
1969			continue;
1970		}
1971		if (strcmp(w1->w_name, b->b_lock2) == 0)
1972			if (strcmp(w2->w_name, b->b_lock1) == 0)
1973				return (1);
1974	}
1975	return (0);
1976}
1977#endif
1978
1979static struct witness *
1980witness_get(void)
1981{
1982	struct witness *w;
1983	int index;
1984
1985	if (witness_cold == 0)
1986		mtx_assert(&w_mtx, MA_OWNED);
1987
1988	if (witness_watch == -1) {
1989		mtx_unlock_spin(&w_mtx);
1990		return (NULL);
1991	}
1992	if (STAILQ_EMPTY(&w_free)) {
1993		witness_watch = -1;
1994		mtx_unlock_spin(&w_mtx);
1995		printf("WITNESS: unable to allocate a new witness object\n");
1996		return (NULL);
1997	}
1998	w = STAILQ_FIRST(&w_free);
1999	STAILQ_REMOVE_HEAD(&w_free, w_list);
2000	w_free_cnt--;
2001	index = w->w_index;
2002	MPASS(index > 0 && index == w_max_used_index+1 &&
2003	    index < WITNESS_COUNT);
2004	bzero(w, sizeof(*w));
2005	w->w_index = index;
2006	if (index > w_max_used_index)
2007		w_max_used_index = index;
2008	return (w);
2009}
2010
2011static void
2012witness_free(struct witness *w)
2013{
2014
2015	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2016	w_free_cnt++;
2017}
2018
2019static struct lock_list_entry *
2020witness_lock_list_get(void)
2021{
2022	struct lock_list_entry *lle;
2023
2024	if (witness_watch == -1)
2025		return (NULL);
2026	mtx_lock_spin(&w_mtx);
2027	lle = w_lock_list_free;
2028	if (lle == NULL) {
2029		witness_watch = -1;
2030		mtx_unlock_spin(&w_mtx);
2031		printf("%s: witness exhausted\n", __func__);
2032		return (NULL);
2033	}
2034	w_lock_list_free = lle->ll_next;
2035	mtx_unlock_spin(&w_mtx);
2036	bzero(lle, sizeof(*lle));
2037	return (lle);
2038}
2039
2040static void
2041witness_lock_list_free(struct lock_list_entry *lle)
2042{
2043
2044	mtx_lock_spin(&w_mtx);
2045	lle->ll_next = w_lock_list_free;
2046	w_lock_list_free = lle;
2047	mtx_unlock_spin(&w_mtx);
2048}
2049
2050static struct lock_instance *
2051find_instance(struct lock_list_entry *list, struct lock_object *lock)
2052{
2053	struct lock_list_entry *lle;
2054	struct lock_instance *instance;
2055	int i;
2056
2057	for (lle = list; lle != NULL; lle = lle->ll_next)
2058		for (i = lle->ll_count - 1; i >= 0; i--) {
2059			instance = &lle->ll_children[i];
2060			if (instance->li_lock == lock)
2061				return (instance);
2062		}
2063	return (NULL);
2064}
2065
2066static void
2067witness_list_lock(struct lock_instance *instance,
2068    int (*prnt)(const char *fmt, ...))
2069{
2070	struct lock_object *lock;
2071
2072	lock = instance->li_lock;
2073	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2074	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2075	if (lock->lo_witness->w_name != lock->lo_name)
2076		prnt(" (%s)", lock->lo_witness->w_name);
2077	prnt(" r = %d (%p) locked @ %s:%d\n",
2078	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
2079	    instance->li_line);
2080}
2081
2082#ifdef DDB
2083static int
2084witness_thread_has_locks(struct thread *td)
2085{
2086
2087	if (td->td_sleeplocks == NULL)
2088		return (0);
2089	return (td->td_sleeplocks->ll_count != 0);
2090}
2091
2092static int
2093witness_proc_has_locks(struct proc *p)
2094{
2095	struct thread *td;
2096
2097	FOREACH_THREAD_IN_PROC(p, td) {
2098		if (witness_thread_has_locks(td))
2099			return (1);
2100	}
2101	return (0);
2102}
2103#endif
2104
2105int
2106witness_list_locks(struct lock_list_entry **lock_list,
2107    int (*prnt)(const char *fmt, ...))
2108{
2109	struct lock_list_entry *lle;
2110	int i, nheld;
2111
2112	nheld = 0;
2113	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2114		for (i = lle->ll_count - 1; i >= 0; i--) {
2115			witness_list_lock(&lle->ll_children[i], prnt);
2116			nheld++;
2117		}
2118	return (nheld);
2119}
2120
2121/*
2122 * This is a bit risky at best.  We call this function when we have timed
2123 * out acquiring a spin lock, and we assume that the other CPU is stuck
2124 * with this lock held.  So, we go groveling around in the other CPU's
2125 * per-cpu data to try to find the lock instance for this spin lock to
2126 * see when it was last acquired.
2127 */
2128void
2129witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2130    int (*prnt)(const char *fmt, ...))
2131{
2132	struct lock_instance *instance;
2133	struct pcpu *pc;
2134
2135	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2136		return;
2137	pc = pcpu_find(owner->td_oncpu);
2138	instance = find_instance(pc->pc_spinlocks, lock);
2139	if (instance != NULL)
2140		witness_list_lock(instance, prnt);
2141}
2142
2143void
2144witness_save(struct lock_object *lock, const char **filep, int *linep)
2145{
2146	struct lock_list_entry *lock_list;
2147	struct lock_instance *instance;
2148	struct lock_class *class;
2149
2150	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2151	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2152		return;
2153	class = LOCK_CLASS(lock);
2154	if (class->lc_flags & LC_SLEEPLOCK)
2155		lock_list = curthread->td_sleeplocks;
2156	else {
2157		if (witness_skipspin)
2158			return;
2159		lock_list = PCPU_GET(spinlocks);
2160	}
2161	instance = find_instance(lock_list, lock);
2162	if (instance == NULL)
2163		panic("%s: lock (%s) %s not locked", __func__,
2164		    class->lc_name, lock->lo_name);
2165	*filep = instance->li_file;
2166	*linep = instance->li_line;
2167}
2168
2169void
2170witness_restore(struct lock_object *lock, const char *file, int line)
2171{
2172	struct lock_list_entry *lock_list;
2173	struct lock_instance *instance;
2174	struct lock_class *class;
2175
2176	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2177	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2178		return;
2179	class = LOCK_CLASS(lock);
2180	if (class->lc_flags & LC_SLEEPLOCK)
2181		lock_list = curthread->td_sleeplocks;
2182	else {
2183		if (witness_skipspin)
2184			return;
2185		lock_list = PCPU_GET(spinlocks);
2186	}
2187	instance = find_instance(lock_list, lock);
2188	if (instance == NULL)
2189		panic("%s: lock (%s) %s not locked", __func__,
2190		    class->lc_name, lock->lo_name);
2191	lock->lo_witness->w_file = file;
2192	lock->lo_witness->w_line = line;
2193	instance->li_file = file;
2194	instance->li_line = line;
2195}
2196
2197void
2198witness_assert(struct lock_object *lock, int flags, const char *file, int line)
2199{
2200#ifdef INVARIANT_SUPPORT
2201	struct lock_instance *instance;
2202	struct lock_class *class;
2203
2204	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2205		return;
2206	class = LOCK_CLASS(lock);
2207	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2208		instance = find_instance(curthread->td_sleeplocks, lock);
2209	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2210		instance = find_instance(PCPU_GET(spinlocks), lock);
2211	else {
2212		panic("Lock (%s) %s is not sleep or spin!",
2213		    class->lc_name, lock->lo_name);
2214	}
2215	file = fixup_filename(file);
2216	switch (flags) {
2217	case LA_UNLOCKED:
2218		if (instance != NULL)
2219			panic("Lock (%s) %s locked @ %s:%d.",
2220			    class->lc_name, lock->lo_name, file, line);
2221		break;
2222	case LA_LOCKED:
2223	case LA_LOCKED | LA_RECURSED:
2224	case LA_LOCKED | LA_NOTRECURSED:
2225	case LA_SLOCKED:
2226	case LA_SLOCKED | LA_RECURSED:
2227	case LA_SLOCKED | LA_NOTRECURSED:
2228	case LA_XLOCKED:
2229	case LA_XLOCKED | LA_RECURSED:
2230	case LA_XLOCKED | LA_NOTRECURSED:
2231		if (instance == NULL) {
2232			panic("Lock (%s) %s not locked @ %s:%d.",
2233			    class->lc_name, lock->lo_name, file, line);
2234			break;
2235		}
2236		if ((flags & LA_XLOCKED) != 0 &&
2237		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2238			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2239			    class->lc_name, lock->lo_name, file, line);
2240		if ((flags & LA_SLOCKED) != 0 &&
2241		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2242			panic("Lock (%s) %s exclusively locked @ %s:%d.",
2243			    class->lc_name, lock->lo_name, file, line);
2244		if ((flags & LA_RECURSED) != 0 &&
2245		    (instance->li_flags & LI_RECURSEMASK) == 0)
2246			panic("Lock (%s) %s not recursed @ %s:%d.",
2247			    class->lc_name, lock->lo_name, file, line);
2248		if ((flags & LA_NOTRECURSED) != 0 &&
2249		    (instance->li_flags & LI_RECURSEMASK) != 0)
2250			panic("Lock (%s) %s recursed @ %s:%d.",
2251			    class->lc_name, lock->lo_name, file, line);
2252		break;
2253	default:
2254		panic("Invalid lock assertion at %s:%d.", file, line);
2255
2256	}
2257#endif	/* INVARIANT_SUPPORT */
2258}
2259
2260static void
2261witness_setflag(struct lock_object *lock, int flag, int set)
2262{
2263	struct lock_list_entry *lock_list;
2264	struct lock_instance *instance;
2265	struct lock_class *class;
2266
2267	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2268		return;
2269	class = LOCK_CLASS(lock);
2270	if (class->lc_flags & LC_SLEEPLOCK)
2271		lock_list = curthread->td_sleeplocks;
2272	else {
2273		if (witness_skipspin)
2274			return;
2275		lock_list = PCPU_GET(spinlocks);
2276	}
2277	instance = find_instance(lock_list, lock);
2278	if (instance == NULL)
2279		panic("%s: lock (%s) %s not locked", __func__,
2280		    class->lc_name, lock->lo_name);
2281
2282	if (set)
2283		instance->li_flags |= flag;
2284	else
2285		instance->li_flags &= ~flag;
2286}
2287
2288void
2289witness_norelease(struct lock_object *lock)
2290{
2291
2292	witness_setflag(lock, LI_NORELEASE, 1);
2293}
2294
2295void
2296witness_releaseok(struct lock_object *lock)
2297{
2298
2299	witness_setflag(lock, LI_NORELEASE, 0);
2300}
2301
2302#ifdef DDB
2303static void
2304witness_ddb_list(struct thread *td)
2305{
2306
2307	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2308	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2309
2310	if (witness_watch < 1)
2311		return;
2312
2313	witness_list_locks(&td->td_sleeplocks, db_printf);
2314
2315	/*
2316	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2317	 * if td is currently executing on some other CPU and holds spin locks
2318	 * as we won't display those locks.  If we had a MI way of getting
2319	 * the per-cpu data for a given cpu then we could use
2320	 * td->td_oncpu to get the list of spinlocks for this thread
2321	 * and "fix" this.
2322	 *
2323	 * That still wouldn't really fix this unless we locked the scheduler
2324	 * lock or stopped the other CPU to make sure it wasn't changing the
2325	 * list out from under us.  It is probably best to just not try to
2326	 * handle threads on other CPU's for now.
2327	 */
2328	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2329		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2330}
2331
2332DB_SHOW_COMMAND(locks, db_witness_list)
2333{
2334	struct thread *td;
2335
2336	if (have_addr)
2337		td = db_lookup_thread(addr, TRUE);
2338	else
2339		td = kdb_thread;
2340	witness_ddb_list(td);
2341}
2342
2343DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2344{
2345	struct thread *td;
2346	struct proc *p;
2347
2348	/*
2349	 * It would be nice to list only threads and processes that actually
2350	 * held sleep locks, but that information is currently not exported
2351	 * by WITNESS.
2352	 */
2353	FOREACH_PROC_IN_SYSTEM(p) {
2354		if (!witness_proc_has_locks(p))
2355			continue;
2356		FOREACH_THREAD_IN_PROC(p, td) {
2357			if (!witness_thread_has_locks(td))
2358				continue;
2359			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2360			    p->p_comm, td, td->td_tid);
2361			witness_ddb_list(td);
2362		}
2363	}
2364}
2365DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2366
2367DB_SHOW_COMMAND(witness, db_witness_display)
2368{
2369
2370	witness_ddb_display(db_printf);
2371}
2372#endif
2373
2374static int
2375sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2376{
2377	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2378	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2379	struct sbuf *sb;
2380	u_int w_rmatrix1, w_rmatrix2;
2381	int error, generation, i, j;
2382
2383	tmp_data1 = NULL;
2384	tmp_data2 = NULL;
2385	tmp_w1 = NULL;
2386	tmp_w2 = NULL;
2387	if (witness_watch < 1) {
2388		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2389		return (error);
2390	}
2391	if (witness_cold) {
2392		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2393		return (error);
2394	}
2395	error = 0;
2396	sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2397	if (sb == NULL)
2398		return (ENOMEM);
2399
2400	/* Allocate and init temporary storage space. */
2401	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2402	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2403	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2404	    M_WAITOK | M_ZERO);
2405	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2406	    M_WAITOK | M_ZERO);
2407	stack_zero(&tmp_data1->wlod_stack);
2408	stack_zero(&tmp_data2->wlod_stack);
2409
2410restart:
2411	mtx_lock_spin(&w_mtx);
2412	generation = w_generation;
2413	mtx_unlock_spin(&w_mtx);
2414	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2415	    w_lohash.wloh_count);
2416	for (i = 1; i < w_max_used_index; i++) {
2417		mtx_lock_spin(&w_mtx);
2418		if (generation != w_generation) {
2419			mtx_unlock_spin(&w_mtx);
2420
2421			/* The graph has changed, try again. */
2422			req->oldidx = 0;
2423			sbuf_clear(sb);
2424			goto restart;
2425		}
2426
2427		w1 = &w_data[i];
2428		if (w1->w_reversed == 0) {
2429			mtx_unlock_spin(&w_mtx);
2430			continue;
2431		}
2432
2433		/* Copy w1 locally so we can release the spin lock. */
2434		*tmp_w1 = *w1;
2435		mtx_unlock_spin(&w_mtx);
2436
2437		if (tmp_w1->w_reversed == 0)
2438			continue;
2439		for (j = 1; j < w_max_used_index; j++) {
2440			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2441				continue;
2442
2443			mtx_lock_spin(&w_mtx);
2444			if (generation != w_generation) {
2445				mtx_unlock_spin(&w_mtx);
2446
2447				/* The graph has changed, try again. */
2448				req->oldidx = 0;
2449				sbuf_clear(sb);
2450				goto restart;
2451			}
2452
2453			w2 = &w_data[j];
2454			data1 = witness_lock_order_get(w1, w2);
2455			data2 = witness_lock_order_get(w2, w1);
2456
2457			/*
2458			 * Copy information locally so we can release the
2459			 * spin lock.
2460			 */
2461			*tmp_w2 = *w2;
2462			w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2463			w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2464
2465			if (data1) {
2466				stack_zero(&tmp_data1->wlod_stack);
2467				stack_copy(&data1->wlod_stack,
2468				    &tmp_data1->wlod_stack);
2469			}
2470			if (data2 && data2 != data1) {
2471				stack_zero(&tmp_data2->wlod_stack);
2472				stack_copy(&data2->wlod_stack,
2473				    &tmp_data2->wlod_stack);
2474			}
2475			mtx_unlock_spin(&w_mtx);
2476
2477			sbuf_printf(sb,
2478	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2479			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2480			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2481#if 0
2482 			sbuf_printf(sb,
2483			"w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2484 			    tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2485 			    tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2486#endif
2487			if (data1) {
2488				sbuf_printf(sb,
2489			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2490				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2491				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2492				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2493				sbuf_printf(sb, "\n");
2494			}
2495			if (data2 && data2 != data1) {
2496				sbuf_printf(sb,
2497			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2498				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2499				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2500				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2501				sbuf_printf(sb, "\n");
2502			}
2503		}
2504	}
2505	mtx_lock_spin(&w_mtx);
2506	if (generation != w_generation) {
2507		mtx_unlock_spin(&w_mtx);
2508
2509		/*
2510		 * The graph changed while we were printing stack data,
2511		 * try again.
2512		 */
2513		req->oldidx = 0;
2514		sbuf_clear(sb);
2515		goto restart;
2516	}
2517	mtx_unlock_spin(&w_mtx);
2518
2519	/* Free temporary storage space. */
2520	free(tmp_data1, M_TEMP);
2521	free(tmp_data2, M_TEMP);
2522	free(tmp_w1, M_TEMP);
2523	free(tmp_w2, M_TEMP);
2524
2525	sbuf_finish(sb);
2526	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2527	sbuf_delete(sb);
2528
2529	return (error);
2530}
2531
2532static int
2533sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2534{
2535	struct witness *w;
2536	struct sbuf *sb;
2537	int error;
2538
2539	if (witness_watch < 1) {
2540		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2541		return (error);
2542	}
2543	if (witness_cold) {
2544		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2545		return (error);
2546	}
2547	error = 0;
2548	sb = sbuf_new(NULL, NULL, FULLGRAPH_SBUF_SIZE, SBUF_FIXEDLEN);
2549	if (sb == NULL)
2550		return (ENOMEM);
2551	sbuf_printf(sb, "\n");
2552
2553	mtx_lock_spin(&w_mtx);
2554	STAILQ_FOREACH(w, &w_all, w_list)
2555		w->w_displayed = 0;
2556	STAILQ_FOREACH(w, &w_all, w_list)
2557		witness_add_fullgraph(sb, w);
2558	mtx_unlock_spin(&w_mtx);
2559
2560	/*
2561	 * While using SBUF_FIXEDLEN, check if the sbuf overflowed.
2562	 */
2563	if (sbuf_overflowed(sb)) {
2564		sbuf_delete(sb);
2565		panic("%s: sbuf overflowed, bump FULLGRAPH_SBUF_SIZE value\n",
2566		    __func__);
2567	}
2568
2569	/*
2570	 * Close the sbuf and return to userland.
2571	 */
2572	sbuf_finish(sb);
2573	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2574	sbuf_delete(sb);
2575
2576	return (error);
2577}
2578
2579static int
2580sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2581{
2582	int error, value;
2583
2584	value = witness_watch;
2585	error = sysctl_handle_int(oidp, &value, 0, req);
2586	if (error != 0 || req->newptr == NULL)
2587		return (error);
2588	if (value > 1 || value < -1 ||
2589	    (witness_watch == -1 && value != witness_watch))
2590		return (EINVAL);
2591	witness_watch = value;
2592	return (0);
2593}
2594
2595static void
2596witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2597{
2598	int i;
2599
2600	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2601		return;
2602	w->w_displayed = 1;
2603
2604	WITNESS_INDEX_ASSERT(w->w_index);
2605	for (i = 1; i <= w_max_used_index; i++) {
2606		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2607			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2608			    w_data[i].w_name);
2609			witness_add_fullgraph(sb, &w_data[i]);
2610		}
2611	}
2612}
2613
2614/*
2615 * A simple hash function. Takes a key pointer and a key size. If size == 0,
2616 * interprets the key as a string and reads until the null
2617 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2618 * hash value computed from the key.
2619 */
2620static uint32_t
2621witness_hash_djb2(const uint8_t *key, uint32_t size)
2622{
2623	unsigned int hash = 5381;
2624	int i;
2625
2626	/* hash = hash * 33 + key[i] */
2627	if (size)
2628		for (i = 0; i < size; i++)
2629			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2630	else
2631		for (i = 0; key[i] != 0; i++)
2632			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2633
2634	return (hash);
2635}
2636
2637
2638/*
2639 * Initializes the two witness hash tables. Called exactly once from
2640 * witness_initialize().
2641 */
2642static void
2643witness_init_hash_tables(void)
2644{
2645	int i;
2646
2647	MPASS(witness_cold);
2648
2649	/* Initialize the hash tables. */
2650	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2651		w_hash.wh_array[i] = NULL;
2652
2653	w_hash.wh_size = WITNESS_HASH_SIZE;
2654	w_hash.wh_count = 0;
2655
2656	/* Initialize the lock order data hash. */
2657	w_lofree = NULL;
2658	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2659		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2660		w_lodata[i].wlod_next = w_lofree;
2661		w_lofree = &w_lodata[i];
2662	}
2663	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2664	w_lohash.wloh_count = 0;
2665	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2666		w_lohash.wloh_array[i] = NULL;
2667}
2668
2669static struct witness *
2670witness_hash_get(const char *key)
2671{
2672	struct witness *w;
2673	uint32_t hash;
2674
2675	MPASS(key != NULL);
2676	if (witness_cold == 0)
2677		mtx_assert(&w_mtx, MA_OWNED);
2678	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2679	w = w_hash.wh_array[hash];
2680	while (w != NULL) {
2681		if (strcmp(w->w_name, key) == 0)
2682			goto out;
2683		w = w->w_hash_next;
2684	}
2685
2686out:
2687	return (w);
2688}
2689
2690static void
2691witness_hash_put(struct witness *w)
2692{
2693	uint32_t hash;
2694
2695	MPASS(w != NULL);
2696	MPASS(w->w_name != NULL);
2697	if (witness_cold == 0)
2698		mtx_assert(&w_mtx, MA_OWNED);
2699	KASSERT(witness_hash_get(w->w_name) == NULL,
2700	    ("%s: trying to add a hash entry that already exists!", __func__));
2701	KASSERT(w->w_hash_next == NULL,
2702	    ("%s: w->w_hash_next != NULL", __func__));
2703
2704	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2705	w->w_hash_next = w_hash.wh_array[hash];
2706	w_hash.wh_array[hash] = w;
2707	w_hash.wh_count++;
2708}
2709
2710
2711static struct witness_lock_order_data *
2712witness_lock_order_get(struct witness *parent, struct witness *child)
2713{
2714	struct witness_lock_order_data *data = NULL;
2715	struct witness_lock_order_key key;
2716	unsigned int hash;
2717
2718	MPASS(parent != NULL && child != NULL);
2719	key.from = parent->w_index;
2720	key.to = child->w_index;
2721	WITNESS_INDEX_ASSERT(key.from);
2722	WITNESS_INDEX_ASSERT(key.to);
2723	if ((w_rmatrix[parent->w_index][child->w_index]
2724	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2725		goto out;
2726
2727	hash = witness_hash_djb2((const char*)&key,
2728	    sizeof(key)) % w_lohash.wloh_size;
2729	data = w_lohash.wloh_array[hash];
2730	while (data != NULL) {
2731		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2732			break;
2733		data = data->wlod_next;
2734	}
2735
2736out:
2737	return (data);
2738}
2739
2740/*
2741 * Verify that parent and child have a known relationship, are not the same,
2742 * and child is actually a child of parent.  This is done without w_mtx
2743 * to avoid contention in the common case.
2744 */
2745static int
2746witness_lock_order_check(struct witness *parent, struct witness *child)
2747{
2748
2749	if (parent != child &&
2750	    w_rmatrix[parent->w_index][child->w_index]
2751	    & WITNESS_LOCK_ORDER_KNOWN &&
2752	    isitmychild(parent, child))
2753		return (1);
2754
2755	return (0);
2756}
2757
2758static int
2759witness_lock_order_add(struct witness *parent, struct witness *child)
2760{
2761	struct witness_lock_order_data *data = NULL;
2762	struct witness_lock_order_key key;
2763	unsigned int hash;
2764
2765	MPASS(parent != NULL && child != NULL);
2766	key.from = parent->w_index;
2767	key.to = child->w_index;
2768	WITNESS_INDEX_ASSERT(key.from);
2769	WITNESS_INDEX_ASSERT(key.to);
2770	if (w_rmatrix[parent->w_index][child->w_index]
2771	    & WITNESS_LOCK_ORDER_KNOWN)
2772		return (1);
2773
2774	hash = witness_hash_djb2((const char*)&key,
2775	    sizeof(key)) % w_lohash.wloh_size;
2776	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2777	data = w_lofree;
2778	if (data == NULL)
2779		return (0);
2780	w_lofree = data->wlod_next;
2781	data->wlod_next = w_lohash.wloh_array[hash];
2782	data->wlod_key = key;
2783	w_lohash.wloh_array[hash] = data;
2784	w_lohash.wloh_count++;
2785	stack_zero(&data->wlod_stack);
2786	stack_save(&data->wlod_stack);
2787	return (1);
2788}
2789
2790/* Call this whenver the structure of the witness graph changes. */
2791static void
2792witness_increment_graph_generation(void)
2793{
2794
2795	if (witness_cold == 0)
2796		mtx_assert(&w_mtx, MA_OWNED);
2797	w_generation++;
2798}
2799
2800#ifdef KDB
2801static void
2802_witness_debugger(int cond, const char *msg)
2803{
2804
2805	if (witness_trace && cond)
2806		kdb_backtrace();
2807	if (witness_kdb && cond)
2808		kdb_enter(KDB_WHY_WITNESS, msg);
2809}
2810#endif
2811