subr_witness.c revision 183955
1/*-
2 * Copyright (c) 2008 Isilon Systems, Inc.
3 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4 * Copyright (c) 1998 Berkeley Software Design, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Berkeley Software Design Inc's name may not be used to endorse or
16 *    promote products derived from this software without specific prior
17 *    written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33 */
34
35/*
36 * Implementation of the `witness' lock verifier.  Originally implemented for
37 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38 * classes in FreeBSD.
39 */
40
41/*
42 *	Main Entry: witness
43 *	Pronunciation: 'wit-n&s
44 *	Function: noun
45 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
46 *	    testimony, witness, from 2wit
47 *	Date: before 12th century
48 *	1 : attestation of a fact or event : TESTIMONY
49 *	2 : one that gives evidence; specifically : one who testifies in
50 *	    a cause or before a judicial tribunal
51 *	3 : one asked to be present at a transaction so as to be able to
52 *	    testify to its having taken place
53 *	4 : one who has personal knowledge of something
54 *	5 a : something serving as evidence or proof : SIGN
55 *	  b : public affirmation by word or example of usually
56 *	      religious faith or conviction <the heroic witness to divine
57 *	      life -- Pilot>
58 *	6 capitalized : a member of the Jehovah's Witnesses
59 */
60
61/*
62 * Special rules concerning Giant and lock orders:
63 *
64 * 1) Giant must be acquired before any other mutexes.  Stated another way,
65 *    no other mutex may be held when Giant is acquired.
66 *
67 * 2) Giant must be released when blocking on a sleepable lock.
68 *
69 * This rule is less obvious, but is a result of Giant providing the same
70 * semantics as spl().  Basically, when a thread sleeps, it must release
71 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72 * 2).
73 *
74 * 3) Giant may be acquired before or after sleepable locks.
75 *
76 * This rule is also not quite as obvious.  Giant may be acquired after
77 * a sleepable lock because it is a non-sleepable lock and non-sleepable
78 * locks may always be acquired while holding a sleepable lock.  The second
79 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83 * execute.  Thus, acquiring Giant both before and after a sleepable lock
84 * will not result in a lock order reversal.
85 */
86
87#include <sys/cdefs.h>
88__FBSDID("$FreeBSD: head/sys/kern/subr_witness.c 183955 2008-10-16 12:42:56Z attilio $");
89
90#include "opt_ddb.h"
91#include "opt_hwpmc_hooks.h"
92#include "opt_stack.h"
93#include "opt_witness.h"
94
95#include <sys/param.h>
96#include <sys/bus.h>
97#include <sys/kdb.h>
98#include <sys/kernel.h>
99#include <sys/ktr.h>
100#include <sys/lock.h>
101#include <sys/malloc.h>
102#include <sys/mutex.h>
103#include <sys/priv.h>
104#include <sys/proc.h>
105#include <sys/sbuf.h>
106#include <sys/sched.h>
107#include <sys/stack.h>
108#include <sys/sysctl.h>
109#include <sys/systm.h>
110
111#ifdef DDB
112#include <ddb/ddb.h>
113#endif
114
115#include <machine/stdarg.h>
116
117#if !defined(DDB) && !defined(STACK)
118#error "DDB or STACK options are required for WITNESS"
119#endif
120
121/* Note that these traces do not work with KTR_ALQ. */
122#if 0
123#define	KTR_WITNESS	KTR_SUBSYS
124#else
125#define	KTR_WITNESS	0
126#endif
127
128#define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
129#define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
130
131/* Define this to check for blessed mutexes */
132#undef BLESSING
133
134#define	WITNESS_COUNT 		1024
135#define	WITNESS_CHILDCOUNT 	(WITNESS_COUNT * 4)
136#define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
137#define	WITNESS_PENDLIST	512
138
139/* Allocate 256 KB of stack data space */
140#define	WITNESS_LO_DATA_COUNT	2048
141
142/* Prime, gives load factor of ~2 at full load */
143#define	WITNESS_LO_HASH_SIZE	1021
144
145/*
146 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
147 * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
148 * probably be safe for the most part, but it's still a SWAG.
149 */
150#define	LOCK_NCHILDREN	5
151#define	LOCK_CHILDCOUNT	2048
152
153#define	MAX_W_NAME	64
154
155#define	BADSTACK_SBUF_SIZE	(256 * WITNESS_COUNT)
156#define	CYCLEGRAPH_SBUF_SIZE	8192
157#define	FULLGRAPH_SBUF_SIZE	32768
158
159/*
160 * These flags go in the witness relationship matrix and describe the
161 * relationship between any two struct witness objects.
162 */
163#define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
164#define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165#define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166#define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167#define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168#define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169#define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170#define	WITNESS_RELATED_MASK						\
171	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172#define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173					  * observed. */
174#define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175#define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176#define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178/* Descendant to ancestor flags */
179#define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
180
181/* Ancestor to descendant flags */
182#define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
183
184#define	WITNESS_INDEX_ASSERT(i)						\
185	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186
187MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189/*
190 * Lock instances.  A lock instance is the data associated with a lock while
191 * it is held by witness.  For example, a lock instance will hold the
192 * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193 * are held in a per-cpu list while sleep locks are held in per-thread list.
194 */
195struct lock_instance {
196	struct lock_object	*li_lock;
197	const char		*li_file;
198	int			li_line;
199	u_int			li_flags;
200};
201
202/*
203 * A simple list type used to build the list of locks held by a thread
204 * or CPU.  We can't simply embed the list in struct lock_object since a
205 * lock may be held by more than one thread if it is a shared lock.  Locks
206 * are added to the head of the list, so we fill up each list entry from
207 * "the back" logically.  To ease some of the arithmetic, we actually fill
208 * in each list entry the normal way (children[0] then children[1], etc.) but
209 * when we traverse the list we read children[count-1] as the first entry
210 * down to children[0] as the final entry.
211 */
212struct lock_list_entry {
213	struct lock_list_entry	*ll_next;
214	struct lock_instance	ll_children[LOCK_NCHILDREN];
215	u_int			ll_count;
216};
217
218/*
219 * The main witness structure. One of these per named lock type in the system
220 * (for example, "vnode interlock").
221 */
222struct witness {
223	char  			w_name[MAX_W_NAME];
224	uint32_t 		w_index;  /* Index in the relationship matrix */
225	struct lock_class	*w_class;
226	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
227	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
228	struct witness		*w_hash_next; /* Linked list in hash buckets. */
229	const char		*w_file; /* File where last acquired */
230	uint32_t 		w_line; /* Line where last acquired */
231	uint32_t 		w_refcount;
232	uint16_t 		w_num_ancestors; /* direct/indirect
233						  * ancestor count */
234	uint16_t 		w_num_descendants; /* direct/indirect
235						    * descendant count */
236	int16_t 		w_ddb_level;
237	int 			w_displayed:1;
238	int 			w_reversed:1;
239};
240
241STAILQ_HEAD(witness_list, witness);
242
243/*
244 * The witness hash table. Keys are witness names (const char *), elements are
245 * witness objects (struct witness *).
246 */
247struct witness_hash {
248	struct witness	*wh_array[WITNESS_HASH_SIZE];
249	uint32_t	wh_size;
250	uint32_t	wh_count;
251};
252
253/*
254 * Key type for the lock order data hash table.
255 */
256struct witness_lock_order_key {
257	uint16_t	from;
258	uint16_t	to;
259};
260
261struct witness_lock_order_data {
262	struct stack			wlod_stack;
263	struct witness_lock_order_key	wlod_key;
264	struct witness_lock_order_data	*wlod_next;
265};
266
267/*
268 * The witness lock order data hash table. Keys are witness index tuples
269 * (struct witness_lock_order_key), elements are lock order data objects
270 * (struct witness_lock_order_data).
271 */
272struct witness_lock_order_hash {
273	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
274	u_int	wloh_size;
275	u_int	wloh_count;
276};
277
278#ifdef BLESSING
279struct witness_blessed {
280	const char	*b_lock1;
281	const char	*b_lock2;
282};
283#endif
284
285struct witness_pendhelp {
286	const char		*wh_type;
287	struct lock_object	*wh_lock;
288};
289
290struct witness_order_list_entry {
291	const char		*w_name;
292	struct lock_class	*w_class;
293};
294
295/*
296 * Returns 0 if one of the locks is a spin lock and the other is not.
297 * Returns 1 otherwise.
298 */
299static __inline int
300witness_lock_type_equal(struct witness *w1, struct witness *w2)
301{
302
303	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305}
306
307static __inline int
308witness_lock_order_key_empty(const struct witness_lock_order_key *key)
309{
310
311	return (key->from == 0 && key->to == 0);
312}
313
314static __inline int
315witness_lock_order_key_equal(const struct witness_lock_order_key *a,
316    const struct witness_lock_order_key *b)
317{
318
319	return (a->from == b->from && a->to == b->to);
320}
321
322static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
323		    const char *fname);
324#ifdef KDB
325static void	_witness_debugger(int cond, const char *msg);
326#endif
327static void	adopt(struct witness *parent, struct witness *child);
328#ifdef BLESSING
329static int	blessed(struct witness *, struct witness *);
330#endif
331static void	depart(struct witness *w);
332static struct witness	*enroll(const char *description,
333			    struct lock_class *lock_class);
334static struct lock_instance	*find_instance(struct lock_list_entry *list,
335				    struct lock_object *lock);
336static int	isitmychild(struct witness *parent, struct witness *child);
337static int	isitmydescendant(struct witness *parent, struct witness *child);
338static void	itismychild(struct witness *parent, struct witness *child);
339static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
340static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
341static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
342static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
343#ifdef DDB
344static void	witness_ddb_compute_levels(void);
345static void	witness_ddb_display(void(*)(const char *fmt, ...));
346static void	witness_ddb_display_descendants(void(*)(const char *fmt, ...),
347		    struct witness *, int indent);
348static void	witness_ddb_display_list(void(*prnt)(const char *fmt, ...),
349		    struct witness_list *list);
350static void	witness_ddb_level_descendants(struct witness *parent, int l);
351static void	witness_ddb_list(struct thread *td);
352#endif
353static void	witness_free(struct witness *m);
354static struct witness	*witness_get(void);
355static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
356static struct witness	*witness_hash_get(const char *key);
357static void	witness_hash_put(struct witness *w);
358static void	witness_init_hash_tables(void);
359static void	witness_increment_graph_generation(void);
360static void	witness_lock_list_free(struct lock_list_entry *lle);
361static struct lock_list_entry	*witness_lock_list_get(void);
362static int	witness_lock_order_add(struct witness *parent,
363		    struct witness *child);
364static int	witness_lock_order_check(struct witness *parent,
365		    struct witness *child);
366static struct witness_lock_order_data	*witness_lock_order_get(
367					    struct witness *parent,
368					    struct witness *child);
369static void	witness_list_lock(struct lock_instance *instance);
370
371#ifdef KDB
372#define	witness_debugger(c)	_witness_debugger(c, __func__)
373#else
374#define	witness_debugger(c)
375#endif
376
377SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
378
379/*
380 * If set to 0, lock order checking is disabled.  If set to -1,
381 * witness is completely disabled.  Otherwise witness performs full
382 * lock order checking for all locks.  At runtime, lock order checking
383 * may be toggled.  However, witness cannot be reenabled once it is
384 * completely disabled.
385 */
386static int witness_watch = 1;
387TUNABLE_INT("debug.witness.watch", &witness_watch);
388SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
389    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
390
391#ifdef KDB
392/*
393 * When KDB is enabled and witness_kdb is 1, it will cause the system
394 * to drop into kdebug() when:
395 *	- a lock hierarchy violation occurs
396 *	- locks are held when going to sleep.
397 */
398#ifdef WITNESS_KDB
399int	witness_kdb = 1;
400#else
401int	witness_kdb = 0;
402#endif
403TUNABLE_INT("debug.witness.kdb", &witness_kdb);
404SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
405
406/*
407 * When KDB is enabled and witness_trace is 1, it will cause the system
408 * to print a stack trace:
409 *	- a lock hierarchy violation occurs
410 *	- locks are held when going to sleep.
411 */
412int	witness_trace = 1;
413TUNABLE_INT("debug.witness.trace", &witness_trace);
414SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
415#endif /* KDB */
416
417#ifdef WITNESS_SKIPSPIN
418int	witness_skipspin = 1;
419#else
420int	witness_skipspin = 0;
421#endif
422TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
423SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
424    0, "");
425
426/*
427 * Call this to print out the relations between locks.
428 */
429SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
430    NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
431
432/*
433 * Call this to print out the witness faulty stacks.
434 */
435SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
436    NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
437
438static struct mtx w_mtx;
439
440/* w_list */
441static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
442static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
443
444/* w_typelist */
445static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
446static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
447
448/* lock list */
449static struct lock_list_entry *w_lock_list_free = NULL;
450static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
451static u_int pending_cnt;
452
453static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
454SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
455SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
456SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
457    "");
458
459static struct witness *w_data;
460static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
461static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
462static struct witness_hash w_hash;	/* The witness hash table. */
463
464/* The lock order data hash */
465static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
466static struct witness_lock_order_data *w_lofree = NULL;
467static struct witness_lock_order_hash w_lohash;
468static int w_max_used_index = 0;
469static unsigned int w_generation = 0;
470static const char *w_notrunning = "Witness not running\n";
471static const char *w_stillcold = "Witness is still cold\n";
472
473
474static struct witness_order_list_entry order_lists[] = {
475	/*
476	 * sx locks
477	 */
478	{ "proctree", &lock_class_sx },
479	{ "allproc", &lock_class_sx },
480	{ "allprison", &lock_class_sx },
481	{ NULL, NULL },
482	/*
483	 * Various mutexes
484	 */
485	{ "Giant", &lock_class_mtx_sleep },
486	{ "pipe mutex", &lock_class_mtx_sleep },
487	{ "sigio lock", &lock_class_mtx_sleep },
488	{ "process group", &lock_class_mtx_sleep },
489	{ "process lock", &lock_class_mtx_sleep },
490	{ "session", &lock_class_mtx_sleep },
491	{ "uidinfo hash", &lock_class_rw },
492#ifdef	HWPMC_HOOKS
493	{ "pmc-sleep", &lock_class_mtx_sleep },
494#endif
495	{ NULL, NULL },
496	/*
497	 * Sockets
498	 */
499	{ "accept", &lock_class_mtx_sleep },
500	{ "so_snd", &lock_class_mtx_sleep },
501	{ "so_rcv", &lock_class_mtx_sleep },
502	{ "sellck", &lock_class_mtx_sleep },
503	{ NULL, NULL },
504	/*
505	 * Routing
506	 */
507	{ "so_rcv", &lock_class_mtx_sleep },
508	{ "radix node head", &lock_class_mtx_sleep },
509	{ "rtentry", &lock_class_mtx_sleep },
510	{ "ifaddr", &lock_class_mtx_sleep },
511	{ NULL, NULL },
512	/*
513	 * Multicast - protocol locks before interface locks, after UDP locks.
514	 */
515	{ "udpinp", &lock_class_rw },
516	{ "in_multi_mtx", &lock_class_mtx_sleep },
517	{ "igmp_mtx", &lock_class_mtx_sleep },
518	{ "if_addr_mtx", &lock_class_mtx_sleep },
519	{ NULL, NULL },
520	/*
521	 * UNIX Domain Sockets
522	 */
523	{ "unp", &lock_class_mtx_sleep },
524	{ "so_snd", &lock_class_mtx_sleep },
525	{ NULL, NULL },
526	/*
527	 * UDP/IP
528	 */
529	{ "udp", &lock_class_rw },
530	{ "udpinp", &lock_class_rw },
531	{ "so_snd", &lock_class_mtx_sleep },
532	{ NULL, NULL },
533	/*
534	 * TCP/IP
535	 */
536	{ "tcp", &lock_class_rw },
537	{ "tcpinp", &lock_class_rw },
538	{ "so_snd", &lock_class_mtx_sleep },
539	{ NULL, NULL },
540	/*
541	 * SLIP
542	 */
543	{ "slip_mtx", &lock_class_mtx_sleep },
544	{ "slip sc_mtx", &lock_class_mtx_sleep },
545	{ NULL, NULL },
546	/*
547	 * netatalk
548	 */
549	{ "ddp_list_mtx", &lock_class_mtx_sleep },
550	{ "ddp_mtx", &lock_class_mtx_sleep },
551	{ NULL, NULL },
552	/*
553	 * BPF
554	 */
555	{ "bpf global lock", &lock_class_mtx_sleep },
556	{ "bpf interface lock", &lock_class_mtx_sleep },
557	{ "bpf cdev lock", &lock_class_mtx_sleep },
558	{ NULL, NULL },
559	/*
560	 * NFS server
561	 */
562	{ "nfsd_mtx", &lock_class_mtx_sleep },
563	{ "so_snd", &lock_class_mtx_sleep },
564	{ NULL, NULL },
565
566	/*
567	 * IEEE 802.11
568	 */
569	{ "802.11 com lock", &lock_class_mtx_sleep},
570	{ NULL, NULL },
571	/*
572	 * Network drivers
573	 */
574	{ "network driver", &lock_class_mtx_sleep},
575	{ NULL, NULL },
576
577	/*
578	 * Netgraph
579	 */
580	{ "ng_node", &lock_class_mtx_sleep },
581	{ "ng_worklist", &lock_class_mtx_sleep },
582	{ NULL, NULL },
583	/*
584	 * CDEV
585	 */
586	{ "system map", &lock_class_mtx_sleep },
587	{ "vm page queue mutex", &lock_class_mtx_sleep },
588	{ "vnode interlock", &lock_class_mtx_sleep },
589	{ "cdev", &lock_class_mtx_sleep },
590	{ NULL, NULL },
591	/*
592	 * kqueue/VFS interaction
593	 */
594	{ "kqueue", &lock_class_mtx_sleep },
595	{ "struct mount mtx", &lock_class_mtx_sleep },
596	{ "vnode interlock", &lock_class_mtx_sleep },
597	{ NULL, NULL },
598	/*
599	 * spin locks
600	 */
601#ifdef SMP
602	{ "ap boot", &lock_class_mtx_spin },
603#endif
604	{ "rm.mutex_mtx", &lock_class_mtx_spin },
605	{ "sio", &lock_class_mtx_spin },
606	{ "scrlock", &lock_class_mtx_spin },
607#ifdef __i386__
608	{ "cy", &lock_class_mtx_spin },
609#endif
610#ifdef __sparc64__
611	{ "pcib_mtx", &lock_class_mtx_spin },
612	{ "rtc_mtx", &lock_class_mtx_spin },
613#endif
614	{ "scc_hwmtx", &lock_class_mtx_spin },
615	{ "uart_hwmtx", &lock_class_mtx_spin },
616	{ "fast_taskqueue", &lock_class_mtx_spin },
617	{ "intr table", &lock_class_mtx_spin },
618#ifdef	HWPMC_HOOKS
619	{ "pmc-per-proc", &lock_class_mtx_spin },
620#endif
621	{ "process slock", &lock_class_mtx_spin },
622	{ "sleepq chain", &lock_class_mtx_spin },
623	{ "umtx lock", &lock_class_mtx_spin },
624	{ "rm_spinlock", &lock_class_mtx_spin },
625	{ "turnstile chain", &lock_class_mtx_spin },
626	{ "turnstile lock", &lock_class_mtx_spin },
627	{ "sched lock", &lock_class_mtx_spin },
628	{ "td_contested", &lock_class_mtx_spin },
629	{ "callout", &lock_class_mtx_spin },
630	{ "entropy harvest mutex", &lock_class_mtx_spin },
631	{ "syscons video lock", &lock_class_mtx_spin },
632	{ "time lock", &lock_class_mtx_spin },
633#ifdef SMP
634	{ "smp rendezvous", &lock_class_mtx_spin },
635#endif
636#ifdef __powerpc__
637	{ "tlb0", &lock_class_mtx_spin },
638#endif
639	/*
640	 * leaf locks
641	 */
642	{ "intrcnt", &lock_class_mtx_spin },
643	{ "icu", &lock_class_mtx_spin },
644#if defined(SMP) && defined(__sparc64__)
645	{ "ipi", &lock_class_mtx_spin },
646#endif
647#ifdef __i386__
648	{ "allpmaps", &lock_class_mtx_spin },
649	{ "descriptor tables", &lock_class_mtx_spin },
650#endif
651	{ "clk", &lock_class_mtx_spin },
652	{ "cpuset", &lock_class_mtx_spin },
653	{ "mprof lock", &lock_class_mtx_spin },
654	{ "zombie lock", &lock_class_mtx_spin },
655	{ "ALD Queue", &lock_class_mtx_spin },
656#ifdef __ia64__
657	{ "MCA spin lock", &lock_class_mtx_spin },
658#endif
659#if defined(__i386__) || defined(__amd64__)
660	{ "pcicfg", &lock_class_mtx_spin },
661	{ "NDIS thread lock", &lock_class_mtx_spin },
662#endif
663	{ "tw_osl_io_lock", &lock_class_mtx_spin },
664	{ "tw_osl_q_lock", &lock_class_mtx_spin },
665	{ "tw_cl_io_lock", &lock_class_mtx_spin },
666	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
667	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
668#ifdef	HWPMC_HOOKS
669	{ "pmc-leaf", &lock_class_mtx_spin },
670#endif
671	{ "blocked lock", &lock_class_mtx_spin },
672	{ NULL, NULL },
673	{ NULL, NULL }
674};
675
676#ifdef BLESSING
677/*
678 * Pairs of locks which have been blessed
679 * Don't complain about order problems with blessed locks
680 */
681static struct witness_blessed blessed_list[] = {
682};
683static int blessed_count =
684	sizeof(blessed_list) / sizeof(struct witness_blessed);
685#endif
686
687/*
688 * This global is set to 0 once it becomes safe to use the witness code.
689 */
690static int witness_cold = 1;
691
692/*
693 * This global is set to 1 once the static lock orders have been enrolled
694 * so that a warning can be issued for any spin locks enrolled later.
695 */
696static int witness_spin_warn = 0;
697
698/*
699 * The WITNESS-enabled diagnostic code.  Note that the witness code does
700 * assume that the early boot is single-threaded at least until after this
701 * routine is completed.
702 */
703static void
704witness_initialize(void *dummy __unused)
705{
706	struct lock_object *lock;
707	struct witness_order_list_entry *order;
708	struct witness *w, *w1;
709	int i;
710
711	MALLOC(w_data, struct witness *,
712	    sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
713	    M_NOWAIT | M_ZERO);
714
715	/*
716	 * We have to release Giant before initializing its witness
717	 * structure so that WITNESS doesn't get confused.
718	 */
719	mtx_unlock(&Giant);
720	mtx_assert(&Giant, MA_NOTOWNED);
721
722	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
723	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
724	    MTX_NOWITNESS | MTX_NOPROFILE);
725	for (i = WITNESS_COUNT - 1; i >= 0; i--) {
726		w = &w_data[i];
727		memset(w, 0, sizeof(*w));
728		w_data[i].w_index = i;	/* Witness index never changes. */
729		witness_free(w);
730	}
731	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
732	    ("%s: Invalid list of free witness objects", __func__));
733
734	/* Witness with index 0 is not used to aid in debugging. */
735	STAILQ_REMOVE_HEAD(&w_free, w_list);
736	w_free_cnt--;
737
738	memset(w_rmatrix, 0,
739	    (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
740
741	for (i = 0; i < LOCK_CHILDCOUNT; i++)
742		witness_lock_list_free(&w_locklistdata[i]);
743	witness_init_hash_tables();
744
745	/* First add in all the specified order lists. */
746	for (order = order_lists; order->w_name != NULL; order++) {
747		w = enroll(order->w_name, order->w_class);
748		if (w == NULL)
749			continue;
750		w->w_file = "order list";
751		for (order++; order->w_name != NULL; order++) {
752			w1 = enroll(order->w_name, order->w_class);
753			if (w1 == NULL)
754				continue;
755			w1->w_file = "order list";
756			itismychild(w, w1);
757			w = w1;
758		}
759	}
760	witness_spin_warn = 1;
761
762	/* Iterate through all locks and add them to witness. */
763	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
764		lock = pending_locks[i].wh_lock;
765		KASSERT(lock->lo_flags & LO_WITNESS,
766		    ("%s: lock %s is on pending list but not LO_WITNESS",
767		    __func__, lock->lo_name));
768		lock->lo_witness = enroll(pending_locks[i].wh_type,
769		    LOCK_CLASS(lock));
770	}
771
772	/* Mark the witness code as being ready for use. */
773	witness_cold = 0;
774
775	mtx_lock(&Giant);
776}
777SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
778    NULL);
779
780void
781witness_init(struct lock_object *lock, const char *type)
782{
783	struct lock_class *class;
784
785	/* Various sanity checks. */
786	class = LOCK_CLASS(lock);
787	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
788	    (class->lc_flags & LC_RECURSABLE) == 0)
789		panic("%s: lock (%s) %s can not be recursable", __func__,
790		    class->lc_name, lock->lo_name);
791	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
792	    (class->lc_flags & LC_SLEEPABLE) == 0)
793		panic("%s: lock (%s) %s can not be sleepable", __func__,
794		    class->lc_name, lock->lo_name);
795	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
796	    (class->lc_flags & LC_UPGRADABLE) == 0)
797		panic("%s: lock (%s) %s can not be upgradable", __func__,
798		    class->lc_name, lock->lo_name);
799
800	/*
801	 * If we shouldn't watch this lock, then just clear lo_witness.
802	 * Otherwise, if witness_cold is set, then it is too early to
803	 * enroll this lock, so defer it to witness_initialize() by adding
804	 * it to the pending_locks list.  If it is not too early, then enroll
805	 * the lock now.
806	 */
807	if (witness_watch < 1 || panicstr != NULL ||
808	    (lock->lo_flags & LO_WITNESS) == 0)
809		lock->lo_witness = NULL;
810	else if (witness_cold) {
811		pending_locks[pending_cnt].wh_lock = lock;
812		pending_locks[pending_cnt++].wh_type = type;
813		if (pending_cnt > WITNESS_PENDLIST)
814			panic("%s: pending locks list is too small, bump it\n",
815			    __func__);
816	} else
817		lock->lo_witness = enroll(type, class);
818}
819
820void
821witness_destroy(struct lock_object *lock)
822{
823	struct lock_class *class;
824	struct witness *w;
825
826	class = LOCK_CLASS(lock);
827
828	if (witness_cold)
829		panic("lock (%s) %s destroyed while witness_cold",
830		    class->lc_name, lock->lo_name);
831
832	/* XXX: need to verify that no one holds the lock */
833	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
834		return;
835	w = lock->lo_witness;
836
837	mtx_lock_spin(&w_mtx);
838	MPASS(w->w_refcount > 0);
839	w->w_refcount--;
840
841	if (w->w_refcount == 0)
842		depart(w);
843	mtx_unlock_spin(&w_mtx);
844}
845
846#ifdef DDB
847static void
848witness_ddb_compute_levels(void)
849{
850	struct witness *w;
851
852	/*
853	 * First clear all levels.
854	 */
855	STAILQ_FOREACH(w, &w_all, w_list)
856		w->w_ddb_level = -1;
857
858	/*
859	 * Look for locks with no parents and level all their descendants.
860	 */
861	STAILQ_FOREACH(w, &w_all, w_list) {
862
863		/* If the witness has ancestors (is not a root), skip it. */
864		if (w->w_num_ancestors > 0)
865			continue;
866		witness_ddb_level_descendants(w, 0);
867	}
868}
869
870static void
871witness_ddb_level_descendants(struct witness *w, int l)
872{
873	int i;
874
875	if (w->w_ddb_level >= l)
876		return;
877
878	w->w_ddb_level = l;
879	l++;
880
881	for (i = 1; i <= w_max_used_index; i++) {
882		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
883			witness_ddb_level_descendants(&w_data[i], l);
884	}
885}
886
887static void
888witness_ddb_display_descendants(void(*prnt)(const char *fmt, ...),
889    struct witness *w, int indent)
890{
891	int i;
892
893 	for (i = 0; i < indent; i++)
894 		prnt(" ");
895	prnt("%s (type: %s, depth: %d, active refs: %d)",
896	     w->w_name, w->w_class->lc_name,
897	     w->w_ddb_level, w->w_refcount);
898 	if (w->w_displayed) {
899 		prnt(" -- (already displayed)\n");
900 		return;
901 	}
902 	w->w_displayed = 1;
903	if (w->w_file != NULL && w->w_line != 0)
904		prnt(" -- last acquired @ %s:%d\n", w->w_file,
905		    w->w_line);
906	else
907		prnt(" -- never acquired\n");
908	indent++;
909	WITNESS_INDEX_ASSERT(w->w_index);
910	for (i = 1; i <= w_max_used_index; i++) {
911		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
912			witness_ddb_display_descendants(prnt, &w_data[i],
913			    indent);
914	}
915}
916
917static void
918witness_ddb_display_list(void(*prnt)(const char *fmt, ...),
919    struct witness_list *list)
920{
921	struct witness *w;
922
923	STAILQ_FOREACH(w, list, w_typelist) {
924		if (w->w_file == NULL || w->w_ddb_level > 0)
925			continue;
926
927		/* This lock has no anscestors - display its descendants. */
928		witness_ddb_display_descendants(prnt, w, 0);
929	}
930}
931
932static void
933witness_ddb_display(void(*prnt)(const char *fmt, ...))
934{
935	struct witness *w;
936
937	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
938	witness_ddb_compute_levels();
939
940	/* Clear all the displayed flags. */
941	STAILQ_FOREACH(w, &w_all, w_list)
942		w->w_displayed = 0;
943
944	/*
945	 * First, handle sleep locks which have been acquired at least
946	 * once.
947	 */
948	prnt("Sleep locks:\n");
949	witness_ddb_display_list(prnt, &w_sleep);
950
951	/*
952	 * Now do spin locks which have been acquired at least once.
953	 */
954	prnt("\nSpin locks:\n");
955	witness_ddb_display_list(prnt, &w_spin);
956
957	/*
958	 * Finally, any locks which have not been acquired yet.
959	 */
960	prnt("\nLocks which were never acquired:\n");
961	STAILQ_FOREACH(w, &w_all, w_list) {
962		if (w->w_file != NULL || w->w_refcount == 0)
963			continue;
964		prnt("%s (type: %s, depth: %d)\n", w->w_name,
965		    w->w_class->lc_name, w->w_ddb_level);
966	}
967}
968#endif /* DDB */
969
970/* Trim useless garbage from filenames. */
971static const char *
972fixup_filename(const char *file)
973{
974
975	if (file == NULL)
976		return (NULL);
977	while (strncmp(file, "../", 3) == 0)
978		file += 3;
979	return (file);
980}
981
982int
983witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
984{
985
986	if (witness_watch == -1 || panicstr != NULL)
987		return (0);
988
989	/* Require locks that witness knows about. */
990	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
991	    lock2->lo_witness == NULL)
992		return (EINVAL);
993
994	mtx_assert(&w_mtx, MA_NOTOWNED);
995	mtx_lock_spin(&w_mtx);
996
997	/*
998	 * If we already have either an explicit or implied lock order that
999	 * is the other way around, then return an error.
1000	 */
1001	if (witness_watch &&
1002	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1003		mtx_unlock_spin(&w_mtx);
1004		return (EDOOFUS);
1005	}
1006
1007	/* Try to add the new order. */
1008	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1009	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1010	itismychild(lock1->lo_witness, lock2->lo_witness);
1011	mtx_unlock_spin(&w_mtx);
1012	return (0);
1013}
1014
1015void
1016witness_checkorder(struct lock_object *lock, int flags, const char *file,
1017    int line, struct lock_object *interlock)
1018{
1019	struct lock_list_entry *lock_list, *lle;
1020	struct lock_instance *lock1, *lock2, *plock;
1021	struct lock_class *class;
1022	struct witness *w, *w1;
1023	struct thread *td;
1024	int i, j;
1025
1026	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1027	    panicstr != NULL)
1028		return;
1029
1030	w = lock->lo_witness;
1031	class = LOCK_CLASS(lock);
1032	td = curthread;
1033	file = fixup_filename(file);
1034
1035	if (class->lc_flags & LC_SLEEPLOCK) {
1036
1037		/*
1038		 * Since spin locks include a critical section, this check
1039		 * implicitly enforces a lock order of all sleep locks before
1040		 * all spin locks.
1041		 */
1042		if (td->td_critnest != 0 && !kdb_active)
1043			panic("blockable sleep lock (%s) %s @ %s:%d",
1044			    class->lc_name, lock->lo_name, file, line);
1045
1046		/*
1047		 * If this is the first lock acquired then just return as
1048		 * no order checking is needed.
1049		 */
1050		lock_list = td->td_sleeplocks;
1051		if (lock_list == NULL || lock_list->ll_count == 0)
1052			return;
1053	} else {
1054
1055		/*
1056		 * If this is the first lock, just return as no order
1057		 * checking is needed.  Avoid problems with thread
1058		 * migration pinning the thread while checking if
1059		 * spinlocks are held.  If at least one spinlock is held
1060		 * the thread is in a safe path and it is allowed to
1061		 * unpin it.
1062		 */
1063		sched_pin();
1064		lock_list = PCPU_GET(spinlocks);
1065		if (lock_list == NULL || lock_list->ll_count == 0) {
1066			sched_unpin();
1067			return;
1068		}
1069		sched_unpin();
1070	}
1071
1072	/*
1073	 * Check to see if we are recursing on a lock we already own.  If
1074	 * so, make sure that we don't mismatch exclusive and shared lock
1075	 * acquires.
1076	 */
1077	lock1 = find_instance(lock_list, lock);
1078	if (lock1 != NULL) {
1079		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1080		    (flags & LOP_EXCLUSIVE) == 0) {
1081			printf("shared lock of (%s) %s @ %s:%d\n",
1082			    class->lc_name, lock->lo_name, file, line);
1083			printf("while exclusively locked from %s:%d\n",
1084			    lock1->li_file, lock1->li_line);
1085			panic("share->excl");
1086		}
1087		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1088		    (flags & LOP_EXCLUSIVE) != 0) {
1089			printf("exclusive lock of (%s) %s @ %s:%d\n",
1090			    class->lc_name, lock->lo_name, file, line);
1091			printf("while share locked from %s:%d\n",
1092			    lock1->li_file, lock1->li_line);
1093			panic("excl->share");
1094		}
1095		return;
1096	}
1097
1098	/*
1099	 * Find the previously acquired lock, but ignore interlocks.
1100	 */
1101	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1102	if (interlock != NULL && plock->li_lock == interlock) {
1103		if (lock_list->ll_count > 1)
1104			plock =
1105			    &lock_list->ll_children[lock_list->ll_count - 2];
1106		else {
1107			lle = lock_list->ll_next;
1108
1109			/*
1110			 * The interlock is the only lock we hold, so
1111			 * simply return.
1112			 */
1113			if (lle == NULL)
1114				return;
1115			plock = &lle->ll_children[lle->ll_count - 1];
1116		}
1117	}
1118
1119	/*
1120	 * Try to perform most checks without a lock.  If this succeeds we
1121	 * can skip acquiring the lock and return success.
1122	 */
1123	w1 = plock->li_lock->lo_witness;
1124	if (witness_lock_order_check(w1, w))
1125		return;
1126
1127	/*
1128	 * Check for duplicate locks of the same type.  Note that we only
1129	 * have to check for this on the last lock we just acquired.  Any
1130	 * other cases will be caught as lock order violations.
1131	 */
1132	mtx_lock_spin(&w_mtx);
1133	witness_lock_order_add(w1, w);
1134	if (w1 == w) {
1135		i = w->w_index;
1136		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1137		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1138		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1139			w->w_reversed = 1;
1140			mtx_unlock_spin(&w_mtx);
1141			printf(
1142			    "acquiring duplicate lock of same type: \"%s\"\n",
1143			    w->w_name);
1144			printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1145			       plock->li_file, plock->li_line);
1146			printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
1147			witness_debugger(1);
1148		    } else
1149			    mtx_unlock_spin(&w_mtx);
1150		return;
1151	}
1152	mtx_assert(&w_mtx, MA_OWNED);
1153
1154	/*
1155	 * If we know that the the lock we are acquiring comes after
1156	 * the lock we most recently acquired in the lock order tree,
1157	 * then there is no need for any further checks.
1158	 */
1159	if (isitmychild(w1, w))
1160		goto out;
1161
1162	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1163		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1164
1165			MPASS(j < WITNESS_COUNT);
1166			lock1 = &lle->ll_children[i];
1167
1168			/*
1169			 * Ignore the interlock the first time we see it.
1170			 */
1171			if (interlock != NULL && interlock == lock1->li_lock) {
1172				interlock = NULL;
1173				continue;
1174			}
1175
1176			/*
1177			 * If this lock doesn't undergo witness checking,
1178			 * then skip it.
1179			 */
1180			w1 = lock1->li_lock->lo_witness;
1181			if (w1 == NULL) {
1182				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1183				    ("lock missing witness structure"));
1184				continue;
1185			}
1186
1187			/*
1188			 * If we are locking Giant and this is a sleepable
1189			 * lock, then skip it.
1190			 */
1191			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1192			    lock == &Giant.lock_object)
1193				continue;
1194
1195			/*
1196			 * If we are locking a sleepable lock and this lock
1197			 * is Giant, then skip it.
1198			 */
1199			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1200			    lock1->li_lock == &Giant.lock_object)
1201				continue;
1202
1203			/*
1204			 * If we are locking a sleepable lock and this lock
1205			 * isn't sleepable, we want to treat it as a lock
1206			 * order violation to enfore a general lock order of
1207			 * sleepable locks before non-sleepable locks.
1208			 */
1209			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1210			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1211				goto reversal;
1212
1213			/*
1214			 * If we are locking Giant and this is a non-sleepable
1215			 * lock, then treat it as a reversal.
1216			 */
1217			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1218			    lock == &Giant.lock_object)
1219				goto reversal;
1220
1221			/*
1222			 * Check the lock order hierarchy for a reveresal.
1223			 */
1224			if (!isitmydescendant(w, w1))
1225				continue;
1226		reversal:
1227
1228			/*
1229			 * We have a lock order violation, check to see if it
1230			 * is allowed or has already been yelled about.
1231			 */
1232#ifdef BLESSING
1233
1234			/*
1235			 * If the lock order is blessed, just bail.  We don't
1236			 * look for other lock order violations though, which
1237			 * may be a bug.
1238			 */
1239			if (blessed(w, w1))
1240				goto out;
1241#endif
1242
1243			/* Bail if this violation is known */
1244			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1245				goto out;
1246
1247			/* Record this as a violation */
1248			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1249			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1250			w->w_reversed = w1->w_reversed = 1;
1251			witness_increment_graph_generation();
1252			mtx_unlock_spin(&w_mtx);
1253
1254			/*
1255			 * Ok, yell about it.
1256			 */
1257			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1258			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1259				printf(
1260		"lock order reversal: (sleepable after non-sleepable)\n");
1261			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1262			    && lock == &Giant.lock_object)
1263				printf(
1264		"lock order reversal: (Giant after non-sleepable)\n");
1265			else
1266				printf("lock order reversal:\n");
1267
1268			/*
1269			 * Try to locate an earlier lock with
1270			 * witness w in our list.
1271			 */
1272			do {
1273				lock2 = &lle->ll_children[i];
1274				MPASS(lock2->li_lock != NULL);
1275				if (lock2->li_lock->lo_witness == w)
1276					break;
1277				if (i == 0 && lle->ll_next != NULL) {
1278					lle = lle->ll_next;
1279					i = lle->ll_count - 1;
1280					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1281				} else
1282					i--;
1283			} while (i >= 0);
1284			if (i < 0) {
1285				printf(" 1st %p %s (%s) @ %s:%d\n",
1286				    lock1->li_lock, lock1->li_lock->lo_name,
1287				    w1->w_name, lock1->li_file, lock1->li_line);
1288				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1289				    lock->lo_name, w->w_name, file, line);
1290			} else {
1291				printf(" 1st %p %s (%s) @ %s:%d\n",
1292				    lock2->li_lock, lock2->li_lock->lo_name,
1293				    lock2->li_lock->lo_witness->w_name,
1294				    lock2->li_file, lock2->li_line);
1295				printf(" 2nd %p %s (%s) @ %s:%d\n",
1296				    lock1->li_lock, lock1->li_lock->lo_name,
1297				    w1->w_name, lock1->li_file, lock1->li_line);
1298				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1299				    lock->lo_name, w->w_name, file, line);
1300			}
1301			witness_debugger(1);
1302			return;
1303		}
1304	}
1305
1306	/*
1307	 * If requested, build a new lock order.  However, don't build a new
1308	 * relationship between a sleepable lock and Giant if it is in the
1309	 * wrong direction.  The correct lock order is that sleepable locks
1310	 * always come before Giant.
1311	 */
1312	if (flags & LOP_NEWORDER &&
1313	    !(plock->li_lock == &Giant.lock_object &&
1314	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1315		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1316		    w->w_name, plock->li_lock->lo_witness->w_name);
1317		itismychild(plock->li_lock->lo_witness, w);
1318	}
1319out:
1320	mtx_unlock_spin(&w_mtx);
1321}
1322
1323void
1324witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1325{
1326	struct lock_list_entry **lock_list, *lle;
1327	struct lock_instance *instance;
1328	struct witness *w;
1329	struct thread *td;
1330
1331	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1332	    panicstr != NULL)
1333		return;
1334	w = lock->lo_witness;
1335	td = curthread;
1336	file = fixup_filename(file);
1337
1338	/* Determine lock list for this lock. */
1339	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1340		lock_list = &td->td_sleeplocks;
1341	else
1342		lock_list = PCPU_PTR(spinlocks);
1343
1344	/* Check to see if we are recursing on a lock we already own. */
1345	instance = find_instance(*lock_list, lock);
1346	if (instance != NULL) {
1347		instance->li_flags++;
1348		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1349		    td->td_proc->p_pid, lock->lo_name,
1350		    instance->li_flags & LI_RECURSEMASK);
1351		instance->li_file = file;
1352		instance->li_line = line;
1353		return;
1354	}
1355
1356	/* Update per-witness last file and line acquire. */
1357	w->w_file = file;
1358	w->w_line = line;
1359
1360	/* Find the next open lock instance in the list and fill it. */
1361	lle = *lock_list;
1362	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1363		lle = witness_lock_list_get();
1364		if (lle == NULL)
1365			return;
1366		lle->ll_next = *lock_list;
1367		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1368		    td->td_proc->p_pid, lle);
1369		*lock_list = lle;
1370	}
1371	instance = &lle->ll_children[lle->ll_count++];
1372	instance->li_lock = lock;
1373	instance->li_line = line;
1374	instance->li_file = file;
1375	if ((flags & LOP_EXCLUSIVE) != 0)
1376		instance->li_flags = LI_EXCLUSIVE;
1377	else
1378		instance->li_flags = 0;
1379	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1380	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1381}
1382
1383void
1384witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1385{
1386	struct lock_instance *instance;
1387	struct lock_class *class;
1388
1389	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1390	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1391		return;
1392	class = LOCK_CLASS(lock);
1393	file = fixup_filename(file);
1394	if (witness_watch) {
1395		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1396			panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1397			    class->lc_name, lock->lo_name, file, line);
1398		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1399			panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1400			    class->lc_name, lock->lo_name, file, line);
1401	}
1402	instance = find_instance(curthread->td_sleeplocks, lock);
1403	if (instance == NULL)
1404		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1405		    class->lc_name, lock->lo_name, file, line);
1406	if (witness_watch) {
1407		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1408			panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1409			    class->lc_name, lock->lo_name, file, line);
1410		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1411			panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1412			    class->lc_name, lock->lo_name,
1413			    instance->li_flags & LI_RECURSEMASK, file, line);
1414	}
1415	instance->li_flags |= LI_EXCLUSIVE;
1416}
1417
1418void
1419witness_downgrade(struct lock_object *lock, int flags, const char *file,
1420    int line)
1421{
1422	struct lock_instance *instance;
1423	struct lock_class *class;
1424
1425	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1426	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1427		return;
1428	class = LOCK_CLASS(lock);
1429	file = fixup_filename(file);
1430	if (witness_watch) {
1431		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1432		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1433			    class->lc_name, lock->lo_name, file, line);
1434		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1435			panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1436			    class->lc_name, lock->lo_name, file, line);
1437	}
1438	instance = find_instance(curthread->td_sleeplocks, lock);
1439	if (instance == NULL)
1440		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1441		    class->lc_name, lock->lo_name, file, line);
1442	if (witness_watch) {
1443		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1444			panic("downgrade of shared lock (%s) %s @ %s:%d",
1445			    class->lc_name, lock->lo_name, file, line);
1446		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1447			panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1448			    class->lc_name, lock->lo_name,
1449			    instance->li_flags & LI_RECURSEMASK, file, line);
1450	}
1451	instance->li_flags &= ~LI_EXCLUSIVE;
1452}
1453
1454void
1455witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1456{
1457	struct lock_list_entry **lock_list, *lle;
1458	struct lock_instance *instance;
1459	struct lock_class *class;
1460	struct thread *td;
1461	register_t s;
1462	int i, j;
1463
1464	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1465		return;
1466	td = curthread;
1467	class = LOCK_CLASS(lock);
1468	file = fixup_filename(file);
1469
1470	/* Find lock instance associated with this lock. */
1471	if (class->lc_flags & LC_SLEEPLOCK)
1472		lock_list = &td->td_sleeplocks;
1473	else
1474		lock_list = PCPU_PTR(spinlocks);
1475	lle = *lock_list;
1476	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1477		for (i = 0; i < (*lock_list)->ll_count; i++) {
1478			instance = &(*lock_list)->ll_children[i];
1479			if (instance->li_lock == lock)
1480				goto found;
1481		}
1482
1483	/*
1484	 * When disabling WITNESS through witness_watch we could end up in
1485	 * having registered locks in the td_sleeplocks queue.
1486	 * We have to make sure we flush these queues, so just search for
1487	 * eventual register locks and remove them.
1488	 */
1489	if (witness_watch > 0)
1490		panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1491		    lock->lo_name, file, line);
1492	else
1493		return;
1494found:
1495
1496	/* First, check for shared/exclusive mismatches. */
1497	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1498	    (flags & LOP_EXCLUSIVE) == 0) {
1499		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1500		    lock->lo_name, file, line);
1501		printf("while exclusively locked from %s:%d\n",
1502		    instance->li_file, instance->li_line);
1503		panic("excl->ushare");
1504	}
1505	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1506	    (flags & LOP_EXCLUSIVE) != 0) {
1507		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1508		    lock->lo_name, file, line);
1509		printf("while share locked from %s:%d\n", instance->li_file,
1510		    instance->li_line);
1511		panic("share->uexcl");
1512	}
1513
1514	/* If we are recursed, unrecurse. */
1515	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1516		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1517		    td->td_proc->p_pid, instance->li_lock->lo_name,
1518		    instance->li_flags);
1519		instance->li_flags--;
1520		return;
1521	}
1522
1523	/* Otherwise, remove this item from the list. */
1524	s = intr_disable();
1525	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1526	    td->td_proc->p_pid, instance->li_lock->lo_name,
1527	    (*lock_list)->ll_count - 1);
1528	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1529		(*lock_list)->ll_children[j] =
1530		    (*lock_list)->ll_children[j + 1];
1531	(*lock_list)->ll_count--;
1532	intr_restore(s);
1533
1534	/*
1535	 * In order to reduce contention on w_mtx, we want to keep always an
1536	 * head object into lists so that frequent allocation from the
1537	 * free witness pool (and subsequent locking) is avoided.
1538	 * In order to maintain the current code simple, when the head
1539	 * object is totally unloaded it means also that we do not have
1540	 * further objects in the list, so the list ownership needs to be
1541	 * hand over to another object if the current head needs to be freed.
1542	 */
1543	if ((*lock_list)->ll_count == 0) {
1544		if (*lock_list == lle) {
1545			if (lle->ll_next == NULL)
1546				return;
1547		} else
1548			lle = *lock_list;
1549		*lock_list = lle->ll_next;
1550		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1551		    td->td_proc->p_pid, lle);
1552		witness_lock_list_free(lle);
1553	}
1554}
1555
1556void
1557witness_thread_exit(struct thread *td)
1558{
1559	struct lock_list_entry *lle;
1560	int i, n;
1561
1562	lle = td->td_sleeplocks;
1563	if (lle == NULL || panicstr != NULL)
1564		return;
1565	if (lle->ll_count != 0) {
1566		for (n = 0; lle != NULL; lle = lle->ll_next)
1567			for (i = lle->ll_count - 1; i >= 0; i--) {
1568				if (n == 0)
1569		printf("Thread %p exiting with the following locks held:\n",
1570					    td);
1571				n++;
1572				witness_list_lock(&lle->ll_children[i]);
1573
1574			}
1575		panic("Thread %p cannot exit while holding sleeplocks\n", td);
1576	}
1577	witness_lock_list_free(lle);
1578}
1579
1580/*
1581 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1582 * exempt Giant and sleepable locks from the checks as well.  If any
1583 * non-exempt locks are held, then a supplied message is printed to the
1584 * console along with a list of the offending locks.  If indicated in the
1585 * flags then a failure results in a panic as well.
1586 */
1587int
1588witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1589{
1590	struct lock_list_entry *lock_list, *lle;
1591	struct lock_instance *lock1;
1592	struct thread *td;
1593	va_list ap;
1594	int i, n;
1595
1596	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1597		return (0);
1598	n = 0;
1599	td = curthread;
1600	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1601		for (i = lle->ll_count - 1; i >= 0; i--) {
1602			lock1 = &lle->ll_children[i];
1603			if (lock1->li_lock == lock)
1604				continue;
1605			if (flags & WARN_GIANTOK &&
1606			    lock1->li_lock == &Giant.lock_object)
1607				continue;
1608			if (flags & WARN_SLEEPOK &&
1609			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1610				continue;
1611			if (n == 0) {
1612				va_start(ap, fmt);
1613				vprintf(fmt, ap);
1614				va_end(ap);
1615				printf(" with the following");
1616				if (flags & WARN_SLEEPOK)
1617					printf(" non-sleepable");
1618				printf(" locks held:\n");
1619			}
1620			n++;
1621			witness_list_lock(lock1);
1622		}
1623
1624	/*
1625	 * Pin the thread in order to avoid problems with thread migration.
1626	 * Once that all verifies are passed about spinlocks ownership,
1627	 * the thread is in a safe path and it can be unpinned.
1628	 */
1629	sched_pin();
1630	lock_list = PCPU_GET(spinlocks);
1631	if (lock_list != NULL) {
1632
1633		/* Empty list? */
1634		if (lock_list->ll_count == 0) {
1635			sched_unpin();
1636			return (n);
1637		}
1638		sched_unpin();
1639
1640		/*
1641		 * We should only have one spinlock and as long as
1642		 * the flags cannot match for this locks class,
1643		 * check if the first spinlock is the one curthread
1644		 * should hold.
1645		 */
1646		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1647		if (lock1->li_lock == lock)
1648			return (n);
1649
1650		if (n == 0) {
1651			va_start(ap, fmt);
1652			vprintf(fmt, ap);
1653			va_end(ap);
1654			printf(" with the following");
1655			if (flags & WARN_SLEEPOK)
1656				printf(" non-sleepable");
1657			printf(" locks held:\n");
1658		}
1659		n += witness_list_locks(&lock_list);
1660	} else
1661		sched_unpin();
1662	if (flags & WARN_PANIC && n)
1663		panic("%s", __func__);
1664	else
1665		witness_debugger(n);
1666	return (n);
1667}
1668
1669const char *
1670witness_file(struct lock_object *lock)
1671{
1672	struct witness *w;
1673
1674	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1675		return ("?");
1676	w = lock->lo_witness;
1677	return (w->w_file);
1678}
1679
1680int
1681witness_line(struct lock_object *lock)
1682{
1683	struct witness *w;
1684
1685	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1686		return (0);
1687	w = lock->lo_witness;
1688	return (w->w_line);
1689}
1690
1691static struct witness *
1692enroll(const char *description, struct lock_class *lock_class)
1693{
1694	struct witness *w;
1695	struct witness_list *typelist;
1696
1697	MPASS(description != NULL);
1698
1699	if (witness_watch == -1 || panicstr != NULL)
1700		return (NULL);
1701	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1702		if (witness_skipspin)
1703			return (NULL);
1704		else
1705			typelist = &w_spin;
1706	} else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1707		typelist = &w_sleep;
1708	else
1709		panic("lock class %s is not sleep or spin",
1710		    lock_class->lc_name);
1711
1712	mtx_lock_spin(&w_mtx);
1713	w = witness_hash_get(description);
1714	if (w)
1715		goto found;
1716	if ((w = witness_get()) == NULL)
1717		return (NULL);
1718	MPASS(strlen(description) < MAX_W_NAME);
1719	strcpy(w->w_name, description);
1720	w->w_class = lock_class;
1721	w->w_refcount = 1;
1722	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1723	if (lock_class->lc_flags & LC_SPINLOCK) {
1724		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1725		w_spin_cnt++;
1726	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1727		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1728		w_sleep_cnt++;
1729	}
1730
1731	/* Insert new witness into the hash */
1732	witness_hash_put(w);
1733	witness_increment_graph_generation();
1734	mtx_unlock_spin(&w_mtx);
1735	return (w);
1736found:
1737	w->w_refcount++;
1738	mtx_unlock_spin(&w_mtx);
1739	if (lock_class != w->w_class)
1740		panic(
1741			"lock (%s) %s does not match earlier (%s) lock",
1742			description, lock_class->lc_name,
1743			w->w_class->lc_name);
1744	return (w);
1745}
1746
1747static void
1748depart(struct witness *w)
1749{
1750	struct witness_list *list;
1751
1752	MPASS(w->w_refcount == 0);
1753	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1754		list = &w_sleep;
1755		w_sleep_cnt--;
1756	} else {
1757		list = &w_spin;
1758		w_spin_cnt--;
1759	}
1760	/*
1761	 * Set file to NULL as it may point into a loadable module.
1762	 */
1763	w->w_file = NULL;
1764	w->w_line = 0;
1765	witness_increment_graph_generation();
1766}
1767
1768
1769static void
1770adopt(struct witness *parent, struct witness *child)
1771{
1772	int pi, ci, i, j;
1773
1774	if (witness_cold == 0)
1775		mtx_assert(&w_mtx, MA_OWNED);
1776
1777	/* If the relationship is already known, there's no work to be done. */
1778	if (isitmychild(parent, child))
1779		return;
1780
1781	/* When the structure of the graph changes, bump up the generation. */
1782	witness_increment_graph_generation();
1783
1784	/*
1785	 * The hard part ... create the direct relationship, then propagate all
1786	 * indirect relationships.
1787	 */
1788	pi = parent->w_index;
1789	ci = child->w_index;
1790	WITNESS_INDEX_ASSERT(pi);
1791	WITNESS_INDEX_ASSERT(ci);
1792	MPASS(pi != ci);
1793	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1794	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1795
1796	/*
1797	 * If parent was not already an ancestor of child,
1798	 * then we increment the descendant and ancestor counters.
1799	 */
1800	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1801		parent->w_num_descendants++;
1802		child->w_num_ancestors++;
1803	}
1804
1805	/*
1806	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1807	 * an ancestor of 'pi' during this loop.
1808	 */
1809	for (i = 1; i <= w_max_used_index; i++) {
1810		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1811		    (i != pi))
1812			continue;
1813
1814		/* Find each descendant of 'i' and mark it as a descendant. */
1815		for (j = 1; j <= w_max_used_index; j++) {
1816
1817			/*
1818			 * Skip children that are already marked as
1819			 * descendants of 'i'.
1820			 */
1821			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1822				continue;
1823
1824			/*
1825			 * We are only interested in descendants of 'ci'. Note
1826			 * that 'ci' itself is counted as a descendant of 'ci'.
1827			 */
1828			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1829			    (j != ci))
1830				continue;
1831			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1832			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1833			w_data[i].w_num_descendants++;
1834			w_data[j].w_num_ancestors++;
1835
1836			/*
1837			 * Make sure we aren't marking a node as both an
1838			 * ancestor and descendant. We should have caught
1839			 * this as a lock order reversal earlier.
1840			 */
1841			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1842			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1843				printf("witness rmatrix paradox! [%d][%d]=%d "
1844				    "both ancestor and descendant\n",
1845				    i, j, w_rmatrix[i][j]);
1846				kdb_backtrace();
1847				printf("Witness disabled.\n");
1848				witness_watch = -1;
1849			}
1850			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1851			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1852				printf("witness rmatrix paradox! [%d][%d]=%d "
1853				    "both ancestor and descendant\n",
1854				    j, i, w_rmatrix[j][i]);
1855				kdb_backtrace();
1856				printf("Witness disabled.\n");
1857				witness_watch = -1;
1858			}
1859		}
1860	}
1861}
1862
1863static void
1864itismychild(struct witness *parent, struct witness *child)
1865{
1866
1867	MPASS(child != NULL && parent != NULL);
1868	if (witness_cold == 0)
1869		mtx_assert(&w_mtx, MA_OWNED);
1870
1871	if (!witness_lock_type_equal(parent, child)) {
1872		if (witness_cold == 0)
1873			mtx_unlock_spin(&w_mtx);
1874		panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1875		    "the same lock type", __func__, parent->w_name,
1876		    parent->w_class->lc_name, child->w_name,
1877		    child->w_class->lc_name);
1878	}
1879	adopt(parent, child);
1880}
1881
1882/*
1883 * Generic code for the isitmy*() functions. The rmask parameter is the
1884 * expected relationship of w1 to w2.
1885 */
1886static int
1887_isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1888{
1889	unsigned char r1, r2;
1890	int i1, i2;
1891
1892	i1 = w1->w_index;
1893	i2 = w2->w_index;
1894	WITNESS_INDEX_ASSERT(i1);
1895	WITNESS_INDEX_ASSERT(i2);
1896	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1897	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1898
1899	/* The flags on one better be the inverse of the flags on the other */
1900	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1901		(WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1902		printf("%s: rmatrix mismatch between %s (index %d) and %s "
1903		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
1904		    "w_rmatrix[%d][%d] == %hhx\n",
1905		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1906		    i2, i1, r2);
1907		kdb_backtrace();
1908		printf("Witness disabled.\n");
1909		witness_watch = -1;
1910	}
1911	return (r1 & rmask);
1912}
1913
1914/*
1915 * Checks if @child is a direct child of @parent.
1916 */
1917static int
1918isitmychild(struct witness *parent, struct witness *child)
1919{
1920
1921	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1922}
1923
1924/*
1925 * Checks if @descendant is a direct or inderect descendant of @ancestor.
1926 */
1927static int
1928isitmydescendant(struct witness *ancestor, struct witness *descendant)
1929{
1930
1931	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1932	    __func__));
1933}
1934
1935#ifdef BLESSING
1936static int
1937blessed(struct witness *w1, struct witness *w2)
1938{
1939	int i;
1940	struct witness_blessed *b;
1941
1942	for (i = 0; i < blessed_count; i++) {
1943		b = &blessed_list[i];
1944		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1945			if (strcmp(w2->w_name, b->b_lock2) == 0)
1946				return (1);
1947			continue;
1948		}
1949		if (strcmp(w1->w_name, b->b_lock2) == 0)
1950			if (strcmp(w2->w_name, b->b_lock1) == 0)
1951				return (1);
1952	}
1953	return (0);
1954}
1955#endif
1956
1957static struct witness *
1958witness_get(void)
1959{
1960	struct witness *w;
1961	int index;
1962
1963	if (witness_cold == 0)
1964		mtx_assert(&w_mtx, MA_OWNED);
1965
1966	if (witness_watch == -1) {
1967		mtx_unlock_spin(&w_mtx);
1968		return (NULL);
1969	}
1970	if (STAILQ_EMPTY(&w_free)) {
1971		witness_watch = -1;
1972		mtx_unlock_spin(&w_mtx);
1973		printf("WITNESS: unable to allocate a new witness object\n");
1974		return (NULL);
1975	}
1976	w = STAILQ_FIRST(&w_free);
1977	STAILQ_REMOVE_HEAD(&w_free, w_list);
1978	w_free_cnt--;
1979	index = w->w_index;
1980	MPASS(index > 0 && index == w_max_used_index+1 &&
1981	    index < WITNESS_COUNT);
1982	bzero(w, sizeof(*w));
1983	w->w_index = index;
1984	if (index > w_max_used_index)
1985		w_max_used_index = index;
1986	return (w);
1987}
1988
1989static void
1990witness_free(struct witness *w)
1991{
1992
1993	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1994	w_free_cnt++;
1995}
1996
1997static struct lock_list_entry *
1998witness_lock_list_get(void)
1999{
2000	struct lock_list_entry *lle;
2001
2002	if (witness_watch == -1)
2003		return (NULL);
2004	mtx_lock_spin(&w_mtx);
2005	lle = w_lock_list_free;
2006	if (lle == NULL) {
2007		witness_watch = -1;
2008		mtx_unlock_spin(&w_mtx);
2009		printf("%s: witness exhausted\n", __func__);
2010		return (NULL);
2011	}
2012	w_lock_list_free = lle->ll_next;
2013	mtx_unlock_spin(&w_mtx);
2014	bzero(lle, sizeof(*lle));
2015	return (lle);
2016}
2017
2018static void
2019witness_lock_list_free(struct lock_list_entry *lle)
2020{
2021
2022	mtx_lock_spin(&w_mtx);
2023	lle->ll_next = w_lock_list_free;
2024	w_lock_list_free = lle;
2025	mtx_unlock_spin(&w_mtx);
2026}
2027
2028static struct lock_instance *
2029find_instance(struct lock_list_entry *list, struct lock_object *lock)
2030{
2031	struct lock_list_entry *lle;
2032	struct lock_instance *instance;
2033	int i;
2034
2035	for (lle = list; lle != NULL; lle = lle->ll_next)
2036		for (i = lle->ll_count - 1; i >= 0; i--) {
2037			instance = &lle->ll_children[i];
2038			if (instance->li_lock == lock)
2039				return (instance);
2040		}
2041	return (NULL);
2042}
2043
2044static void
2045witness_list_lock(struct lock_instance *instance)
2046{
2047	struct lock_object *lock;
2048
2049	lock = instance->li_lock;
2050	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2051	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2052	if (lock->lo_witness->w_name != lock->lo_name)
2053		printf(" (%s)", lock->lo_witness->w_name);
2054	printf(" r = %d (%p) locked @ %s:%d\n",
2055	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
2056	    instance->li_line);
2057}
2058
2059#ifdef DDB
2060static int
2061witness_thread_has_locks(struct thread *td)
2062{
2063
2064	if (td->td_sleeplocks == NULL)
2065		return (0);
2066	return (td->td_sleeplocks->ll_count != 0);
2067}
2068
2069static int
2070witness_proc_has_locks(struct proc *p)
2071{
2072	struct thread *td;
2073
2074	FOREACH_THREAD_IN_PROC(p, td) {
2075		if (witness_thread_has_locks(td))
2076			return (1);
2077	}
2078	return (0);
2079}
2080#endif
2081
2082int
2083witness_list_locks(struct lock_list_entry **lock_list)
2084{
2085	struct lock_list_entry *lle;
2086	int i, nheld;
2087
2088	nheld = 0;
2089	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2090		for (i = lle->ll_count - 1; i >= 0; i--) {
2091			witness_list_lock(&lle->ll_children[i]);
2092			nheld++;
2093		}
2094	return (nheld);
2095}
2096
2097/*
2098 * This is a bit risky at best.  We call this function when we have timed
2099 * out acquiring a spin lock, and we assume that the other CPU is stuck
2100 * with this lock held.  So, we go groveling around in the other CPU's
2101 * per-cpu data to try to find the lock instance for this spin lock to
2102 * see when it was last acquired.
2103 */
2104void
2105witness_display_spinlock(struct lock_object *lock, struct thread *owner)
2106{
2107	struct lock_instance *instance;
2108	struct pcpu *pc;
2109
2110	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2111		return;
2112	pc = pcpu_find(owner->td_oncpu);
2113	instance = find_instance(pc->pc_spinlocks, lock);
2114	if (instance != NULL)
2115		witness_list_lock(instance);
2116}
2117
2118void
2119witness_save(struct lock_object *lock, const char **filep, int *linep)
2120{
2121	struct lock_list_entry *lock_list;
2122	struct lock_instance *instance;
2123	struct lock_class *class;
2124
2125	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2126	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2127		return;
2128	class = LOCK_CLASS(lock);
2129	if (class->lc_flags & LC_SLEEPLOCK)
2130		lock_list = curthread->td_sleeplocks;
2131	else {
2132		if (witness_skipspin)
2133			return;
2134		lock_list = PCPU_GET(spinlocks);
2135	}
2136	instance = find_instance(lock_list, lock);
2137	if (instance == NULL)
2138		panic("%s: lock (%s) %s not locked", __func__,
2139		    class->lc_name, lock->lo_name);
2140	*filep = instance->li_file;
2141	*linep = instance->li_line;
2142}
2143
2144void
2145witness_restore(struct lock_object *lock, const char *file, int line)
2146{
2147	struct lock_list_entry *lock_list;
2148	struct lock_instance *instance;
2149	struct lock_class *class;
2150
2151	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2152	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2153		return;
2154	class = LOCK_CLASS(lock);
2155	if (class->lc_flags & LC_SLEEPLOCK)
2156		lock_list = curthread->td_sleeplocks;
2157	else {
2158		if (witness_skipspin)
2159			return;
2160		lock_list = PCPU_GET(spinlocks);
2161	}
2162	instance = find_instance(lock_list, lock);
2163	if (instance == NULL)
2164		panic("%s: lock (%s) %s not locked", __func__,
2165		    class->lc_name, lock->lo_name);
2166	lock->lo_witness->w_file = file;
2167	lock->lo_witness->w_line = line;
2168	instance->li_file = file;
2169	instance->li_line = line;
2170}
2171
2172void
2173witness_assert(struct lock_object *lock, int flags, const char *file, int line)
2174{
2175#ifdef INVARIANT_SUPPORT
2176	struct lock_instance *instance;
2177	struct lock_class *class;
2178
2179	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2180		return;
2181	class = LOCK_CLASS(lock);
2182	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2183		instance = find_instance(curthread->td_sleeplocks, lock);
2184	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2185		instance = find_instance(PCPU_GET(spinlocks), lock);
2186	else {
2187		panic("Lock (%s) %s is not sleep or spin!",
2188		    class->lc_name, lock->lo_name);
2189	}
2190	file = fixup_filename(file);
2191	switch (flags) {
2192	case LA_UNLOCKED:
2193		if (instance != NULL)
2194			panic("Lock (%s) %s locked @ %s:%d.",
2195			    class->lc_name, lock->lo_name, file, line);
2196		break;
2197	case LA_LOCKED:
2198	case LA_LOCKED | LA_RECURSED:
2199	case LA_LOCKED | LA_NOTRECURSED:
2200	case LA_SLOCKED:
2201	case LA_SLOCKED | LA_RECURSED:
2202	case LA_SLOCKED | LA_NOTRECURSED:
2203	case LA_XLOCKED:
2204	case LA_XLOCKED | LA_RECURSED:
2205	case LA_XLOCKED | LA_NOTRECURSED:
2206		if (instance == NULL) {
2207			panic("Lock (%s) %s not locked @ %s:%d.",
2208			    class->lc_name, lock->lo_name, file, line);
2209			break;
2210		}
2211		if ((flags & LA_XLOCKED) != 0 &&
2212		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2213			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2214			    class->lc_name, lock->lo_name, file, line);
2215		if ((flags & LA_SLOCKED) != 0 &&
2216		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2217			panic("Lock (%s) %s exclusively locked @ %s:%d.",
2218			    class->lc_name, lock->lo_name, file, line);
2219		if ((flags & LA_RECURSED) != 0 &&
2220		    (instance->li_flags & LI_RECURSEMASK) == 0)
2221			panic("Lock (%s) %s not recursed @ %s:%d.",
2222			    class->lc_name, lock->lo_name, file, line);
2223		if ((flags & LA_NOTRECURSED) != 0 &&
2224		    (instance->li_flags & LI_RECURSEMASK) != 0)
2225			panic("Lock (%s) %s recursed @ %s:%d.",
2226			    class->lc_name, lock->lo_name, file, line);
2227		break;
2228	default:
2229		panic("Invalid lock assertion at %s:%d.", file, line);
2230
2231	}
2232#endif	/* INVARIANT_SUPPORT */
2233}
2234
2235#ifdef DDB
2236static void
2237witness_ddb_list(struct thread *td)
2238{
2239
2240	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2241	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2242
2243	if (witness_watch < 1)
2244		return;
2245
2246	witness_list_locks(&td->td_sleeplocks);
2247
2248	/*
2249	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2250	 * if td is currently executing on some other CPU and holds spin locks
2251	 * as we won't display those locks.  If we had a MI way of getting
2252	 * the per-cpu data for a given cpu then we could use
2253	 * td->td_oncpu to get the list of spinlocks for this thread
2254	 * and "fix" this.
2255	 *
2256	 * That still wouldn't really fix this unless we locked the scheduler
2257	 * lock or stopped the other CPU to make sure it wasn't changing the
2258	 * list out from under us.  It is probably best to just not try to
2259	 * handle threads on other CPU's for now.
2260	 */
2261	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2262		witness_list_locks(PCPU_PTR(spinlocks));
2263}
2264
2265DB_SHOW_COMMAND(locks, db_witness_list)
2266{
2267	struct thread *td;
2268
2269	if (have_addr)
2270		td = db_lookup_thread(addr, TRUE);
2271	else
2272		td = kdb_thread;
2273	witness_ddb_list(td);
2274}
2275
2276DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2277{
2278	struct thread *td;
2279	struct proc *p;
2280
2281	/*
2282	 * It would be nice to list only threads and processes that actually
2283	 * held sleep locks, but that information is currently not exported
2284	 * by WITNESS.
2285	 */
2286	FOREACH_PROC_IN_SYSTEM(p) {
2287		if (!witness_proc_has_locks(p))
2288			continue;
2289		FOREACH_THREAD_IN_PROC(p, td) {
2290			if (!witness_thread_has_locks(td))
2291				continue;
2292			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2293			    p->p_comm, td, td->td_tid);
2294			witness_ddb_list(td);
2295		}
2296	}
2297}
2298DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2299
2300DB_SHOW_COMMAND(witness, db_witness_display)
2301{
2302
2303	witness_ddb_display(db_printf);
2304}
2305#endif
2306
2307static int
2308sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2309{
2310	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2311	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2312	struct sbuf *sb;
2313	u_int w_rmatrix1, w_rmatrix2;
2314	int error, generation, i, j;
2315
2316	tmp_data1 = NULL;
2317	tmp_data2 = NULL;
2318	tmp_w1 = NULL;
2319	tmp_w2 = NULL;
2320	if (witness_watch < 1) {
2321		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2322		return (error);
2323	}
2324	if (witness_cold) {
2325		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2326		return (error);
2327	}
2328	error = 0;
2329	sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2330	if (sb == NULL)
2331		return (ENOMEM);
2332
2333	/* Allocate and init temporary storage space. */
2334	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2335	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2336	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2337	    M_WAITOK | M_ZERO);
2338	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2339	    M_WAITOK | M_ZERO);
2340	stack_zero(&tmp_data1->wlod_stack);
2341	stack_zero(&tmp_data2->wlod_stack);
2342
2343restart:
2344	mtx_lock_spin(&w_mtx);
2345	generation = w_generation;
2346	mtx_unlock_spin(&w_mtx);
2347	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2348	    w_lohash.wloh_count);
2349	for (i = 1; i < w_max_used_index; i++) {
2350		mtx_lock_spin(&w_mtx);
2351		if (generation != w_generation) {
2352			mtx_unlock_spin(&w_mtx);
2353
2354			/* The graph has changed, try again. */
2355			req->oldidx = 0;
2356			sbuf_clear(sb);
2357			goto restart;
2358		}
2359
2360		w1 = &w_data[i];
2361		if (w1->w_reversed == 0) {
2362			mtx_unlock_spin(&w_mtx);
2363			continue;
2364		}
2365
2366		/* Copy w1 locally so we can release the spin lock. */
2367		*tmp_w1 = *w1;
2368		mtx_unlock_spin(&w_mtx);
2369
2370		if (tmp_w1->w_reversed == 0)
2371			continue;
2372		for (j = 1; j < w_max_used_index; j++) {
2373			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2374				continue;
2375
2376			mtx_lock_spin(&w_mtx);
2377			if (generation != w_generation) {
2378				mtx_unlock_spin(&w_mtx);
2379
2380				/* The graph has changed, try again. */
2381				req->oldidx = 0;
2382				sbuf_clear(sb);
2383				goto restart;
2384			}
2385
2386			w2 = &w_data[j];
2387			data1 = witness_lock_order_get(w1, w2);
2388			data2 = witness_lock_order_get(w2, w1);
2389
2390			/*
2391			 * Copy information locally so we can release the
2392			 * spin lock.
2393			 */
2394			*tmp_w2 = *w2;
2395			w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2396			w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2397
2398			if (data1) {
2399				stack_zero(&tmp_data1->wlod_stack);
2400				stack_copy(&data1->wlod_stack,
2401				    &tmp_data1->wlod_stack);
2402			}
2403			if (data2 && data2 != data1) {
2404				stack_zero(&tmp_data2->wlod_stack);
2405				stack_copy(&data2->wlod_stack,
2406				    &tmp_data2->wlod_stack);
2407			}
2408			mtx_unlock_spin(&w_mtx);
2409
2410			sbuf_printf(sb,
2411	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2412			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2413			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2414#if 0
2415 			sbuf_printf(sb,
2416			"w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2417 			    tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2418 			    tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2419#endif
2420			if (data1) {
2421				sbuf_printf(sb,
2422			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2423				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2424				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2425				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2426				sbuf_printf(sb, "\n");
2427			}
2428			if (data2 && data2 != data1) {
2429				sbuf_printf(sb,
2430			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2431				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2432				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2433				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2434				sbuf_printf(sb, "\n");
2435			}
2436		}
2437	}
2438	mtx_lock_spin(&w_mtx);
2439	if (generation != w_generation) {
2440		mtx_unlock_spin(&w_mtx);
2441
2442		/*
2443		 * The graph changed while we were printing stack data,
2444		 * try again.
2445		 */
2446		req->oldidx = 0;
2447		sbuf_clear(sb);
2448		goto restart;
2449	}
2450	mtx_unlock_spin(&w_mtx);
2451
2452	/* Free temporary storage space. */
2453	free(tmp_data1, M_TEMP);
2454	free(tmp_data2, M_TEMP);
2455	free(tmp_w1, M_TEMP);
2456	free(tmp_w2, M_TEMP);
2457
2458	sbuf_finish(sb);
2459	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2460	sbuf_delete(sb);
2461
2462	return (error);
2463}
2464
2465static int
2466sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2467{
2468	struct witness *w;
2469	struct sbuf *sb;
2470	int error;
2471
2472	if (witness_watch < 1) {
2473		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2474		return (error);
2475	}
2476	if (witness_cold) {
2477		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2478		return (error);
2479	}
2480	error = 0;
2481	sb = sbuf_new(NULL, NULL, FULLGRAPH_SBUF_SIZE, SBUF_FIXEDLEN);
2482	if (sb == NULL)
2483		return (ENOMEM);
2484	sbuf_printf(sb, "\n");
2485
2486	mtx_lock_spin(&w_mtx);
2487	STAILQ_FOREACH(w, &w_all, w_list)
2488		w->w_displayed = 0;
2489	STAILQ_FOREACH(w, &w_all, w_list)
2490		witness_add_fullgraph(sb, w);
2491	mtx_unlock_spin(&w_mtx);
2492
2493	/*
2494	 * While using SBUF_FIXEDLEN, check if the sbuf overflowed.
2495	 */
2496	if (sbuf_overflowed(sb)) {
2497		sbuf_delete(sb);
2498		panic("%s: sbuf overflowed, bump FULLGRAPH_SBUF_SIZE value\n",
2499		    __func__);
2500	}
2501
2502	/*
2503	 * Close the sbuf and return to userland.
2504	 */
2505	sbuf_finish(sb);
2506	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2507	sbuf_delete(sb);
2508
2509	return (error);
2510}
2511
2512static int
2513sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2514{
2515	int error, value;
2516
2517	value = witness_watch;
2518	error = sysctl_handle_int(oidp, &value, 0, req);
2519	if (error != 0 || req->newptr == NULL)
2520		return (error);
2521	if (value > 1 || value < -1 ||
2522	    (witness_watch == -1 && value != witness_watch))
2523		return (EINVAL);
2524	witness_watch = value;
2525	return (0);
2526}
2527
2528static void
2529witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2530{
2531	int i;
2532
2533	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2534		return;
2535	w->w_displayed = 1;
2536
2537	WITNESS_INDEX_ASSERT(w->w_index);
2538	for (i = 1; i <= w_max_used_index; i++) {
2539		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2540			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2541			    w_data[i].w_name);
2542			witness_add_fullgraph(sb, &w_data[i]);
2543		}
2544	}
2545}
2546
2547/*
2548 * A simple hash function. Takes a key pointer and a key size. If size == 0,
2549 * interprets the key as a string and reads until the null
2550 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2551 * hash value computed from the key.
2552 */
2553static uint32_t
2554witness_hash_djb2(const uint8_t *key, uint32_t size)
2555{
2556	unsigned int hash = 5381;
2557	int i;
2558
2559	/* hash = hash * 33 + key[i] */
2560	if (size)
2561		for (i = 0; i < size; i++)
2562			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2563	else
2564		for (i = 0; key[i] != 0; i++)
2565			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2566
2567	return (hash);
2568}
2569
2570
2571/*
2572 * Initializes the two witness hash tables. Called exactly once from
2573 * witness_initialize().
2574 */
2575static void
2576witness_init_hash_tables(void)
2577{
2578	int i;
2579
2580	MPASS(witness_cold);
2581
2582	/* Initialize the hash tables. */
2583	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2584		w_hash.wh_array[i] = NULL;
2585
2586	w_hash.wh_size = WITNESS_HASH_SIZE;
2587	w_hash.wh_count = 0;
2588
2589	/* Initialize the lock order data hash. */
2590	w_lofree = NULL;
2591	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2592		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2593		w_lodata[i].wlod_next = w_lofree;
2594		w_lofree = &w_lodata[i];
2595	}
2596	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2597	w_lohash.wloh_count = 0;
2598	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2599		w_lohash.wloh_array[i] = NULL;
2600}
2601
2602static struct witness *
2603witness_hash_get(const char *key)
2604{
2605	struct witness *w;
2606	uint32_t hash;
2607
2608	MPASS(key != NULL);
2609	if (witness_cold == 0)
2610		mtx_assert(&w_mtx, MA_OWNED);
2611	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2612	w = w_hash.wh_array[hash];
2613	while (w != NULL) {
2614		if (strcmp(w->w_name, key) == 0)
2615			goto out;
2616		w = w->w_hash_next;
2617	}
2618
2619out:
2620	return (w);
2621}
2622
2623static void
2624witness_hash_put(struct witness *w)
2625{
2626	uint32_t hash;
2627
2628	MPASS(w != NULL);
2629	MPASS(w->w_name != NULL);
2630	if (witness_cold == 0)
2631		mtx_assert(&w_mtx, MA_OWNED);
2632	KASSERT(witness_hash_get(w->w_name) == NULL,
2633	    ("%s: trying to add a hash entry that already exists!", __func__));
2634	KASSERT(w->w_hash_next == NULL,
2635	    ("%s: w->w_hash_next != NULL", __func__));
2636
2637	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2638	w->w_hash_next = w_hash.wh_array[hash];
2639	w_hash.wh_array[hash] = w;
2640	w_hash.wh_count++;
2641}
2642
2643
2644static struct witness_lock_order_data *
2645witness_lock_order_get(struct witness *parent, struct witness *child)
2646{
2647	struct witness_lock_order_data *data = NULL;
2648	struct witness_lock_order_key key;
2649	unsigned int hash;
2650
2651	MPASS(parent != NULL && child != NULL);
2652	key.from = parent->w_index;
2653	key.to = child->w_index;
2654	WITNESS_INDEX_ASSERT(key.from);
2655	WITNESS_INDEX_ASSERT(key.to);
2656	if ((w_rmatrix[parent->w_index][child->w_index]
2657	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2658		goto out;
2659
2660	hash = witness_hash_djb2((const char*)&key,
2661	    sizeof(key)) % w_lohash.wloh_size;
2662	data = w_lohash.wloh_array[hash];
2663	while (data != NULL) {
2664		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2665			break;
2666		data = data->wlod_next;
2667	}
2668
2669out:
2670	return (data);
2671}
2672
2673/*
2674 * Verify that parent and child have a known relationship, are not the same,
2675 * and child is actually a child of parent.  This is done without w_mtx
2676 * to avoid contention in the common case.
2677 */
2678static int
2679witness_lock_order_check(struct witness *parent, struct witness *child)
2680{
2681
2682	if (parent != child &&
2683	    w_rmatrix[parent->w_index][child->w_index]
2684	    & WITNESS_LOCK_ORDER_KNOWN &&
2685	    isitmychild(parent, child))
2686		return (1);
2687
2688	return (0);
2689}
2690
2691static int
2692witness_lock_order_add(struct witness *parent, struct witness *child)
2693{
2694	struct witness_lock_order_data *data = NULL;
2695	struct witness_lock_order_key key;
2696	unsigned int hash;
2697
2698	MPASS(parent != NULL && child != NULL);
2699	key.from = parent->w_index;
2700	key.to = child->w_index;
2701	WITNESS_INDEX_ASSERT(key.from);
2702	WITNESS_INDEX_ASSERT(key.to);
2703	if (w_rmatrix[parent->w_index][child->w_index]
2704	    & WITNESS_LOCK_ORDER_KNOWN)
2705		return (1);
2706
2707	hash = witness_hash_djb2((const char*)&key,
2708	    sizeof(key)) % w_lohash.wloh_size;
2709	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2710	data = w_lofree;
2711	if (data == NULL)
2712		return (0);
2713	w_lofree = data->wlod_next;
2714	data->wlod_next = w_lohash.wloh_array[hash];
2715	data->wlod_key = key;
2716	w_lohash.wloh_array[hash] = data;
2717	w_lohash.wloh_count++;
2718	stack_zero(&data->wlod_stack);
2719	stack_save(&data->wlod_stack);
2720	return (1);
2721}
2722
2723/* Call this whenver the structure of the witness graph changes. */
2724static void
2725witness_increment_graph_generation(void)
2726{
2727
2728	if (witness_cold == 0)
2729		mtx_assert(&w_mtx, MA_OWNED);
2730	w_generation++;
2731}
2732
2733#ifdef KDB
2734static void
2735_witness_debugger(int cond, const char *msg)
2736{
2737
2738	if (witness_trace && cond)
2739		kdb_backtrace();
2740	if (witness_kdb && cond)
2741		kdb_enter(KDB_WHY_WITNESS, msg);
2742}
2743#endif
2744