subr_witness.c revision 172256
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Implementation of the `witness' lock verifier.  Originally implemented for
34 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35 * classes in FreeBSD.
36 */
37
38/*
39 *	Main Entry: witness
40 *	Pronunciation: 'wit-n&s
41 *	Function: noun
42 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43 *	    testimony, witness, from 2wit
44 *	Date: before 12th century
45 *	1 : attestation of a fact or event : TESTIMONY
46 *	2 : one that gives evidence; specifically : one who testifies in
47 *	    a cause or before a judicial tribunal
48 *	3 : one asked to be present at a transaction so as to be able to
49 *	    testify to its having taken place
50 *	4 : one who has personal knowledge of something
51 *	5 a : something serving as evidence or proof : SIGN
52 *	  b : public affirmation by word or example of usually
53 *	      religious faith or conviction <the heroic witness to divine
54 *	      life -- Pilot>
55 *	6 capitalized : a member of the Jehovah's Witnesses
56 */
57
58/*
59 * Special rules concerning Giant and lock orders:
60 *
61 * 1) Giant must be acquired before any other mutexes.  Stated another way,
62 *    no other mutex may be held when Giant is acquired.
63 *
64 * 2) Giant must be released when blocking on a sleepable lock.
65 *
66 * This rule is less obvious, but is a result of Giant providing the same
67 * semantics as spl().  Basically, when a thread sleeps, it must release
68 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69 * 2).
70 *
71 * 3) Giant may be acquired before or after sleepable locks.
72 *
73 * This rule is also not quite as obvious.  Giant may be acquired after
74 * a sleepable lock because it is a non-sleepable lock and non-sleepable
75 * locks may always be acquired while holding a sleepable lock.  The second
76 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80 * execute.  Thus, acquiring Giant both before and after a sleepable lock
81 * will not result in a lock order reversal.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/kern/subr_witness.c 172256 2007-09-20 20:38:43Z attilio $");
86
87#include "opt_ddb.h"
88#include "opt_hwpmc_hooks.h"
89#include "opt_witness.h"
90
91#include <sys/param.h>
92#include <sys/bus.h>
93#include <sys/kdb.h>
94#include <sys/kernel.h>
95#include <sys/ktr.h>
96#include <sys/lock.h>
97#include <sys/malloc.h>
98#include <sys/mutex.h>
99#include <sys/priv.h>
100#include <sys/proc.h>
101#include <sys/sysctl.h>
102#include <sys/systm.h>
103
104#include <ddb/ddb.h>
105
106#include <machine/stdarg.h>
107
108/* Note that these traces do not work with KTR_ALQ. */
109#if 0
110#define	KTR_WITNESS	KTR_SUBSYS
111#else
112#define	KTR_WITNESS	0
113#endif
114
115/* Easier to stay with the old names. */
116#define	lo_list		lo_witness_data.lod_list
117#define	lo_witness	lo_witness_data.lod_witness
118
119/* Define this to check for blessed mutexes */
120#undef BLESSING
121
122#define WITNESS_COUNT 1024
123#define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
124/*
125 * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
126 * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
127 * probably be safe for the most part, but it's still a SWAG.
128 */
129#define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
130
131#define	WITNESS_NCHILDREN 6
132
133struct witness_child_list_entry;
134
135struct witness {
136	const	char *w_name;
137	struct	lock_class *w_class;
138	STAILQ_ENTRY(witness) w_list;		/* List of all witnesses. */
139	STAILQ_ENTRY(witness) w_typelist;	/* Witnesses of a type. */
140	struct	witness_child_list_entry *w_children;	/* Great evilness... */
141	const	char *w_file;
142	int	w_line;
143	u_int	w_level;
144	u_int	w_refcount;
145	u_char	w_Giant_squawked:1;
146	u_char	w_other_squawked:1;
147	u_char	w_same_squawked:1;
148	u_char	w_displayed:1;
149};
150
151struct witness_child_list_entry {
152	struct	witness_child_list_entry *wcl_next;
153	struct	witness *wcl_children[WITNESS_NCHILDREN];
154	u_int	wcl_count;
155};
156
157STAILQ_HEAD(witness_list, witness);
158
159#ifdef BLESSING
160struct witness_blessed {
161	const	char *b_lock1;
162	const	char *b_lock2;
163};
164#endif
165
166struct witness_order_list_entry {
167	const	char *w_name;
168	struct	lock_class *w_class;
169};
170
171#ifdef BLESSING
172static int	blessed(struct witness *, struct witness *);
173#endif
174static int	depart(struct witness *w);
175static struct	witness *enroll(const char *description,
176				struct lock_class *lock_class);
177static int	insertchild(struct witness *parent, struct witness *child);
178static int	isitmychild(struct witness *parent, struct witness *child);
179static int	isitmydescendant(struct witness *parent, struct witness *child);
180static int	itismychild(struct witness *parent, struct witness *child);
181static void	removechild(struct witness *parent, struct witness *child);
182static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
183static const char *fixup_filename(const char *file);
184static struct	witness *witness_get(void);
185static void	witness_free(struct witness *m);
186static struct	witness_child_list_entry *witness_child_get(void);
187static void	witness_child_free(struct witness_child_list_entry *wcl);
188static struct	lock_list_entry *witness_lock_list_get(void);
189static void	witness_lock_list_free(struct lock_list_entry *lle);
190static struct	lock_instance *find_instance(struct lock_list_entry *lock_list,
191					     struct lock_object *lock);
192static void	witness_list_lock(struct lock_instance *instance);
193#ifdef DDB
194static void	witness_leveldescendents(struct witness *parent, int level);
195static void	witness_levelall(void);
196static void	witness_displaydescendants(void(*)(const char *fmt, ...),
197					   struct witness *, int indent);
198static void	witness_display_list(void(*prnt)(const char *fmt, ...),
199				     struct witness_list *list);
200static void	witness_display(void(*)(const char *fmt, ...));
201static void	witness_list(struct thread *td);
202#endif
203
204SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
205
206/*
207 * If set to 0, witness is disabled.  If set to a non-zero value, witness
208 * performs full lock order checking for all locks.  At runtime, this
209 * value may be set to 0 to turn off witness.  witness is not allowed be
210 * turned on once it is turned off, however.
211 */
212static int witness_watch = 1;
213TUNABLE_INT("debug.witness.watch", &witness_watch);
214SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
215    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
216
217#ifdef KDB
218/*
219 * When KDB is enabled and witness_kdb is set to 1, it will cause the system
220 * to drop into kdebug() when:
221 *	- a lock hierarchy violation occurs
222 *	- locks are held when going to sleep.
223 */
224#ifdef WITNESS_KDB
225int	witness_kdb = 1;
226#else
227int	witness_kdb = 0;
228#endif
229TUNABLE_INT("debug.witness.kdb", &witness_kdb);
230SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
231
232/*
233 * When KDB is enabled and witness_trace is set to 1, it will cause the system
234 * to print a stack trace:
235 *	- a lock hierarchy violation occurs
236 *	- locks are held when going to sleep.
237 */
238int	witness_trace = 1;
239TUNABLE_INT("debug.witness.trace", &witness_trace);
240SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
241#endif /* KDB */
242
243#ifdef WITNESS_SKIPSPIN
244int	witness_skipspin = 1;
245#else
246int	witness_skipspin = 0;
247#endif
248TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
249SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
250    &witness_skipspin, 0, "");
251
252static struct mtx w_mtx;
253static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
254static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
255static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
256static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
257static struct witness_child_list_entry *w_child_free = NULL;
258static struct lock_list_entry *w_lock_list_free = NULL;
259
260static int w_free_cnt, w_spin_cnt, w_sleep_cnt, w_child_free_cnt, w_child_cnt;
261SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
262SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
263SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
264    "");
265SYSCTL_INT(_debug_witness, OID_AUTO, child_free_cnt, CTLFLAG_RD,
266    &w_child_free_cnt, 0, "");
267SYSCTL_INT(_debug_witness, OID_AUTO, child_cnt, CTLFLAG_RD, &w_child_cnt, 0,
268    "");
269
270static struct witness w_data[WITNESS_COUNT];
271static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
272static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
273
274static struct witness_order_list_entry order_lists[] = {
275	/*
276	 * sx locks
277	 */
278	{ "proctree", &lock_class_sx },
279	{ "allproc", &lock_class_sx },
280	{ "allprison", &lock_class_sx },
281	{ NULL, NULL },
282	/*
283	 * Various mutexes
284	 */
285	{ "Giant", &lock_class_mtx_sleep },
286	{ "pipe mutex", &lock_class_mtx_sleep },
287	{ "sigio lock", &lock_class_mtx_sleep },
288	{ "process group", &lock_class_mtx_sleep },
289	{ "process lock", &lock_class_mtx_sleep },
290	{ "session", &lock_class_mtx_sleep },
291	{ "uidinfo hash", &lock_class_mtx_sleep },
292	{ "uidinfo struct", &lock_class_mtx_sleep },
293#ifdef	HWPMC_HOOKS
294	{ "pmc-sleep", &lock_class_mtx_sleep },
295#endif
296	{ NULL, NULL },
297	/*
298	 * Sockets
299	 */
300	{ "accept", &lock_class_mtx_sleep },
301	{ "so_snd", &lock_class_mtx_sleep },
302	{ "so_rcv", &lock_class_mtx_sleep },
303	{ "sellck", &lock_class_mtx_sleep },
304	{ NULL, NULL },
305	/*
306	 * Routing
307	 */
308	{ "so_rcv", &lock_class_mtx_sleep },
309	{ "radix node head", &lock_class_mtx_sleep },
310	{ "rtentry", &lock_class_mtx_sleep },
311	{ "ifaddr", &lock_class_mtx_sleep },
312	{ NULL, NULL },
313	/*
314	 * Multicast - protocol locks before interface locks, after UDP locks.
315	 */
316	{ "udpinp", &lock_class_mtx_sleep },
317	{ "in_multi_mtx", &lock_class_mtx_sleep },
318	{ "igmp_mtx", &lock_class_mtx_sleep },
319	{ "if_addr_mtx", &lock_class_mtx_sleep },
320	{ NULL, NULL },
321	/*
322	 * UNIX Domain Sockets
323	 */
324	{ "unp", &lock_class_mtx_sleep },
325	{ "so_snd", &lock_class_mtx_sleep },
326	{ NULL, NULL },
327	/*
328	 * UDP/IP
329	 */
330	{ "udp", &lock_class_mtx_sleep },
331	{ "udpinp", &lock_class_mtx_sleep },
332	{ "so_snd", &lock_class_mtx_sleep },
333	{ NULL, NULL },
334	/*
335	 * TCP/IP
336	 */
337	{ "tcp", &lock_class_mtx_sleep },
338	{ "tcpinp", &lock_class_mtx_sleep },
339	{ "so_snd", &lock_class_mtx_sleep },
340	{ NULL, NULL },
341	/*
342	 * SLIP
343	 */
344	{ "slip_mtx", &lock_class_mtx_sleep },
345	{ "slip sc_mtx", &lock_class_mtx_sleep },
346	{ NULL, NULL },
347	/*
348	 * netatalk
349	 */
350	{ "ddp_list_mtx", &lock_class_mtx_sleep },
351	{ "ddp_mtx", &lock_class_mtx_sleep },
352	{ NULL, NULL },
353	/*
354	 * BPF
355	 */
356	{ "bpf global lock", &lock_class_mtx_sleep },
357	{ "bpf interface lock", &lock_class_mtx_sleep },
358	{ "bpf cdev lock", &lock_class_mtx_sleep },
359	{ NULL, NULL },
360	/*
361	 * NFS server
362	 */
363	{ "nfsd_mtx", &lock_class_mtx_sleep },
364	{ "so_snd", &lock_class_mtx_sleep },
365	{ NULL, NULL },
366
367	/*
368	 * IEEE 802.11
369	 */
370	{ "802.11 com lock", &lock_class_mtx_sleep},
371	{ NULL, NULL },
372	/*
373	 * Network drivers
374	 */
375	{ "network driver", &lock_class_mtx_sleep},
376	{ NULL, NULL },
377
378	/*
379	 * Netgraph
380	 */
381	{ "ng_node", &lock_class_mtx_sleep },
382	{ "ng_worklist", &lock_class_mtx_sleep },
383	{ NULL, NULL },
384	/*
385	 * CDEV
386	 */
387	{ "system map", &lock_class_mtx_sleep },
388	{ "vm page queue mutex", &lock_class_mtx_sleep },
389	{ "vnode interlock", &lock_class_mtx_sleep },
390	{ "cdev", &lock_class_mtx_sleep },
391	{ NULL, NULL },
392	/*
393	 * kqueue/VFS interaction
394	 */
395	{ "kqueue", &lock_class_mtx_sleep },
396	{ "struct mount mtx", &lock_class_mtx_sleep },
397	{ "vnode interlock", &lock_class_mtx_sleep },
398	{ NULL, NULL },
399	/*
400	 * spin locks
401	 */
402#ifdef SMP
403	{ "ap boot", &lock_class_mtx_spin },
404#endif
405	{ "rm.mutex_mtx", &lock_class_mtx_spin },
406	{ "sio", &lock_class_mtx_spin },
407#ifdef __i386__
408	{ "cy", &lock_class_mtx_spin },
409#endif
410#ifdef __sparc64__
411	{ "pcib_mtx", &lock_class_mtx_spin },
412	{ "rtc_mtx", &lock_class_mtx_spin },
413#endif
414	{ "scc_hwmtx", &lock_class_mtx_spin },
415	{ "uart_hwmtx", &lock_class_mtx_spin },
416	{ "fast_taskqueue", &lock_class_mtx_spin },
417	{ "intr table", &lock_class_mtx_spin },
418#ifdef	HWPMC_HOOKS
419	{ "pmc-per-proc", &lock_class_mtx_spin },
420#endif
421	{ "process slock", &lock_class_mtx_spin },
422	{ "sleepq chain", &lock_class_mtx_spin },
423	{ "umtx lock", &lock_class_mtx_spin },
424	{ "turnstile chain", &lock_class_mtx_spin },
425	{ "turnstile lock", &lock_class_mtx_spin },
426	{ "sched lock", &lock_class_mtx_spin },
427	{ "td_contested", &lock_class_mtx_spin },
428	{ "callout", &lock_class_mtx_spin },
429	{ "entropy harvest mutex", &lock_class_mtx_spin },
430	{ "syscons video lock", &lock_class_mtx_spin },
431	{ "time lock", &lock_class_mtx_spin },
432#ifdef SMP
433	{ "smp rendezvous", &lock_class_mtx_spin },
434#endif
435	/*
436	 * leaf locks
437	 */
438	{ "icu", &lock_class_mtx_spin },
439#if defined(SMP) && defined(__sparc64__)
440	{ "ipi", &lock_class_mtx_spin },
441#endif
442#ifdef __i386__
443	{ "allpmaps", &lock_class_mtx_spin },
444	{ "descriptor tables", &lock_class_mtx_spin },
445#endif
446	{ "clk", &lock_class_mtx_spin },
447	{ "mprof lock", &lock_class_mtx_spin },
448	{ "kse lock", &lock_class_mtx_spin },
449	{ "zombie lock", &lock_class_mtx_spin },
450	{ "ALD Queue", &lock_class_mtx_spin },
451#ifdef __ia64__
452	{ "MCA spin lock", &lock_class_mtx_spin },
453#endif
454#if defined(__i386__) || defined(__amd64__)
455	{ "pcicfg", &lock_class_mtx_spin },
456	{ "NDIS thread lock", &lock_class_mtx_spin },
457#endif
458	{ "tw_osl_io_lock", &lock_class_mtx_spin },
459	{ "tw_osl_q_lock", &lock_class_mtx_spin },
460	{ "tw_cl_io_lock", &lock_class_mtx_spin },
461	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
462	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
463#ifdef	HWPMC_HOOKS
464	{ "pmc-leaf", &lock_class_mtx_spin },
465#endif
466	{ "blocked lock", &lock_class_mtx_spin },
467	{ NULL, NULL },
468	{ NULL, NULL }
469};
470
471#ifdef BLESSING
472/*
473 * Pairs of locks which have been blessed
474 * Don't complain about order problems with blessed locks
475 */
476static struct witness_blessed blessed_list[] = {
477};
478static int blessed_count =
479	sizeof(blessed_list) / sizeof(struct witness_blessed);
480#endif
481
482/*
483 * List of locks initialized prior to witness being initialized whose
484 * enrollment is currently deferred.
485 */
486STAILQ_HEAD(, lock_object) pending_locks =
487    STAILQ_HEAD_INITIALIZER(pending_locks);
488
489/*
490 * This global is set to 0 once it becomes safe to use the witness code.
491 */
492static int witness_cold = 1;
493
494/*
495 * This global is set to 1 once the static lock orders have been enrolled
496 * so that a warning can be issued for any spin locks enrolled later.
497 */
498static int witness_spin_warn = 0;
499
500/*
501 * The WITNESS-enabled diagnostic code.  Note that the witness code does
502 * assume that the early boot is single-threaded at least until after this
503 * routine is completed.
504 */
505static void
506witness_initialize(void *dummy __unused)
507{
508	struct lock_object *lock;
509	struct witness_order_list_entry *order;
510	struct witness *w, *w1;
511	int i;
512
513	/*
514	 * We have to release Giant before initializing its witness
515	 * structure so that WITNESS doesn't get confused.
516	 */
517	mtx_unlock(&Giant);
518	mtx_assert(&Giant, MA_NOTOWNED);
519
520	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
521	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
522	    MTX_NOWITNESS | MTX_NOPROFILE);
523	for (i = 0; i < WITNESS_COUNT; i++)
524		witness_free(&w_data[i]);
525	for (i = 0; i < WITNESS_CHILDCOUNT; i++)
526		witness_child_free(&w_childdata[i]);
527	for (i = 0; i < LOCK_CHILDCOUNT; i++)
528		witness_lock_list_free(&w_locklistdata[i]);
529
530	/* First add in all the specified order lists. */
531	for (order = order_lists; order->w_name != NULL; order++) {
532		w = enroll(order->w_name, order->w_class);
533		if (w == NULL)
534			continue;
535		w->w_file = "order list";
536		for (order++; order->w_name != NULL; order++) {
537			w1 = enroll(order->w_name, order->w_class);
538			if (w1 == NULL)
539				continue;
540			w1->w_file = "order list";
541			if (!itismychild(w, w1))
542				panic("Not enough memory for static orders!");
543			w = w1;
544		}
545	}
546	witness_spin_warn = 1;
547
548	/* Iterate through all locks and add them to witness. */
549	while (!STAILQ_EMPTY(&pending_locks)) {
550		lock = STAILQ_FIRST(&pending_locks);
551		STAILQ_REMOVE_HEAD(&pending_locks, lo_list);
552		KASSERT(lock->lo_flags & LO_WITNESS,
553		    ("%s: lock %s is on pending list but not LO_WITNESS",
554		    __func__, lock->lo_name));
555		lock->lo_witness = enroll(lock->lo_type, LOCK_CLASS(lock));
556	}
557
558	/* Mark the witness code as being ready for use. */
559	witness_cold = 0;
560
561	mtx_lock(&Giant);
562}
563SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, NULL)
564
565static int
566sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
567{
568	int error, value;
569
570	value = witness_watch;
571	error = sysctl_handle_int(oidp, &value, 0, req);
572	if (error != 0 || req->newptr == NULL)
573		return (error);
574	if (value == witness_watch)
575		return (0);
576	if (value != 0)
577		return (EINVAL);
578	witness_watch = 0;
579	return (0);
580}
581
582void
583witness_init(struct lock_object *lock)
584{
585	struct lock_class *class;
586
587	/* Various sanity checks. */
588	class = LOCK_CLASS(lock);
589	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
590	    (class->lc_flags & LC_RECURSABLE) == 0)
591		panic("%s: lock (%s) %s can not be recursable", __func__,
592		    class->lc_name, lock->lo_name);
593	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
594	    (class->lc_flags & LC_SLEEPABLE) == 0)
595		panic("%s: lock (%s) %s can not be sleepable", __func__,
596		    class->lc_name, lock->lo_name);
597	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
598	    (class->lc_flags & LC_UPGRADABLE) == 0)
599		panic("%s: lock (%s) %s can not be upgradable", __func__,
600		    class->lc_name, lock->lo_name);
601
602	/*
603	 * If we shouldn't watch this lock, then just clear lo_witness.
604	 * Otherwise, if witness_cold is set, then it is too early to
605	 * enroll this lock, so defer it to witness_initialize() by adding
606	 * it to the pending_locks list.  If it is not too early, then enroll
607	 * the lock now.
608	 */
609	if (witness_watch == 0 || panicstr != NULL ||
610	    (lock->lo_flags & LO_WITNESS) == 0)
611		lock->lo_witness = NULL;
612	else if (witness_cold) {
613		STAILQ_INSERT_TAIL(&pending_locks, lock, lo_list);
614		lock->lo_flags |= LO_ENROLLPEND;
615	} else
616		lock->lo_witness = enroll(lock->lo_type, class);
617}
618
619void
620witness_destroy(struct lock_object *lock)
621{
622	struct lock_class *class;
623	struct witness *w;
624
625	class = LOCK_CLASS(lock);
626	if (witness_cold)
627		panic("lock (%s) %s destroyed while witness_cold",
628		    class->lc_name, lock->lo_name);
629
630	/* XXX: need to verify that no one holds the lock */
631	if ((lock->lo_flags & (LO_WITNESS | LO_ENROLLPEND)) == LO_WITNESS &&
632	    lock->lo_witness != NULL) {
633		w = lock->lo_witness;
634		mtx_lock_spin(&w_mtx);
635		MPASS(w->w_refcount > 0);
636		w->w_refcount--;
637
638		/*
639		 * Lock is already released if we have an allocation failure
640		 * and depart() fails.
641		 */
642		if (w->w_refcount != 0 || depart(w))
643			mtx_unlock_spin(&w_mtx);
644	}
645
646	/*
647	 * If this lock is destroyed before witness is up and running,
648	 * remove it from the pending list.
649	 */
650	if (lock->lo_flags & LO_ENROLLPEND) {
651		STAILQ_REMOVE(&pending_locks, lock, lock_object, lo_list);
652		lock->lo_flags &= ~LO_ENROLLPEND;
653	}
654}
655
656#ifdef DDB
657static void
658witness_levelall (void)
659{
660	struct witness_list *list;
661	struct witness *w, *w1;
662
663	/*
664	 * First clear all levels.
665	 */
666	STAILQ_FOREACH(w, &w_all, w_list) {
667		w->w_level = 0;
668	}
669
670	/*
671	 * Look for locks with no parent and level all their descendants.
672	 */
673	STAILQ_FOREACH(w, &w_all, w_list) {
674		/*
675		 * This is just an optimization, technically we could get
676		 * away just walking the all list each time.
677		 */
678		if (w->w_class->lc_flags & LC_SLEEPLOCK)
679			list = &w_sleep;
680		else
681			list = &w_spin;
682		STAILQ_FOREACH(w1, list, w_typelist) {
683			if (isitmychild(w1, w))
684				goto skip;
685		}
686		witness_leveldescendents(w, 0);
687	skip:
688		;	/* silence GCC 3.x */
689	}
690}
691
692static void
693witness_leveldescendents(struct witness *parent, int level)
694{
695	struct witness_child_list_entry *wcl;
696	int i;
697
698	if (parent->w_level < level)
699		parent->w_level = level;
700	level++;
701	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
702		for (i = 0; i < wcl->wcl_count; i++)
703			witness_leveldescendents(wcl->wcl_children[i], level);
704}
705
706static void
707witness_displaydescendants(void(*prnt)(const char *fmt, ...),
708			   struct witness *parent, int indent)
709{
710	struct witness_child_list_entry *wcl;
711	int i, level;
712
713	level = parent->w_level;
714	prnt("%-2d", level);
715	for (i = 0; i < indent; i++)
716		prnt(" ");
717	if (parent->w_refcount > 0)
718		prnt("%s", parent->w_name);
719	else
720		prnt("(dead)");
721	if (parent->w_displayed) {
722		prnt(" -- (already displayed)\n");
723		return;
724	}
725	parent->w_displayed = 1;
726	if (parent->w_refcount > 0) {
727		if (parent->w_file != NULL)
728			prnt(" -- last acquired @ %s:%d", parent->w_file,
729			    parent->w_line);
730	}
731	prnt("\n");
732	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
733		for (i = 0; i < wcl->wcl_count; i++)
734			    witness_displaydescendants(prnt,
735				wcl->wcl_children[i], indent + 1);
736}
737
738static void
739witness_display_list(void(*prnt)(const char *fmt, ...),
740		     struct witness_list *list)
741{
742	struct witness *w;
743
744	STAILQ_FOREACH(w, list, w_typelist) {
745		if (w->w_file == NULL || w->w_level > 0)
746			continue;
747		/*
748		 * This lock has no anscestors, display its descendants.
749		 */
750		witness_displaydescendants(prnt, w, 0);
751	}
752}
753
754static void
755witness_display(void(*prnt)(const char *fmt, ...))
756{
757	struct witness *w;
758
759	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
760	witness_levelall();
761
762	/* Clear all the displayed flags. */
763	STAILQ_FOREACH(w, &w_all, w_list) {
764		w->w_displayed = 0;
765	}
766
767	/*
768	 * First, handle sleep locks which have been acquired at least
769	 * once.
770	 */
771	prnt("Sleep locks:\n");
772	witness_display_list(prnt, &w_sleep);
773
774	/*
775	 * Now do spin locks which have been acquired at least once.
776	 */
777	prnt("\nSpin locks:\n");
778	witness_display_list(prnt, &w_spin);
779
780	/*
781	 * Finally, any locks which have not been acquired yet.
782	 */
783	prnt("\nLocks which were never acquired:\n");
784	STAILQ_FOREACH(w, &w_all, w_list) {
785		if (w->w_file != NULL || w->w_refcount == 0)
786			continue;
787		prnt("%s\n", w->w_name);
788	}
789}
790#endif /* DDB */
791
792/* Trim useless garbage from filenames. */
793static const char *
794fixup_filename(const char *file)
795{
796
797	if (file == NULL)
798		return (NULL);
799	while (strncmp(file, "../", 3) == 0)
800		file += 3;
801	return (file);
802}
803
804int
805witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
806{
807
808	if (witness_watch == 0 || panicstr != NULL)
809		return (0);
810
811	/* Require locks that witness knows about. */
812	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
813	    lock2->lo_witness == NULL)
814		return (EINVAL);
815
816	MPASS(!mtx_owned(&w_mtx));
817	mtx_lock_spin(&w_mtx);
818
819	/*
820	 * If we already have either an explicit or implied lock order that
821	 * is the other way around, then return an error.
822	 */
823	if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
824		mtx_unlock_spin(&w_mtx);
825		return (EDOOFUS);
826	}
827
828	/* Try to add the new order. */
829	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
830	    lock2->lo_type, lock1->lo_type);
831	if (!itismychild(lock1->lo_witness, lock2->lo_witness))
832		return (ENOMEM);
833	mtx_unlock_spin(&w_mtx);
834	return (0);
835}
836
837void
838witness_checkorder(struct lock_object *lock, int flags, const char *file,
839    int line)
840{
841	struct lock_list_entry **lock_list, *lle;
842	struct lock_instance *lock1, *lock2;
843	struct lock_class *class;
844	struct witness *w, *w1;
845	struct thread *td;
846	int i, j;
847
848	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
849	    panicstr != NULL)
850		return;
851
852	/*
853	 * Try locks do not block if they fail to acquire the lock, thus
854	 * there is no danger of deadlocks or of switching while holding a
855	 * spin lock if we acquire a lock via a try operation.  This
856	 * function shouldn't even be called for try locks, so panic if
857	 * that happens.
858	 */
859	if (flags & LOP_TRYLOCK)
860		panic("%s should not be called for try lock operations",
861		    __func__);
862
863	w = lock->lo_witness;
864	class = LOCK_CLASS(lock);
865	td = curthread;
866	file = fixup_filename(file);
867
868	if (class->lc_flags & LC_SLEEPLOCK) {
869		/*
870		 * Since spin locks include a critical section, this check
871		 * implicitly enforces a lock order of all sleep locks before
872		 * all spin locks.
873		 */
874		if (td->td_critnest != 0 && !kdb_active)
875			panic("blockable sleep lock (%s) %s @ %s:%d",
876			    class->lc_name, lock->lo_name, file, line);
877
878		/*
879		 * If this is the first lock acquired then just return as
880		 * no order checking is needed.
881		 */
882		if (td->td_sleeplocks == NULL)
883			return;
884		lock_list = &td->td_sleeplocks;
885	} else {
886		/*
887		 * If this is the first lock, just return as no order
888		 * checking is needed.  We check this in both if clauses
889		 * here as unifying the check would require us to use a
890		 * critical section to ensure we don't migrate while doing
891		 * the check.  Note that if this is not the first lock, we
892		 * are already in a critical section and are safe for the
893		 * rest of the check.
894		 */
895		if (PCPU_GET(spinlocks) == NULL)
896			return;
897		lock_list = PCPU_PTR(spinlocks);
898	}
899
900	/*
901	 * Check to see if we are recursing on a lock we already own.  If
902	 * so, make sure that we don't mismatch exclusive and shared lock
903	 * acquires.
904	 */
905	lock1 = find_instance(*lock_list, lock);
906	if (lock1 != NULL) {
907		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
908		    (flags & LOP_EXCLUSIVE) == 0) {
909			printf("shared lock of (%s) %s @ %s:%d\n",
910			    class->lc_name, lock->lo_name, file, line);
911			printf("while exclusively locked from %s:%d\n",
912			    lock1->li_file, lock1->li_line);
913			panic("share->excl");
914		}
915		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
916		    (flags & LOP_EXCLUSIVE) != 0) {
917			printf("exclusive lock of (%s) %s @ %s:%d\n",
918			    class->lc_name, lock->lo_name, file, line);
919			printf("while share locked from %s:%d\n",
920			    lock1->li_file, lock1->li_line);
921			panic("excl->share");
922		}
923		return;
924	}
925
926	/*
927	 * Try locks do not block if they fail to acquire the lock, thus
928	 * there is no danger of deadlocks or of switching while holding a
929	 * spin lock if we acquire a lock via a try operation.
930	 */
931	if (flags & LOP_TRYLOCK)
932		return;
933
934	/*
935	 * Check for duplicate locks of the same type.  Note that we only
936	 * have to check for this on the last lock we just acquired.  Any
937	 * other cases will be caught as lock order violations.
938	 */
939	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
940	w1 = lock1->li_lock->lo_witness;
941	if (w1 == w) {
942		if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK) ||
943		    (flags & LOP_DUPOK))
944			return;
945		w->w_same_squawked = 1;
946		printf("acquiring duplicate lock of same type: \"%s\"\n",
947			lock->lo_type);
948		printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
949		    lock1->li_file, lock1->li_line);
950		printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
951#ifdef KDB
952		goto debugger;
953#else
954		return;
955#endif
956	}
957	MPASS(!mtx_owned(&w_mtx));
958	mtx_lock_spin(&w_mtx);
959	/*
960	 * If we know that the the lock we are acquiring comes after
961	 * the lock we most recently acquired in the lock order tree,
962	 * then there is no need for any further checks.
963	 */
964	if (isitmychild(w1, w)) {
965		mtx_unlock_spin(&w_mtx);
966		return;
967	}
968	for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
969		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
970
971			MPASS(j < WITNESS_COUNT);
972			lock1 = &lle->ll_children[i];
973			w1 = lock1->li_lock->lo_witness;
974
975			/*
976			 * If this lock doesn't undergo witness checking,
977			 * then skip it.
978			 */
979			if (w1 == NULL) {
980				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
981				    ("lock missing witness structure"));
982				continue;
983			}
984			/*
985			 * If we are locking Giant and this is a sleepable
986			 * lock, then skip it.
987			 */
988			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
989			    lock == &Giant.lock_object)
990				continue;
991			/*
992			 * If we are locking a sleepable lock and this lock
993			 * is Giant, then skip it.
994			 */
995			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
996			    lock1->li_lock == &Giant.lock_object)
997				continue;
998			/*
999			 * If we are locking a sleepable lock and this lock
1000			 * isn't sleepable, we want to treat it as a lock
1001			 * order violation to enfore a general lock order of
1002			 * sleepable locks before non-sleepable locks.
1003			 */
1004			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1005			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1006				goto reversal;
1007			/*
1008			 * If we are locking Giant and this is a non-sleepable
1009			 * lock, then treat it as a reversal.
1010			 */
1011			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1012			    lock == &Giant.lock_object)
1013				goto reversal;
1014			/*
1015			 * Check the lock order hierarchy for a reveresal.
1016			 */
1017			if (!isitmydescendant(w, w1))
1018				continue;
1019		reversal:
1020			/*
1021			 * We have a lock order violation, check to see if it
1022			 * is allowed or has already been yelled about.
1023			 */
1024			mtx_unlock_spin(&w_mtx);
1025#ifdef BLESSING
1026			/*
1027			 * If the lock order is blessed, just bail.  We don't
1028			 * look for other lock order violations though, which
1029			 * may be a bug.
1030			 */
1031			if (blessed(w, w1))
1032				return;
1033#endif
1034			if (lock1->li_lock == &Giant.lock_object) {
1035				if (w1->w_Giant_squawked)
1036					return;
1037				else
1038					w1->w_Giant_squawked = 1;
1039			} else {
1040				if (w1->w_other_squawked)
1041					return;
1042				else
1043					w1->w_other_squawked = 1;
1044			}
1045			/*
1046			 * Ok, yell about it.
1047			 */
1048			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1049			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1050				printf(
1051		"lock order reversal: (sleepable after non-sleepable)\n");
1052			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1053			    && lock == &Giant.lock_object)
1054				printf(
1055		"lock order reversal: (Giant after non-sleepable)\n");
1056			else
1057				printf("lock order reversal:\n");
1058			/*
1059			 * Try to locate an earlier lock with
1060			 * witness w in our list.
1061			 */
1062			do {
1063				lock2 = &lle->ll_children[i];
1064				MPASS(lock2->li_lock != NULL);
1065				if (lock2->li_lock->lo_witness == w)
1066					break;
1067				if (i == 0 && lle->ll_next != NULL) {
1068					lle = lle->ll_next;
1069					i = lle->ll_count - 1;
1070					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1071				} else
1072					i--;
1073			} while (i >= 0);
1074			if (i < 0) {
1075				printf(" 1st %p %s (%s) @ %s:%d\n",
1076				    lock1->li_lock, lock1->li_lock->lo_name,
1077				    lock1->li_lock->lo_type, lock1->li_file,
1078				    lock1->li_line);
1079				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1080				    lock->lo_name, lock->lo_type, file, line);
1081			} else {
1082				printf(" 1st %p %s (%s) @ %s:%d\n",
1083				    lock2->li_lock, lock2->li_lock->lo_name,
1084				    lock2->li_lock->lo_type, lock2->li_file,
1085				    lock2->li_line);
1086				printf(" 2nd %p %s (%s) @ %s:%d\n",
1087				    lock1->li_lock, lock1->li_lock->lo_name,
1088				    lock1->li_lock->lo_type, lock1->li_file,
1089				    lock1->li_line);
1090				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1091				    lock->lo_name, lock->lo_type, file, line);
1092			}
1093#ifdef KDB
1094			goto debugger;
1095#else
1096			return;
1097#endif
1098		}
1099	}
1100	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
1101	/*
1102	 * If requested, build a new lock order.  However, don't build a new
1103	 * relationship between a sleepable lock and Giant if it is in the
1104	 * wrong direction.  The correct lock order is that sleepable locks
1105	 * always come before Giant.
1106	 */
1107	if (flags & LOP_NEWORDER &&
1108	    !(lock1->li_lock == &Giant.lock_object &&
1109	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1110		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1111		    lock->lo_type, lock1->li_lock->lo_type);
1112		if (!itismychild(lock1->li_lock->lo_witness, w))
1113			/* Witness is dead. */
1114			return;
1115	}
1116	mtx_unlock_spin(&w_mtx);
1117	return;
1118
1119#ifdef KDB
1120debugger:
1121	if (witness_trace)
1122		kdb_backtrace();
1123	if (witness_kdb)
1124		kdb_enter(__func__);
1125#endif
1126}
1127
1128void
1129witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1130{
1131	struct lock_list_entry **lock_list, *lle;
1132	struct lock_instance *instance;
1133	struct witness *w;
1134	struct thread *td;
1135
1136	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1137	    panicstr != NULL)
1138		return;
1139	w = lock->lo_witness;
1140	td = curthread;
1141	file = fixup_filename(file);
1142
1143	/* Determine lock list for this lock. */
1144	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1145		lock_list = &td->td_sleeplocks;
1146	else
1147		lock_list = PCPU_PTR(spinlocks);
1148
1149	/* Check to see if we are recursing on a lock we already own. */
1150	instance = find_instance(*lock_list, lock);
1151	if (instance != NULL) {
1152		instance->li_flags++;
1153		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1154		    td->td_proc->p_pid, lock->lo_name,
1155		    instance->li_flags & LI_RECURSEMASK);
1156		instance->li_file = file;
1157		instance->li_line = line;
1158		return;
1159	}
1160
1161	/* Update per-witness last file and line acquire. */
1162	w->w_file = file;
1163	w->w_line = line;
1164
1165	/* Find the next open lock instance in the list and fill it. */
1166	lle = *lock_list;
1167	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1168		lle = witness_lock_list_get();
1169		if (lle == NULL)
1170			return;
1171		lle->ll_next = *lock_list;
1172		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1173		    td->td_proc->p_pid, lle);
1174		*lock_list = lle;
1175	}
1176	instance = &lle->ll_children[lle->ll_count++];
1177	instance->li_lock = lock;
1178	instance->li_line = line;
1179	instance->li_file = file;
1180	if ((flags & LOP_EXCLUSIVE) != 0)
1181		instance->li_flags = LI_EXCLUSIVE;
1182	else
1183		instance->li_flags = 0;
1184	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1185	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1186}
1187
1188void
1189witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1190{
1191	struct lock_instance *instance;
1192	struct lock_class *class;
1193
1194	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1195	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1196		return;
1197	class = LOCK_CLASS(lock);
1198	file = fixup_filename(file);
1199	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1200		panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1201		    class->lc_name, lock->lo_name, file, line);
1202	if ((flags & LOP_TRYLOCK) == 0)
1203		panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1204		    lock->lo_name, file, line);
1205	if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1206		panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1207		    class->lc_name, lock->lo_name, file, line);
1208	instance = find_instance(curthread->td_sleeplocks, lock);
1209	if (instance == NULL)
1210		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1211		    class->lc_name, lock->lo_name, file, line);
1212	if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1213		panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1214		    class->lc_name, lock->lo_name, file, line);
1215	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1216		panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1217		    class->lc_name, lock->lo_name,
1218		    instance->li_flags & LI_RECURSEMASK, file, line);
1219	instance->li_flags |= LI_EXCLUSIVE;
1220}
1221
1222void
1223witness_downgrade(struct lock_object *lock, int flags, const char *file,
1224    int line)
1225{
1226	struct lock_instance *instance;
1227	struct lock_class *class;
1228
1229	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1230	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1231		return;
1232	class = LOCK_CLASS(lock);
1233	file = fixup_filename(file);
1234	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1235		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1236		    class->lc_name, lock->lo_name, file, line);
1237	if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1238		panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1239		    class->lc_name, lock->lo_name, file, line);
1240	instance = find_instance(curthread->td_sleeplocks, lock);
1241	if (instance == NULL)
1242		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1243		    class->lc_name, lock->lo_name, file, line);
1244	if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1245		panic("downgrade of shared lock (%s) %s @ %s:%d",
1246		    class->lc_name, lock->lo_name, file, line);
1247	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1248		panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1249		    class->lc_name, lock->lo_name,
1250		    instance->li_flags & LI_RECURSEMASK, file, line);
1251	instance->li_flags &= ~LI_EXCLUSIVE;
1252}
1253
1254void
1255witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1256{
1257	struct lock_list_entry **lock_list, *lle;
1258	struct lock_instance *instance;
1259	struct lock_class *class;
1260	struct thread *td;
1261	register_t s;
1262	int i, j;
1263
1264	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1265	    panicstr != NULL)
1266		return;
1267	td = curthread;
1268	class = LOCK_CLASS(lock);
1269	file = fixup_filename(file);
1270
1271	/* Find lock instance associated with this lock. */
1272	if (class->lc_flags & LC_SLEEPLOCK)
1273		lock_list = &td->td_sleeplocks;
1274	else
1275		lock_list = PCPU_PTR(spinlocks);
1276	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1277		for (i = 0; i < (*lock_list)->ll_count; i++) {
1278			instance = &(*lock_list)->ll_children[i];
1279			if (instance->li_lock == lock)
1280				goto found;
1281		}
1282	panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1283	    file, line);
1284found:
1285
1286	/* First, check for shared/exclusive mismatches. */
1287	if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1288	    (flags & LOP_EXCLUSIVE) == 0) {
1289		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1290		    lock->lo_name, file, line);
1291		printf("while exclusively locked from %s:%d\n",
1292		    instance->li_file, instance->li_line);
1293		panic("excl->ushare");
1294	}
1295	if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1296	    (flags & LOP_EXCLUSIVE) != 0) {
1297		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1298		    lock->lo_name, file, line);
1299		printf("while share locked from %s:%d\n", instance->li_file,
1300		    instance->li_line);
1301		panic("share->uexcl");
1302	}
1303
1304	/* If we are recursed, unrecurse. */
1305	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1306		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1307		    td->td_proc->p_pid, instance->li_lock->lo_name,
1308		    instance->li_flags);
1309		instance->li_flags--;
1310		return;
1311	}
1312
1313	/* Otherwise, remove this item from the list. */
1314	s = intr_disable();
1315	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1316	    td->td_proc->p_pid, instance->li_lock->lo_name,
1317	    (*lock_list)->ll_count - 1);
1318	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1319		(*lock_list)->ll_children[j] =
1320		    (*lock_list)->ll_children[j + 1];
1321	(*lock_list)->ll_count--;
1322	intr_restore(s);
1323
1324	/* If this lock list entry is now empty, free it. */
1325	if ((*lock_list)->ll_count == 0) {
1326		lle = *lock_list;
1327		*lock_list = lle->ll_next;
1328		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1329		    td->td_proc->p_pid, lle);
1330		witness_lock_list_free(lle);
1331	}
1332}
1333
1334/*
1335 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1336 * exempt Giant and sleepable locks from the checks as well.  If any
1337 * non-exempt locks are held, then a supplied message is printed to the
1338 * console along with a list of the offending locks.  If indicated in the
1339 * flags then a failure results in a panic as well.
1340 */
1341int
1342witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1343{
1344	struct lock_list_entry *lle;
1345	struct lock_instance *lock1;
1346	struct thread *td;
1347	va_list ap;
1348	int i, n;
1349
1350	if (witness_cold || witness_watch == 0 || panicstr != NULL)
1351		return (0);
1352	n = 0;
1353	td = curthread;
1354	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1355		for (i = lle->ll_count - 1; i >= 0; i--) {
1356			lock1 = &lle->ll_children[i];
1357			if (lock1->li_lock == lock)
1358				continue;
1359			if (flags & WARN_GIANTOK &&
1360			    lock1->li_lock == &Giant.lock_object)
1361				continue;
1362			if (flags & WARN_SLEEPOK &&
1363			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1364				continue;
1365			if (n == 0) {
1366				va_start(ap, fmt);
1367				vprintf(fmt, ap);
1368				va_end(ap);
1369				printf(" with the following");
1370				if (flags & WARN_SLEEPOK)
1371					printf(" non-sleepable");
1372				printf(" locks held:\n");
1373			}
1374			n++;
1375			witness_list_lock(lock1);
1376		}
1377	if (PCPU_GET(spinlocks) != NULL) {
1378		/*
1379		 * Since we already hold a spinlock preemption is
1380		 * already blocked.
1381		 */
1382		if (n == 0) {
1383			va_start(ap, fmt);
1384			vprintf(fmt, ap);
1385			va_end(ap);
1386			printf(" with the following");
1387			if (flags & WARN_SLEEPOK)
1388				printf(" non-sleepable");
1389			printf(" locks held:\n");
1390		}
1391		n += witness_list_locks(PCPU_PTR(spinlocks));
1392	}
1393	if (flags & WARN_PANIC && n)
1394		panic("witness_warn");
1395#ifdef KDB
1396	else if (witness_kdb && n)
1397		kdb_enter(__func__);
1398	else if (witness_trace && n)
1399		kdb_backtrace();
1400#endif
1401	return (n);
1402}
1403
1404const char *
1405witness_file(struct lock_object *lock)
1406{
1407	struct witness *w;
1408
1409	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1410		return ("?");
1411	w = lock->lo_witness;
1412	return (w->w_file);
1413}
1414
1415int
1416witness_line(struct lock_object *lock)
1417{
1418	struct witness *w;
1419
1420	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1421		return (0);
1422	w = lock->lo_witness;
1423	return (w->w_line);
1424}
1425
1426static struct witness *
1427enroll(const char *description, struct lock_class *lock_class)
1428{
1429	struct witness *w;
1430
1431	if (witness_watch == 0 || panicstr != NULL)
1432		return (NULL);
1433	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1434		return (NULL);
1435	mtx_lock_spin(&w_mtx);
1436	STAILQ_FOREACH(w, &w_all, w_list) {
1437		if (w->w_name == description || (w->w_refcount > 0 &&
1438		    strcmp(description, w->w_name) == 0)) {
1439			w->w_refcount++;
1440			mtx_unlock_spin(&w_mtx);
1441			if (lock_class != w->w_class)
1442				panic(
1443				"lock (%s) %s does not match earlier (%s) lock",
1444				    description, lock_class->lc_name,
1445				    w->w_class->lc_name);
1446			return (w);
1447		}
1448	}
1449	if ((w = witness_get()) == NULL)
1450		goto out;
1451	w->w_name = description;
1452	w->w_class = lock_class;
1453	w->w_refcount = 1;
1454	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1455	if (lock_class->lc_flags & LC_SPINLOCK) {
1456		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1457		w_spin_cnt++;
1458	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1459		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1460		w_sleep_cnt++;
1461	} else {
1462		mtx_unlock_spin(&w_mtx);
1463		panic("lock class %s is not sleep or spin",
1464		    lock_class->lc_name);
1465	}
1466	mtx_unlock_spin(&w_mtx);
1467out:
1468	/*
1469	 * We issue a warning for any spin locks not defined in the static
1470	 * order list as a way to discourage their use (folks should really
1471	 * be using non-spin mutexes most of the time).  However, several
1472	 * 3rd part device drivers use spin locks because that is all they
1473	 * have available on Windows and Linux and they think that normal
1474	 * mutexes are insufficient.
1475	 */
1476	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_spin_warn)
1477		printf("WITNESS: spin lock %s not in order list\n",
1478		    description);
1479	return (w);
1480}
1481
1482/* Don't let the door bang you on the way out... */
1483static int
1484depart(struct witness *w)
1485{
1486	struct witness_child_list_entry *wcl, *nwcl;
1487	struct witness_list *list;
1488	struct witness *parent;
1489
1490	MPASS(w->w_refcount == 0);
1491	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1492		list = &w_sleep;
1493		w_sleep_cnt--;
1494	} else {
1495		list = &w_spin;
1496		w_spin_cnt--;
1497	}
1498	/*
1499	 * First, we run through the entire tree looking for any
1500	 * witnesses that the outgoing witness is a child of.  For
1501	 * each parent that we find, we reparent all the direct
1502	 * children of the outgoing witness to its parent.
1503	 */
1504	STAILQ_FOREACH(parent, list, w_typelist) {
1505		if (!isitmychild(parent, w))
1506			continue;
1507		removechild(parent, w);
1508	}
1509
1510	/*
1511	 * Now we go through and free up the child list of the
1512	 * outgoing witness.
1513	 */
1514	for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1515		nwcl = wcl->wcl_next;
1516        	w_child_cnt--;
1517		witness_child_free(wcl);
1518	}
1519
1520	/*
1521	 * Detach from various lists and free.
1522	 */
1523	STAILQ_REMOVE(list, w, witness, w_typelist);
1524	STAILQ_REMOVE(&w_all, w, witness, w_list);
1525	witness_free(w);
1526
1527	return (1);
1528}
1529
1530/*
1531 * Add "child" as a direct child of "parent".  Returns false if
1532 * we fail due to out of memory.
1533 */
1534static int
1535insertchild(struct witness *parent, struct witness *child)
1536{
1537	struct witness_child_list_entry **wcl;
1538
1539	MPASS(child != NULL && parent != NULL);
1540
1541	/*
1542	 * Insert "child" after "parent"
1543	 */
1544	wcl = &parent->w_children;
1545	while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1546		wcl = &(*wcl)->wcl_next;
1547	if (*wcl == NULL) {
1548		*wcl = witness_child_get();
1549		if (*wcl == NULL)
1550			return (0);
1551        	w_child_cnt++;
1552	}
1553	(*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1554
1555	return (1);
1556}
1557
1558
1559static int
1560itismychild(struct witness *parent, struct witness *child)
1561{
1562	struct witness_list *list;
1563
1564	MPASS(child != NULL && parent != NULL);
1565	if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1566	    (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1567		panic(
1568		"%s: parent (%s) and child (%s) are not the same lock type",
1569		    __func__, parent->w_class->lc_name,
1570		    child->w_class->lc_name);
1571
1572	if (!insertchild(parent, child))
1573		return (0);
1574
1575	if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1576		list = &w_sleep;
1577	else
1578		list = &w_spin;
1579	return (1);
1580}
1581
1582static void
1583removechild(struct witness *parent, struct witness *child)
1584{
1585	struct witness_child_list_entry **wcl, *wcl1;
1586	int i;
1587
1588	for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1589		for (i = 0; i < (*wcl)->wcl_count; i++)
1590			if ((*wcl)->wcl_children[i] == child)
1591				goto found;
1592	return;
1593found:
1594	(*wcl)->wcl_count--;
1595	if ((*wcl)->wcl_count > i)
1596		(*wcl)->wcl_children[i] =
1597		    (*wcl)->wcl_children[(*wcl)->wcl_count];
1598	MPASS((*wcl)->wcl_children[i] != NULL);
1599	if ((*wcl)->wcl_count != 0)
1600		return;
1601	wcl1 = *wcl;
1602	*wcl = wcl1->wcl_next;
1603	w_child_cnt--;
1604	witness_child_free(wcl1);
1605}
1606
1607static int
1608isitmychild(struct witness *parent, struct witness *child)
1609{
1610	struct witness_child_list_entry *wcl;
1611	int i;
1612
1613	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1614		for (i = 0; i < wcl->wcl_count; i++) {
1615			if (wcl->wcl_children[i] == child)
1616				return (1);
1617		}
1618	}
1619	return (0);
1620}
1621
1622static int
1623isitmydescendant(struct witness *parent, struct witness *child)
1624{
1625	struct witness_child_list_entry *wcl;
1626	int i, j;
1627
1628	if (isitmychild(parent, child))
1629		return (1);
1630	j = 0;
1631	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1632		MPASS(j < 1000);
1633		for (i = 0; i < wcl->wcl_count; i++) {
1634			if (isitmydescendant(wcl->wcl_children[i], child))
1635				return (1);
1636		}
1637		j++;
1638	}
1639	return (0);
1640}
1641
1642#ifdef BLESSING
1643static int
1644blessed(struct witness *w1, struct witness *w2)
1645{
1646	int i;
1647	struct witness_blessed *b;
1648
1649	for (i = 0; i < blessed_count; i++) {
1650		b = &blessed_list[i];
1651		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1652			if (strcmp(w2->w_name, b->b_lock2) == 0)
1653				return (1);
1654			continue;
1655		}
1656		if (strcmp(w1->w_name, b->b_lock2) == 0)
1657			if (strcmp(w2->w_name, b->b_lock1) == 0)
1658				return (1);
1659	}
1660	return (0);
1661}
1662#endif
1663
1664static struct witness *
1665witness_get(void)
1666{
1667	struct witness *w;
1668
1669	if (witness_watch == 0) {
1670		mtx_unlock_spin(&w_mtx);
1671		return (NULL);
1672	}
1673	if (STAILQ_EMPTY(&w_free)) {
1674		witness_watch = 0;
1675		mtx_unlock_spin(&w_mtx);
1676		printf("%s: witness exhausted\n", __func__);
1677		return (NULL);
1678	}
1679	w = STAILQ_FIRST(&w_free);
1680	STAILQ_REMOVE_HEAD(&w_free, w_list);
1681	w_free_cnt--;
1682	bzero(w, sizeof(*w));
1683	return (w);
1684}
1685
1686static void
1687witness_free(struct witness *w)
1688{
1689
1690	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1691	w_free_cnt++;
1692}
1693
1694static struct witness_child_list_entry *
1695witness_child_get(void)
1696{
1697	struct witness_child_list_entry *wcl;
1698
1699	if (witness_watch == 0) {
1700		mtx_unlock_spin(&w_mtx);
1701		return (NULL);
1702	}
1703	wcl = w_child_free;
1704	if (wcl == NULL) {
1705		witness_watch = 0;
1706		mtx_unlock_spin(&w_mtx);
1707		printf("%s: witness exhausted\n", __func__);
1708		return (NULL);
1709	}
1710	w_child_free = wcl->wcl_next;
1711	w_child_free_cnt--;
1712	bzero(wcl, sizeof(*wcl));
1713	return (wcl);
1714}
1715
1716static void
1717witness_child_free(struct witness_child_list_entry *wcl)
1718{
1719
1720	wcl->wcl_next = w_child_free;
1721	w_child_free = wcl;
1722	w_child_free_cnt++;
1723}
1724
1725static struct lock_list_entry *
1726witness_lock_list_get(void)
1727{
1728	struct lock_list_entry *lle;
1729
1730	if (witness_watch == 0)
1731		return (NULL);
1732	mtx_lock_spin(&w_mtx);
1733	lle = w_lock_list_free;
1734	if (lle == NULL) {
1735		witness_watch = 0;
1736		mtx_unlock_spin(&w_mtx);
1737		printf("%s: witness exhausted\n", __func__);
1738		return (NULL);
1739	}
1740	w_lock_list_free = lle->ll_next;
1741	mtx_unlock_spin(&w_mtx);
1742	bzero(lle, sizeof(*lle));
1743	return (lle);
1744}
1745
1746static void
1747witness_lock_list_free(struct lock_list_entry *lle)
1748{
1749
1750	mtx_lock_spin(&w_mtx);
1751	lle->ll_next = w_lock_list_free;
1752	w_lock_list_free = lle;
1753	mtx_unlock_spin(&w_mtx);
1754}
1755
1756static struct lock_instance *
1757find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1758{
1759	struct lock_list_entry *lle;
1760	struct lock_instance *instance;
1761	int i;
1762
1763	for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1764		for (i = lle->ll_count - 1; i >= 0; i--) {
1765			instance = &lle->ll_children[i];
1766			if (instance->li_lock == lock)
1767				return (instance);
1768		}
1769	return (NULL);
1770}
1771
1772static void
1773witness_list_lock(struct lock_instance *instance)
1774{
1775	struct lock_object *lock;
1776
1777	lock = instance->li_lock;
1778	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1779	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
1780	if (lock->lo_type != lock->lo_name)
1781		printf(" (%s)", lock->lo_type);
1782	printf(" r = %d (%p) locked @ %s:%d\n",
1783	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1784	    instance->li_line);
1785}
1786
1787#ifdef DDB
1788static int
1789witness_thread_has_locks(struct thread *td)
1790{
1791
1792	return (td->td_sleeplocks != NULL);
1793}
1794
1795static int
1796witness_proc_has_locks(struct proc *p)
1797{
1798	struct thread *td;
1799
1800	FOREACH_THREAD_IN_PROC(p, td) {
1801		if (witness_thread_has_locks(td))
1802			return (1);
1803	}
1804	return (0);
1805}
1806#endif
1807
1808int
1809witness_list_locks(struct lock_list_entry **lock_list)
1810{
1811	struct lock_list_entry *lle;
1812	int i, nheld;
1813
1814	nheld = 0;
1815	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1816		for (i = lle->ll_count - 1; i >= 0; i--) {
1817			witness_list_lock(&lle->ll_children[i]);
1818			nheld++;
1819		}
1820	return (nheld);
1821}
1822
1823/*
1824 * This is a bit risky at best.  We call this function when we have timed
1825 * out acquiring a spin lock, and we assume that the other CPU is stuck
1826 * with this lock held.  So, we go groveling around in the other CPU's
1827 * per-cpu data to try to find the lock instance for this spin lock to
1828 * see when it was last acquired.
1829 */
1830void
1831witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1832{
1833	struct lock_instance *instance;
1834	struct pcpu *pc;
1835
1836	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1837		return;
1838	pc = pcpu_find(owner->td_oncpu);
1839	instance = find_instance(pc->pc_spinlocks, lock);
1840	if (instance != NULL)
1841		witness_list_lock(instance);
1842}
1843
1844void
1845witness_save(struct lock_object *lock, const char **filep, int *linep)
1846{
1847	struct lock_list_entry *lock_list;
1848	struct lock_instance *instance;
1849	struct lock_class *class;
1850
1851	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1852	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1853		return;
1854	class = LOCK_CLASS(lock);
1855	if (class->lc_flags & LC_SLEEPLOCK)
1856		lock_list = curthread->td_sleeplocks;
1857	else {
1858		if (witness_skipspin)
1859			return;
1860		lock_list = PCPU_GET(spinlocks);
1861	}
1862	instance = find_instance(lock_list, lock);
1863	if (instance == NULL)
1864		panic("%s: lock (%s) %s not locked", __func__,
1865		    class->lc_name, lock->lo_name);
1866	*filep = instance->li_file;
1867	*linep = instance->li_line;
1868}
1869
1870void
1871witness_restore(struct lock_object *lock, const char *file, int line)
1872{
1873	struct lock_list_entry *lock_list;
1874	struct lock_instance *instance;
1875	struct lock_class *class;
1876
1877	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1878	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1879		return;
1880	class = LOCK_CLASS(lock);
1881	if (class->lc_flags & LC_SLEEPLOCK)
1882		lock_list = curthread->td_sleeplocks;
1883	else {
1884		if (witness_skipspin)
1885			return;
1886		lock_list = PCPU_GET(spinlocks);
1887	}
1888	instance = find_instance(lock_list, lock);
1889	if (instance == NULL)
1890		panic("%s: lock (%s) %s not locked", __func__,
1891		    class->lc_name, lock->lo_name);
1892	lock->lo_witness->w_file = file;
1893	lock->lo_witness->w_line = line;
1894	instance->li_file = file;
1895	instance->li_line = line;
1896}
1897
1898void
1899witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1900{
1901#ifdef INVARIANT_SUPPORT
1902	struct lock_instance *instance;
1903	struct lock_class *class;
1904
1905	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1906		return;
1907	class = LOCK_CLASS(lock);
1908	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
1909		instance = find_instance(curthread->td_sleeplocks, lock);
1910	else if ((class->lc_flags & LC_SPINLOCK) != 0)
1911		instance = find_instance(PCPU_GET(spinlocks), lock);
1912	else {
1913		panic("Lock (%s) %s is not sleep or spin!",
1914		    class->lc_name, lock->lo_name);
1915	}
1916	file = fixup_filename(file);
1917	switch (flags) {
1918	case LA_UNLOCKED:
1919		if (instance != NULL)
1920			panic("Lock (%s) %s locked @ %s:%d.",
1921			    class->lc_name, lock->lo_name, file, line);
1922		break;
1923	case LA_LOCKED:
1924	case LA_LOCKED | LA_RECURSED:
1925	case LA_LOCKED | LA_NOTRECURSED:
1926	case LA_SLOCKED:
1927	case LA_SLOCKED | LA_RECURSED:
1928	case LA_SLOCKED | LA_NOTRECURSED:
1929	case LA_XLOCKED:
1930	case LA_XLOCKED | LA_RECURSED:
1931	case LA_XLOCKED | LA_NOTRECURSED:
1932		if (instance == NULL) {
1933			panic("Lock (%s) %s not locked @ %s:%d.",
1934			    class->lc_name, lock->lo_name, file, line);
1935			break;
1936		}
1937		if ((flags & LA_XLOCKED) != 0 &&
1938		    (instance->li_flags & LI_EXCLUSIVE) == 0)
1939			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1940			    class->lc_name, lock->lo_name, file, line);
1941		if ((flags & LA_SLOCKED) != 0 &&
1942		    (instance->li_flags & LI_EXCLUSIVE) != 0)
1943			panic("Lock (%s) %s exclusively locked @ %s:%d.",
1944			    class->lc_name, lock->lo_name, file, line);
1945		if ((flags & LA_RECURSED) != 0 &&
1946		    (instance->li_flags & LI_RECURSEMASK) == 0)
1947			panic("Lock (%s) %s not recursed @ %s:%d.",
1948			    class->lc_name, lock->lo_name, file, line);
1949		if ((flags & LA_NOTRECURSED) != 0 &&
1950		    (instance->li_flags & LI_RECURSEMASK) != 0)
1951			panic("Lock (%s) %s recursed @ %s:%d.",
1952			    class->lc_name, lock->lo_name, file, line);
1953		break;
1954	default:
1955		panic("Invalid lock assertion at %s:%d.", file, line);
1956
1957	}
1958#endif	/* INVARIANT_SUPPORT */
1959}
1960
1961#ifdef DDB
1962static void
1963witness_list(struct thread *td)
1964{
1965
1966	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1967	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1968
1969	if (witness_watch == 0)
1970		return;
1971
1972	witness_list_locks(&td->td_sleeplocks);
1973
1974	/*
1975	 * We only handle spinlocks if td == curthread.  This is somewhat broken
1976	 * if td is currently executing on some other CPU and holds spin locks
1977	 * as we won't display those locks.  If we had a MI way of getting
1978	 * the per-cpu data for a given cpu then we could use
1979	 * td->td_oncpu to get the list of spinlocks for this thread
1980	 * and "fix" this.
1981	 *
1982	 * That still wouldn't really fix this unless we locked the scheduler
1983	 * lock or stopped the other CPU to make sure it wasn't changing the
1984	 * list out from under us.  It is probably best to just not try to
1985	 * handle threads on other CPU's for now.
1986	 */
1987	if (td == curthread && PCPU_GET(spinlocks) != NULL)
1988		witness_list_locks(PCPU_PTR(spinlocks));
1989}
1990
1991DB_SHOW_COMMAND(locks, db_witness_list)
1992{
1993	struct thread *td;
1994
1995	if (have_addr)
1996		td = db_lookup_thread(addr, TRUE);
1997	else
1998		td = kdb_thread;
1999	witness_list(td);
2000}
2001
2002DB_SHOW_COMMAND(alllocks, db_witness_list_all)
2003{
2004	struct thread *td;
2005	struct proc *p;
2006
2007	/*
2008	 * It would be nice to list only threads and processes that actually
2009	 * held sleep locks, but that information is currently not exported
2010	 * by WITNESS.
2011	 */
2012	FOREACH_PROC_IN_SYSTEM(p) {
2013		if (!witness_proc_has_locks(p))
2014			continue;
2015		FOREACH_THREAD_IN_PROC(p, td) {
2016			if (!witness_thread_has_locks(td))
2017				continue;
2018			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2019			    p->p_comm, td, td->td_tid);
2020			witness_list(td);
2021		}
2022	}
2023}
2024
2025DB_SHOW_COMMAND(witness, db_witness_display)
2026{
2027
2028	witness_display(db_printf);
2029}
2030#endif
2031