subr_witness.c revision 170302
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Implementation of the `witness' lock verifier.  Originally implemented for
34 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35 * classes in FreeBSD.
36 */
37
38/*
39 *	Main Entry: witness
40 *	Pronunciation: 'wit-n&s
41 *	Function: noun
42 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43 *	    testimony, witness, from 2wit
44 *	Date: before 12th century
45 *	1 : attestation of a fact or event : TESTIMONY
46 *	2 : one that gives evidence; specifically : one who testifies in
47 *	    a cause or before a judicial tribunal
48 *	3 : one asked to be present at a transaction so as to be able to
49 *	    testify to its having taken place
50 *	4 : one who has personal knowledge of something
51 *	5 a : something serving as evidence or proof : SIGN
52 *	  b : public affirmation by word or example of usually
53 *	      religious faith or conviction <the heroic witness to divine
54 *	      life -- Pilot>
55 *	6 capitalized : a member of the Jehovah's Witnesses
56 */
57
58/*
59 * Special rules concerning Giant and lock orders:
60 *
61 * 1) Giant must be acquired before any other mutexes.  Stated another way,
62 *    no other mutex may be held when Giant is acquired.
63 *
64 * 2) Giant must be released when blocking on a sleepable lock.
65 *
66 * This rule is less obvious, but is a result of Giant providing the same
67 * semantics as spl().  Basically, when a thread sleeps, it must release
68 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69 * 2).
70 *
71 * 3) Giant may be acquired before or after sleepable locks.
72 *
73 * This rule is also not quite as obvious.  Giant may be acquired after
74 * a sleepable lock because it is a non-sleepable lock and non-sleepable
75 * locks may always be acquired while holding a sleepable lock.  The second
76 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80 * execute.  Thus, acquiring Giant both before and after a sleepable lock
81 * will not result in a lock order reversal.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/kern/subr_witness.c 170302 2007-06-04 23:55:45Z jeff $");
86
87#include "opt_ddb.h"
88#include "opt_hwpmc_hooks.h"
89#include "opt_witness.h"
90
91#include <sys/param.h>
92#include <sys/bus.h>
93#include <sys/kdb.h>
94#include <sys/kernel.h>
95#include <sys/ktr.h>
96#include <sys/lock.h>
97#include <sys/malloc.h>
98#include <sys/mutex.h>
99#include <sys/priv.h>
100#include <sys/proc.h>
101#include <sys/sysctl.h>
102#include <sys/systm.h>
103
104#include <ddb/ddb.h>
105
106#include <machine/stdarg.h>
107
108/* Note that these traces do not work with KTR_ALQ. */
109#if 0
110#define	KTR_WITNESS	KTR_SUBSYS
111#else
112#define	KTR_WITNESS	0
113#endif
114
115/* Easier to stay with the old names. */
116#define	lo_list		lo_witness_data.lod_list
117#define	lo_witness	lo_witness_data.lod_witness
118
119/* Define this to check for blessed mutexes */
120#undef BLESSING
121
122#define WITNESS_COUNT 1024
123#define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
124/*
125 * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
126 * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
127 * probably be safe for the most part, but it's still a SWAG.
128 */
129#define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
130
131#define	WITNESS_NCHILDREN 6
132
133struct witness_child_list_entry;
134
135struct witness {
136	const	char *w_name;
137	struct	lock_class *w_class;
138	STAILQ_ENTRY(witness) w_list;		/* List of all witnesses. */
139	STAILQ_ENTRY(witness) w_typelist;	/* Witnesses of a type. */
140	struct	witness_child_list_entry *w_children;	/* Great evilness... */
141	const	char *w_file;
142	int	w_line;
143	u_int	w_level;
144	u_int	w_refcount;
145	u_char	w_Giant_squawked:1;
146	u_char	w_other_squawked:1;
147	u_char	w_same_squawked:1;
148	u_char	w_displayed:1;
149};
150
151struct witness_child_list_entry {
152	struct	witness_child_list_entry *wcl_next;
153	struct	witness *wcl_children[WITNESS_NCHILDREN];
154	u_int	wcl_count;
155};
156
157STAILQ_HEAD(witness_list, witness);
158
159#ifdef BLESSING
160struct witness_blessed {
161	const	char *b_lock1;
162	const	char *b_lock2;
163};
164#endif
165
166struct witness_order_list_entry {
167	const	char *w_name;
168	struct	lock_class *w_class;
169};
170
171#ifdef BLESSING
172static int	blessed(struct witness *, struct witness *);
173#endif
174static int	depart(struct witness *w);
175static struct	witness *enroll(const char *description,
176				struct lock_class *lock_class);
177static int	insertchild(struct witness *parent, struct witness *child);
178static int	isitmychild(struct witness *parent, struct witness *child);
179static int	isitmydescendant(struct witness *parent, struct witness *child);
180static int	itismychild(struct witness *parent, struct witness *child);
181static void	removechild(struct witness *parent, struct witness *child);
182static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
183static const char *fixup_filename(const char *file);
184static struct	witness *witness_get(void);
185static void	witness_free(struct witness *m);
186static struct	witness_child_list_entry *witness_child_get(void);
187static void	witness_child_free(struct witness_child_list_entry *wcl);
188static struct	lock_list_entry *witness_lock_list_get(void);
189static void	witness_lock_list_free(struct lock_list_entry *lle);
190static struct	lock_instance *find_instance(struct lock_list_entry *lock_list,
191					     struct lock_object *lock);
192static void	witness_list_lock(struct lock_instance *instance);
193#ifdef DDB
194static void	witness_leveldescendents(struct witness *parent, int level);
195static void	witness_levelall(void);
196static void	witness_displaydescendants(void(*)(const char *fmt, ...),
197					   struct witness *, int indent);
198static void	witness_display_list(void(*prnt)(const char *fmt, ...),
199				     struct witness_list *list);
200static void	witness_display(void(*)(const char *fmt, ...));
201static void	witness_list(struct thread *td);
202#endif
203
204SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
205
206/*
207 * If set to 0, witness is disabled.  If set to a non-zero value, witness
208 * performs full lock order checking for all locks.  At runtime, this
209 * value may be set to 0 to turn off witness.  witness is not allowed be
210 * turned on once it is turned off, however.
211 */
212static int witness_watch = 1;
213TUNABLE_INT("debug.witness.watch", &witness_watch);
214SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
215    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
216
217#ifdef KDB
218/*
219 * When KDB is enabled and witness_kdb is set to 1, it will cause the system
220 * to drop into kdebug() when:
221 *	- a lock hierarchy violation occurs
222 *	- locks are held when going to sleep.
223 */
224#ifdef WITNESS_KDB
225int	witness_kdb = 1;
226#else
227int	witness_kdb = 0;
228#endif
229TUNABLE_INT("debug.witness.kdb", &witness_kdb);
230SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
231
232/*
233 * When KDB is enabled and witness_trace is set to 1, it will cause the system
234 * to print a stack trace:
235 *	- a lock hierarchy violation occurs
236 *	- locks are held when going to sleep.
237 */
238int	witness_trace = 1;
239TUNABLE_INT("debug.witness.trace", &witness_trace);
240SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
241#endif /* KDB */
242
243#ifdef WITNESS_SKIPSPIN
244int	witness_skipspin = 1;
245#else
246int	witness_skipspin = 0;
247#endif
248TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
249SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
250    &witness_skipspin, 0, "");
251
252static struct mtx w_mtx;
253static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
254static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
255static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
256static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
257static struct witness_child_list_entry *w_child_free = NULL;
258static struct lock_list_entry *w_lock_list_free = NULL;
259
260static int w_free_cnt, w_spin_cnt, w_sleep_cnt, w_child_free_cnt, w_child_cnt;
261SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
262SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
263SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
264    "");
265SYSCTL_INT(_debug_witness, OID_AUTO, child_free_cnt, CTLFLAG_RD,
266    &w_child_free_cnt, 0, "");
267SYSCTL_INT(_debug_witness, OID_AUTO, child_cnt, CTLFLAG_RD, &w_child_cnt, 0,
268    "");
269
270static struct witness w_data[WITNESS_COUNT];
271static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
272static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
273
274static struct witness_order_list_entry order_lists[] = {
275	/*
276	 * sx locks
277	 */
278	{ "proctree", &lock_class_sx },
279	{ "allproc", &lock_class_sx },
280	{ "allprison", &lock_class_sx },
281	{ NULL, NULL },
282	/*
283	 * Various mutexes
284	 */
285	{ "Giant", &lock_class_mtx_sleep },
286	{ "pipe mutex", &lock_class_mtx_sleep },
287	{ "sigio lock", &lock_class_mtx_sleep },
288	{ "process group", &lock_class_mtx_sleep },
289	{ "process lock", &lock_class_mtx_sleep },
290	{ "session", &lock_class_mtx_sleep },
291	{ "uidinfo hash", &lock_class_mtx_sleep },
292	{ "uidinfo struct", &lock_class_mtx_sleep },
293#ifdef	HWPMC_HOOKS
294	{ "pmc-sleep", &lock_class_mtx_sleep },
295#endif
296	{ NULL, NULL },
297	/*
298	 * Sockets
299	 */
300	{ "accept", &lock_class_mtx_sleep },
301	{ "so_snd", &lock_class_mtx_sleep },
302	{ "so_rcv", &lock_class_mtx_sleep },
303	{ "sellck", &lock_class_mtx_sleep },
304	{ NULL, NULL },
305	/*
306	 * Routing
307	 */
308	{ "so_rcv", &lock_class_mtx_sleep },
309	{ "radix node head", &lock_class_mtx_sleep },
310	{ "rtentry", &lock_class_mtx_sleep },
311	{ "ifaddr", &lock_class_mtx_sleep },
312	{ NULL, NULL },
313	/*
314	 * Multicast - protocol locks before interface locks, after UDP locks.
315	 */
316	{ "udpinp", &lock_class_mtx_sleep },
317	{ "in_multi_mtx", &lock_class_mtx_sleep },
318	{ "igmp_mtx", &lock_class_mtx_sleep },
319	{ "if_addr_mtx", &lock_class_mtx_sleep },
320	{ NULL, NULL },
321	/*
322	 * UNIX Domain Sockets
323	 */
324	{ "unp", &lock_class_mtx_sleep },
325	{ "so_snd", &lock_class_mtx_sleep },
326	{ NULL, NULL },
327	/*
328	 * UDP/IP
329	 */
330	{ "udp", &lock_class_mtx_sleep },
331	{ "udpinp", &lock_class_mtx_sleep },
332	{ "so_snd", &lock_class_mtx_sleep },
333	{ NULL, NULL },
334	/*
335	 * TCP/IP
336	 */
337	{ "tcp", &lock_class_mtx_sleep },
338	{ "tcpinp", &lock_class_mtx_sleep },
339	{ "so_snd", &lock_class_mtx_sleep },
340	{ NULL, NULL },
341	/*
342	 * SLIP
343	 */
344	{ "slip_mtx", &lock_class_mtx_sleep },
345	{ "slip sc_mtx", &lock_class_mtx_sleep },
346	{ NULL, NULL },
347	/*
348	 * netatalk
349	 */
350	{ "ddp_list_mtx", &lock_class_mtx_sleep },
351	{ "ddp_mtx", &lock_class_mtx_sleep },
352	{ NULL, NULL },
353	/*
354	 * BPF
355	 */
356	{ "bpf global lock", &lock_class_mtx_sleep },
357	{ "bpf interface lock", &lock_class_mtx_sleep },
358	{ "bpf cdev lock", &lock_class_mtx_sleep },
359	{ NULL, NULL },
360	/*
361	 * NFS server
362	 */
363	{ "nfsd_mtx", &lock_class_mtx_sleep },
364	{ "so_snd", &lock_class_mtx_sleep },
365	{ NULL, NULL },
366	/*
367	 * Netgraph
368	 */
369	{ "ng_node", &lock_class_mtx_sleep },
370	{ "ng_worklist", &lock_class_mtx_sleep },
371	{ NULL, NULL },
372	/*
373	 * CDEV
374	 */
375	{ "system map", &lock_class_mtx_sleep },
376	{ "vm page queue mutex", &lock_class_mtx_sleep },
377	{ "vnode interlock", &lock_class_mtx_sleep },
378	{ "cdev", &lock_class_mtx_sleep },
379	{ NULL, NULL },
380	/*
381	 * kqueue/VFS interaction
382	 */
383	{ "kqueue", &lock_class_mtx_sleep },
384	{ "struct mount mtx", &lock_class_mtx_sleep },
385	{ "vnode interlock", &lock_class_mtx_sleep },
386	{ NULL, NULL },
387	/*
388	 * spin locks
389	 */
390#ifdef SMP
391	{ "ap boot", &lock_class_mtx_spin },
392#endif
393	{ "rm.mutex_mtx", &lock_class_mtx_spin },
394	{ "sio", &lock_class_mtx_spin },
395#ifdef __i386__
396	{ "cy", &lock_class_mtx_spin },
397	{ "descriptor tables", &lock_class_mtx_spin },
398#endif
399	{ "scc_hwmtx", &lock_class_mtx_spin },
400	{ "uart_hwmtx", &lock_class_mtx_spin },
401	{ "zstty", &lock_class_mtx_spin },
402	{ "fast_taskqueue", &lock_class_mtx_spin },
403	{ "intr table", &lock_class_mtx_spin },
404#ifdef	HWPMC_HOOKS
405	{ "pmc-per-proc", &lock_class_mtx_spin },
406#endif
407	{ "process slock", &lock_class_mtx_spin },
408	{ "sleepq chain", &lock_class_mtx_spin },
409	{ "umtx lock", &lock_class_mtx_spin },
410	{ "turnstile chain", &lock_class_mtx_spin },
411	{ "turnstile lock", &lock_class_mtx_spin },
412	{ "sched lock", &lock_class_mtx_spin },
413	{ "td_contested", &lock_class_mtx_spin },
414	{ "callout", &lock_class_mtx_spin },
415	{ "entropy harvest mutex", &lock_class_mtx_spin },
416	{ "syscons video lock", &lock_class_mtx_spin },
417	{ "time lock", &lock_class_mtx_spin },
418	/*
419	 * leaf locks
420	 */
421	{ "allpmaps", &lock_class_mtx_spin },
422	{ "icu", &lock_class_mtx_spin },
423#ifdef SMP
424	{ "smp rendezvous", &lock_class_mtx_spin },
425#if defined(__i386__) || defined(__amd64__)
426	{ "tlb", &lock_class_mtx_spin },
427#endif
428#ifdef __sparc64__
429	{ "ipi", &lock_class_mtx_spin },
430	{ "rtc_mtx", &lock_class_mtx_spin },
431#endif
432#endif
433	{ "clk", &lock_class_mtx_spin },
434	{ "mutex profiling lock", &lock_class_mtx_spin },
435	{ "kse lock", &lock_class_mtx_spin },
436	{ "zombie lock", &lock_class_mtx_spin },
437	{ "ALD Queue", &lock_class_mtx_spin },
438#ifdef __ia64__
439	{ "MCA spin lock", &lock_class_mtx_spin },
440#endif
441#if defined(__i386__) || defined(__amd64__)
442	{ "pcicfg", &lock_class_mtx_spin },
443	{ "NDIS thread lock", &lock_class_mtx_spin },
444#endif
445	{ "tw_osl_io_lock", &lock_class_mtx_spin },
446	{ "tw_osl_q_lock", &lock_class_mtx_spin },
447	{ "tw_cl_io_lock", &lock_class_mtx_spin },
448	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
449	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
450#ifdef	HWPMC_HOOKS
451	{ "pmc-leaf", &lock_class_mtx_spin },
452#endif
453	{ "blocked lock", &lock_class_mtx_spin },
454	{ NULL, NULL },
455	{ NULL, NULL }
456};
457
458#ifdef BLESSING
459/*
460 * Pairs of locks which have been blessed
461 * Don't complain about order problems with blessed locks
462 */
463static struct witness_blessed blessed_list[] = {
464};
465static int blessed_count =
466	sizeof(blessed_list) / sizeof(struct witness_blessed);
467#endif
468
469/*
470 * List of locks initialized prior to witness being initialized whose
471 * enrollment is currently deferred.
472 */
473STAILQ_HEAD(, lock_object) pending_locks =
474    STAILQ_HEAD_INITIALIZER(pending_locks);
475
476/*
477 * This global is set to 0 once it becomes safe to use the witness code.
478 */
479static int witness_cold = 1;
480
481/*
482 * This global is set to 1 once the static lock orders have been enrolled
483 * so that a warning can be issued for any spin locks enrolled later.
484 */
485static int witness_spin_warn = 0;
486
487/*
488 * The WITNESS-enabled diagnostic code.  Note that the witness code does
489 * assume that the early boot is single-threaded at least until after this
490 * routine is completed.
491 */
492static void
493witness_initialize(void *dummy __unused)
494{
495	struct lock_object *lock;
496	struct witness_order_list_entry *order;
497	struct witness *w, *w1;
498	int i;
499
500	/*
501	 * We have to release Giant before initializing its witness
502	 * structure so that WITNESS doesn't get confused.
503	 */
504	mtx_unlock(&Giant);
505	mtx_assert(&Giant, MA_NOTOWNED);
506
507	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
508	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
509	    MTX_NOWITNESS | MTX_NOPROFILE);
510	for (i = 0; i < WITNESS_COUNT; i++)
511		witness_free(&w_data[i]);
512	for (i = 0; i < WITNESS_CHILDCOUNT; i++)
513		witness_child_free(&w_childdata[i]);
514	for (i = 0; i < LOCK_CHILDCOUNT; i++)
515		witness_lock_list_free(&w_locklistdata[i]);
516
517	/* First add in all the specified order lists. */
518	for (order = order_lists; order->w_name != NULL; order++) {
519		w = enroll(order->w_name, order->w_class);
520		if (w == NULL)
521			continue;
522		w->w_file = "order list";
523		for (order++; order->w_name != NULL; order++) {
524			w1 = enroll(order->w_name, order->w_class);
525			if (w1 == NULL)
526				continue;
527			w1->w_file = "order list";
528			if (!itismychild(w, w1))
529				panic("Not enough memory for static orders!");
530			w = w1;
531		}
532	}
533	witness_spin_warn = 1;
534
535	/* Iterate through all locks and add them to witness. */
536	while (!STAILQ_EMPTY(&pending_locks)) {
537		lock = STAILQ_FIRST(&pending_locks);
538		STAILQ_REMOVE_HEAD(&pending_locks, lo_list);
539		KASSERT(lock->lo_flags & LO_WITNESS,
540		    ("%s: lock %s is on pending list but not LO_WITNESS",
541		    __func__, lock->lo_name));
542		lock->lo_witness = enroll(lock->lo_type, LOCK_CLASS(lock));
543	}
544
545	/* Mark the witness code as being ready for use. */
546	witness_cold = 0;
547
548	mtx_lock(&Giant);
549}
550SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, NULL)
551
552static int
553sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
554{
555	int error, value;
556
557	value = witness_watch;
558	error = sysctl_handle_int(oidp, &value, 0, req);
559	if (error != 0 || req->newptr == NULL)
560		return (error);
561	if (value == witness_watch)
562		return (0);
563	if (value != 0)
564		return (EINVAL);
565	witness_watch = 0;
566	return (0);
567}
568
569void
570witness_init(struct lock_object *lock)
571{
572	struct lock_class *class;
573
574	/* Various sanity checks. */
575	class = LOCK_CLASS(lock);
576	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
577	    (class->lc_flags & LC_RECURSABLE) == 0)
578		panic("%s: lock (%s) %s can not be recursable", __func__,
579		    class->lc_name, lock->lo_name);
580	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
581	    (class->lc_flags & LC_SLEEPABLE) == 0)
582		panic("%s: lock (%s) %s can not be sleepable", __func__,
583		    class->lc_name, lock->lo_name);
584	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
585	    (class->lc_flags & LC_UPGRADABLE) == 0)
586		panic("%s: lock (%s) %s can not be upgradable", __func__,
587		    class->lc_name, lock->lo_name);
588
589	/*
590	 * If we shouldn't watch this lock, then just clear lo_witness.
591	 * Otherwise, if witness_cold is set, then it is too early to
592	 * enroll this lock, so defer it to witness_initialize() by adding
593	 * it to the pending_locks list.  If it is not too early, then enroll
594	 * the lock now.
595	 */
596	if (witness_watch == 0 || panicstr != NULL ||
597	    (lock->lo_flags & LO_WITNESS) == 0)
598		lock->lo_witness = NULL;
599	else if (witness_cold) {
600		STAILQ_INSERT_TAIL(&pending_locks, lock, lo_list);
601		lock->lo_flags |= LO_ENROLLPEND;
602	} else
603		lock->lo_witness = enroll(lock->lo_type, class);
604}
605
606void
607witness_destroy(struct lock_object *lock)
608{
609	struct lock_class *class;
610	struct witness *w;
611
612	class = LOCK_CLASS(lock);
613	if (witness_cold)
614		panic("lock (%s) %s destroyed while witness_cold",
615		    class->lc_name, lock->lo_name);
616
617	/* XXX: need to verify that no one holds the lock */
618	if ((lock->lo_flags & (LO_WITNESS | LO_ENROLLPEND)) == LO_WITNESS &&
619	    lock->lo_witness != NULL) {
620		w = lock->lo_witness;
621		mtx_lock_spin(&w_mtx);
622		MPASS(w->w_refcount > 0);
623		w->w_refcount--;
624
625		/*
626		 * Lock is already released if we have an allocation failure
627		 * and depart() fails.
628		 */
629		if (w->w_refcount != 0 || depart(w))
630			mtx_unlock_spin(&w_mtx);
631	}
632
633	/*
634	 * If this lock is destroyed before witness is up and running,
635	 * remove it from the pending list.
636	 */
637	if (lock->lo_flags & LO_ENROLLPEND) {
638		STAILQ_REMOVE(&pending_locks, lock, lock_object, lo_list);
639		lock->lo_flags &= ~LO_ENROLLPEND;
640	}
641}
642
643#ifdef DDB
644static void
645witness_levelall (void)
646{
647	struct witness_list *list;
648	struct witness *w, *w1;
649
650	/*
651	 * First clear all levels.
652	 */
653	STAILQ_FOREACH(w, &w_all, w_list) {
654		w->w_level = 0;
655	}
656
657	/*
658	 * Look for locks with no parent and level all their descendants.
659	 */
660	STAILQ_FOREACH(w, &w_all, w_list) {
661		/*
662		 * This is just an optimization, technically we could get
663		 * away just walking the all list each time.
664		 */
665		if (w->w_class->lc_flags & LC_SLEEPLOCK)
666			list = &w_sleep;
667		else
668			list = &w_spin;
669		STAILQ_FOREACH(w1, list, w_typelist) {
670			if (isitmychild(w1, w))
671				goto skip;
672		}
673		witness_leveldescendents(w, 0);
674	skip:
675		;	/* silence GCC 3.x */
676	}
677}
678
679static void
680witness_leveldescendents(struct witness *parent, int level)
681{
682	struct witness_child_list_entry *wcl;
683	int i;
684
685	if (parent->w_level < level)
686		parent->w_level = level;
687	level++;
688	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
689		for (i = 0; i < wcl->wcl_count; i++)
690			witness_leveldescendents(wcl->wcl_children[i], level);
691}
692
693static void
694witness_displaydescendants(void(*prnt)(const char *fmt, ...),
695			   struct witness *parent, int indent)
696{
697	struct witness_child_list_entry *wcl;
698	int i, level;
699
700	level = parent->w_level;
701	prnt("%-2d", level);
702	for (i = 0; i < indent; i++)
703		prnt(" ");
704	if (parent->w_refcount > 0)
705		prnt("%s", parent->w_name);
706	else
707		prnt("(dead)");
708	if (parent->w_displayed) {
709		prnt(" -- (already displayed)\n");
710		return;
711	}
712	parent->w_displayed = 1;
713	if (parent->w_refcount > 0) {
714		if (parent->w_file != NULL)
715			prnt(" -- last acquired @ %s:%d", parent->w_file,
716			    parent->w_line);
717	}
718	prnt("\n");
719	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
720		for (i = 0; i < wcl->wcl_count; i++)
721			    witness_displaydescendants(prnt,
722				wcl->wcl_children[i], indent + 1);
723}
724
725static void
726witness_display_list(void(*prnt)(const char *fmt, ...),
727		     struct witness_list *list)
728{
729	struct witness *w;
730
731	STAILQ_FOREACH(w, list, w_typelist) {
732		if (w->w_file == NULL || w->w_level > 0)
733			continue;
734		/*
735		 * This lock has no anscestors, display its descendants.
736		 */
737		witness_displaydescendants(prnt, w, 0);
738	}
739}
740
741static void
742witness_display(void(*prnt)(const char *fmt, ...))
743{
744	struct witness *w;
745
746	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
747	witness_levelall();
748
749	/* Clear all the displayed flags. */
750	STAILQ_FOREACH(w, &w_all, w_list) {
751		w->w_displayed = 0;
752	}
753
754	/*
755	 * First, handle sleep locks which have been acquired at least
756	 * once.
757	 */
758	prnt("Sleep locks:\n");
759	witness_display_list(prnt, &w_sleep);
760
761	/*
762	 * Now do spin locks which have been acquired at least once.
763	 */
764	prnt("\nSpin locks:\n");
765	witness_display_list(prnt, &w_spin);
766
767	/*
768	 * Finally, any locks which have not been acquired yet.
769	 */
770	prnt("\nLocks which were never acquired:\n");
771	STAILQ_FOREACH(w, &w_all, w_list) {
772		if (w->w_file != NULL || w->w_refcount == 0)
773			continue;
774		prnt("%s\n", w->w_name);
775	}
776}
777#endif /* DDB */
778
779/* Trim useless garbage from filenames. */
780static const char *
781fixup_filename(const char *file)
782{
783
784	if (file == NULL)
785		return (NULL);
786	while (strncmp(file, "../", 3) == 0)
787		file += 3;
788	return (file);
789}
790
791int
792witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
793{
794
795	if (witness_watch == 0 || panicstr != NULL)
796		return (0);
797
798	/* Require locks that witness knows about. */
799	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
800	    lock2->lo_witness == NULL)
801		return (EINVAL);
802
803	MPASS(!mtx_owned(&w_mtx));
804	mtx_lock_spin(&w_mtx);
805
806	/*
807	 * If we already have either an explicit or implied lock order that
808	 * is the other way around, then return an error.
809	 */
810	if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
811		mtx_unlock_spin(&w_mtx);
812		return (EDOOFUS);
813	}
814
815	/* Try to add the new order. */
816	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
817	    lock2->lo_type, lock1->lo_type);
818	if (!itismychild(lock1->lo_witness, lock2->lo_witness))
819		return (ENOMEM);
820	mtx_unlock_spin(&w_mtx);
821	return (0);
822}
823
824void
825witness_checkorder(struct lock_object *lock, int flags, const char *file,
826    int line)
827{
828	struct lock_list_entry **lock_list, *lle;
829	struct lock_instance *lock1, *lock2;
830	struct lock_class *class;
831	struct witness *w, *w1;
832	struct thread *td;
833	int i, j;
834
835	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
836	    panicstr != NULL)
837		return;
838
839	/*
840	 * Try locks do not block if they fail to acquire the lock, thus
841	 * there is no danger of deadlocks or of switching while holding a
842	 * spin lock if we acquire a lock via a try operation.  This
843	 * function shouldn't even be called for try locks, so panic if
844	 * that happens.
845	 */
846	if (flags & LOP_TRYLOCK)
847		panic("%s should not be called for try lock operations",
848		    __func__);
849
850	w = lock->lo_witness;
851	class = LOCK_CLASS(lock);
852	td = curthread;
853	file = fixup_filename(file);
854
855	if (class->lc_flags & LC_SLEEPLOCK) {
856		/*
857		 * Since spin locks include a critical section, this check
858		 * implicitly enforces a lock order of all sleep locks before
859		 * all spin locks.
860		 */
861		if (td->td_critnest != 0 && !kdb_active)
862			panic("blockable sleep lock (%s) %s @ %s:%d",
863			    class->lc_name, lock->lo_name, file, line);
864
865		/*
866		 * If this is the first lock acquired then just return as
867		 * no order checking is needed.
868		 */
869		if (td->td_sleeplocks == NULL)
870			return;
871		lock_list = &td->td_sleeplocks;
872	} else {
873		/*
874		 * If this is the first lock, just return as no order
875		 * checking is needed.  We check this in both if clauses
876		 * here as unifying the check would require us to use a
877		 * critical section to ensure we don't migrate while doing
878		 * the check.  Note that if this is not the first lock, we
879		 * are already in a critical section and are safe for the
880		 * rest of the check.
881		 */
882		if (PCPU_GET(spinlocks) == NULL)
883			return;
884		lock_list = PCPU_PTR(spinlocks);
885	}
886
887	/*
888	 * Check to see if we are recursing on a lock we already own.  If
889	 * so, make sure that we don't mismatch exclusive and shared lock
890	 * acquires.
891	 */
892	lock1 = find_instance(*lock_list, lock);
893	if (lock1 != NULL) {
894		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
895		    (flags & LOP_EXCLUSIVE) == 0) {
896			printf("shared lock of (%s) %s @ %s:%d\n",
897			    class->lc_name, lock->lo_name, file, line);
898			printf("while exclusively locked from %s:%d\n",
899			    lock1->li_file, lock1->li_line);
900			panic("share->excl");
901		}
902		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
903		    (flags & LOP_EXCLUSIVE) != 0) {
904			printf("exclusive lock of (%s) %s @ %s:%d\n",
905			    class->lc_name, lock->lo_name, file, line);
906			printf("while share locked from %s:%d\n",
907			    lock1->li_file, lock1->li_line);
908			panic("excl->share");
909		}
910		return;
911	}
912
913	/*
914	 * Try locks do not block if they fail to acquire the lock, thus
915	 * there is no danger of deadlocks or of switching while holding a
916	 * spin lock if we acquire a lock via a try operation.
917	 */
918	if (flags & LOP_TRYLOCK)
919		return;
920
921	/*
922	 * Check for duplicate locks of the same type.  Note that we only
923	 * have to check for this on the last lock we just acquired.  Any
924	 * other cases will be caught as lock order violations.
925	 */
926	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
927	w1 = lock1->li_lock->lo_witness;
928	if (w1 == w) {
929		if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK) ||
930		    (flags & LOP_DUPOK))
931			return;
932		w->w_same_squawked = 1;
933		printf("acquiring duplicate lock of same type: \"%s\"\n",
934			lock->lo_type);
935		printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
936		    lock1->li_file, lock1->li_line);
937		printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
938#ifdef KDB
939		goto debugger;
940#else
941		return;
942#endif
943	}
944	MPASS(!mtx_owned(&w_mtx));
945	mtx_lock_spin(&w_mtx);
946	/*
947	 * If we know that the the lock we are acquiring comes after
948	 * the lock we most recently acquired in the lock order tree,
949	 * then there is no need for any further checks.
950	 */
951	if (isitmychild(w1, w)) {
952		mtx_unlock_spin(&w_mtx);
953		return;
954	}
955	for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
956		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
957
958			MPASS(j < WITNESS_COUNT);
959			lock1 = &lle->ll_children[i];
960			w1 = lock1->li_lock->lo_witness;
961
962			/*
963			 * If this lock doesn't undergo witness checking,
964			 * then skip it.
965			 */
966			if (w1 == NULL) {
967				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
968				    ("lock missing witness structure"));
969				continue;
970			}
971			/*
972			 * If we are locking Giant and this is a sleepable
973			 * lock, then skip it.
974			 */
975			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
976			    lock == &Giant.lock_object)
977				continue;
978			/*
979			 * If we are locking a sleepable lock and this lock
980			 * is Giant, then skip it.
981			 */
982			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
983			    lock1->li_lock == &Giant.lock_object)
984				continue;
985			/*
986			 * If we are locking a sleepable lock and this lock
987			 * isn't sleepable, we want to treat it as a lock
988			 * order violation to enfore a general lock order of
989			 * sleepable locks before non-sleepable locks.
990			 */
991			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
992			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
993				goto reversal;
994			/*
995			 * If we are locking Giant and this is a non-sleepable
996			 * lock, then treat it as a reversal.
997			 */
998			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
999			    lock == &Giant.lock_object)
1000				goto reversal;
1001			/*
1002			 * Check the lock order hierarchy for a reveresal.
1003			 */
1004			if (!isitmydescendant(w, w1))
1005				continue;
1006		reversal:
1007			/*
1008			 * We have a lock order violation, check to see if it
1009			 * is allowed or has already been yelled about.
1010			 */
1011			mtx_unlock_spin(&w_mtx);
1012#ifdef BLESSING
1013			/*
1014			 * If the lock order is blessed, just bail.  We don't
1015			 * look for other lock order violations though, which
1016			 * may be a bug.
1017			 */
1018			if (blessed(w, w1))
1019				return;
1020#endif
1021			if (lock1->li_lock == &Giant.lock_object) {
1022				if (w1->w_Giant_squawked)
1023					return;
1024				else
1025					w1->w_Giant_squawked = 1;
1026			} else {
1027				if (w1->w_other_squawked)
1028					return;
1029				else
1030					w1->w_other_squawked = 1;
1031			}
1032			/*
1033			 * Ok, yell about it.
1034			 */
1035			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1036			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1037				printf(
1038		"lock order reversal: (sleepable after non-sleepable)\n");
1039			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1040			    && lock == &Giant.lock_object)
1041				printf(
1042		"lock order reversal: (Giant after non-sleepable)\n");
1043			else
1044				printf("lock order reversal:\n");
1045			/*
1046			 * Try to locate an earlier lock with
1047			 * witness w in our list.
1048			 */
1049			do {
1050				lock2 = &lle->ll_children[i];
1051				MPASS(lock2->li_lock != NULL);
1052				if (lock2->li_lock->lo_witness == w)
1053					break;
1054				if (i == 0 && lle->ll_next != NULL) {
1055					lle = lle->ll_next;
1056					i = lle->ll_count - 1;
1057					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1058				} else
1059					i--;
1060			} while (i >= 0);
1061			if (i < 0) {
1062				printf(" 1st %p %s (%s) @ %s:%d\n",
1063				    lock1->li_lock, lock1->li_lock->lo_name,
1064				    lock1->li_lock->lo_type, lock1->li_file,
1065				    lock1->li_line);
1066				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1067				    lock->lo_name, lock->lo_type, file, line);
1068			} else {
1069				printf(" 1st %p %s (%s) @ %s:%d\n",
1070				    lock2->li_lock, lock2->li_lock->lo_name,
1071				    lock2->li_lock->lo_type, lock2->li_file,
1072				    lock2->li_line);
1073				printf(" 2nd %p %s (%s) @ %s:%d\n",
1074				    lock1->li_lock, lock1->li_lock->lo_name,
1075				    lock1->li_lock->lo_type, lock1->li_file,
1076				    lock1->li_line);
1077				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1078				    lock->lo_name, lock->lo_type, file, line);
1079			}
1080#ifdef KDB
1081			goto debugger;
1082#else
1083			return;
1084#endif
1085		}
1086	}
1087	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
1088	/*
1089	 * If requested, build a new lock order.  However, don't build a new
1090	 * relationship between a sleepable lock and Giant if it is in the
1091	 * wrong direction.  The correct lock order is that sleepable locks
1092	 * always come before Giant.
1093	 */
1094	if (flags & LOP_NEWORDER &&
1095	    !(lock1->li_lock == &Giant.lock_object &&
1096	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1097		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1098		    lock->lo_type, lock1->li_lock->lo_type);
1099		if (!itismychild(lock1->li_lock->lo_witness, w))
1100			/* Witness is dead. */
1101			return;
1102	}
1103	mtx_unlock_spin(&w_mtx);
1104	return;
1105
1106#ifdef KDB
1107debugger:
1108	if (witness_trace)
1109		kdb_backtrace();
1110	if (witness_kdb)
1111		kdb_enter(__func__);
1112#endif
1113}
1114
1115void
1116witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1117{
1118	struct lock_list_entry **lock_list, *lle;
1119	struct lock_instance *instance;
1120	struct witness *w;
1121	struct thread *td;
1122
1123	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1124	    panicstr != NULL)
1125		return;
1126	w = lock->lo_witness;
1127	td = curthread;
1128	file = fixup_filename(file);
1129
1130	/* Determine lock list for this lock. */
1131	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1132		lock_list = &td->td_sleeplocks;
1133	else
1134		lock_list = PCPU_PTR(spinlocks);
1135
1136	/* Check to see if we are recursing on a lock we already own. */
1137	instance = find_instance(*lock_list, lock);
1138	if (instance != NULL) {
1139		instance->li_flags++;
1140		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1141		    td->td_proc->p_pid, lock->lo_name,
1142		    instance->li_flags & LI_RECURSEMASK);
1143		instance->li_file = file;
1144		instance->li_line = line;
1145		return;
1146	}
1147
1148	/* Update per-witness last file and line acquire. */
1149	w->w_file = file;
1150	w->w_line = line;
1151
1152	/* Find the next open lock instance in the list and fill it. */
1153	lle = *lock_list;
1154	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1155		lle = witness_lock_list_get();
1156		if (lle == NULL)
1157			return;
1158		lle->ll_next = *lock_list;
1159		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1160		    td->td_proc->p_pid, lle);
1161		*lock_list = lle;
1162	}
1163	instance = &lle->ll_children[lle->ll_count++];
1164	instance->li_lock = lock;
1165	instance->li_line = line;
1166	instance->li_file = file;
1167	if ((flags & LOP_EXCLUSIVE) != 0)
1168		instance->li_flags = LI_EXCLUSIVE;
1169	else
1170		instance->li_flags = 0;
1171	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1172	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1173}
1174
1175void
1176witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1177{
1178	struct lock_instance *instance;
1179	struct lock_class *class;
1180
1181	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1182	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1183		return;
1184	class = LOCK_CLASS(lock);
1185	file = fixup_filename(file);
1186	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1187		panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1188		    class->lc_name, lock->lo_name, file, line);
1189	if ((flags & LOP_TRYLOCK) == 0)
1190		panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1191		    lock->lo_name, file, line);
1192	if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1193		panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1194		    class->lc_name, lock->lo_name, file, line);
1195	instance = find_instance(curthread->td_sleeplocks, lock);
1196	if (instance == NULL)
1197		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1198		    class->lc_name, lock->lo_name, file, line);
1199	if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1200		panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1201		    class->lc_name, lock->lo_name, file, line);
1202	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1203		panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1204		    class->lc_name, lock->lo_name,
1205		    instance->li_flags & LI_RECURSEMASK, file, line);
1206	instance->li_flags |= LI_EXCLUSIVE;
1207}
1208
1209void
1210witness_downgrade(struct lock_object *lock, int flags, const char *file,
1211    int line)
1212{
1213	struct lock_instance *instance;
1214	struct lock_class *class;
1215
1216	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1217	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1218		return;
1219	class = LOCK_CLASS(lock);
1220	file = fixup_filename(file);
1221	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1222		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1223		    class->lc_name, lock->lo_name, file, line);
1224	if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1225		panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1226		    class->lc_name, lock->lo_name, file, line);
1227	instance = find_instance(curthread->td_sleeplocks, lock);
1228	if (instance == NULL)
1229		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1230		    class->lc_name, lock->lo_name, file, line);
1231	if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1232		panic("downgrade of shared lock (%s) %s @ %s:%d",
1233		    class->lc_name, lock->lo_name, file, line);
1234	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1235		panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1236		    class->lc_name, lock->lo_name,
1237		    instance->li_flags & LI_RECURSEMASK, file, line);
1238	instance->li_flags &= ~LI_EXCLUSIVE;
1239}
1240
1241void
1242witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1243{
1244	struct lock_list_entry **lock_list, *lle;
1245	struct lock_instance *instance;
1246	struct lock_class *class;
1247	struct thread *td;
1248	register_t s;
1249	int i, j;
1250
1251	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1252	    panicstr != NULL)
1253		return;
1254	td = curthread;
1255	class = LOCK_CLASS(lock);
1256	file = fixup_filename(file);
1257
1258	/* Find lock instance associated with this lock. */
1259	if (class->lc_flags & LC_SLEEPLOCK)
1260		lock_list = &td->td_sleeplocks;
1261	else
1262		lock_list = PCPU_PTR(spinlocks);
1263	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1264		for (i = 0; i < (*lock_list)->ll_count; i++) {
1265			instance = &(*lock_list)->ll_children[i];
1266			if (instance->li_lock == lock)
1267				goto found;
1268		}
1269	panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1270	    file, line);
1271found:
1272
1273	/* First, check for shared/exclusive mismatches. */
1274	if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1275	    (flags & LOP_EXCLUSIVE) == 0) {
1276		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1277		    lock->lo_name, file, line);
1278		printf("while exclusively locked from %s:%d\n",
1279		    instance->li_file, instance->li_line);
1280		panic("excl->ushare");
1281	}
1282	if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1283	    (flags & LOP_EXCLUSIVE) != 0) {
1284		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1285		    lock->lo_name, file, line);
1286		printf("while share locked from %s:%d\n", instance->li_file,
1287		    instance->li_line);
1288		panic("share->uexcl");
1289	}
1290
1291	/* If we are recursed, unrecurse. */
1292	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1293		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1294		    td->td_proc->p_pid, instance->li_lock->lo_name,
1295		    instance->li_flags);
1296		instance->li_flags--;
1297		return;
1298	}
1299
1300	/* Otherwise, remove this item from the list. */
1301	s = intr_disable();
1302	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1303	    td->td_proc->p_pid, instance->li_lock->lo_name,
1304	    (*lock_list)->ll_count - 1);
1305	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1306		(*lock_list)->ll_children[j] =
1307		    (*lock_list)->ll_children[j + 1];
1308	(*lock_list)->ll_count--;
1309	intr_restore(s);
1310
1311	/* If this lock list entry is now empty, free it. */
1312	if ((*lock_list)->ll_count == 0) {
1313		lle = *lock_list;
1314		*lock_list = lle->ll_next;
1315		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1316		    td->td_proc->p_pid, lle);
1317		witness_lock_list_free(lle);
1318	}
1319}
1320
1321/*
1322 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1323 * exempt Giant and sleepable locks from the checks as well.  If any
1324 * non-exempt locks are held, then a supplied message is printed to the
1325 * console along with a list of the offending locks.  If indicated in the
1326 * flags then a failure results in a panic as well.
1327 */
1328int
1329witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1330{
1331	struct lock_list_entry *lle;
1332	struct lock_instance *lock1;
1333	struct thread *td;
1334	va_list ap;
1335	int i, n;
1336
1337	if (witness_cold || witness_watch == 0 || panicstr != NULL)
1338		return (0);
1339	n = 0;
1340	td = curthread;
1341	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1342		for (i = lle->ll_count - 1; i >= 0; i--) {
1343			lock1 = &lle->ll_children[i];
1344			if (lock1->li_lock == lock)
1345				continue;
1346			if (flags & WARN_GIANTOK &&
1347			    lock1->li_lock == &Giant.lock_object)
1348				continue;
1349			if (flags & WARN_SLEEPOK &&
1350			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1351				continue;
1352			if (n == 0) {
1353				va_start(ap, fmt);
1354				vprintf(fmt, ap);
1355				va_end(ap);
1356				printf(" with the following");
1357				if (flags & WARN_SLEEPOK)
1358					printf(" non-sleepable");
1359				printf(" locks held:\n");
1360			}
1361			n++;
1362			witness_list_lock(lock1);
1363		}
1364	if (PCPU_GET(spinlocks) != NULL) {
1365		/*
1366		 * Since we already hold a spinlock preemption is
1367		 * already blocked.
1368		 */
1369		if (n == 0) {
1370			va_start(ap, fmt);
1371			vprintf(fmt, ap);
1372			va_end(ap);
1373			printf(" with the following");
1374			if (flags & WARN_SLEEPOK)
1375				printf(" non-sleepable");
1376			printf(" locks held:\n");
1377		}
1378		n += witness_list_locks(PCPU_PTR(spinlocks));
1379	}
1380	if (flags & WARN_PANIC && n)
1381		panic("witness_warn");
1382#ifdef KDB
1383	else if (witness_kdb && n)
1384		kdb_enter(__func__);
1385	else if (witness_trace && n)
1386		kdb_backtrace();
1387#endif
1388	return (n);
1389}
1390
1391const char *
1392witness_file(struct lock_object *lock)
1393{
1394	struct witness *w;
1395
1396	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1397		return ("?");
1398	w = lock->lo_witness;
1399	return (w->w_file);
1400}
1401
1402int
1403witness_line(struct lock_object *lock)
1404{
1405	struct witness *w;
1406
1407	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1408		return (0);
1409	w = lock->lo_witness;
1410	return (w->w_line);
1411}
1412
1413static struct witness *
1414enroll(const char *description, struct lock_class *lock_class)
1415{
1416	struct witness *w;
1417
1418	if (witness_watch == 0 || panicstr != NULL)
1419		return (NULL);
1420	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1421		return (NULL);
1422	mtx_lock_spin(&w_mtx);
1423	STAILQ_FOREACH(w, &w_all, w_list) {
1424		if (w->w_name == description || (w->w_refcount > 0 &&
1425		    strcmp(description, w->w_name) == 0)) {
1426			w->w_refcount++;
1427			mtx_unlock_spin(&w_mtx);
1428			if (lock_class != w->w_class)
1429				panic(
1430				"lock (%s) %s does not match earlier (%s) lock",
1431				    description, lock_class->lc_name,
1432				    w->w_class->lc_name);
1433			return (w);
1434		}
1435	}
1436	if ((w = witness_get()) == NULL)
1437		goto out;
1438	w->w_name = description;
1439	w->w_class = lock_class;
1440	w->w_refcount = 1;
1441	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1442	if (lock_class->lc_flags & LC_SPINLOCK) {
1443		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1444		w_spin_cnt++;
1445	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1446		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1447		w_sleep_cnt++;
1448	} else {
1449		mtx_unlock_spin(&w_mtx);
1450		panic("lock class %s is not sleep or spin",
1451		    lock_class->lc_name);
1452	}
1453	mtx_unlock_spin(&w_mtx);
1454out:
1455	/*
1456	 * We issue a warning for any spin locks not defined in the static
1457	 * order list as a way to discourage their use (folks should really
1458	 * be using non-spin mutexes most of the time).  However, several
1459	 * 3rd part device drivers use spin locks because that is all they
1460	 * have available on Windows and Linux and they think that normal
1461	 * mutexes are insufficient.
1462	 */
1463	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_spin_warn)
1464		printf("WITNESS: spin lock %s not in order list\n",
1465		    description);
1466	return (w);
1467}
1468
1469/* Don't let the door bang you on the way out... */
1470static int
1471depart(struct witness *w)
1472{
1473	struct witness_child_list_entry *wcl, *nwcl;
1474	struct witness_list *list;
1475	struct witness *parent;
1476
1477	MPASS(w->w_refcount == 0);
1478	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1479		list = &w_sleep;
1480		w_sleep_cnt--;
1481	} else {
1482		list = &w_spin;
1483		w_spin_cnt--;
1484	}
1485	/*
1486	 * First, we run through the entire tree looking for any
1487	 * witnesses that the outgoing witness is a child of.  For
1488	 * each parent that we find, we reparent all the direct
1489	 * children of the outgoing witness to its parent.
1490	 */
1491	STAILQ_FOREACH(parent, list, w_typelist) {
1492		if (!isitmychild(parent, w))
1493			continue;
1494		removechild(parent, w);
1495	}
1496
1497	/*
1498	 * Now we go through and free up the child list of the
1499	 * outgoing witness.
1500	 */
1501	for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1502		nwcl = wcl->wcl_next;
1503        	w_child_cnt--;
1504		witness_child_free(wcl);
1505	}
1506
1507	/*
1508	 * Detach from various lists and free.
1509	 */
1510	STAILQ_REMOVE(list, w, witness, w_typelist);
1511	STAILQ_REMOVE(&w_all, w, witness, w_list);
1512	witness_free(w);
1513
1514	return (1);
1515}
1516
1517/*
1518 * Add "child" as a direct child of "parent".  Returns false if
1519 * we fail due to out of memory.
1520 */
1521static int
1522insertchild(struct witness *parent, struct witness *child)
1523{
1524	struct witness_child_list_entry **wcl;
1525
1526	MPASS(child != NULL && parent != NULL);
1527
1528	/*
1529	 * Insert "child" after "parent"
1530	 */
1531	wcl = &parent->w_children;
1532	while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1533		wcl = &(*wcl)->wcl_next;
1534	if (*wcl == NULL) {
1535		*wcl = witness_child_get();
1536		if (*wcl == NULL)
1537			return (0);
1538        	w_child_cnt++;
1539	}
1540	(*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1541
1542	return (1);
1543}
1544
1545
1546static int
1547itismychild(struct witness *parent, struct witness *child)
1548{
1549	struct witness_list *list;
1550
1551	MPASS(child != NULL && parent != NULL);
1552	if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1553	    (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1554		panic(
1555		"%s: parent (%s) and child (%s) are not the same lock type",
1556		    __func__, parent->w_class->lc_name,
1557		    child->w_class->lc_name);
1558
1559	if (!insertchild(parent, child))
1560		return (0);
1561
1562	if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1563		list = &w_sleep;
1564	else
1565		list = &w_spin;
1566	return (1);
1567}
1568
1569static void
1570removechild(struct witness *parent, struct witness *child)
1571{
1572	struct witness_child_list_entry **wcl, *wcl1;
1573	int i;
1574
1575	for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1576		for (i = 0; i < (*wcl)->wcl_count; i++)
1577			if ((*wcl)->wcl_children[i] == child)
1578				goto found;
1579	return;
1580found:
1581	(*wcl)->wcl_count--;
1582	if ((*wcl)->wcl_count > i)
1583		(*wcl)->wcl_children[i] =
1584		    (*wcl)->wcl_children[(*wcl)->wcl_count];
1585	MPASS((*wcl)->wcl_children[i] != NULL);
1586	if ((*wcl)->wcl_count != 0)
1587		return;
1588	wcl1 = *wcl;
1589	*wcl = wcl1->wcl_next;
1590	w_child_cnt--;
1591	witness_child_free(wcl1);
1592}
1593
1594static int
1595isitmychild(struct witness *parent, struct witness *child)
1596{
1597	struct witness_child_list_entry *wcl;
1598	int i;
1599
1600	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1601		for (i = 0; i < wcl->wcl_count; i++) {
1602			if (wcl->wcl_children[i] == child)
1603				return (1);
1604		}
1605	}
1606	return (0);
1607}
1608
1609static int
1610isitmydescendant(struct witness *parent, struct witness *child)
1611{
1612	struct witness_child_list_entry *wcl;
1613	int i, j;
1614
1615	if (isitmychild(parent, child))
1616		return (1);
1617	j = 0;
1618	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1619		MPASS(j < 1000);
1620		for (i = 0; i < wcl->wcl_count; i++) {
1621			if (isitmydescendant(wcl->wcl_children[i], child))
1622				return (1);
1623		}
1624		j++;
1625	}
1626	return (0);
1627}
1628
1629#ifdef BLESSING
1630static int
1631blessed(struct witness *w1, struct witness *w2)
1632{
1633	int i;
1634	struct witness_blessed *b;
1635
1636	for (i = 0; i < blessed_count; i++) {
1637		b = &blessed_list[i];
1638		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1639			if (strcmp(w2->w_name, b->b_lock2) == 0)
1640				return (1);
1641			continue;
1642		}
1643		if (strcmp(w1->w_name, b->b_lock2) == 0)
1644			if (strcmp(w2->w_name, b->b_lock1) == 0)
1645				return (1);
1646	}
1647	return (0);
1648}
1649#endif
1650
1651static struct witness *
1652witness_get(void)
1653{
1654	struct witness *w;
1655
1656	if (witness_watch == 0) {
1657		mtx_unlock_spin(&w_mtx);
1658		return (NULL);
1659	}
1660	if (STAILQ_EMPTY(&w_free)) {
1661		witness_watch = 0;
1662		mtx_unlock_spin(&w_mtx);
1663		printf("%s: witness exhausted\n", __func__);
1664		return (NULL);
1665	}
1666	w = STAILQ_FIRST(&w_free);
1667	STAILQ_REMOVE_HEAD(&w_free, w_list);
1668	w_free_cnt--;
1669	bzero(w, sizeof(*w));
1670	return (w);
1671}
1672
1673static void
1674witness_free(struct witness *w)
1675{
1676
1677	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1678	w_free_cnt++;
1679}
1680
1681static struct witness_child_list_entry *
1682witness_child_get(void)
1683{
1684	struct witness_child_list_entry *wcl;
1685
1686	if (witness_watch == 0) {
1687		mtx_unlock_spin(&w_mtx);
1688		return (NULL);
1689	}
1690	wcl = w_child_free;
1691	if (wcl == NULL) {
1692		witness_watch = 0;
1693		mtx_unlock_spin(&w_mtx);
1694		printf("%s: witness exhausted\n", __func__);
1695		return (NULL);
1696	}
1697	w_child_free = wcl->wcl_next;
1698	w_child_free_cnt--;
1699	bzero(wcl, sizeof(*wcl));
1700	return (wcl);
1701}
1702
1703static void
1704witness_child_free(struct witness_child_list_entry *wcl)
1705{
1706
1707	wcl->wcl_next = w_child_free;
1708	w_child_free = wcl;
1709	w_child_free_cnt++;
1710}
1711
1712static struct lock_list_entry *
1713witness_lock_list_get(void)
1714{
1715	struct lock_list_entry *lle;
1716
1717	if (witness_watch == 0)
1718		return (NULL);
1719	mtx_lock_spin(&w_mtx);
1720	lle = w_lock_list_free;
1721	if (lle == NULL) {
1722		witness_watch = 0;
1723		mtx_unlock_spin(&w_mtx);
1724		printf("%s: witness exhausted\n", __func__);
1725		return (NULL);
1726	}
1727	w_lock_list_free = lle->ll_next;
1728	mtx_unlock_spin(&w_mtx);
1729	bzero(lle, sizeof(*lle));
1730	return (lle);
1731}
1732
1733static void
1734witness_lock_list_free(struct lock_list_entry *lle)
1735{
1736
1737	mtx_lock_spin(&w_mtx);
1738	lle->ll_next = w_lock_list_free;
1739	w_lock_list_free = lle;
1740	mtx_unlock_spin(&w_mtx);
1741}
1742
1743static struct lock_instance *
1744find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1745{
1746	struct lock_list_entry *lle;
1747	struct lock_instance *instance;
1748	int i;
1749
1750	for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1751		for (i = lle->ll_count - 1; i >= 0; i--) {
1752			instance = &lle->ll_children[i];
1753			if (instance->li_lock == lock)
1754				return (instance);
1755		}
1756	return (NULL);
1757}
1758
1759static void
1760witness_list_lock(struct lock_instance *instance)
1761{
1762	struct lock_object *lock;
1763
1764	lock = instance->li_lock;
1765	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1766	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
1767	if (lock->lo_type != lock->lo_name)
1768		printf(" (%s)", lock->lo_type);
1769	printf(" r = %d (%p) locked @ %s:%d\n",
1770	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1771	    instance->li_line);
1772}
1773
1774#ifdef DDB
1775static int
1776witness_thread_has_locks(struct thread *td)
1777{
1778
1779	return (td->td_sleeplocks != NULL);
1780}
1781
1782static int
1783witness_proc_has_locks(struct proc *p)
1784{
1785	struct thread *td;
1786
1787	FOREACH_THREAD_IN_PROC(p, td) {
1788		if (witness_thread_has_locks(td))
1789			return (1);
1790	}
1791	return (0);
1792}
1793#endif
1794
1795int
1796witness_list_locks(struct lock_list_entry **lock_list)
1797{
1798	struct lock_list_entry *lle;
1799	int i, nheld;
1800
1801	nheld = 0;
1802	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1803		for (i = lle->ll_count - 1; i >= 0; i--) {
1804			witness_list_lock(&lle->ll_children[i]);
1805			nheld++;
1806		}
1807	return (nheld);
1808}
1809
1810/*
1811 * This is a bit risky at best.  We call this function when we have timed
1812 * out acquiring a spin lock, and we assume that the other CPU is stuck
1813 * with this lock held.  So, we go groveling around in the other CPU's
1814 * per-cpu data to try to find the lock instance for this spin lock to
1815 * see when it was last acquired.
1816 */
1817void
1818witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1819{
1820	struct lock_instance *instance;
1821	struct pcpu *pc;
1822
1823	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1824		return;
1825	pc = pcpu_find(owner->td_oncpu);
1826	instance = find_instance(pc->pc_spinlocks, lock);
1827	if (instance != NULL)
1828		witness_list_lock(instance);
1829}
1830
1831void
1832witness_save(struct lock_object *lock, const char **filep, int *linep)
1833{
1834	struct lock_list_entry *lock_list;
1835	struct lock_instance *instance;
1836	struct lock_class *class;
1837
1838	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1839	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1840		return;
1841	class = LOCK_CLASS(lock);
1842	if (class->lc_flags & LC_SLEEPLOCK)
1843		lock_list = curthread->td_sleeplocks;
1844	else {
1845		if (witness_skipspin)
1846			return;
1847		lock_list = PCPU_GET(spinlocks);
1848	}
1849	instance = find_instance(lock_list, lock);
1850	if (instance == NULL)
1851		panic("%s: lock (%s) %s not locked", __func__,
1852		    class->lc_name, lock->lo_name);
1853	*filep = instance->li_file;
1854	*linep = instance->li_line;
1855}
1856
1857void
1858witness_restore(struct lock_object *lock, const char *file, int line)
1859{
1860	struct lock_list_entry *lock_list;
1861	struct lock_instance *instance;
1862	struct lock_class *class;
1863
1864	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1865	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1866		return;
1867	class = LOCK_CLASS(lock);
1868	if (class->lc_flags & LC_SLEEPLOCK)
1869		lock_list = curthread->td_sleeplocks;
1870	else {
1871		if (witness_skipspin)
1872			return;
1873		lock_list = PCPU_GET(spinlocks);
1874	}
1875	instance = find_instance(lock_list, lock);
1876	if (instance == NULL)
1877		panic("%s: lock (%s) %s not locked", __func__,
1878		    class->lc_name, lock->lo_name);
1879	lock->lo_witness->w_file = file;
1880	lock->lo_witness->w_line = line;
1881	instance->li_file = file;
1882	instance->li_line = line;
1883}
1884
1885void
1886witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1887{
1888#ifdef INVARIANT_SUPPORT
1889	struct lock_instance *instance;
1890	struct lock_class *class;
1891
1892	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1893		return;
1894	class = LOCK_CLASS(lock);
1895	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
1896		instance = find_instance(curthread->td_sleeplocks, lock);
1897	else if ((class->lc_flags & LC_SPINLOCK) != 0)
1898		instance = find_instance(PCPU_GET(spinlocks), lock);
1899	else {
1900		panic("Lock (%s) %s is not sleep or spin!",
1901		    class->lc_name, lock->lo_name);
1902	}
1903	file = fixup_filename(file);
1904	switch (flags) {
1905	case LA_UNLOCKED:
1906		if (instance != NULL)
1907			panic("Lock (%s) %s locked @ %s:%d.",
1908			    class->lc_name, lock->lo_name, file, line);
1909		break;
1910	case LA_LOCKED:
1911	case LA_LOCKED | LA_RECURSED:
1912	case LA_LOCKED | LA_NOTRECURSED:
1913	case LA_SLOCKED:
1914	case LA_SLOCKED | LA_RECURSED:
1915	case LA_SLOCKED | LA_NOTRECURSED:
1916	case LA_XLOCKED:
1917	case LA_XLOCKED | LA_RECURSED:
1918	case LA_XLOCKED | LA_NOTRECURSED:
1919		if (instance == NULL) {
1920			panic("Lock (%s) %s not locked @ %s:%d.",
1921			    class->lc_name, lock->lo_name, file, line);
1922			break;
1923		}
1924		if ((flags & LA_XLOCKED) != 0 &&
1925		    (instance->li_flags & LI_EXCLUSIVE) == 0)
1926			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1927			    class->lc_name, lock->lo_name, file, line);
1928		if ((flags & LA_SLOCKED) != 0 &&
1929		    (instance->li_flags & LI_EXCLUSIVE) != 0)
1930			panic("Lock (%s) %s exclusively locked @ %s:%d.",
1931			    class->lc_name, lock->lo_name, file, line);
1932		if ((flags & LA_RECURSED) != 0 &&
1933		    (instance->li_flags & LI_RECURSEMASK) == 0)
1934			panic("Lock (%s) %s not recursed @ %s:%d.",
1935			    class->lc_name, lock->lo_name, file, line);
1936		if ((flags & LA_NOTRECURSED) != 0 &&
1937		    (instance->li_flags & LI_RECURSEMASK) != 0)
1938			panic("Lock (%s) %s recursed @ %s:%d.",
1939			    class->lc_name, lock->lo_name, file, line);
1940		break;
1941	default:
1942		panic("Invalid lock assertion at %s:%d.", file, line);
1943
1944	}
1945#endif	/* INVARIANT_SUPPORT */
1946}
1947
1948#ifdef DDB
1949static void
1950witness_list(struct thread *td)
1951{
1952
1953	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1954	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1955
1956	if (witness_watch == 0)
1957		return;
1958
1959	witness_list_locks(&td->td_sleeplocks);
1960
1961	/*
1962	 * We only handle spinlocks if td == curthread.  This is somewhat broken
1963	 * if td is currently executing on some other CPU and holds spin locks
1964	 * as we won't display those locks.  If we had a MI way of getting
1965	 * the per-cpu data for a given cpu then we could use
1966	 * td->td_oncpu to get the list of spinlocks for this thread
1967	 * and "fix" this.
1968	 *
1969	 * That still wouldn't really fix this unless we locked the scheduler
1970	 * lock or stopped the other CPU to make sure it wasn't changing the
1971	 * list out from under us.  It is probably best to just not try to
1972	 * handle threads on other CPU's for now.
1973	 */
1974	if (td == curthread && PCPU_GET(spinlocks) != NULL)
1975		witness_list_locks(PCPU_PTR(spinlocks));
1976}
1977
1978DB_SHOW_COMMAND(locks, db_witness_list)
1979{
1980	struct thread *td;
1981
1982	if (have_addr)
1983		td = db_lookup_thread(addr, TRUE);
1984	else
1985		td = kdb_thread;
1986	witness_list(td);
1987}
1988
1989DB_SHOW_COMMAND(alllocks, db_witness_list_all)
1990{
1991	struct thread *td;
1992	struct proc *p;
1993
1994	/*
1995	 * It would be nice to list only threads and processes that actually
1996	 * held sleep locks, but that information is currently not exported
1997	 * by WITNESS.
1998	 */
1999	FOREACH_PROC_IN_SYSTEM(p) {
2000		if (!witness_proc_has_locks(p))
2001			continue;
2002		FOREACH_THREAD_IN_PROC(p, td) {
2003			if (!witness_thread_has_locks(td))
2004				continue;
2005			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2006			    p->p_comm, td, td->td_tid);
2007			witness_list(td);
2008		}
2009	}
2010}
2011
2012DB_SHOW_COMMAND(witness, db_witness_display)
2013{
2014
2015	witness_display(db_printf);
2016}
2017#endif
2018