subr_witness.c revision 168856
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Implementation of the `witness' lock verifier.  Originally implemented for
34 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35 * classes in FreeBSD.
36 */
37
38/*
39 *	Main Entry: witness
40 *	Pronunciation: 'wit-n&s
41 *	Function: noun
42 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43 *	    testimony, witness, from 2wit
44 *	Date: before 12th century
45 *	1 : attestation of a fact or event : TESTIMONY
46 *	2 : one that gives evidence; specifically : one who testifies in
47 *	    a cause or before a judicial tribunal
48 *	3 : one asked to be present at a transaction so as to be able to
49 *	    testify to its having taken place
50 *	4 : one who has personal knowledge of something
51 *	5 a : something serving as evidence or proof : SIGN
52 *	  b : public affirmation by word or example of usually
53 *	      religious faith or conviction <the heroic witness to divine
54 *	      life -- Pilot>
55 *	6 capitalized : a member of the Jehovah's Witnesses
56 */
57
58/*
59 * Special rules concerning Giant and lock orders:
60 *
61 * 1) Giant must be acquired before any other mutexes.  Stated another way,
62 *    no other mutex may be held when Giant is acquired.
63 *
64 * 2) Giant must be released when blocking on a sleepable lock.
65 *
66 * This rule is less obvious, but is a result of Giant providing the same
67 * semantics as spl().  Basically, when a thread sleeps, it must release
68 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69 * 2).
70 *
71 * 3) Giant may be acquired before or after sleepable locks.
72 *
73 * This rule is also not quite as obvious.  Giant may be acquired after
74 * a sleepable lock because it is a non-sleepable lock and non-sleepable
75 * locks may always be acquired while holding a sleepable lock.  The second
76 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80 * execute.  Thus, acquiring Giant both before and after a sleepable lock
81 * will not result in a lock order reversal.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/kern/subr_witness.c 168856 2007-04-19 08:02:51Z jkoshy $");
86
87#include "opt_ddb.h"
88#include "opt_hwpmc_hooks.h"
89#include "opt_witness.h"
90
91#include <sys/param.h>
92#include <sys/bus.h>
93#include <sys/kdb.h>
94#include <sys/kernel.h>
95#include <sys/ktr.h>
96#include <sys/lock.h>
97#include <sys/malloc.h>
98#include <sys/mutex.h>
99#include <sys/priv.h>
100#include <sys/proc.h>
101#include <sys/sysctl.h>
102#include <sys/systm.h>
103
104#include <ddb/ddb.h>
105
106#include <machine/stdarg.h>
107
108/* Note that these traces do not work with KTR_ALQ. */
109#if 0
110#define	KTR_WITNESS	KTR_SUBSYS
111#else
112#define	KTR_WITNESS	0
113#endif
114
115/* Easier to stay with the old names. */
116#define	lo_list		lo_witness_data.lod_list
117#define	lo_witness	lo_witness_data.lod_witness
118
119/* Define this to check for blessed mutexes */
120#undef BLESSING
121
122#define WITNESS_COUNT 1024
123#define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
124/*
125 * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
126 * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
127 * probably be safe for the most part, but it's still a SWAG.
128 */
129#define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
130
131#define	WITNESS_NCHILDREN 6
132
133struct witness_child_list_entry;
134
135struct witness {
136	const	char *w_name;
137	struct	lock_class *w_class;
138	STAILQ_ENTRY(witness) w_list;		/* List of all witnesses. */
139	STAILQ_ENTRY(witness) w_typelist;	/* Witnesses of a type. */
140	struct	witness_child_list_entry *w_children;	/* Great evilness... */
141	const	char *w_file;
142	int	w_line;
143	u_int	w_level;
144	u_int	w_refcount;
145	u_char	w_Giant_squawked:1;
146	u_char	w_other_squawked:1;
147	u_char	w_same_squawked:1;
148	u_char	w_displayed:1;
149};
150
151struct witness_child_list_entry {
152	struct	witness_child_list_entry *wcl_next;
153	struct	witness *wcl_children[WITNESS_NCHILDREN];
154	u_int	wcl_count;
155};
156
157STAILQ_HEAD(witness_list, witness);
158
159#ifdef BLESSING
160struct witness_blessed {
161	const	char *b_lock1;
162	const	char *b_lock2;
163};
164#endif
165
166struct witness_order_list_entry {
167	const	char *w_name;
168	struct	lock_class *w_class;
169};
170
171#ifdef BLESSING
172static int	blessed(struct witness *, struct witness *);
173#endif
174static int	depart(struct witness *w);
175static struct	witness *enroll(const char *description,
176				struct lock_class *lock_class);
177static int	insertchild(struct witness *parent, struct witness *child);
178static int	isitmychild(struct witness *parent, struct witness *child);
179static int	isitmydescendant(struct witness *parent, struct witness *child);
180static int	itismychild(struct witness *parent, struct witness *child);
181static void	removechild(struct witness *parent, struct witness *child);
182static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
183static const char *fixup_filename(const char *file);
184static struct	witness *witness_get(void);
185static void	witness_free(struct witness *m);
186static struct	witness_child_list_entry *witness_child_get(void);
187static void	witness_child_free(struct witness_child_list_entry *wcl);
188static struct	lock_list_entry *witness_lock_list_get(void);
189static void	witness_lock_list_free(struct lock_list_entry *lle);
190static struct	lock_instance *find_instance(struct lock_list_entry *lock_list,
191					     struct lock_object *lock);
192static void	witness_list_lock(struct lock_instance *instance);
193#ifdef DDB
194static void	witness_leveldescendents(struct witness *parent, int level);
195static void	witness_levelall(void);
196static void	witness_displaydescendants(void(*)(const char *fmt, ...),
197					   struct witness *, int indent);
198static void	witness_display_list(void(*prnt)(const char *fmt, ...),
199				     struct witness_list *list);
200static void	witness_display(void(*)(const char *fmt, ...));
201static void	witness_list(struct thread *td);
202#endif
203
204SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
205
206/*
207 * If set to 0, witness is disabled.  If set to a non-zero value, witness
208 * performs full lock order checking for all locks.  At runtime, this
209 * value may be set to 0 to turn off witness.  witness is not allowed be
210 * turned on once it is turned off, however.
211 */
212static int witness_watch = 1;
213TUNABLE_INT("debug.witness.watch", &witness_watch);
214SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
215    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
216
217#ifdef KDB
218/*
219 * When KDB is enabled and witness_kdb is set to 1, it will cause the system
220 * to drop into kdebug() when:
221 *	- a lock hierarchy violation occurs
222 *	- locks are held when going to sleep.
223 */
224#ifdef WITNESS_KDB
225int	witness_kdb = 1;
226#else
227int	witness_kdb = 0;
228#endif
229TUNABLE_INT("debug.witness.kdb", &witness_kdb);
230SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
231
232/*
233 * When KDB is enabled and witness_trace is set to 1, it will cause the system
234 * to print a stack trace:
235 *	- a lock hierarchy violation occurs
236 *	- locks are held when going to sleep.
237 */
238int	witness_trace = 1;
239TUNABLE_INT("debug.witness.trace", &witness_trace);
240SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
241#endif /* KDB */
242
243#ifdef WITNESS_SKIPSPIN
244int	witness_skipspin = 1;
245#else
246int	witness_skipspin = 0;
247#endif
248TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
249SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
250    &witness_skipspin, 0, "");
251
252static struct mtx w_mtx;
253static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
254static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
255static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
256static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
257static struct witness_child_list_entry *w_child_free = NULL;
258static struct lock_list_entry *w_lock_list_free = NULL;
259
260static int w_free_cnt, w_spin_cnt, w_sleep_cnt, w_child_free_cnt, w_child_cnt;
261SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
262SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
263SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
264    "");
265SYSCTL_INT(_debug_witness, OID_AUTO, child_free_cnt, CTLFLAG_RD,
266    &w_child_free_cnt, 0, "");
267SYSCTL_INT(_debug_witness, OID_AUTO, child_cnt, CTLFLAG_RD, &w_child_cnt, 0,
268    "");
269
270static struct witness w_data[WITNESS_COUNT];
271static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
272static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
273
274static struct witness_order_list_entry order_lists[] = {
275	/*
276	 * sx locks
277	 */
278	{ "proctree", &lock_class_sx },
279	{ "allproc", &lock_class_sx },
280	{ "allprison", &lock_class_sx },
281	{ NULL, NULL },
282	/*
283	 * Various mutexes
284	 */
285	{ "Giant", &lock_class_mtx_sleep },
286	{ "pipe mutex", &lock_class_mtx_sleep },
287	{ "sigio lock", &lock_class_mtx_sleep },
288	{ "process group", &lock_class_mtx_sleep },
289	{ "process lock", &lock_class_mtx_sleep },
290	{ "session", &lock_class_mtx_sleep },
291	{ "uidinfo hash", &lock_class_mtx_sleep },
292	{ "uidinfo struct", &lock_class_mtx_sleep },
293#ifdef	HWPMC_HOOKS
294	{ "pmc-sleep", &lock_class_mtx_sleep },
295#endif
296	{ NULL, NULL },
297	/*
298	 * Sockets
299	 */
300	{ "accept", &lock_class_mtx_sleep },
301	{ "so_snd", &lock_class_mtx_sleep },
302	{ "so_rcv", &lock_class_mtx_sleep },
303	{ "sellck", &lock_class_mtx_sleep },
304	{ NULL, NULL },
305	/*
306	 * Routing
307	 */
308	{ "so_rcv", &lock_class_mtx_sleep },
309	{ "radix node head", &lock_class_mtx_sleep },
310	{ "rtentry", &lock_class_mtx_sleep },
311	{ "ifaddr", &lock_class_mtx_sleep },
312	{ NULL, NULL },
313	/*
314	 * Multicast - protocol locks before interface locks, after UDP locks.
315	 */
316	{ "udpinp", &lock_class_mtx_sleep },
317	{ "in_multi_mtx", &lock_class_mtx_sleep },
318	{ "igmp_mtx", &lock_class_mtx_sleep },
319	{ "if_addr_mtx", &lock_class_mtx_sleep },
320	{ NULL, NULL },
321	/*
322	 * UNIX Domain Sockets
323	 */
324	{ "unp", &lock_class_mtx_sleep },
325	{ "so_snd", &lock_class_mtx_sleep },
326	{ NULL, NULL },
327	/*
328	 * UDP/IP
329	 */
330	{ "udp", &lock_class_mtx_sleep },
331	{ "udpinp", &lock_class_mtx_sleep },
332	{ "so_snd", &lock_class_mtx_sleep },
333	{ NULL, NULL },
334	/*
335	 * TCP/IP
336	 */
337	{ "tcp", &lock_class_mtx_sleep },
338	{ "tcpinp", &lock_class_mtx_sleep },
339	{ "so_snd", &lock_class_mtx_sleep },
340	{ NULL, NULL },
341	/*
342	 * SLIP
343	 */
344	{ "slip_mtx", &lock_class_mtx_sleep },
345	{ "slip sc_mtx", &lock_class_mtx_sleep },
346	{ NULL, NULL },
347	/*
348	 * netatalk
349	 */
350	{ "ddp_list_mtx", &lock_class_mtx_sleep },
351	{ "ddp_mtx", &lock_class_mtx_sleep },
352	{ NULL, NULL },
353	/*
354	 * BPF
355	 */
356	{ "bpf global lock", &lock_class_mtx_sleep },
357	{ "bpf interface lock", &lock_class_mtx_sleep },
358	{ "bpf cdev lock", &lock_class_mtx_sleep },
359	{ NULL, NULL },
360	/*
361	 * NFS server
362	 */
363	{ "nfsd_mtx", &lock_class_mtx_sleep },
364	{ "so_snd", &lock_class_mtx_sleep },
365	{ NULL, NULL },
366	/*
367	 * Netgraph
368	 */
369	{ "ng_node", &lock_class_mtx_sleep },
370	{ "ng_worklist", &lock_class_mtx_sleep },
371	{ NULL, NULL },
372	/*
373	 * CDEV
374	 */
375	{ "system map", &lock_class_mtx_sleep },
376	{ "vm page queue mutex", &lock_class_mtx_sleep },
377	{ "vnode interlock", &lock_class_mtx_sleep },
378	{ "cdev", &lock_class_mtx_sleep },
379	{ NULL, NULL },
380	/*
381	 * kqueue/VFS interaction
382	 */
383	{ "kqueue", &lock_class_mtx_sleep },
384	{ "struct mount mtx", &lock_class_mtx_sleep },
385	{ "vnode interlock", &lock_class_mtx_sleep },
386	{ NULL, NULL },
387	/*
388	 * spin locks
389	 */
390#ifdef SMP
391	{ "ap boot", &lock_class_mtx_spin },
392#endif
393	{ "rm.mutex_mtx", &lock_class_mtx_spin },
394	{ "sio", &lock_class_mtx_spin },
395#ifdef __i386__
396	{ "cy", &lock_class_mtx_spin },
397#endif
398	{ "scc_hwmtx", &lock_class_mtx_spin },
399	{ "uart_hwmtx", &lock_class_mtx_spin },
400	{ "zstty", &lock_class_mtx_spin },
401	{ "fast_taskqueue", &lock_class_mtx_spin },
402	{ "intr table", &lock_class_mtx_spin },
403#ifdef	HWPMC_HOOKS
404	{ "pmc-per-proc", &lock_class_mtx_spin },
405#endif
406	{ "sleepq chain", &lock_class_mtx_spin },
407	{ "sched lock", &lock_class_mtx_spin },
408	{ "turnstile chain", &lock_class_mtx_spin },
409	{ "td_contested", &lock_class_mtx_spin },
410	{ "callout", &lock_class_mtx_spin },
411	{ "entropy harvest mutex", &lock_class_mtx_spin },
412	{ "syscons video lock", &lock_class_mtx_spin },
413	/*
414	 * leaf locks
415	 */
416	{ "allpmaps", &lock_class_mtx_spin },
417	{ "icu", &lock_class_mtx_spin },
418#ifdef SMP
419	{ "smp rendezvous", &lock_class_mtx_spin },
420#if defined(__i386__) || defined(__amd64__)
421	{ "tlb", &lock_class_mtx_spin },
422#endif
423#ifdef __sparc64__
424	{ "ipi", &lock_class_mtx_spin },
425	{ "rtc_mtx", &lock_class_mtx_spin },
426#endif
427#endif
428	{ "clk", &lock_class_mtx_spin },
429	{ "mutex profiling lock", &lock_class_mtx_spin },
430	{ "kse zombie lock", &lock_class_mtx_spin },
431	{ "ALD Queue", &lock_class_mtx_spin },
432#ifdef __ia64__
433	{ "MCA spin lock", &lock_class_mtx_spin },
434#endif
435#if defined(__i386__) || defined(__amd64__)
436	{ "pcicfg", &lock_class_mtx_spin },
437	{ "NDIS thread lock", &lock_class_mtx_spin },
438#endif
439	{ "tw_osl_io_lock", &lock_class_mtx_spin },
440	{ "tw_osl_q_lock", &lock_class_mtx_spin },
441	{ "tw_cl_io_lock", &lock_class_mtx_spin },
442	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
443	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
444#ifdef	HWPMC_HOOKS
445	{ "pmc-leaf", &lock_class_mtx_spin },
446#endif
447	{ NULL, NULL },
448	{ NULL, NULL }
449};
450
451#ifdef BLESSING
452/*
453 * Pairs of locks which have been blessed
454 * Don't complain about order problems with blessed locks
455 */
456static struct witness_blessed blessed_list[] = {
457};
458static int blessed_count =
459	sizeof(blessed_list) / sizeof(struct witness_blessed);
460#endif
461
462/*
463 * List of locks initialized prior to witness being initialized whose
464 * enrollment is currently deferred.
465 */
466STAILQ_HEAD(, lock_object) pending_locks =
467    STAILQ_HEAD_INITIALIZER(pending_locks);
468
469/*
470 * This global is set to 0 once it becomes safe to use the witness code.
471 */
472static int witness_cold = 1;
473
474/*
475 * This global is set to 1 once the static lock orders have been enrolled
476 * so that a warning can be issued for any spin locks enrolled later.
477 */
478static int witness_spin_warn = 0;
479
480/*
481 * The WITNESS-enabled diagnostic code.  Note that the witness code does
482 * assume that the early boot is single-threaded at least until after this
483 * routine is completed.
484 */
485static void
486witness_initialize(void *dummy __unused)
487{
488	struct lock_object *lock;
489	struct witness_order_list_entry *order;
490	struct witness *w, *w1;
491	int i;
492
493	/*
494	 * We have to release Giant before initializing its witness
495	 * structure so that WITNESS doesn't get confused.
496	 */
497	mtx_unlock(&Giant);
498	mtx_assert(&Giant, MA_NOTOWNED);
499
500	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
501	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
502	    MTX_NOWITNESS | MTX_NOPROFILE);
503	for (i = 0; i < WITNESS_COUNT; i++)
504		witness_free(&w_data[i]);
505	for (i = 0; i < WITNESS_CHILDCOUNT; i++)
506		witness_child_free(&w_childdata[i]);
507	for (i = 0; i < LOCK_CHILDCOUNT; i++)
508		witness_lock_list_free(&w_locklistdata[i]);
509
510	/* First add in all the specified order lists. */
511	for (order = order_lists; order->w_name != NULL; order++) {
512		w = enroll(order->w_name, order->w_class);
513		if (w == NULL)
514			continue;
515		w->w_file = "order list";
516		for (order++; order->w_name != NULL; order++) {
517			w1 = enroll(order->w_name, order->w_class);
518			if (w1 == NULL)
519				continue;
520			w1->w_file = "order list";
521			if (!itismychild(w, w1))
522				panic("Not enough memory for static orders!");
523			w = w1;
524		}
525	}
526	witness_spin_warn = 1;
527
528	/* Iterate through all locks and add them to witness. */
529	while (!STAILQ_EMPTY(&pending_locks)) {
530		lock = STAILQ_FIRST(&pending_locks);
531		STAILQ_REMOVE_HEAD(&pending_locks, lo_list);
532		KASSERT(lock->lo_flags & LO_WITNESS,
533		    ("%s: lock %s is on pending list but not LO_WITNESS",
534		    __func__, lock->lo_name));
535		lock->lo_witness = enroll(lock->lo_type, LOCK_CLASS(lock));
536	}
537
538	/* Mark the witness code as being ready for use. */
539	witness_cold = 0;
540
541	mtx_lock(&Giant);
542}
543SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, NULL)
544
545static int
546sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
547{
548	int error, value;
549
550	value = witness_watch;
551	error = sysctl_handle_int(oidp, &value, 0, req);
552	if (error != 0 || req->newptr == NULL)
553		return (error);
554	if (value == witness_watch)
555		return (0);
556	if (value != 0)
557		return (EINVAL);
558	witness_watch = 0;
559	return (0);
560}
561
562void
563witness_init(struct lock_object *lock)
564{
565	struct lock_class *class;
566
567	/* Various sanity checks. */
568	class = LOCK_CLASS(lock);
569	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
570	    (class->lc_flags & LC_RECURSABLE) == 0)
571		panic("%s: lock (%s) %s can not be recursable", __func__,
572		    class->lc_name, lock->lo_name);
573	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
574	    (class->lc_flags & LC_SLEEPABLE) == 0)
575		panic("%s: lock (%s) %s can not be sleepable", __func__,
576		    class->lc_name, lock->lo_name);
577	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
578	    (class->lc_flags & LC_UPGRADABLE) == 0)
579		panic("%s: lock (%s) %s can not be upgradable", __func__,
580		    class->lc_name, lock->lo_name);
581
582	/*
583	 * If we shouldn't watch this lock, then just clear lo_witness.
584	 * Otherwise, if witness_cold is set, then it is too early to
585	 * enroll this lock, so defer it to witness_initialize() by adding
586	 * it to the pending_locks list.  If it is not too early, then enroll
587	 * the lock now.
588	 */
589	if (witness_watch == 0 || panicstr != NULL ||
590	    (lock->lo_flags & LO_WITNESS) == 0)
591		lock->lo_witness = NULL;
592	else if (witness_cold) {
593		STAILQ_INSERT_TAIL(&pending_locks, lock, lo_list);
594		lock->lo_flags |= LO_ENROLLPEND;
595	} else
596		lock->lo_witness = enroll(lock->lo_type, class);
597}
598
599void
600witness_destroy(struct lock_object *lock)
601{
602	struct lock_class *class;
603	struct witness *w;
604
605	class = LOCK_CLASS(lock);
606	if (witness_cold)
607		panic("lock (%s) %s destroyed while witness_cold",
608		    class->lc_name, lock->lo_name);
609
610	/* XXX: need to verify that no one holds the lock */
611	if ((lock->lo_flags & (LO_WITNESS | LO_ENROLLPEND)) == LO_WITNESS &&
612	    lock->lo_witness != NULL) {
613		w = lock->lo_witness;
614		mtx_lock_spin(&w_mtx);
615		MPASS(w->w_refcount > 0);
616		w->w_refcount--;
617
618		/*
619		 * Lock is already released if we have an allocation failure
620		 * and depart() fails.
621		 */
622		if (w->w_refcount != 0 || depart(w))
623			mtx_unlock_spin(&w_mtx);
624	}
625
626	/*
627	 * If this lock is destroyed before witness is up and running,
628	 * remove it from the pending list.
629	 */
630	if (lock->lo_flags & LO_ENROLLPEND) {
631		STAILQ_REMOVE(&pending_locks, lock, lock_object, lo_list);
632		lock->lo_flags &= ~LO_ENROLLPEND;
633	}
634}
635
636#ifdef DDB
637static void
638witness_levelall (void)
639{
640	struct witness_list *list;
641	struct witness *w, *w1;
642
643	/*
644	 * First clear all levels.
645	 */
646	STAILQ_FOREACH(w, &w_all, w_list) {
647		w->w_level = 0;
648	}
649
650	/*
651	 * Look for locks with no parent and level all their descendants.
652	 */
653	STAILQ_FOREACH(w, &w_all, w_list) {
654		/*
655		 * This is just an optimization, technically we could get
656		 * away just walking the all list each time.
657		 */
658		if (w->w_class->lc_flags & LC_SLEEPLOCK)
659			list = &w_sleep;
660		else
661			list = &w_spin;
662		STAILQ_FOREACH(w1, list, w_typelist) {
663			if (isitmychild(w1, w))
664				goto skip;
665		}
666		witness_leveldescendents(w, 0);
667	skip:
668		;	/* silence GCC 3.x */
669	}
670}
671
672static void
673witness_leveldescendents(struct witness *parent, int level)
674{
675	struct witness_child_list_entry *wcl;
676	int i;
677
678	if (parent->w_level < level)
679		parent->w_level = level;
680	level++;
681	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
682		for (i = 0; i < wcl->wcl_count; i++)
683			witness_leveldescendents(wcl->wcl_children[i], level);
684}
685
686static void
687witness_displaydescendants(void(*prnt)(const char *fmt, ...),
688			   struct witness *parent, int indent)
689{
690	struct witness_child_list_entry *wcl;
691	int i, level;
692
693	level = parent->w_level;
694	prnt("%-2d", level);
695	for (i = 0; i < indent; i++)
696		prnt(" ");
697	if (parent->w_refcount > 0)
698		prnt("%s", parent->w_name);
699	else
700		prnt("(dead)");
701	if (parent->w_displayed) {
702		prnt(" -- (already displayed)\n");
703		return;
704	}
705	parent->w_displayed = 1;
706	if (parent->w_refcount > 0) {
707		if (parent->w_file != NULL)
708			prnt(" -- last acquired @ %s:%d", parent->w_file,
709			    parent->w_line);
710	}
711	prnt("\n");
712	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
713		for (i = 0; i < wcl->wcl_count; i++)
714			    witness_displaydescendants(prnt,
715				wcl->wcl_children[i], indent + 1);
716}
717
718static void
719witness_display_list(void(*prnt)(const char *fmt, ...),
720		     struct witness_list *list)
721{
722	struct witness *w;
723
724	STAILQ_FOREACH(w, list, w_typelist) {
725		if (w->w_file == NULL || w->w_level > 0)
726			continue;
727		/*
728		 * This lock has no anscestors, display its descendants.
729		 */
730		witness_displaydescendants(prnt, w, 0);
731	}
732}
733
734static void
735witness_display(void(*prnt)(const char *fmt, ...))
736{
737	struct witness *w;
738
739	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
740	witness_levelall();
741
742	/* Clear all the displayed flags. */
743	STAILQ_FOREACH(w, &w_all, w_list) {
744		w->w_displayed = 0;
745	}
746
747	/*
748	 * First, handle sleep locks which have been acquired at least
749	 * once.
750	 */
751	prnt("Sleep locks:\n");
752	witness_display_list(prnt, &w_sleep);
753
754	/*
755	 * Now do spin locks which have been acquired at least once.
756	 */
757	prnt("\nSpin locks:\n");
758	witness_display_list(prnt, &w_spin);
759
760	/*
761	 * Finally, any locks which have not been acquired yet.
762	 */
763	prnt("\nLocks which were never acquired:\n");
764	STAILQ_FOREACH(w, &w_all, w_list) {
765		if (w->w_file != NULL || w->w_refcount == 0)
766			continue;
767		prnt("%s\n", w->w_name);
768	}
769}
770#endif /* DDB */
771
772/* Trim useless garbage from filenames. */
773static const char *
774fixup_filename(const char *file)
775{
776
777	if (file == NULL)
778		return (NULL);
779	while (strncmp(file, "../", 3) == 0)
780		file += 3;
781	return (file);
782}
783
784int
785witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
786{
787
788	if (witness_watch == 0 || panicstr != NULL)
789		return (0);
790
791	/* Require locks that witness knows about. */
792	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
793	    lock2->lo_witness == NULL)
794		return (EINVAL);
795
796	MPASS(!mtx_owned(&w_mtx));
797	mtx_lock_spin(&w_mtx);
798
799	/*
800	 * If we already have either an explicit or implied lock order that
801	 * is the other way around, then return an error.
802	 */
803	if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
804		mtx_unlock_spin(&w_mtx);
805		return (EDOOFUS);
806	}
807
808	/* Try to add the new order. */
809	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
810	    lock2->lo_type, lock1->lo_type);
811	if (!itismychild(lock1->lo_witness, lock2->lo_witness))
812		return (ENOMEM);
813	mtx_unlock_spin(&w_mtx);
814	return (0);
815}
816
817void
818witness_checkorder(struct lock_object *lock, int flags, const char *file,
819    int line)
820{
821	struct lock_list_entry **lock_list, *lle;
822	struct lock_instance *lock1, *lock2;
823	struct lock_class *class;
824	struct witness *w, *w1;
825	struct thread *td;
826	int i, j;
827
828	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
829	    panicstr != NULL)
830		return;
831
832	/*
833	 * Try locks do not block if they fail to acquire the lock, thus
834	 * there is no danger of deadlocks or of switching while holding a
835	 * spin lock if we acquire a lock via a try operation.  This
836	 * function shouldn't even be called for try locks, so panic if
837	 * that happens.
838	 */
839	if (flags & LOP_TRYLOCK)
840		panic("%s should not be called for try lock operations",
841		    __func__);
842
843	w = lock->lo_witness;
844	class = LOCK_CLASS(lock);
845	td = curthread;
846	file = fixup_filename(file);
847
848	if (class->lc_flags & LC_SLEEPLOCK) {
849		/*
850		 * Since spin locks include a critical section, this check
851		 * implicitly enforces a lock order of all sleep locks before
852		 * all spin locks.
853		 */
854		if (td->td_critnest != 0 && !kdb_active)
855			panic("blockable sleep lock (%s) %s @ %s:%d",
856			    class->lc_name, lock->lo_name, file, line);
857
858		/*
859		 * If this is the first lock acquired then just return as
860		 * no order checking is needed.
861		 */
862		if (td->td_sleeplocks == NULL)
863			return;
864		lock_list = &td->td_sleeplocks;
865	} else {
866		/*
867		 * If this is the first lock, just return as no order
868		 * checking is needed.  We check this in both if clauses
869		 * here as unifying the check would require us to use a
870		 * critical section to ensure we don't migrate while doing
871		 * the check.  Note that if this is not the first lock, we
872		 * are already in a critical section and are safe for the
873		 * rest of the check.
874		 */
875		if (PCPU_GET(spinlocks) == NULL)
876			return;
877		lock_list = PCPU_PTR(spinlocks);
878	}
879
880	/*
881	 * Check to see if we are recursing on a lock we already own.  If
882	 * so, make sure that we don't mismatch exclusive and shared lock
883	 * acquires.
884	 */
885	lock1 = find_instance(*lock_list, lock);
886	if (lock1 != NULL) {
887		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
888		    (flags & LOP_EXCLUSIVE) == 0) {
889			printf("shared lock of (%s) %s @ %s:%d\n",
890			    class->lc_name, lock->lo_name, file, line);
891			printf("while exclusively locked from %s:%d\n",
892			    lock1->li_file, lock1->li_line);
893			panic("share->excl");
894		}
895		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
896		    (flags & LOP_EXCLUSIVE) != 0) {
897			printf("exclusive lock of (%s) %s @ %s:%d\n",
898			    class->lc_name, lock->lo_name, file, line);
899			printf("while share locked from %s:%d\n",
900			    lock1->li_file, lock1->li_line);
901			panic("excl->share");
902		}
903		return;
904	}
905
906	/*
907	 * Try locks do not block if they fail to acquire the lock, thus
908	 * there is no danger of deadlocks or of switching while holding a
909	 * spin lock if we acquire a lock via a try operation.
910	 */
911	if (flags & LOP_TRYLOCK)
912		return;
913
914	/*
915	 * Check for duplicate locks of the same type.  Note that we only
916	 * have to check for this on the last lock we just acquired.  Any
917	 * other cases will be caught as lock order violations.
918	 */
919	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
920	w1 = lock1->li_lock->lo_witness;
921	if (w1 == w) {
922		if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK) ||
923		    (flags & LOP_DUPOK))
924			return;
925		w->w_same_squawked = 1;
926		printf("acquiring duplicate lock of same type: \"%s\"\n",
927			lock->lo_type);
928		printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
929		    lock1->li_file, lock1->li_line);
930		printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
931#ifdef KDB
932		goto debugger;
933#else
934		return;
935#endif
936	}
937	MPASS(!mtx_owned(&w_mtx));
938	mtx_lock_spin(&w_mtx);
939	/*
940	 * If we know that the the lock we are acquiring comes after
941	 * the lock we most recently acquired in the lock order tree,
942	 * then there is no need for any further checks.
943	 */
944	if (isitmychild(w1, w)) {
945		mtx_unlock_spin(&w_mtx);
946		return;
947	}
948	for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
949		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
950
951			MPASS(j < WITNESS_COUNT);
952			lock1 = &lle->ll_children[i];
953			w1 = lock1->li_lock->lo_witness;
954
955			/*
956			 * If this lock doesn't undergo witness checking,
957			 * then skip it.
958			 */
959			if (w1 == NULL) {
960				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
961				    ("lock missing witness structure"));
962				continue;
963			}
964			/*
965			 * If we are locking Giant and this is a sleepable
966			 * lock, then skip it.
967			 */
968			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
969			    lock == &Giant.lock_object)
970				continue;
971			/*
972			 * If we are locking a sleepable lock and this lock
973			 * is Giant, then skip it.
974			 */
975			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
976			    lock1->li_lock == &Giant.lock_object)
977				continue;
978			/*
979			 * If we are locking a sleepable lock and this lock
980			 * isn't sleepable, we want to treat it as a lock
981			 * order violation to enfore a general lock order of
982			 * sleepable locks before non-sleepable locks.
983			 */
984			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
985			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
986				goto reversal;
987			/*
988			 * If we are locking Giant and this is a non-sleepable
989			 * lock, then treat it as a reversal.
990			 */
991			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
992			    lock == &Giant.lock_object)
993				goto reversal;
994			/*
995			 * Check the lock order hierarchy for a reveresal.
996			 */
997			if (!isitmydescendant(w, w1))
998				continue;
999		reversal:
1000			/*
1001			 * We have a lock order violation, check to see if it
1002			 * is allowed or has already been yelled about.
1003			 */
1004			mtx_unlock_spin(&w_mtx);
1005#ifdef BLESSING
1006			/*
1007			 * If the lock order is blessed, just bail.  We don't
1008			 * look for other lock order violations though, which
1009			 * may be a bug.
1010			 */
1011			if (blessed(w, w1))
1012				return;
1013#endif
1014			if (lock1->li_lock == &Giant.lock_object) {
1015				if (w1->w_Giant_squawked)
1016					return;
1017				else
1018					w1->w_Giant_squawked = 1;
1019			} else {
1020				if (w1->w_other_squawked)
1021					return;
1022				else
1023					w1->w_other_squawked = 1;
1024			}
1025			/*
1026			 * Ok, yell about it.
1027			 */
1028			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1029			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1030				printf(
1031		"lock order reversal: (sleepable after non-sleepable)\n");
1032			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1033			    && lock == &Giant.lock_object)
1034				printf(
1035		"lock order reversal: (Giant after non-sleepable)\n");
1036			else
1037				printf("lock order reversal:\n");
1038			/*
1039			 * Try to locate an earlier lock with
1040			 * witness w in our list.
1041			 */
1042			do {
1043				lock2 = &lle->ll_children[i];
1044				MPASS(lock2->li_lock != NULL);
1045				if (lock2->li_lock->lo_witness == w)
1046					break;
1047				if (i == 0 && lle->ll_next != NULL) {
1048					lle = lle->ll_next;
1049					i = lle->ll_count - 1;
1050					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1051				} else
1052					i--;
1053			} while (i >= 0);
1054			if (i < 0) {
1055				printf(" 1st %p %s (%s) @ %s:%d\n",
1056				    lock1->li_lock, lock1->li_lock->lo_name,
1057				    lock1->li_lock->lo_type, lock1->li_file,
1058				    lock1->li_line);
1059				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1060				    lock->lo_name, lock->lo_type, file, line);
1061			} else {
1062				printf(" 1st %p %s (%s) @ %s:%d\n",
1063				    lock2->li_lock, lock2->li_lock->lo_name,
1064				    lock2->li_lock->lo_type, lock2->li_file,
1065				    lock2->li_line);
1066				printf(" 2nd %p %s (%s) @ %s:%d\n",
1067				    lock1->li_lock, lock1->li_lock->lo_name,
1068				    lock1->li_lock->lo_type, lock1->li_file,
1069				    lock1->li_line);
1070				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1071				    lock->lo_name, lock->lo_type, file, line);
1072			}
1073#ifdef KDB
1074			goto debugger;
1075#else
1076			return;
1077#endif
1078		}
1079	}
1080	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
1081	/*
1082	 * If requested, build a new lock order.  However, don't build a new
1083	 * relationship between a sleepable lock and Giant if it is in the
1084	 * wrong direction.  The correct lock order is that sleepable locks
1085	 * always come before Giant.
1086	 */
1087	if (flags & LOP_NEWORDER &&
1088	    !(lock1->li_lock == &Giant.lock_object &&
1089	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1090		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1091		    lock->lo_type, lock1->li_lock->lo_type);
1092		if (!itismychild(lock1->li_lock->lo_witness, w))
1093			/* Witness is dead. */
1094			return;
1095	}
1096	mtx_unlock_spin(&w_mtx);
1097	return;
1098
1099#ifdef KDB
1100debugger:
1101	if (witness_trace)
1102		kdb_backtrace();
1103	if (witness_kdb)
1104		kdb_enter(__func__);
1105#endif
1106}
1107
1108void
1109witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1110{
1111	struct lock_list_entry **lock_list, *lle;
1112	struct lock_instance *instance;
1113	struct witness *w;
1114	struct thread *td;
1115
1116	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1117	    panicstr != NULL)
1118		return;
1119	w = lock->lo_witness;
1120	td = curthread;
1121	file = fixup_filename(file);
1122
1123	/* Determine lock list for this lock. */
1124	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1125		lock_list = &td->td_sleeplocks;
1126	else
1127		lock_list = PCPU_PTR(spinlocks);
1128
1129	/* Check to see if we are recursing on a lock we already own. */
1130	instance = find_instance(*lock_list, lock);
1131	if (instance != NULL) {
1132		instance->li_flags++;
1133		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1134		    td->td_proc->p_pid, lock->lo_name,
1135		    instance->li_flags & LI_RECURSEMASK);
1136		instance->li_file = file;
1137		instance->li_line = line;
1138		return;
1139	}
1140
1141	/* Update per-witness last file and line acquire. */
1142	w->w_file = file;
1143	w->w_line = line;
1144
1145	/* Find the next open lock instance in the list and fill it. */
1146	lle = *lock_list;
1147	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1148		lle = witness_lock_list_get();
1149		if (lle == NULL)
1150			return;
1151		lle->ll_next = *lock_list;
1152		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1153		    td->td_proc->p_pid, lle);
1154		*lock_list = lle;
1155	}
1156	instance = &lle->ll_children[lle->ll_count++];
1157	instance->li_lock = lock;
1158	instance->li_line = line;
1159	instance->li_file = file;
1160	if ((flags & LOP_EXCLUSIVE) != 0)
1161		instance->li_flags = LI_EXCLUSIVE;
1162	else
1163		instance->li_flags = 0;
1164	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1165	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1166}
1167
1168void
1169witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1170{
1171	struct lock_instance *instance;
1172	struct lock_class *class;
1173
1174	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1175	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1176		return;
1177	class = LOCK_CLASS(lock);
1178	file = fixup_filename(file);
1179	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1180		panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1181		    class->lc_name, lock->lo_name, file, line);
1182	if ((flags & LOP_TRYLOCK) == 0)
1183		panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1184		    lock->lo_name, file, line);
1185	if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1186		panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1187		    class->lc_name, lock->lo_name, file, line);
1188	instance = find_instance(curthread->td_sleeplocks, lock);
1189	if (instance == NULL)
1190		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1191		    class->lc_name, lock->lo_name, file, line);
1192	if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1193		panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1194		    class->lc_name, lock->lo_name, file, line);
1195	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1196		panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1197		    class->lc_name, lock->lo_name,
1198		    instance->li_flags & LI_RECURSEMASK, file, line);
1199	instance->li_flags |= LI_EXCLUSIVE;
1200}
1201
1202void
1203witness_downgrade(struct lock_object *lock, int flags, const char *file,
1204    int line)
1205{
1206	struct lock_instance *instance;
1207	struct lock_class *class;
1208
1209	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1210	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1211		return;
1212	class = LOCK_CLASS(lock);
1213	file = fixup_filename(file);
1214	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1215		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1216		    class->lc_name, lock->lo_name, file, line);
1217	if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1218		panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1219		    class->lc_name, lock->lo_name, file, line);
1220	instance = find_instance(curthread->td_sleeplocks, lock);
1221	if (instance == NULL)
1222		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1223		    class->lc_name, lock->lo_name, file, line);
1224	if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1225		panic("downgrade of shared lock (%s) %s @ %s:%d",
1226		    class->lc_name, lock->lo_name, file, line);
1227	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1228		panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1229		    class->lc_name, lock->lo_name,
1230		    instance->li_flags & LI_RECURSEMASK, file, line);
1231	instance->li_flags &= ~LI_EXCLUSIVE;
1232}
1233
1234void
1235witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1236{
1237	struct lock_list_entry **lock_list, *lle;
1238	struct lock_instance *instance;
1239	struct lock_class *class;
1240	struct thread *td;
1241	register_t s;
1242	int i, j;
1243
1244	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1245	    panicstr != NULL)
1246		return;
1247	td = curthread;
1248	class = LOCK_CLASS(lock);
1249	file = fixup_filename(file);
1250
1251	/* Find lock instance associated with this lock. */
1252	if (class->lc_flags & LC_SLEEPLOCK)
1253		lock_list = &td->td_sleeplocks;
1254	else
1255		lock_list = PCPU_PTR(spinlocks);
1256	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1257		for (i = 0; i < (*lock_list)->ll_count; i++) {
1258			instance = &(*lock_list)->ll_children[i];
1259			if (instance->li_lock == lock)
1260				goto found;
1261		}
1262	panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1263	    file, line);
1264found:
1265
1266	/* First, check for shared/exclusive mismatches. */
1267	if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1268	    (flags & LOP_EXCLUSIVE) == 0) {
1269		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1270		    lock->lo_name, file, line);
1271		printf("while exclusively locked from %s:%d\n",
1272		    instance->li_file, instance->li_line);
1273		panic("excl->ushare");
1274	}
1275	if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1276	    (flags & LOP_EXCLUSIVE) != 0) {
1277		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1278		    lock->lo_name, file, line);
1279		printf("while share locked from %s:%d\n", instance->li_file,
1280		    instance->li_line);
1281		panic("share->uexcl");
1282	}
1283
1284	/* If we are recursed, unrecurse. */
1285	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1286		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1287		    td->td_proc->p_pid, instance->li_lock->lo_name,
1288		    instance->li_flags);
1289		instance->li_flags--;
1290		return;
1291	}
1292
1293	/* Otherwise, remove this item from the list. */
1294	s = intr_disable();
1295	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1296	    td->td_proc->p_pid, instance->li_lock->lo_name,
1297	    (*lock_list)->ll_count - 1);
1298	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1299		(*lock_list)->ll_children[j] =
1300		    (*lock_list)->ll_children[j + 1];
1301	(*lock_list)->ll_count--;
1302	intr_restore(s);
1303
1304	/* If this lock list entry is now empty, free it. */
1305	if ((*lock_list)->ll_count == 0) {
1306		lle = *lock_list;
1307		*lock_list = lle->ll_next;
1308		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1309		    td->td_proc->p_pid, lle);
1310		witness_lock_list_free(lle);
1311	}
1312}
1313
1314/*
1315 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1316 * exempt Giant and sleepable locks from the checks as well.  If any
1317 * non-exempt locks are held, then a supplied message is printed to the
1318 * console along with a list of the offending locks.  If indicated in the
1319 * flags then a failure results in a panic as well.
1320 */
1321int
1322witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1323{
1324	struct lock_list_entry *lle;
1325	struct lock_instance *lock1;
1326	struct thread *td;
1327	va_list ap;
1328	int i, n;
1329
1330	if (witness_cold || witness_watch == 0 || panicstr != NULL)
1331		return (0);
1332	n = 0;
1333	td = curthread;
1334	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1335		for (i = lle->ll_count - 1; i >= 0; i--) {
1336			lock1 = &lle->ll_children[i];
1337			if (lock1->li_lock == lock)
1338				continue;
1339			if (flags & WARN_GIANTOK &&
1340			    lock1->li_lock == &Giant.lock_object)
1341				continue;
1342			if (flags & WARN_SLEEPOK &&
1343			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1344				continue;
1345			if (n == 0) {
1346				va_start(ap, fmt);
1347				vprintf(fmt, ap);
1348				va_end(ap);
1349				printf(" with the following");
1350				if (flags & WARN_SLEEPOK)
1351					printf(" non-sleepable");
1352				printf(" locks held:\n");
1353			}
1354			n++;
1355			witness_list_lock(lock1);
1356		}
1357	if (PCPU_GET(spinlocks) != NULL) {
1358		/*
1359		 * Since we already hold a spinlock preemption is
1360		 * already blocked.
1361		 */
1362		if (n == 0) {
1363			va_start(ap, fmt);
1364			vprintf(fmt, ap);
1365			va_end(ap);
1366			printf(" with the following");
1367			if (flags & WARN_SLEEPOK)
1368				printf(" non-sleepable");
1369			printf(" locks held:\n");
1370		}
1371		n += witness_list_locks(PCPU_PTR(spinlocks));
1372	}
1373	if (flags & WARN_PANIC && n)
1374		panic("witness_warn");
1375#ifdef KDB
1376	else if (witness_kdb && n)
1377		kdb_enter(__func__);
1378	else if (witness_trace && n)
1379		kdb_backtrace();
1380#endif
1381	return (n);
1382}
1383
1384const char *
1385witness_file(struct lock_object *lock)
1386{
1387	struct witness *w;
1388
1389	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1390		return ("?");
1391	w = lock->lo_witness;
1392	return (w->w_file);
1393}
1394
1395int
1396witness_line(struct lock_object *lock)
1397{
1398	struct witness *w;
1399
1400	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1401		return (0);
1402	w = lock->lo_witness;
1403	return (w->w_line);
1404}
1405
1406static struct witness *
1407enroll(const char *description, struct lock_class *lock_class)
1408{
1409	struct witness *w;
1410
1411	if (witness_watch == 0 || panicstr != NULL)
1412		return (NULL);
1413	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1414		return (NULL);
1415	mtx_lock_spin(&w_mtx);
1416	STAILQ_FOREACH(w, &w_all, w_list) {
1417		if (w->w_name == description || (w->w_refcount > 0 &&
1418		    strcmp(description, w->w_name) == 0)) {
1419			w->w_refcount++;
1420			mtx_unlock_spin(&w_mtx);
1421			if (lock_class != w->w_class)
1422				panic(
1423				"lock (%s) %s does not match earlier (%s) lock",
1424				    description, lock_class->lc_name,
1425				    w->w_class->lc_name);
1426			return (w);
1427		}
1428	}
1429	if ((w = witness_get()) == NULL)
1430		goto out;
1431	w->w_name = description;
1432	w->w_class = lock_class;
1433	w->w_refcount = 1;
1434	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1435	if (lock_class->lc_flags & LC_SPINLOCK) {
1436		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1437		w_spin_cnt++;
1438	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1439		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1440		w_sleep_cnt++;
1441	} else {
1442		mtx_unlock_spin(&w_mtx);
1443		panic("lock class %s is not sleep or spin",
1444		    lock_class->lc_name);
1445	}
1446	mtx_unlock_spin(&w_mtx);
1447out:
1448	/*
1449	 * We issue a warning for any spin locks not defined in the static
1450	 * order list as a way to discourage their use (folks should really
1451	 * be using non-spin mutexes most of the time).  However, several
1452	 * 3rd part device drivers use spin locks because that is all they
1453	 * have available on Windows and Linux and they think that normal
1454	 * mutexes are insufficient.
1455	 */
1456	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_spin_warn)
1457		printf("WITNESS: spin lock %s not in order list\n",
1458		    description);
1459	return (w);
1460}
1461
1462/* Don't let the door bang you on the way out... */
1463static int
1464depart(struct witness *w)
1465{
1466	struct witness_child_list_entry *wcl, *nwcl;
1467	struct witness_list *list;
1468	struct witness *parent;
1469
1470	MPASS(w->w_refcount == 0);
1471	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1472		list = &w_sleep;
1473		w_sleep_cnt--;
1474	} else {
1475		list = &w_spin;
1476		w_spin_cnt--;
1477	}
1478	/*
1479	 * First, we run through the entire tree looking for any
1480	 * witnesses that the outgoing witness is a child of.  For
1481	 * each parent that we find, we reparent all the direct
1482	 * children of the outgoing witness to its parent.
1483	 */
1484	STAILQ_FOREACH(parent, list, w_typelist) {
1485		if (!isitmychild(parent, w))
1486			continue;
1487		removechild(parent, w);
1488	}
1489
1490	/*
1491	 * Now we go through and free up the child list of the
1492	 * outgoing witness.
1493	 */
1494	for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1495		nwcl = wcl->wcl_next;
1496        	w_child_cnt--;
1497		witness_child_free(wcl);
1498	}
1499
1500	/*
1501	 * Detach from various lists and free.
1502	 */
1503	STAILQ_REMOVE(list, w, witness, w_typelist);
1504	STAILQ_REMOVE(&w_all, w, witness, w_list);
1505	witness_free(w);
1506
1507	return (1);
1508}
1509
1510/*
1511 * Add "child" as a direct child of "parent".  Returns false if
1512 * we fail due to out of memory.
1513 */
1514static int
1515insertchild(struct witness *parent, struct witness *child)
1516{
1517	struct witness_child_list_entry **wcl;
1518
1519	MPASS(child != NULL && parent != NULL);
1520
1521	/*
1522	 * Insert "child" after "parent"
1523	 */
1524	wcl = &parent->w_children;
1525	while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1526		wcl = &(*wcl)->wcl_next;
1527	if (*wcl == NULL) {
1528		*wcl = witness_child_get();
1529		if (*wcl == NULL)
1530			return (0);
1531        	w_child_cnt++;
1532	}
1533	(*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1534
1535	return (1);
1536}
1537
1538
1539static int
1540itismychild(struct witness *parent, struct witness *child)
1541{
1542	struct witness_list *list;
1543
1544	MPASS(child != NULL && parent != NULL);
1545	if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1546	    (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1547		panic(
1548		"%s: parent (%s) and child (%s) are not the same lock type",
1549		    __func__, parent->w_class->lc_name,
1550		    child->w_class->lc_name);
1551
1552	if (!insertchild(parent, child))
1553		return (0);
1554
1555	if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1556		list = &w_sleep;
1557	else
1558		list = &w_spin;
1559	return (1);
1560}
1561
1562static void
1563removechild(struct witness *parent, struct witness *child)
1564{
1565	struct witness_child_list_entry **wcl, *wcl1;
1566	int i;
1567
1568	for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1569		for (i = 0; i < (*wcl)->wcl_count; i++)
1570			if ((*wcl)->wcl_children[i] == child)
1571				goto found;
1572	return;
1573found:
1574	(*wcl)->wcl_count--;
1575	if ((*wcl)->wcl_count > i)
1576		(*wcl)->wcl_children[i] =
1577		    (*wcl)->wcl_children[(*wcl)->wcl_count];
1578	MPASS((*wcl)->wcl_children[i] != NULL);
1579	if ((*wcl)->wcl_count != 0)
1580		return;
1581	wcl1 = *wcl;
1582	*wcl = wcl1->wcl_next;
1583	w_child_cnt--;
1584	witness_child_free(wcl1);
1585}
1586
1587static int
1588isitmychild(struct witness *parent, struct witness *child)
1589{
1590	struct witness_child_list_entry *wcl;
1591	int i;
1592
1593	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1594		for (i = 0; i < wcl->wcl_count; i++) {
1595			if (wcl->wcl_children[i] == child)
1596				return (1);
1597		}
1598	}
1599	return (0);
1600}
1601
1602static int
1603isitmydescendant(struct witness *parent, struct witness *child)
1604{
1605	struct witness_child_list_entry *wcl;
1606	int i, j;
1607
1608	if (isitmychild(parent, child))
1609		return (1);
1610	j = 0;
1611	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1612		MPASS(j < 1000);
1613		for (i = 0; i < wcl->wcl_count; i++) {
1614			if (isitmydescendant(wcl->wcl_children[i], child))
1615				return (1);
1616		}
1617		j++;
1618	}
1619	return (0);
1620}
1621
1622#ifdef BLESSING
1623static int
1624blessed(struct witness *w1, struct witness *w2)
1625{
1626	int i;
1627	struct witness_blessed *b;
1628
1629	for (i = 0; i < blessed_count; i++) {
1630		b = &blessed_list[i];
1631		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1632			if (strcmp(w2->w_name, b->b_lock2) == 0)
1633				return (1);
1634			continue;
1635		}
1636		if (strcmp(w1->w_name, b->b_lock2) == 0)
1637			if (strcmp(w2->w_name, b->b_lock1) == 0)
1638				return (1);
1639	}
1640	return (0);
1641}
1642#endif
1643
1644static struct witness *
1645witness_get(void)
1646{
1647	struct witness *w;
1648
1649	if (witness_watch == 0) {
1650		mtx_unlock_spin(&w_mtx);
1651		return (NULL);
1652	}
1653	if (STAILQ_EMPTY(&w_free)) {
1654		witness_watch = 0;
1655		mtx_unlock_spin(&w_mtx);
1656		printf("%s: witness exhausted\n", __func__);
1657		return (NULL);
1658	}
1659	w = STAILQ_FIRST(&w_free);
1660	STAILQ_REMOVE_HEAD(&w_free, w_list);
1661	w_free_cnt--;
1662	bzero(w, sizeof(*w));
1663	return (w);
1664}
1665
1666static void
1667witness_free(struct witness *w)
1668{
1669
1670	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1671	w_free_cnt++;
1672}
1673
1674static struct witness_child_list_entry *
1675witness_child_get(void)
1676{
1677	struct witness_child_list_entry *wcl;
1678
1679	if (witness_watch == 0) {
1680		mtx_unlock_spin(&w_mtx);
1681		return (NULL);
1682	}
1683	wcl = w_child_free;
1684	if (wcl == NULL) {
1685		witness_watch = 0;
1686		mtx_unlock_spin(&w_mtx);
1687		printf("%s: witness exhausted\n", __func__);
1688		return (NULL);
1689	}
1690	w_child_free = wcl->wcl_next;
1691	w_child_free_cnt--;
1692	bzero(wcl, sizeof(*wcl));
1693	return (wcl);
1694}
1695
1696static void
1697witness_child_free(struct witness_child_list_entry *wcl)
1698{
1699
1700	wcl->wcl_next = w_child_free;
1701	w_child_free = wcl;
1702	w_child_free_cnt++;
1703}
1704
1705static struct lock_list_entry *
1706witness_lock_list_get(void)
1707{
1708	struct lock_list_entry *lle;
1709
1710	if (witness_watch == 0)
1711		return (NULL);
1712	mtx_lock_spin(&w_mtx);
1713	lle = w_lock_list_free;
1714	if (lle == NULL) {
1715		witness_watch = 0;
1716		mtx_unlock_spin(&w_mtx);
1717		printf("%s: witness exhausted\n", __func__);
1718		return (NULL);
1719	}
1720	w_lock_list_free = lle->ll_next;
1721	mtx_unlock_spin(&w_mtx);
1722	bzero(lle, sizeof(*lle));
1723	return (lle);
1724}
1725
1726static void
1727witness_lock_list_free(struct lock_list_entry *lle)
1728{
1729
1730	mtx_lock_spin(&w_mtx);
1731	lle->ll_next = w_lock_list_free;
1732	w_lock_list_free = lle;
1733	mtx_unlock_spin(&w_mtx);
1734}
1735
1736static struct lock_instance *
1737find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1738{
1739	struct lock_list_entry *lle;
1740	struct lock_instance *instance;
1741	int i;
1742
1743	for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1744		for (i = lle->ll_count - 1; i >= 0; i--) {
1745			instance = &lle->ll_children[i];
1746			if (instance->li_lock == lock)
1747				return (instance);
1748		}
1749	return (NULL);
1750}
1751
1752static void
1753witness_list_lock(struct lock_instance *instance)
1754{
1755	struct lock_object *lock;
1756
1757	lock = instance->li_lock;
1758	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1759	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
1760	if (lock->lo_type != lock->lo_name)
1761		printf(" (%s)", lock->lo_type);
1762	printf(" r = %d (%p) locked @ %s:%d\n",
1763	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1764	    instance->li_line);
1765}
1766
1767#ifdef DDB
1768static int
1769witness_thread_has_locks(struct thread *td)
1770{
1771
1772	return (td->td_sleeplocks != NULL);
1773}
1774
1775static int
1776witness_proc_has_locks(struct proc *p)
1777{
1778	struct thread *td;
1779
1780	FOREACH_THREAD_IN_PROC(p, td) {
1781		if (witness_thread_has_locks(td))
1782			return (1);
1783	}
1784	return (0);
1785}
1786#endif
1787
1788int
1789witness_list_locks(struct lock_list_entry **lock_list)
1790{
1791	struct lock_list_entry *lle;
1792	int i, nheld;
1793
1794	nheld = 0;
1795	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1796		for (i = lle->ll_count - 1; i >= 0; i--) {
1797			witness_list_lock(&lle->ll_children[i]);
1798			nheld++;
1799		}
1800	return (nheld);
1801}
1802
1803/*
1804 * This is a bit risky at best.  We call this function when we have timed
1805 * out acquiring a spin lock, and we assume that the other CPU is stuck
1806 * with this lock held.  So, we go groveling around in the other CPU's
1807 * per-cpu data to try to find the lock instance for this spin lock to
1808 * see when it was last acquired.
1809 */
1810void
1811witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1812{
1813	struct lock_instance *instance;
1814	struct pcpu *pc;
1815
1816	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1817		return;
1818	pc = pcpu_find(owner->td_oncpu);
1819	instance = find_instance(pc->pc_spinlocks, lock);
1820	if (instance != NULL)
1821		witness_list_lock(instance);
1822}
1823
1824void
1825witness_save(struct lock_object *lock, const char **filep, int *linep)
1826{
1827	struct lock_list_entry *lock_list;
1828	struct lock_instance *instance;
1829	struct lock_class *class;
1830
1831	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1832	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1833		return;
1834	class = LOCK_CLASS(lock);
1835	if (class->lc_flags & LC_SLEEPLOCK)
1836		lock_list = curthread->td_sleeplocks;
1837	else {
1838		if (witness_skipspin)
1839			return;
1840		lock_list = PCPU_GET(spinlocks);
1841	}
1842	instance = find_instance(lock_list, lock);
1843	if (instance == NULL)
1844		panic("%s: lock (%s) %s not locked", __func__,
1845		    class->lc_name, lock->lo_name);
1846	*filep = instance->li_file;
1847	*linep = instance->li_line;
1848}
1849
1850void
1851witness_restore(struct lock_object *lock, const char *file, int line)
1852{
1853	struct lock_list_entry *lock_list;
1854	struct lock_instance *instance;
1855	struct lock_class *class;
1856
1857	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1858	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1859		return;
1860	class = LOCK_CLASS(lock);
1861	if (class->lc_flags & LC_SLEEPLOCK)
1862		lock_list = curthread->td_sleeplocks;
1863	else {
1864		if (witness_skipspin)
1865			return;
1866		lock_list = PCPU_GET(spinlocks);
1867	}
1868	instance = find_instance(lock_list, lock);
1869	if (instance == NULL)
1870		panic("%s: lock (%s) %s not locked", __func__,
1871		    class->lc_name, lock->lo_name);
1872	lock->lo_witness->w_file = file;
1873	lock->lo_witness->w_line = line;
1874	instance->li_file = file;
1875	instance->li_line = line;
1876}
1877
1878void
1879witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1880{
1881#ifdef INVARIANT_SUPPORT
1882	struct lock_instance *instance;
1883	struct lock_class *class;
1884
1885	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1886		return;
1887	class = LOCK_CLASS(lock);
1888	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
1889		instance = find_instance(curthread->td_sleeplocks, lock);
1890	else if ((class->lc_flags & LC_SPINLOCK) != 0)
1891		instance = find_instance(PCPU_GET(spinlocks), lock);
1892	else {
1893		panic("Lock (%s) %s is not sleep or spin!",
1894		    class->lc_name, lock->lo_name);
1895	}
1896	file = fixup_filename(file);
1897	switch (flags) {
1898	case LA_UNLOCKED:
1899		if (instance != NULL)
1900			panic("Lock (%s) %s locked @ %s:%d.",
1901			    class->lc_name, lock->lo_name, file, line);
1902		break;
1903	case LA_LOCKED:
1904	case LA_LOCKED | LA_RECURSED:
1905	case LA_LOCKED | LA_NOTRECURSED:
1906	case LA_SLOCKED:
1907	case LA_SLOCKED | LA_RECURSED:
1908	case LA_SLOCKED | LA_NOTRECURSED:
1909	case LA_XLOCKED:
1910	case LA_XLOCKED | LA_RECURSED:
1911	case LA_XLOCKED | LA_NOTRECURSED:
1912		if (instance == NULL) {
1913			panic("Lock (%s) %s not locked @ %s:%d.",
1914			    class->lc_name, lock->lo_name, file, line);
1915			break;
1916		}
1917		if ((flags & LA_XLOCKED) != 0 &&
1918		    (instance->li_flags & LI_EXCLUSIVE) == 0)
1919			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1920			    class->lc_name, lock->lo_name, file, line);
1921		if ((flags & LA_SLOCKED) != 0 &&
1922		    (instance->li_flags & LI_EXCLUSIVE) != 0)
1923			panic("Lock (%s) %s exclusively locked @ %s:%d.",
1924			    class->lc_name, lock->lo_name, file, line);
1925		if ((flags & LA_RECURSED) != 0 &&
1926		    (instance->li_flags & LI_RECURSEMASK) == 0)
1927			panic("Lock (%s) %s not recursed @ %s:%d.",
1928			    class->lc_name, lock->lo_name, file, line);
1929		if ((flags & LA_NOTRECURSED) != 0 &&
1930		    (instance->li_flags & LI_RECURSEMASK) != 0)
1931			panic("Lock (%s) %s recursed @ %s:%d.",
1932			    class->lc_name, lock->lo_name, file, line);
1933		break;
1934	default:
1935		panic("Invalid lock assertion at %s:%d.", file, line);
1936
1937	}
1938#endif	/* INVARIANT_SUPPORT */
1939}
1940
1941#ifdef DDB
1942static void
1943witness_list(struct thread *td)
1944{
1945
1946	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1947	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1948
1949	if (witness_watch == 0)
1950		return;
1951
1952	witness_list_locks(&td->td_sleeplocks);
1953
1954	/*
1955	 * We only handle spinlocks if td == curthread.  This is somewhat broken
1956	 * if td is currently executing on some other CPU and holds spin locks
1957	 * as we won't display those locks.  If we had a MI way of getting
1958	 * the per-cpu data for a given cpu then we could use
1959	 * td->td_oncpu to get the list of spinlocks for this thread
1960	 * and "fix" this.
1961	 *
1962	 * That still wouldn't really fix this unless we locked sched_lock
1963	 * or stopped the other CPU to make sure it wasn't changing the list
1964	 * out from under us.  It is probably best to just not try to handle
1965	 * threads on other CPU's for now.
1966	 */
1967	if (td == curthread && PCPU_GET(spinlocks) != NULL)
1968		witness_list_locks(PCPU_PTR(spinlocks));
1969}
1970
1971DB_SHOW_COMMAND(locks, db_witness_list)
1972{
1973	struct thread *td;
1974
1975	if (have_addr)
1976		td = db_lookup_thread(addr, TRUE);
1977	else
1978		td = kdb_thread;
1979	witness_list(td);
1980}
1981
1982DB_SHOW_COMMAND(alllocks, db_witness_list_all)
1983{
1984	struct thread *td;
1985	struct proc *p;
1986
1987	/*
1988	 * It would be nice to list only threads and processes that actually
1989	 * held sleep locks, but that information is currently not exported
1990	 * by WITNESS.
1991	 */
1992	FOREACH_PROC_IN_SYSTEM(p) {
1993		if (!witness_proc_has_locks(p))
1994			continue;
1995		FOREACH_THREAD_IN_PROC(p, td) {
1996			if (!witness_thread_has_locks(td))
1997				continue;
1998			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
1999			    p->p_comm, td, td->td_tid);
2000			witness_list(td);
2001		}
2002	}
2003}
2004
2005DB_SHOW_COMMAND(witness, db_witness_display)
2006{
2007
2008	witness_display(db_printf);
2009}
2010#endif
2011