subr_witness.c revision 158030
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Implementation of the `witness' lock verifier.  Originally implemented for
34 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35 * classes in FreeBSD.
36 */
37
38/*
39 *	Main Entry: witness
40 *	Pronunciation: 'wit-n&s
41 *	Function: noun
42 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43 *	    testimony, witness, from 2wit
44 *	Date: before 12th century
45 *	1 : attestation of a fact or event : TESTIMONY
46 *	2 : one that gives evidence; specifically : one who testifies in
47 *	    a cause or before a judicial tribunal
48 *	3 : one asked to be present at a transaction so as to be able to
49 *	    testify to its having taken place
50 *	4 : one who has personal knowledge of something
51 *	5 a : something serving as evidence or proof : SIGN
52 *	  b : public affirmation by word or example of usually
53 *	      religious faith or conviction <the heroic witness to divine
54 *	      life -- Pilot>
55 *	6 capitalized : a member of the Jehovah's Witnesses
56 */
57
58/*
59 * Special rules concerning Giant and lock orders:
60 *
61 * 1) Giant must be acquired before any other mutexes.  Stated another way,
62 *    no other mutex may be held when Giant is acquired.
63 *
64 * 2) Giant must be released when blocking on a sleepable lock.
65 *
66 * This rule is less obvious, but is a result of Giant providing the same
67 * semantics as spl().  Basically, when a thread sleeps, it must release
68 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69 * 2).
70 *
71 * 3) Giant may be acquired before or after sleepable locks.
72 *
73 * This rule is also not quite as obvious.  Giant may be acquired after
74 * a sleepable lock because it is a non-sleepable lock and non-sleepable
75 * locks may always be acquired while holding a sleepable lock.  The second
76 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80 * execute.  Thus, acquiring Giant both before and after a sleepable lock
81 * will not result in a lock order reversal.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/kern/subr_witness.c 158030 2006-04-25 20:24:23Z jhb $");
86
87#include "opt_ddb.h"
88#include "opt_witness.h"
89
90#include <sys/param.h>
91#include <sys/bus.h>
92#include <sys/kdb.h>
93#include <sys/kernel.h>
94#include <sys/ktr.h>
95#include <sys/lock.h>
96#include <sys/malloc.h>
97#include <sys/mutex.h>
98#include <sys/proc.h>
99#include <sys/sysctl.h>
100#include <sys/systm.h>
101
102#include <ddb/ddb.h>
103
104#include <machine/stdarg.h>
105
106/* Note that these traces do not work with KTR_ALQ. */
107#if 0
108#define	KTR_WITNESS	KTR_SUBSYS
109#else
110#define	KTR_WITNESS	0
111#endif
112
113/* Easier to stay with the old names. */
114#define	lo_list		lo_witness_data.lod_list
115#define	lo_witness	lo_witness_data.lod_witness
116
117/* Define this to check for blessed mutexes */
118#undef BLESSING
119
120#define WITNESS_COUNT 1024
121#define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
122/*
123 * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
124 * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
125 * probably be safe for the most part, but it's still a SWAG.
126 */
127#define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
128
129#define	WITNESS_NCHILDREN 6
130
131struct witness_child_list_entry;
132
133struct witness {
134	const	char *w_name;
135	struct	lock_class *w_class;
136	STAILQ_ENTRY(witness) w_list;		/* List of all witnesses. */
137	STAILQ_ENTRY(witness) w_typelist;	/* Witnesses of a type. */
138	struct	witness_child_list_entry *w_children;	/* Great evilness... */
139	const	char *w_file;
140	int	w_line;
141	u_int	w_level;
142	u_int	w_refcount;
143	u_char	w_Giant_squawked:1;
144	u_char	w_other_squawked:1;
145	u_char	w_same_squawked:1;
146	u_char	w_displayed:1;
147};
148
149struct witness_child_list_entry {
150	struct	witness_child_list_entry *wcl_next;
151	struct	witness *wcl_children[WITNESS_NCHILDREN];
152	u_int	wcl_count;
153};
154
155STAILQ_HEAD(witness_list, witness);
156
157#ifdef BLESSING
158struct witness_blessed {
159	const	char *b_lock1;
160	const	char *b_lock2;
161};
162#endif
163
164struct witness_order_list_entry {
165	const	char *w_name;
166	struct	lock_class *w_class;
167};
168
169#ifdef BLESSING
170static int	blessed(struct witness *, struct witness *);
171#endif
172static int	depart(struct witness *w);
173static struct	witness *enroll(const char *description,
174				struct lock_class *lock_class);
175static int	insertchild(struct witness *parent, struct witness *child);
176static int	isitmychild(struct witness *parent, struct witness *child);
177static int	isitmydescendant(struct witness *parent, struct witness *child);
178static int	itismychild(struct witness *parent, struct witness *child);
179static void	removechild(struct witness *parent, struct witness *child);
180static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
181static const char *fixup_filename(const char *file);
182static struct	witness *witness_get(void);
183static void	witness_free(struct witness *m);
184static struct	witness_child_list_entry *witness_child_get(void);
185static void	witness_child_free(struct witness_child_list_entry *wcl);
186static struct	lock_list_entry *witness_lock_list_get(void);
187static void	witness_lock_list_free(struct lock_list_entry *lle);
188static struct	lock_instance *find_instance(struct lock_list_entry *lock_list,
189					     struct lock_object *lock);
190static void	witness_list_lock(struct lock_instance *instance);
191#ifdef DDB
192static void	witness_leveldescendents(struct witness *parent, int level);
193static void	witness_levelall(void);
194static void	witness_displaydescendants(void(*)(const char *fmt, ...),
195					   struct witness *, int indent);
196static void	witness_display_list(void(*prnt)(const char *fmt, ...),
197				     struct witness_list *list);
198static void	witness_display(void(*)(const char *fmt, ...));
199static void	witness_list(struct thread *td);
200#endif
201
202SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
203
204/*
205 * If set to 0, witness is disabled.  If set to a non-zero value, witness
206 * performs full lock order checking for all locks.  At runtime, this
207 * value may be set to 0 to turn off witness.  witness is not allowed be
208 * turned on once it is turned off, however.
209 */
210static int witness_watch = 1;
211TUNABLE_INT("debug.witness.watch", &witness_watch);
212SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
213    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
214
215#ifdef KDB
216/*
217 * When KDB is enabled and witness_kdb is set to 1, it will cause the system
218 * to drop into kdebug() when:
219 *	- a lock hierarchy violation occurs
220 *	- locks are held when going to sleep.
221 */
222#ifdef WITNESS_KDB
223int	witness_kdb = 1;
224#else
225int	witness_kdb = 0;
226#endif
227TUNABLE_INT("debug.witness.kdb", &witness_kdb);
228SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
229
230/*
231 * When KDB is enabled and witness_trace is set to 1, it will cause the system
232 * to print a stack trace:
233 *	- a lock hierarchy violation occurs
234 *	- locks are held when going to sleep.
235 */
236int	witness_trace = 1;
237TUNABLE_INT("debug.witness.trace", &witness_trace);
238SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
239#endif /* KDB */
240
241#ifdef WITNESS_SKIPSPIN
242int	witness_skipspin = 1;
243#else
244int	witness_skipspin = 0;
245#endif
246TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
247SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
248    &witness_skipspin, 0, "");
249
250static struct mtx w_mtx;
251static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
252static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
253static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
254static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
255static struct witness_child_list_entry *w_child_free = NULL;
256static struct lock_list_entry *w_lock_list_free = NULL;
257
258static int w_free_cnt, w_spin_cnt, w_sleep_cnt, w_child_free_cnt, w_child_cnt;
259SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
260SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
261SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
262    "");
263SYSCTL_INT(_debug_witness, OID_AUTO, child_free_cnt, CTLFLAG_RD,
264    &w_child_free_cnt, 0, "");
265SYSCTL_INT(_debug_witness, OID_AUTO, child_cnt, CTLFLAG_RD, &w_child_cnt, 0,
266    "");
267
268static struct witness w_data[WITNESS_COUNT];
269static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
270static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
271
272static struct witness_order_list_entry order_lists[] = {
273	/*
274	 * sx locks
275	 */
276	{ "proctree", &lock_class_sx },
277	{ "allproc", &lock_class_sx },
278	{ NULL, NULL },
279	/*
280	 * Various mutexes
281	 */
282	{ "Giant", &lock_class_mtx_sleep },
283	{ "filedesc structure", &lock_class_mtx_sleep },
284	{ "pipe mutex", &lock_class_mtx_sleep },
285	{ "sigio lock", &lock_class_mtx_sleep },
286	{ "process group", &lock_class_mtx_sleep },
287	{ "process lock", &lock_class_mtx_sleep },
288	{ "session", &lock_class_mtx_sleep },
289	{ "uidinfo hash", &lock_class_mtx_sleep },
290	{ "uidinfo struct", &lock_class_mtx_sleep },
291	{ "allprison", &lock_class_mtx_sleep },
292	{ NULL, NULL },
293	/*
294	 * Sockets
295	 */
296	{ "filedesc structure", &lock_class_mtx_sleep },
297	{ "accept", &lock_class_mtx_sleep },
298	{ "so_snd", &lock_class_mtx_sleep },
299	{ "so_rcv", &lock_class_mtx_sleep },
300	{ "sellck", &lock_class_mtx_sleep },
301	{ NULL, NULL },
302	/*
303	 * Routing
304	 */
305	{ "so_rcv", &lock_class_mtx_sleep },
306	{ "radix node head", &lock_class_mtx_sleep },
307	{ "rtentry", &lock_class_mtx_sleep },
308	{ "ifaddr", &lock_class_mtx_sleep },
309	{ NULL, NULL },
310	/*
311	 * Multicast - protocol locks before interface locks, after UDP locks.
312	 */
313	{ "udpinp", &lock_class_mtx_sleep },
314	{ "in_multi_mtx", &lock_class_mtx_sleep },
315	{ "igmp_mtx", &lock_class_mtx_sleep },
316	{ "if_addr_mtx", &lock_class_mtx_sleep },
317	{ NULL, NULL },
318	/*
319	 * UNIX Domain Sockets
320	 */
321	{ "unp", &lock_class_mtx_sleep },
322	{ "so_snd", &lock_class_mtx_sleep },
323	{ NULL, NULL },
324	/*
325	 * UDP/IP
326	 */
327	{ "udp", &lock_class_mtx_sleep },
328	{ "udpinp", &lock_class_mtx_sleep },
329	{ "so_snd", &lock_class_mtx_sleep },
330	{ NULL, NULL },
331	/*
332	 * TCP/IP
333	 */
334	{ "tcp", &lock_class_mtx_sleep },
335	{ "tcpinp", &lock_class_mtx_sleep },
336	{ "so_snd", &lock_class_mtx_sleep },
337	{ NULL, NULL },
338	/*
339	 * SLIP
340	 */
341	{ "slip_mtx", &lock_class_mtx_sleep },
342	{ "slip sc_mtx", &lock_class_mtx_sleep },
343	{ NULL, NULL },
344	/*
345	 * netatalk
346	 */
347	{ "ddp_list_mtx", &lock_class_mtx_sleep },
348	{ "ddp_mtx", &lock_class_mtx_sleep },
349	{ NULL, NULL },
350	/*
351	 * BPF
352	 */
353	{ "bpf global lock", &lock_class_mtx_sleep },
354	{ "bpf interface lock", &lock_class_mtx_sleep },
355	{ "bpf cdev lock", &lock_class_mtx_sleep },
356	{ NULL, NULL },
357	/*
358	 * NFS server
359	 */
360	{ "nfsd_mtx", &lock_class_mtx_sleep },
361	{ "so_snd", &lock_class_mtx_sleep },
362	{ NULL, NULL },
363	/*
364	 * CDEV
365	 */
366	{ "system map", &lock_class_mtx_sleep },
367	{ "vm page queue mutex", &lock_class_mtx_sleep },
368	{ "vnode interlock", &lock_class_mtx_sleep },
369	{ "cdev", &lock_class_mtx_sleep },
370	{ NULL, NULL },
371	/*
372	 * spin locks
373	 */
374#ifdef SMP
375	{ "ap boot", &lock_class_mtx_spin },
376#endif
377	{ "rm.mutex_mtx", &lock_class_mtx_spin },
378	{ "hptlock", &lock_class_mtx_spin },
379	{ "sio", &lock_class_mtx_spin },
380#ifdef __i386__
381	{ "cy", &lock_class_mtx_spin },
382#endif
383	{ "scc_hwmtx", &lock_class_mtx_spin },
384	{ "uart_hwmtx", &lock_class_mtx_spin },
385	{ "zstty", &lock_class_mtx_spin },
386	{ "ng_node", &lock_class_mtx_spin },
387	{ "ng_worklist", &lock_class_mtx_spin },
388	{ "taskqueue_fast", &lock_class_mtx_spin },
389	{ "intr table", &lock_class_mtx_spin },
390	{ "sleepq chain", &lock_class_mtx_spin },
391	{ "sched lock", &lock_class_mtx_spin },
392	{ "turnstile chain", &lock_class_mtx_spin },
393	{ "td_contested", &lock_class_mtx_spin },
394	{ "callout", &lock_class_mtx_spin },
395	{ "entropy harvest mutex", &lock_class_mtx_spin },
396	/*
397	 * leaf locks
398	 */
399	{ "allpmaps", &lock_class_mtx_spin },
400	{ "vm page queue free mutex", &lock_class_mtx_spin },
401	{ "icu", &lock_class_mtx_spin },
402#ifdef SMP
403	{ "smp rendezvous", &lock_class_mtx_spin },
404#if defined(__i386__) || defined(__amd64__)
405	{ "tlb", &lock_class_mtx_spin },
406#endif
407#ifdef __sparc64__
408	{ "ipi", &lock_class_mtx_spin },
409	{ "rtc_mtx", &lock_class_mtx_spin },
410#endif
411#endif
412	{ "clk", &lock_class_mtx_spin },
413	{ "mutex profiling lock", &lock_class_mtx_spin },
414	{ "kse zombie lock", &lock_class_mtx_spin },
415	{ "ALD Queue", &lock_class_mtx_spin },
416#ifdef __ia64__
417	{ "MCA spin lock", &lock_class_mtx_spin },
418#endif
419#if defined(__i386__) || defined(__amd64__)
420	{ "pcicfg", &lock_class_mtx_spin },
421	{ "NDIS thread lock", &lock_class_mtx_spin },
422#endif
423	{ "tw_osl_io_lock", &lock_class_mtx_spin },
424	{ "tw_osl_q_lock", &lock_class_mtx_spin },
425	{ "tw_cl_io_lock", &lock_class_mtx_spin },
426	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
427	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
428	{ NULL, NULL },
429	{ NULL, NULL }
430};
431
432#ifdef BLESSING
433/*
434 * Pairs of locks which have been blessed
435 * Don't complain about order problems with blessed locks
436 */
437static struct witness_blessed blessed_list[] = {
438};
439static int blessed_count =
440	sizeof(blessed_list) / sizeof(struct witness_blessed);
441#endif
442
443/*
444 * List of locks initialized prior to witness being initialized whose
445 * enrollment is currently deferred.
446 */
447STAILQ_HEAD(, lock_object) pending_locks =
448    STAILQ_HEAD_INITIALIZER(pending_locks);
449
450/*
451 * This global is set to 0 once it becomes safe to use the witness code.
452 */
453static int witness_cold = 1;
454
455/*
456 * This global is set to 1 once the static lock orders have been enrolled
457 * so that a warning can be issued for any spin locks enrolled later.
458 */
459static int witness_spin_warn = 0;
460
461/*
462 * The WITNESS-enabled diagnostic code.  Note that the witness code does
463 * assume that the early boot is single-threaded at least until after this
464 * routine is completed.
465 */
466static void
467witness_initialize(void *dummy __unused)
468{
469	struct lock_object *lock;
470	struct witness_order_list_entry *order;
471	struct witness *w, *w1;
472	int i;
473
474	/*
475	 * We have to release Giant before initializing its witness
476	 * structure so that WITNESS doesn't get confused.
477	 */
478	mtx_unlock(&Giant);
479	mtx_assert(&Giant, MA_NOTOWNED);
480
481	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
482	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
483	    MTX_NOWITNESS);
484	for (i = 0; i < WITNESS_COUNT; i++)
485		witness_free(&w_data[i]);
486	for (i = 0; i < WITNESS_CHILDCOUNT; i++)
487		witness_child_free(&w_childdata[i]);
488	for (i = 0; i < LOCK_CHILDCOUNT; i++)
489		witness_lock_list_free(&w_locklistdata[i]);
490
491	/* First add in all the specified order lists. */
492	for (order = order_lists; order->w_name != NULL; order++) {
493		w = enroll(order->w_name, order->w_class);
494		if (w == NULL)
495			continue;
496		w->w_file = "order list";
497		for (order++; order->w_name != NULL; order++) {
498			w1 = enroll(order->w_name, order->w_class);
499			if (w1 == NULL)
500				continue;
501			w1->w_file = "order list";
502			if (!itismychild(w, w1))
503				panic("Not enough memory for static orders!");
504			w = w1;
505		}
506	}
507	witness_spin_warn = 1;
508
509	/* Iterate through all locks and add them to witness. */
510	while (!STAILQ_EMPTY(&pending_locks)) {
511		lock = STAILQ_FIRST(&pending_locks);
512		STAILQ_REMOVE_HEAD(&pending_locks, lo_list);
513		KASSERT(lock->lo_flags & LO_WITNESS,
514		    ("%s: lock %s is on pending list but not LO_WITNESS",
515		    __func__, lock->lo_name));
516		lock->lo_witness = enroll(lock->lo_type, LOCK_CLASS(lock));
517	}
518
519	/* Mark the witness code as being ready for use. */
520	witness_cold = 0;
521
522	mtx_lock(&Giant);
523}
524SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, NULL)
525
526static int
527sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
528{
529	int error, value;
530
531	value = witness_watch;
532	error = sysctl_handle_int(oidp, &value, 0, req);
533	if (error != 0 || req->newptr == NULL)
534		return (error);
535	error = suser(req->td);
536	if (error != 0)
537		return (error);
538	if (value == witness_watch)
539		return (0);
540	if (value != 0)
541		return (EINVAL);
542	witness_watch = 0;
543	return (0);
544}
545
546void
547witness_init(struct lock_object *lock)
548{
549	struct lock_class *class;
550
551	/* Various sanity checks. */
552	class = LOCK_CLASS(lock);
553	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
554	    (class->lc_flags & LC_RECURSABLE) == 0)
555		panic("%s: lock (%s) %s can not be recursable", __func__,
556		    class->lc_name, lock->lo_name);
557	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
558	    (class->lc_flags & LC_SLEEPABLE) == 0)
559		panic("%s: lock (%s) %s can not be sleepable", __func__,
560		    class->lc_name, lock->lo_name);
561	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
562	    (class->lc_flags & LC_UPGRADABLE) == 0)
563		panic("%s: lock (%s) %s can not be upgradable", __func__,
564		    class->lc_name, lock->lo_name);
565
566	/*
567	 * If we shouldn't watch this lock, then just clear lo_witness.
568	 * Otherwise, if witness_cold is set, then it is too early to
569	 * enroll this lock, so defer it to witness_initialize() by adding
570	 * it to the pending_locks list.  If it is not too early, then enroll
571	 * the lock now.
572	 */
573	if (witness_watch == 0 || panicstr != NULL ||
574	    (lock->lo_flags & LO_WITNESS) == 0)
575		lock->lo_witness = NULL;
576	else if (witness_cold) {
577		STAILQ_INSERT_TAIL(&pending_locks, lock, lo_list);
578		lock->lo_flags |= LO_ENROLLPEND;
579	} else
580		lock->lo_witness = enroll(lock->lo_type, class);
581}
582
583void
584witness_destroy(struct lock_object *lock)
585{
586	struct lock_class *class;
587	struct witness *w;
588
589	class = LOCK_CLASS(lock);
590	if (witness_cold)
591		panic("lock (%s) %s destroyed while witness_cold",
592		    class->lc_name, lock->lo_name);
593
594	/* XXX: need to verify that no one holds the lock */
595	if ((lock->lo_flags & (LO_WITNESS | LO_ENROLLPEND)) == LO_WITNESS &&
596	    lock->lo_witness != NULL) {
597		w = lock->lo_witness;
598		mtx_lock_spin(&w_mtx);
599		MPASS(w->w_refcount > 0);
600		w->w_refcount--;
601
602		/*
603		 * Lock is already released if we have an allocation failure
604		 * and depart() fails.
605		 */
606		if (w->w_refcount != 0 || depart(w))
607			mtx_unlock_spin(&w_mtx);
608	}
609
610	/*
611	 * If this lock is destroyed before witness is up and running,
612	 * remove it from the pending list.
613	 */
614	if (lock->lo_flags & LO_ENROLLPEND) {
615		STAILQ_REMOVE(&pending_locks, lock, lock_object, lo_list);
616		lock->lo_flags &= ~LO_ENROLLPEND;
617	}
618}
619
620#ifdef DDB
621static void
622witness_levelall (void)
623{
624	struct witness_list *list;
625	struct witness *w, *w1;
626
627	/*
628	 * First clear all levels.
629	 */
630	STAILQ_FOREACH(w, &w_all, w_list) {
631		w->w_level = 0;
632	}
633
634	/*
635	 * Look for locks with no parent and level all their descendants.
636	 */
637	STAILQ_FOREACH(w, &w_all, w_list) {
638		/*
639		 * This is just an optimization, technically we could get
640		 * away just walking the all list each time.
641		 */
642		if (w->w_class->lc_flags & LC_SLEEPLOCK)
643			list = &w_sleep;
644		else
645			list = &w_spin;
646		STAILQ_FOREACH(w1, list, w_typelist) {
647			if (isitmychild(w1, w))
648				goto skip;
649		}
650		witness_leveldescendents(w, 0);
651	skip:
652		;	/* silence GCC 3.x */
653	}
654}
655
656static void
657witness_leveldescendents(struct witness *parent, int level)
658{
659	struct witness_child_list_entry *wcl;
660	int i;
661
662	if (parent->w_level < level)
663		parent->w_level = level;
664	level++;
665	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
666		for (i = 0; i < wcl->wcl_count; i++)
667			witness_leveldescendents(wcl->wcl_children[i], level);
668}
669
670static void
671witness_displaydescendants(void(*prnt)(const char *fmt, ...),
672			   struct witness *parent, int indent)
673{
674	struct witness_child_list_entry *wcl;
675	int i, level;
676
677	level = parent->w_level;
678	prnt("%-2d", level);
679	for (i = 0; i < indent; i++)
680		prnt(" ");
681	if (parent->w_refcount > 0)
682		prnt("%s", parent->w_name);
683	else
684		prnt("(dead)");
685	if (parent->w_displayed) {
686		prnt(" -- (already displayed)\n");
687		return;
688	}
689	parent->w_displayed = 1;
690	if (parent->w_refcount > 0) {
691		if (parent->w_file != NULL)
692			prnt(" -- last acquired @ %s:%d", parent->w_file,
693			    parent->w_line);
694	}
695	prnt("\n");
696	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
697		for (i = 0; i < wcl->wcl_count; i++)
698			    witness_displaydescendants(prnt,
699				wcl->wcl_children[i], indent + 1);
700}
701
702static void
703witness_display_list(void(*prnt)(const char *fmt, ...),
704		     struct witness_list *list)
705{
706	struct witness *w;
707
708	STAILQ_FOREACH(w, list, w_typelist) {
709		if (w->w_file == NULL || w->w_level > 0)
710			continue;
711		/*
712		 * This lock has no anscestors, display its descendants.
713		 */
714		witness_displaydescendants(prnt, w, 0);
715	}
716}
717
718static void
719witness_display(void(*prnt)(const char *fmt, ...))
720{
721	struct witness *w;
722
723	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
724	witness_levelall();
725
726	/* Clear all the displayed flags. */
727	STAILQ_FOREACH(w, &w_all, w_list) {
728		w->w_displayed = 0;
729	}
730
731	/*
732	 * First, handle sleep locks which have been acquired at least
733	 * once.
734	 */
735	prnt("Sleep locks:\n");
736	witness_display_list(prnt, &w_sleep);
737
738	/*
739	 * Now do spin locks which have been acquired at least once.
740	 */
741	prnt("\nSpin locks:\n");
742	witness_display_list(prnt, &w_spin);
743
744	/*
745	 * Finally, any locks which have not been acquired yet.
746	 */
747	prnt("\nLocks which were never acquired:\n");
748	STAILQ_FOREACH(w, &w_all, w_list) {
749		if (w->w_file != NULL || w->w_refcount == 0)
750			continue;
751		prnt("%s\n", w->w_name);
752	}
753}
754#endif /* DDB */
755
756/* Trim useless garbage from filenames. */
757static const char *
758fixup_filename(const char *file)
759{
760
761	if (file == NULL)
762		return (NULL);
763	while (strncmp(file, "../", 3) == 0)
764		file += 3;
765	return (file);
766}
767
768int
769witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
770{
771
772	if (witness_watch == 0 || panicstr != NULL)
773		return (0);
774
775	/* Require locks that witness knows about. */
776	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
777	    lock2->lo_witness == NULL)
778		return (EINVAL);
779
780	MPASS(!mtx_owned(&w_mtx));
781	mtx_lock_spin(&w_mtx);
782
783	/*
784	 * If we already have either an explicit or implied lock order that
785	 * is the other way around, then return an error.
786	 */
787	if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
788		mtx_unlock_spin(&w_mtx);
789		return (EDOOFUS);
790	}
791
792	/* Try to add the new order. */
793	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
794	    lock2->lo_type, lock1->lo_type);
795	if (!itismychild(lock1->lo_witness, lock2->lo_witness))
796		return (ENOMEM);
797	mtx_unlock_spin(&w_mtx);
798	return (0);
799}
800
801void
802witness_checkorder(struct lock_object *lock, int flags, const char *file,
803    int line)
804{
805	struct lock_list_entry **lock_list, *lle;
806	struct lock_instance *lock1, *lock2;
807	struct lock_class *class;
808	struct witness *w, *w1;
809	struct thread *td;
810	int i, j;
811
812	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
813	    panicstr != NULL)
814		return;
815
816	/*
817	 * Try locks do not block if they fail to acquire the lock, thus
818	 * there is no danger of deadlocks or of switching while holding a
819	 * spin lock if we acquire a lock via a try operation.  This
820	 * function shouldn't even be called for try locks, so panic if
821	 * that happens.
822	 */
823	if (flags & LOP_TRYLOCK)
824		panic("%s should not be called for try lock operations",
825		    __func__);
826
827	w = lock->lo_witness;
828	class = LOCK_CLASS(lock);
829	td = curthread;
830	file = fixup_filename(file);
831
832	if (class->lc_flags & LC_SLEEPLOCK) {
833		/*
834		 * Since spin locks include a critical section, this check
835		 * implicitly enforces a lock order of all sleep locks before
836		 * all spin locks.
837		 */
838		if (td->td_critnest != 0 && !kdb_active)
839			panic("blockable sleep lock (%s) %s @ %s:%d",
840			    class->lc_name, lock->lo_name, file, line);
841
842		/*
843		 * If this is the first lock acquired then just return as
844		 * no order checking is needed.
845		 */
846		if (td->td_sleeplocks == NULL)
847			return;
848		lock_list = &td->td_sleeplocks;
849	} else {
850		/*
851		 * If this is the first lock, just return as no order
852		 * checking is needed.  We check this in both if clauses
853		 * here as unifying the check would require us to use a
854		 * critical section to ensure we don't migrate while doing
855		 * the check.  Note that if this is not the first lock, we
856		 * are already in a critical section and are safe for the
857		 * rest of the check.
858		 */
859		if (PCPU_GET(spinlocks) == NULL)
860			return;
861		lock_list = PCPU_PTR(spinlocks);
862	}
863
864	/*
865	 * Check to see if we are recursing on a lock we already own.  If
866	 * so, make sure that we don't mismatch exclusive and shared lock
867	 * acquires.
868	 */
869	lock1 = find_instance(*lock_list, lock);
870	if (lock1 != NULL) {
871		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
872		    (flags & LOP_EXCLUSIVE) == 0) {
873			printf("shared lock of (%s) %s @ %s:%d\n",
874			    class->lc_name, lock->lo_name, file, line);
875			printf("while exclusively locked from %s:%d\n",
876			    lock1->li_file, lock1->li_line);
877			panic("share->excl");
878		}
879		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
880		    (flags & LOP_EXCLUSIVE) != 0) {
881			printf("exclusive lock of (%s) %s @ %s:%d\n",
882			    class->lc_name, lock->lo_name, file, line);
883			printf("while share locked from %s:%d\n",
884			    lock1->li_file, lock1->li_line);
885			panic("excl->share");
886		}
887		return;
888	}
889
890	/*
891	 * Try locks do not block if they fail to acquire the lock, thus
892	 * there is no danger of deadlocks or of switching while holding a
893	 * spin lock if we acquire a lock via a try operation.
894	 */
895	if (flags & LOP_TRYLOCK)
896		return;
897
898	/*
899	 * Check for duplicate locks of the same type.  Note that we only
900	 * have to check for this on the last lock we just acquired.  Any
901	 * other cases will be caught as lock order violations.
902	 */
903	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
904	w1 = lock1->li_lock->lo_witness;
905	if (w1 == w) {
906		if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK) ||
907		    (flags & LOP_DUPOK))
908			return;
909		w->w_same_squawked = 1;
910		printf("acquiring duplicate lock of same type: \"%s\"\n",
911			lock->lo_type);
912		printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
913		    lock1->li_file, lock1->li_line);
914		printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
915#ifdef KDB
916		goto debugger;
917#else
918		return;
919#endif
920	}
921	MPASS(!mtx_owned(&w_mtx));
922	mtx_lock_spin(&w_mtx);
923	/*
924	 * If we know that the the lock we are acquiring comes after
925	 * the lock we most recently acquired in the lock order tree,
926	 * then there is no need for any further checks.
927	 */
928	if (isitmychild(w1, w)) {
929		mtx_unlock_spin(&w_mtx);
930		return;
931	}
932	for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
933		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
934
935			MPASS(j < WITNESS_COUNT);
936			lock1 = &lle->ll_children[i];
937			w1 = lock1->li_lock->lo_witness;
938
939			/*
940			 * If this lock doesn't undergo witness checking,
941			 * then skip it.
942			 */
943			if (w1 == NULL) {
944				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
945				    ("lock missing witness structure"));
946				continue;
947			}
948			/*
949			 * If we are locking Giant and this is a sleepable
950			 * lock, then skip it.
951			 */
952			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
953			    lock == &Giant.mtx_object)
954				continue;
955			/*
956			 * If we are locking a sleepable lock and this lock
957			 * is Giant, then skip it.
958			 */
959			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
960			    lock1->li_lock == &Giant.mtx_object)
961				continue;
962			/*
963			 * If we are locking a sleepable lock and this lock
964			 * isn't sleepable, we want to treat it as a lock
965			 * order violation to enfore a general lock order of
966			 * sleepable locks before non-sleepable locks.
967			 */
968			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
969			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
970				goto reversal;
971			/*
972			 * If we are locking Giant and this is a non-sleepable
973			 * lock, then treat it as a reversal.
974			 */
975			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
976			    lock == &Giant.mtx_object)
977				goto reversal;
978			/*
979			 * Check the lock order hierarchy for a reveresal.
980			 */
981			if (!isitmydescendant(w, w1))
982				continue;
983		reversal:
984			/*
985			 * We have a lock order violation, check to see if it
986			 * is allowed or has already been yelled about.
987			 */
988			mtx_unlock_spin(&w_mtx);
989#ifdef BLESSING
990			/*
991			 * If the lock order is blessed, just bail.  We don't
992			 * look for other lock order violations though, which
993			 * may be a bug.
994			 */
995			if (blessed(w, w1))
996				return;
997#endif
998			if (lock1->li_lock == &Giant.mtx_object) {
999				if (w1->w_Giant_squawked)
1000					return;
1001				else
1002					w1->w_Giant_squawked = 1;
1003			} else {
1004				if (w1->w_other_squawked)
1005					return;
1006				else
1007					w1->w_other_squawked = 1;
1008			}
1009			/*
1010			 * Ok, yell about it.
1011			 */
1012			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1013			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1014				printf(
1015		"lock order reversal: (sleepable after non-sleepable)\n");
1016			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1017			    && lock == &Giant.mtx_object)
1018				printf(
1019		"lock order reversal: (Giant after non-sleepable)\n");
1020			else
1021				printf("lock order reversal:\n");
1022			/*
1023			 * Try to locate an earlier lock with
1024			 * witness w in our list.
1025			 */
1026			do {
1027				lock2 = &lle->ll_children[i];
1028				MPASS(lock2->li_lock != NULL);
1029				if (lock2->li_lock->lo_witness == w)
1030					break;
1031				if (i == 0 && lle->ll_next != NULL) {
1032					lle = lle->ll_next;
1033					i = lle->ll_count - 1;
1034					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1035				} else
1036					i--;
1037			} while (i >= 0);
1038			if (i < 0) {
1039				printf(" 1st %p %s (%s) @ %s:%d\n",
1040				    lock1->li_lock, lock1->li_lock->lo_name,
1041				    lock1->li_lock->lo_type, lock1->li_file,
1042				    lock1->li_line);
1043				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1044				    lock->lo_name, lock->lo_type, file, line);
1045			} else {
1046				printf(" 1st %p %s (%s) @ %s:%d\n",
1047				    lock2->li_lock, lock2->li_lock->lo_name,
1048				    lock2->li_lock->lo_type, lock2->li_file,
1049				    lock2->li_line);
1050				printf(" 2nd %p %s (%s) @ %s:%d\n",
1051				    lock1->li_lock, lock1->li_lock->lo_name,
1052				    lock1->li_lock->lo_type, lock1->li_file,
1053				    lock1->li_line);
1054				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1055				    lock->lo_name, lock->lo_type, file, line);
1056			}
1057#ifdef KDB
1058			goto debugger;
1059#else
1060			return;
1061#endif
1062		}
1063	}
1064	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
1065	/*
1066	 * If requested, build a new lock order.  However, don't build a new
1067	 * relationship between a sleepable lock and Giant if it is in the
1068	 * wrong direction.  The correct lock order is that sleepable locks
1069	 * always come before Giant.
1070	 */
1071	if (flags & LOP_NEWORDER &&
1072	    !(lock1->li_lock == &Giant.mtx_object &&
1073	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1074		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1075		    lock->lo_type, lock1->li_lock->lo_type);
1076		if (!itismychild(lock1->li_lock->lo_witness, w))
1077			/* Witness is dead. */
1078			return;
1079	}
1080	mtx_unlock_spin(&w_mtx);
1081	return;
1082
1083#ifdef KDB
1084debugger:
1085	if (witness_trace)
1086		kdb_backtrace();
1087	if (witness_kdb)
1088		kdb_enter(__func__);
1089#endif
1090}
1091
1092void
1093witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1094{
1095	struct lock_list_entry **lock_list, *lle;
1096	struct lock_instance *instance;
1097	struct witness *w;
1098	struct thread *td;
1099
1100	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1101	    panicstr != NULL)
1102		return;
1103	w = lock->lo_witness;
1104	td = curthread;
1105	file = fixup_filename(file);
1106
1107	/* Determine lock list for this lock. */
1108	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1109		lock_list = &td->td_sleeplocks;
1110	else
1111		lock_list = PCPU_PTR(spinlocks);
1112
1113	/* Check to see if we are recursing on a lock we already own. */
1114	instance = find_instance(*lock_list, lock);
1115	if (instance != NULL) {
1116		instance->li_flags++;
1117		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1118		    td->td_proc->p_pid, lock->lo_name,
1119		    instance->li_flags & LI_RECURSEMASK);
1120		instance->li_file = file;
1121		instance->li_line = line;
1122		return;
1123	}
1124
1125	/* Update per-witness last file and line acquire. */
1126	w->w_file = file;
1127	w->w_line = line;
1128
1129	/* Find the next open lock instance in the list and fill it. */
1130	lle = *lock_list;
1131	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1132		lle = witness_lock_list_get();
1133		if (lle == NULL)
1134			return;
1135		lle->ll_next = *lock_list;
1136		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1137		    td->td_proc->p_pid, lle);
1138		*lock_list = lle;
1139	}
1140	instance = &lle->ll_children[lle->ll_count++];
1141	instance->li_lock = lock;
1142	instance->li_line = line;
1143	instance->li_file = file;
1144	if ((flags & LOP_EXCLUSIVE) != 0)
1145		instance->li_flags = LI_EXCLUSIVE;
1146	else
1147		instance->li_flags = 0;
1148	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1149	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1150}
1151
1152void
1153witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1154{
1155	struct lock_instance *instance;
1156	struct lock_class *class;
1157
1158	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1159	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1160		return;
1161	class = LOCK_CLASS(lock);
1162	file = fixup_filename(file);
1163	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1164		panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1165		    class->lc_name, lock->lo_name, file, line);
1166	if ((flags & LOP_TRYLOCK) == 0)
1167		panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1168		    lock->lo_name, file, line);
1169	if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1170		panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1171		    class->lc_name, lock->lo_name, file, line);
1172	instance = find_instance(curthread->td_sleeplocks, lock);
1173	if (instance == NULL)
1174		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1175		    class->lc_name, lock->lo_name, file, line);
1176	if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1177		panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1178		    class->lc_name, lock->lo_name, file, line);
1179	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1180		panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1181		    class->lc_name, lock->lo_name,
1182		    instance->li_flags & LI_RECURSEMASK, file, line);
1183	instance->li_flags |= LI_EXCLUSIVE;
1184}
1185
1186void
1187witness_downgrade(struct lock_object *lock, int flags, const char *file,
1188    int line)
1189{
1190	struct lock_instance *instance;
1191	struct lock_class *class;
1192
1193	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1194	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1195		return;
1196	class = LOCK_CLASS(lock);
1197	file = fixup_filename(file);
1198	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1199		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1200		    class->lc_name, lock->lo_name, file, line);
1201	if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1202		panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1203		    class->lc_name, lock->lo_name, file, line);
1204	instance = find_instance(curthread->td_sleeplocks, lock);
1205	if (instance == NULL)
1206		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1207		    class->lc_name, lock->lo_name, file, line);
1208	if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1209		panic("downgrade of shared lock (%s) %s @ %s:%d",
1210		    class->lc_name, lock->lo_name, file, line);
1211	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1212		panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1213		    class->lc_name, lock->lo_name,
1214		    instance->li_flags & LI_RECURSEMASK, file, line);
1215	instance->li_flags &= ~LI_EXCLUSIVE;
1216}
1217
1218void
1219witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1220{
1221	struct lock_list_entry **lock_list, *lle;
1222	struct lock_instance *instance;
1223	struct lock_class *class;
1224	struct thread *td;
1225	register_t s;
1226	int i, j;
1227
1228	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1229	    panicstr != NULL)
1230		return;
1231	td = curthread;
1232	class = LOCK_CLASS(lock);
1233	file = fixup_filename(file);
1234
1235	/* Find lock instance associated with this lock. */
1236	if (class->lc_flags & LC_SLEEPLOCK)
1237		lock_list = &td->td_sleeplocks;
1238	else
1239		lock_list = PCPU_PTR(spinlocks);
1240	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1241		for (i = 0; i < (*lock_list)->ll_count; i++) {
1242			instance = &(*lock_list)->ll_children[i];
1243			if (instance->li_lock == lock)
1244				goto found;
1245		}
1246	panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1247	    file, line);
1248found:
1249
1250	/* First, check for shared/exclusive mismatches. */
1251	if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1252	    (flags & LOP_EXCLUSIVE) == 0) {
1253		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1254		    lock->lo_name, file, line);
1255		printf("while exclusively locked from %s:%d\n",
1256		    instance->li_file, instance->li_line);
1257		panic("excl->ushare");
1258	}
1259	if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1260	    (flags & LOP_EXCLUSIVE) != 0) {
1261		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1262		    lock->lo_name, file, line);
1263		printf("while share locked from %s:%d\n", instance->li_file,
1264		    instance->li_line);
1265		panic("share->uexcl");
1266	}
1267
1268	/* If we are recursed, unrecurse. */
1269	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1270		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1271		    td->td_proc->p_pid, instance->li_lock->lo_name,
1272		    instance->li_flags);
1273		instance->li_flags--;
1274		return;
1275	}
1276
1277	/* Otherwise, remove this item from the list. */
1278	s = intr_disable();
1279	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1280	    td->td_proc->p_pid, instance->li_lock->lo_name,
1281	    (*lock_list)->ll_count - 1);
1282	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1283		(*lock_list)->ll_children[j] =
1284		    (*lock_list)->ll_children[j + 1];
1285	(*lock_list)->ll_count--;
1286	intr_restore(s);
1287
1288	/* If this lock list entry is now empty, free it. */
1289	if ((*lock_list)->ll_count == 0) {
1290		lle = *lock_list;
1291		*lock_list = lle->ll_next;
1292		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1293		    td->td_proc->p_pid, lle);
1294		witness_lock_list_free(lle);
1295	}
1296}
1297
1298/*
1299 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1300 * exempt Giant and sleepable locks from the checks as well.  If any
1301 * non-exempt locks are held, then a supplied message is printed to the
1302 * console along with a list of the offending locks.  If indicated in the
1303 * flags then a failure results in a panic as well.
1304 */
1305int
1306witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1307{
1308	struct lock_list_entry *lle;
1309	struct lock_instance *lock1;
1310	struct thread *td;
1311	va_list ap;
1312	int i, n;
1313
1314	if (witness_cold || witness_watch == 0 || panicstr != NULL)
1315		return (0);
1316	n = 0;
1317	td = curthread;
1318	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1319		for (i = lle->ll_count - 1; i >= 0; i--) {
1320			lock1 = &lle->ll_children[i];
1321			if (lock1->li_lock == lock)
1322				continue;
1323			if (flags & WARN_GIANTOK &&
1324			    lock1->li_lock == &Giant.mtx_object)
1325				continue;
1326			if (flags & WARN_SLEEPOK &&
1327			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1328				continue;
1329			if (n == 0) {
1330				va_start(ap, fmt);
1331				vprintf(fmt, ap);
1332				va_end(ap);
1333				printf(" with the following");
1334				if (flags & WARN_SLEEPOK)
1335					printf(" non-sleepable");
1336				printf(" locks held:\n");
1337			}
1338			n++;
1339			witness_list_lock(lock1);
1340		}
1341	if (PCPU_GET(spinlocks) != NULL) {
1342		/*
1343		 * Since we already hold a spinlock preemption is
1344		 * already blocked.
1345		 */
1346		if (n == 0) {
1347			va_start(ap, fmt);
1348			vprintf(fmt, ap);
1349			va_end(ap);
1350			printf(" with the following");
1351			if (flags & WARN_SLEEPOK)
1352				printf(" non-sleepable");
1353			printf(" locks held:\n");
1354		}
1355		n += witness_list_locks(PCPU_PTR(spinlocks));
1356	}
1357	if (flags & WARN_PANIC && n)
1358		panic("witness_warn");
1359#ifdef KDB
1360	else if (witness_kdb && n)
1361		kdb_enter(__func__);
1362	else if (witness_trace && n)
1363		kdb_backtrace();
1364#endif
1365	return (n);
1366}
1367
1368const char *
1369witness_file(struct lock_object *lock)
1370{
1371	struct witness *w;
1372
1373	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1374		return ("?");
1375	w = lock->lo_witness;
1376	return (w->w_file);
1377}
1378
1379int
1380witness_line(struct lock_object *lock)
1381{
1382	struct witness *w;
1383
1384	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1385		return (0);
1386	w = lock->lo_witness;
1387	return (w->w_line);
1388}
1389
1390static struct witness *
1391enroll(const char *description, struct lock_class *lock_class)
1392{
1393	struct witness *w;
1394
1395	if (witness_watch == 0 || panicstr != NULL)
1396		return (NULL);
1397	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1398		return (NULL);
1399	mtx_lock_spin(&w_mtx);
1400	STAILQ_FOREACH(w, &w_all, w_list) {
1401		if (w->w_name == description || (w->w_refcount > 0 &&
1402		    strcmp(description, w->w_name) == 0)) {
1403			w->w_refcount++;
1404			mtx_unlock_spin(&w_mtx);
1405			if (lock_class != w->w_class)
1406				panic(
1407				"lock (%s) %s does not match earlier (%s) lock",
1408				    description, lock_class->lc_name,
1409				    w->w_class->lc_name);
1410			return (w);
1411		}
1412	}
1413	if ((w = witness_get()) == NULL)
1414		goto out;
1415	w->w_name = description;
1416	w->w_class = lock_class;
1417	w->w_refcount = 1;
1418	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1419	if (lock_class->lc_flags & LC_SPINLOCK) {
1420		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1421		w_spin_cnt++;
1422	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1423		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1424		w_sleep_cnt++;
1425	} else {
1426		mtx_unlock_spin(&w_mtx);
1427		panic("lock class %s is not sleep or spin",
1428		    lock_class->lc_name);
1429	}
1430	mtx_unlock_spin(&w_mtx);
1431out:
1432	/*
1433	 * We issue a warning for any spin locks not defined in the static
1434	 * order list as a way to discourage their use (folks should really
1435	 * be using non-spin mutexes most of the time).  However, several
1436	 * 3rd part device drivers use spin locks because that is all they
1437	 * have available on Windows and Linux and they think that normal
1438	 * mutexes are insufficient.
1439	 */
1440	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_spin_warn)
1441		printf("WITNESS: spin lock %s not in order list\n",
1442		    description);
1443	return (w);
1444}
1445
1446/* Don't let the door bang you on the way out... */
1447static int
1448depart(struct witness *w)
1449{
1450	struct witness_child_list_entry *wcl, *nwcl;
1451	struct witness_list *list;
1452	struct witness *parent;
1453
1454	MPASS(w->w_refcount == 0);
1455	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1456		list = &w_sleep;
1457		w_sleep_cnt--;
1458	} else {
1459		list = &w_spin;
1460		w_spin_cnt--;
1461	}
1462	/*
1463	 * First, we run through the entire tree looking for any
1464	 * witnesses that the outgoing witness is a child of.  For
1465	 * each parent that we find, we reparent all the direct
1466	 * children of the outgoing witness to its parent.
1467	 */
1468	STAILQ_FOREACH(parent, list, w_typelist) {
1469		if (!isitmychild(parent, w))
1470			continue;
1471		removechild(parent, w);
1472	}
1473
1474	/*
1475	 * Now we go through and free up the child list of the
1476	 * outgoing witness.
1477	 */
1478	for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1479		nwcl = wcl->wcl_next;
1480        	w_child_cnt--;
1481		witness_child_free(wcl);
1482	}
1483
1484	/*
1485	 * Detach from various lists and free.
1486	 */
1487	STAILQ_REMOVE(list, w, witness, w_typelist);
1488	STAILQ_REMOVE(&w_all, w, witness, w_list);
1489	witness_free(w);
1490
1491	return (1);
1492}
1493
1494/*
1495 * Add "child" as a direct child of "parent".  Returns false if
1496 * we fail due to out of memory.
1497 */
1498static int
1499insertchild(struct witness *parent, struct witness *child)
1500{
1501	struct witness_child_list_entry **wcl;
1502
1503	MPASS(child != NULL && parent != NULL);
1504
1505	/*
1506	 * Insert "child" after "parent"
1507	 */
1508	wcl = &parent->w_children;
1509	while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1510		wcl = &(*wcl)->wcl_next;
1511	if (*wcl == NULL) {
1512		*wcl = witness_child_get();
1513		if (*wcl == NULL)
1514			return (0);
1515        	w_child_cnt++;
1516	}
1517	(*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1518
1519	return (1);
1520}
1521
1522
1523static int
1524itismychild(struct witness *parent, struct witness *child)
1525{
1526	struct witness_list *list;
1527
1528	MPASS(child != NULL && parent != NULL);
1529	if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1530	    (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1531		panic(
1532		"%s: parent (%s) and child (%s) are not the same lock type",
1533		    __func__, parent->w_class->lc_name,
1534		    child->w_class->lc_name);
1535
1536	if (!insertchild(parent, child))
1537		return (0);
1538
1539	if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1540		list = &w_sleep;
1541	else
1542		list = &w_spin;
1543	return (1);
1544}
1545
1546static void
1547removechild(struct witness *parent, struct witness *child)
1548{
1549	struct witness_child_list_entry **wcl, *wcl1;
1550	int i;
1551
1552	for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1553		for (i = 0; i < (*wcl)->wcl_count; i++)
1554			if ((*wcl)->wcl_children[i] == child)
1555				goto found;
1556	return;
1557found:
1558	(*wcl)->wcl_count--;
1559	if ((*wcl)->wcl_count > i)
1560		(*wcl)->wcl_children[i] =
1561		    (*wcl)->wcl_children[(*wcl)->wcl_count];
1562	MPASS((*wcl)->wcl_children[i] != NULL);
1563	if ((*wcl)->wcl_count != 0)
1564		return;
1565	wcl1 = *wcl;
1566	*wcl = wcl1->wcl_next;
1567	w_child_cnt--;
1568	witness_child_free(wcl1);
1569}
1570
1571static int
1572isitmychild(struct witness *parent, struct witness *child)
1573{
1574	struct witness_child_list_entry *wcl;
1575	int i;
1576
1577	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1578		for (i = 0; i < wcl->wcl_count; i++) {
1579			if (wcl->wcl_children[i] == child)
1580				return (1);
1581		}
1582	}
1583	return (0);
1584}
1585
1586static int
1587isitmydescendant(struct witness *parent, struct witness *child)
1588{
1589	struct witness_child_list_entry *wcl;
1590	int i, j;
1591
1592	if (isitmychild(parent, child))
1593		return (1);
1594	j = 0;
1595	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1596		MPASS(j < 1000);
1597		for (i = 0; i < wcl->wcl_count; i++) {
1598			if (isitmydescendant(wcl->wcl_children[i], child))
1599				return (1);
1600		}
1601		j++;
1602	}
1603	return (0);
1604}
1605
1606#ifdef BLESSING
1607static int
1608blessed(struct witness *w1, struct witness *w2)
1609{
1610	int i;
1611	struct witness_blessed *b;
1612
1613	for (i = 0; i < blessed_count; i++) {
1614		b = &blessed_list[i];
1615		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1616			if (strcmp(w2->w_name, b->b_lock2) == 0)
1617				return (1);
1618			continue;
1619		}
1620		if (strcmp(w1->w_name, b->b_lock2) == 0)
1621			if (strcmp(w2->w_name, b->b_lock1) == 0)
1622				return (1);
1623	}
1624	return (0);
1625}
1626#endif
1627
1628static struct witness *
1629witness_get(void)
1630{
1631	struct witness *w;
1632
1633	if (witness_watch == 0) {
1634		mtx_unlock_spin(&w_mtx);
1635		return (NULL);
1636	}
1637	if (STAILQ_EMPTY(&w_free)) {
1638		witness_watch = 0;
1639		mtx_unlock_spin(&w_mtx);
1640		printf("%s: witness exhausted\n", __func__);
1641		return (NULL);
1642	}
1643	w = STAILQ_FIRST(&w_free);
1644	STAILQ_REMOVE_HEAD(&w_free, w_list);
1645	w_free_cnt--;
1646	bzero(w, sizeof(*w));
1647	return (w);
1648}
1649
1650static void
1651witness_free(struct witness *w)
1652{
1653
1654	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1655	w_free_cnt++;
1656}
1657
1658static struct witness_child_list_entry *
1659witness_child_get(void)
1660{
1661	struct witness_child_list_entry *wcl;
1662
1663	if (witness_watch == 0) {
1664		mtx_unlock_spin(&w_mtx);
1665		return (NULL);
1666	}
1667	wcl = w_child_free;
1668	if (wcl == NULL) {
1669		witness_watch = 0;
1670		mtx_unlock_spin(&w_mtx);
1671		printf("%s: witness exhausted\n", __func__);
1672		return (NULL);
1673	}
1674	w_child_free = wcl->wcl_next;
1675	w_child_free_cnt--;
1676	bzero(wcl, sizeof(*wcl));
1677	return (wcl);
1678}
1679
1680static void
1681witness_child_free(struct witness_child_list_entry *wcl)
1682{
1683
1684	wcl->wcl_next = w_child_free;
1685	w_child_free = wcl;
1686	w_child_free_cnt++;
1687}
1688
1689static struct lock_list_entry *
1690witness_lock_list_get(void)
1691{
1692	struct lock_list_entry *lle;
1693
1694	if (witness_watch == 0)
1695		return (NULL);
1696	mtx_lock_spin(&w_mtx);
1697	lle = w_lock_list_free;
1698	if (lle == NULL) {
1699		witness_watch = 0;
1700		mtx_unlock_spin(&w_mtx);
1701		printf("%s: witness exhausted\n", __func__);
1702		return (NULL);
1703	}
1704	w_lock_list_free = lle->ll_next;
1705	mtx_unlock_spin(&w_mtx);
1706	bzero(lle, sizeof(*lle));
1707	return (lle);
1708}
1709
1710static void
1711witness_lock_list_free(struct lock_list_entry *lle)
1712{
1713
1714	mtx_lock_spin(&w_mtx);
1715	lle->ll_next = w_lock_list_free;
1716	w_lock_list_free = lle;
1717	mtx_unlock_spin(&w_mtx);
1718}
1719
1720static struct lock_instance *
1721find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1722{
1723	struct lock_list_entry *lle;
1724	struct lock_instance *instance;
1725	int i;
1726
1727	for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1728		for (i = lle->ll_count - 1; i >= 0; i--) {
1729			instance = &lle->ll_children[i];
1730			if (instance->li_lock == lock)
1731				return (instance);
1732		}
1733	return (NULL);
1734}
1735
1736static void
1737witness_list_lock(struct lock_instance *instance)
1738{
1739	struct lock_object *lock;
1740
1741	lock = instance->li_lock;
1742	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1743	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
1744	if (lock->lo_type != lock->lo_name)
1745		printf(" (%s)", lock->lo_type);
1746	printf(" r = %d (%p) locked @ %s:%d\n",
1747	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1748	    instance->li_line);
1749}
1750
1751#ifdef DDB
1752static int
1753witness_thread_has_locks(struct thread *td)
1754{
1755
1756	return (td->td_sleeplocks != NULL);
1757}
1758
1759static int
1760witness_proc_has_locks(struct proc *p)
1761{
1762	struct thread *td;
1763
1764	FOREACH_THREAD_IN_PROC(p, td) {
1765		if (witness_thread_has_locks(td))
1766			return (1);
1767	}
1768	return (0);
1769}
1770#endif
1771
1772int
1773witness_list_locks(struct lock_list_entry **lock_list)
1774{
1775	struct lock_list_entry *lle;
1776	int i, nheld;
1777
1778	nheld = 0;
1779	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1780		for (i = lle->ll_count - 1; i >= 0; i--) {
1781			witness_list_lock(&lle->ll_children[i]);
1782			nheld++;
1783		}
1784	return (nheld);
1785}
1786
1787/*
1788 * This is a bit risky at best.  We call this function when we have timed
1789 * out acquiring a spin lock, and we assume that the other CPU is stuck
1790 * with this lock held.  So, we go groveling around in the other CPU's
1791 * per-cpu data to try to find the lock instance for this spin lock to
1792 * see when it was last acquired.
1793 */
1794void
1795witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1796{
1797	struct lock_instance *instance;
1798	struct pcpu *pc;
1799
1800	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1801		return;
1802	pc = pcpu_find(owner->td_oncpu);
1803	instance = find_instance(pc->pc_spinlocks, lock);
1804	if (instance != NULL)
1805		witness_list_lock(instance);
1806}
1807
1808void
1809witness_save(struct lock_object *lock, const char **filep, int *linep)
1810{
1811	struct lock_list_entry *lock_list;
1812	struct lock_instance *instance;
1813	struct lock_class *class;
1814
1815	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1816	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1817		return;
1818	class = LOCK_CLASS(lock);
1819	if (class->lc_flags & LC_SLEEPLOCK)
1820		lock_list = curthread->td_sleeplocks;
1821	else {
1822		if (witness_skipspin)
1823			return;
1824		lock_list = PCPU_GET(spinlocks);
1825	}
1826	instance = find_instance(lock_list, lock);
1827	if (instance == NULL)
1828		panic("%s: lock (%s) %s not locked", __func__,
1829		    class->lc_name, lock->lo_name);
1830	*filep = instance->li_file;
1831	*linep = instance->li_line;
1832}
1833
1834void
1835witness_restore(struct lock_object *lock, const char *file, int line)
1836{
1837	struct lock_list_entry *lock_list;
1838	struct lock_instance *instance;
1839	struct lock_class *class;
1840
1841	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1842	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1843		return;
1844	class = LOCK_CLASS(lock);
1845	if (class->lc_flags & LC_SLEEPLOCK)
1846		lock_list = curthread->td_sleeplocks;
1847	else {
1848		if (witness_skipspin)
1849			return;
1850		lock_list = PCPU_GET(spinlocks);
1851	}
1852	instance = find_instance(lock_list, lock);
1853	if (instance == NULL)
1854		panic("%s: lock (%s) %s not locked", __func__,
1855		    class->lc_name, lock->lo_name);
1856	lock->lo_witness->w_file = file;
1857	lock->lo_witness->w_line = line;
1858	instance->li_file = file;
1859	instance->li_line = line;
1860}
1861
1862void
1863witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1864{
1865#ifdef INVARIANT_SUPPORT
1866	struct lock_instance *instance;
1867	struct lock_class *class;
1868
1869	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1870		return;
1871	class = LOCK_CLASS(lock);
1872	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
1873		instance = find_instance(curthread->td_sleeplocks, lock);
1874	else if ((class->lc_flags & LC_SPINLOCK) != 0)
1875		instance = find_instance(PCPU_GET(spinlocks), lock);
1876	else {
1877		panic("Lock (%s) %s is not sleep or spin!",
1878		    class->lc_name, lock->lo_name);
1879	}
1880	file = fixup_filename(file);
1881	switch (flags) {
1882	case LA_UNLOCKED:
1883		if (instance != NULL)
1884			panic("Lock (%s) %s locked @ %s:%d.",
1885			    class->lc_name, lock->lo_name, file, line);
1886		break;
1887	case LA_LOCKED:
1888	case LA_LOCKED | LA_RECURSED:
1889	case LA_LOCKED | LA_NOTRECURSED:
1890	case LA_SLOCKED:
1891	case LA_SLOCKED | LA_RECURSED:
1892	case LA_SLOCKED | LA_NOTRECURSED:
1893	case LA_XLOCKED:
1894	case LA_XLOCKED | LA_RECURSED:
1895	case LA_XLOCKED | LA_NOTRECURSED:
1896		if (instance == NULL) {
1897			panic("Lock (%s) %s not locked @ %s:%d.",
1898			    class->lc_name, lock->lo_name, file, line);
1899			break;
1900		}
1901		if ((flags & LA_XLOCKED) != 0 &&
1902		    (instance->li_flags & LI_EXCLUSIVE) == 0)
1903			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1904			    class->lc_name, lock->lo_name, file, line);
1905		if ((flags & LA_SLOCKED) != 0 &&
1906		    (instance->li_flags & LI_EXCLUSIVE) != 0)
1907			panic("Lock (%s) %s exclusively locked @ %s:%d.",
1908			    class->lc_name, lock->lo_name, file, line);
1909		if ((flags & LA_RECURSED) != 0 &&
1910		    (instance->li_flags & LI_RECURSEMASK) == 0)
1911			panic("Lock (%s) %s not recursed @ %s:%d.",
1912			    class->lc_name, lock->lo_name, file, line);
1913		if ((flags & LA_NOTRECURSED) != 0 &&
1914		    (instance->li_flags & LI_RECURSEMASK) != 0)
1915			panic("Lock (%s) %s recursed @ %s:%d.",
1916			    class->lc_name, lock->lo_name, file, line);
1917		break;
1918	default:
1919		panic("Invalid lock assertion at %s:%d.", file, line);
1920
1921	}
1922#endif	/* INVARIANT_SUPPORT */
1923}
1924
1925#ifdef DDB
1926static void
1927witness_list(struct thread *td)
1928{
1929
1930	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1931	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1932
1933	if (witness_watch == 0)
1934		return;
1935
1936	witness_list_locks(&td->td_sleeplocks);
1937
1938	/*
1939	 * We only handle spinlocks if td == curthread.  This is somewhat broken
1940	 * if td is currently executing on some other CPU and holds spin locks
1941	 * as we won't display those locks.  If we had a MI way of getting
1942	 * the per-cpu data for a given cpu then we could use
1943	 * td->td_oncpu to get the list of spinlocks for this thread
1944	 * and "fix" this.
1945	 *
1946	 * That still wouldn't really fix this unless we locked sched_lock
1947	 * or stopped the other CPU to make sure it wasn't changing the list
1948	 * out from under us.  It is probably best to just not try to handle
1949	 * threads on other CPU's for now.
1950	 */
1951	if (td == curthread && PCPU_GET(spinlocks) != NULL)
1952		witness_list_locks(PCPU_PTR(spinlocks));
1953}
1954
1955DB_SHOW_COMMAND(locks, db_witness_list)
1956{
1957	struct thread *td;
1958
1959	if (have_addr)
1960		td = db_lookup_thread(addr, TRUE);
1961	else
1962		td = kdb_thread;
1963	witness_list(td);
1964}
1965
1966DB_SHOW_COMMAND(alllocks, db_witness_list_all)
1967{
1968	struct thread *td;
1969	struct proc *p;
1970
1971	/*
1972	 * It would be nice to list only threads and processes that actually
1973	 * held sleep locks, but that information is currently not exported
1974	 * by WITNESS.
1975	 */
1976	FOREACH_PROC_IN_SYSTEM(p) {
1977		if (!witness_proc_has_locks(p))
1978			continue;
1979		FOREACH_THREAD_IN_PROC(p, td) {
1980			if (!witness_thread_has_locks(td))
1981				continue;
1982			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
1983			    p->p_comm, td, td->td_tid);
1984			witness_list(td);
1985		}
1986	}
1987}
1988
1989DB_SHOW_COMMAND(witness, db_witness_display)
1990{
1991
1992	witness_display(db_printf);
1993}
1994#endif
1995