kern_timeout.c revision 31393
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
39 * $Id: kern_clock.c,v 1.44 1997/11/18 12:24:22 bde Exp $
40 */
41
42/* Portions of this software are covered by the following: */
43/******************************************************************************
44 *                                                                            *
45 * Copyright (c) David L. Mills 1993, 1994                                    *
46 *                                                                            *
47 * Permission to use, copy, modify, and distribute this software and its      *
48 * documentation for any purpose and without fee is hereby granted, provided  *
49 * that the above copyright notice appears in all copies and that both the    *
50 * copyright notice and this permission notice appear in supporting           *
51 * documentation, and that the name University of Delaware not be used in     *
52 * advertising or publicity pertaining to distribution of the software        *
53 * without specific, written prior permission.  The University of Delaware    *
54 * makes no representations about the suitability this software for any       *
55 * purpose.  It is provided "as is" without express or implied warranty.      *
56 *                                                                            *
57 *****************************************************************************/
58
59#include <sys/param.h>
60#include <sys/systm.h>
61#include <sys/dkstat.h>
62#include <sys/callout.h>
63#include <sys/kernel.h>
64#include <sys/proc.h>
65#include <sys/resourcevar.h>
66#include <sys/signalvar.h>
67#include <sys/timex.h>
68#include <vm/vm.h>
69#include <sys/lock.h>
70#include <vm/pmap.h>
71#include <vm/vm_map.h>
72#include <sys/sysctl.h>
73
74#include <machine/cpu.h>
75#define CLOCK_HAIR		/* XXX */
76#include <machine/clock.h>
77#include <machine/limits.h>
78
79#ifdef GPROF
80#include <sys/gmon.h>
81#endif
82
83static void initclocks __P((void *dummy));
84SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
85
86/* Exported to machdep.c. */
87struct callout *callout;
88struct callout_list callfree;
89int callwheelsize, callwheelbits, callwheelmask;
90struct callout_tailq *callwheel;
91
92
93/* Some of these don't belong here, but it's easiest to concentrate them. */
94static long cp_time[CPUSTATES];
95long dk_seek[DK_NDRIVE];
96static long dk_time[DK_NDRIVE];	/* time busy (in statclock ticks) */
97long dk_wds[DK_NDRIVE];
98long dk_wpms[DK_NDRIVE];
99long dk_xfer[DK_NDRIVE];
100
101int dk_busy;
102int dk_ndrive = 0;
103char dk_names[DK_NDRIVE][DK_NAMELEN];
104
105long tk_cancc;
106long tk_nin;
107long tk_nout;
108long tk_rawcc;
109
110/*
111 * Clock handling routines.
112 *
113 * This code is written to operate with two timers that run independently of
114 * each other.  The main clock, running hz times per second, is used to keep
115 * track of real time.  The second timer handles kernel and user profiling,
116 * and does resource use estimation.  If the second timer is programmable,
117 * it is randomized to avoid aliasing between the two clocks.  For example,
118 * the randomization prevents an adversary from always giving up the cpu
119 * just before its quantum expires.  Otherwise, it would never accumulate
120 * cpu ticks.  The mean frequency of the second timer is stathz.
121 *
122 * If no second timer exists, stathz will be zero; in this case we drive
123 * profiling and statistics off the main clock.  This WILL NOT be accurate;
124 * do not do it unless absolutely necessary.
125 *
126 * The statistics clock may (or may not) be run at a higher rate while
127 * profiling.  This profile clock runs at profhz.  We require that profhz
128 * be an integral multiple of stathz.
129 *
130 * If the statistics clock is running fast, it must be divided by the ratio
131 * profhz/stathz for statistics.  (For profiling, every tick counts.)
132 */
133
134/*
135 * TODO:
136 *	allocate more timeout table slots when table overflows.
137 */
138
139/*
140 * Bump a timeval by a small number of usec's.
141 */
142#define BUMPTIME(t, usec) { \
143	register volatile struct timeval *tp = (t); \
144	register long us; \
145 \
146	tp->tv_usec = us = tp->tv_usec + (usec); \
147	if (us >= 1000000) { \
148		tp->tv_usec = us - 1000000; \
149		tp->tv_sec++; \
150	} \
151}
152
153int	stathz;
154int	profhz;
155static int profprocs;
156int	ticks;
157static int softticks;			/* Like ticks, but for softclock(). */
158static struct callout *nextsoftcheck;	/* Next callout to be checked. */
159static int psdiv, pscnt;		/* prof => stat divider */
160int psratio;				/* ratio: prof / stat */
161
162volatile struct	timeval time;
163volatile struct	timeval mono_time;
164
165/*
166 * Phase/frequency-lock loop (PLL/FLL) definitions
167 *
168 * The following variables are read and set by the ntp_adjtime() system
169 * call.
170 *
171 * time_state shows the state of the system clock, with values defined
172 * in the timex.h header file.
173 *
174 * time_status shows the status of the system clock, with bits defined
175 * in the timex.h header file.
176 *
177 * time_offset is used by the PLL/FLL to adjust the system time in small
178 * increments.
179 *
180 * time_constant determines the bandwidth or "stiffness" of the PLL.
181 *
182 * time_tolerance determines maximum frequency error or tolerance of the
183 * CPU clock oscillator and is a property of the architecture; however,
184 * in principle it could change as result of the presence of external
185 * discipline signals, for instance.
186 *
187 * time_precision is usually equal to the kernel tick variable; however,
188 * in cases where a precision clock counter or external clock is
189 * available, the resolution can be much less than this and depend on
190 * whether the external clock is working or not.
191 *
192 * time_maxerror is initialized by a ntp_adjtime() call and increased by
193 * the kernel once each second to reflect the maximum error
194 * bound growth.
195 *
196 * time_esterror is set and read by the ntp_adjtime() call, but
197 * otherwise not used by the kernel.
198 */
199int time_status = STA_UNSYNC;	/* clock status bits */
200int time_state = TIME_OK;	/* clock state */
201long time_offset = 0;		/* time offset (us) */
202long time_constant = 0;		/* pll time constant */
203long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
204long time_precision = 1;	/* clock precision (us) */
205long time_maxerror = MAXPHASE;	/* maximum error (us) */
206long time_esterror = MAXPHASE;	/* estimated error (us) */
207
208/*
209 * The following variables establish the state of the PLL/FLL and the
210 * residual time and frequency offset of the local clock. The scale
211 * factors are defined in the timex.h header file.
212 *
213 * time_phase and time_freq are the phase increment and the frequency
214 * increment, respectively, of the kernel time variable at each tick of
215 * the clock.
216 *
217 * time_freq is set via ntp_adjtime() from a value stored in a file when
218 * the synchronization daemon is first started. Its value is retrieved
219 * via ntp_adjtime() and written to the file about once per hour by the
220 * daemon.
221 *
222 * time_adj is the adjustment added to the value of tick at each timer
223 * interrupt and is recomputed from time_phase and time_freq at each
224 * seconds rollover.
225 *
226 * time_reftime is the second's portion of the system time on the last
227 * call to ntp_adjtime(). It is used to adjust the time_freq variable
228 * and to increase the time_maxerror as the time since last update
229 * increases.
230 */
231static long time_phase = 0;		/* phase offset (scaled us) */
232long time_freq = 0;			/* frequency offset (scaled ppm) */
233static long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
234static long time_reftime = 0;		/* time at last adjustment (s) */
235
236#ifdef PPS_SYNC
237/*
238 * The following variables are used only if the kernel PPS discipline
239 * code is configured (PPS_SYNC). The scale factors are defined in the
240 * timex.h header file.
241 *
242 * pps_time contains the time at each calibration interval, as read by
243 * microtime(). pps_count counts the seconds of the calibration
244 * interval, the duration of which is nominally pps_shift in powers of
245 * two.
246 *
247 * pps_offset is the time offset produced by the time median filter
248 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
249 * this filter.
250 *
251 * pps_freq is the frequency offset produced by the frequency median
252 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
253 * by this filter.
254 *
255 * pps_usec is latched from a high resolution counter or external clock
256 * at pps_time. Here we want the hardware counter contents only, not the
257 * contents plus the time_tv.usec as usual.
258 *
259 * pps_valid counts the number of seconds since the last PPS update. It
260 * is used as a watchdog timer to disable the PPS discipline should the
261 * PPS signal be lost.
262 *
263 * pps_glitch counts the number of seconds since the beginning of an
264 * offset burst more than tick/2 from current nominal offset. It is used
265 * mainly to suppress error bursts due to priority conflicts between the
266 * PPS interrupt and timer interrupt.
267 *
268 * pps_intcnt counts the calibration intervals for use in the interval-
269 * adaptation algorithm. It's just too complicated for words.
270 */
271struct timeval pps_time;	/* kernel time at last interval */
272long pps_offset = 0;		/* pps time offset (us) */
273long pps_jitter = MAXTIME;	/* pps time dispersion (jitter) (us) */
274long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
275long pps_freq = 0;		/* frequency offset (scaled ppm) */
276long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
277long pps_ff[] = {0, 0, 0};	/* frequency offset median filter */
278long pps_usec = 0;		/* microsec counter at last interval */
279long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
280int pps_glitch = 0;		/* pps signal glitch counter */
281int pps_count = 0;		/* calibration interval counter (s) */
282int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
283int pps_intcnt = 0;		/* intervals at current duration */
284
285/*
286 * PPS signal quality monitors
287 *
288 * pps_jitcnt counts the seconds that have been discarded because the
289 * jitter measured by the time median filter exceeds the limit MAXTIME
290 * (100 us).
291 *
292 * pps_calcnt counts the frequency calibration intervals, which are
293 * variable from 4 s to 256 s.
294 *
295 * pps_errcnt counts the calibration intervals which have been discarded
296 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
297 * calibration interval jitter exceeds two ticks.
298 *
299 * pps_stbcnt counts the calibration intervals that have been discarded
300 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
301 */
302long pps_jitcnt = 0;		/* jitter limit exceeded */
303long pps_calcnt = 0;		/* calibration intervals */
304long pps_errcnt = 0;		/* calibration errors */
305long pps_stbcnt = 0;		/* stability limit exceeded */
306#endif /* PPS_SYNC */
307
308/* XXX none of this stuff works under FreeBSD */
309#ifdef EXT_CLOCK
310/*
311 * External clock definitions
312 *
313 * The following definitions and declarations are used only if an
314 * external clock (HIGHBALL or TPRO) is configured on the system.
315 */
316#define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
317
318/*
319 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
320 * interrupt and decremented once each second.
321 */
322int clock_count = 0;		/* CPU clock counter */
323
324#ifdef HIGHBALL
325/*
326 * The clock_offset and clock_cpu variables are used by the HIGHBALL
327 * interface. The clock_offset variable defines the offset between
328 * system time and the HIGBALL counters. The clock_cpu variable contains
329 * the offset between the system clock and the HIGHBALL clock for use in
330 * disciplining the kernel time variable.
331 */
332extern struct timeval clock_offset; /* Highball clock offset */
333long clock_cpu = 0;		/* CPU clock adjust */
334#endif /* HIGHBALL */
335#endif /* EXT_CLOCK */
336
337/*
338 * hardupdate() - local clock update
339 *
340 * This routine is called by ntp_adjtime() to update the local clock
341 * phase and frequency. The implementation is of an adaptive-parameter,
342 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
343 * time and frequency offset estimates for each call. If the kernel PPS
344 * discipline code is configured (PPS_SYNC), the PPS signal itself
345 * determines the new time offset, instead of the calling argument.
346 * Presumably, calls to ntp_adjtime() occur only when the caller
347 * believes the local clock is valid within some bound (+-128 ms with
348 * NTP). If the caller's time is far different than the PPS time, an
349 * argument will ensue, and it's not clear who will lose.
350 *
351 * For uncompensated quartz crystal oscillatores and nominal update
352 * intervals less than 1024 s, operation should be in phase-lock mode
353 * (STA_FLL = 0), where the loop is disciplined to phase. For update
354 * intervals greater than thiss, operation should be in frequency-lock
355 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
356 *
357 * Note: splclock() is in effect.
358 */
359void
360hardupdate(offset)
361	long offset;
362{
363	long ltemp, mtemp;
364
365	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
366		return;
367	ltemp = offset;
368#ifdef PPS_SYNC
369	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
370		ltemp = pps_offset;
371#endif /* PPS_SYNC */
372
373	/*
374	 * Scale the phase adjustment and clamp to the operating range.
375	 */
376	if (ltemp > MAXPHASE)
377		time_offset = MAXPHASE << SHIFT_UPDATE;
378	else if (ltemp < -MAXPHASE)
379		time_offset = -(MAXPHASE << SHIFT_UPDATE);
380	else
381		time_offset = ltemp << SHIFT_UPDATE;
382
383	/*
384	 * Select whether the frequency is to be controlled and in which
385	 * mode (PLL or FLL). Clamp to the operating range. Ugly
386	 * multiply/divide should be replaced someday.
387	 */
388	if (time_status & STA_FREQHOLD || time_reftime == 0)
389		time_reftime = time.tv_sec;
390	mtemp = time.tv_sec - time_reftime;
391	time_reftime = time.tv_sec;
392	if (time_status & STA_FLL) {
393		if (mtemp >= MINSEC) {
394			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
395			    SHIFT_UPDATE));
396			if (ltemp < 0)
397				time_freq -= -ltemp >> SHIFT_KH;
398			else
399				time_freq += ltemp >> SHIFT_KH;
400		}
401	} else {
402		if (mtemp < MAXSEC) {
403			ltemp *= mtemp;
404			if (ltemp < 0)
405				time_freq -= -ltemp >> (time_constant +
406				    time_constant + SHIFT_KF -
407				    SHIFT_USEC);
408			else
409				time_freq += ltemp >> (time_constant +
410				    time_constant + SHIFT_KF -
411				    SHIFT_USEC);
412		}
413	}
414	if (time_freq > time_tolerance)
415		time_freq = time_tolerance;
416	else if (time_freq < -time_tolerance)
417		time_freq = -time_tolerance;
418}
419
420
421
422/*
423 * Initialize clock frequencies and start both clocks running.
424 */
425/* ARGSUSED*/
426static void
427initclocks(dummy)
428	void *dummy;
429{
430	register int i;
431
432	/*
433	 * Set divisors to 1 (normal case) and let the machine-specific
434	 * code do its bit.
435	 */
436	psdiv = pscnt = 1;
437	cpu_initclocks();
438
439	/*
440	 * Compute profhz/stathz, and fix profhz if needed.
441	 */
442	i = stathz ? stathz : hz;
443	if (profhz == 0)
444		profhz = i;
445	psratio = profhz / i;
446}
447
448/*
449 * The real-time timer, interrupting hz times per second.
450 */
451void
452hardclock(frame)
453	register struct clockframe *frame;
454{
455	register struct proc *p;
456
457	p = curproc;
458	if (p) {
459		register struct pstats *pstats;
460
461		/*
462		 * Run current process's virtual and profile time, as needed.
463		 */
464		pstats = p->p_stats;
465		if (CLKF_USERMODE(frame) &&
466		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
467		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
468			psignal(p, SIGVTALRM);
469		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
470		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
471			psignal(p, SIGPROF);
472	}
473
474	/*
475	 * If no separate statistics clock is available, run it from here.
476	 */
477	if (stathz == 0)
478		statclock(frame);
479
480	/*
481	 * Increment the time-of-day.
482	 */
483	ticks++;
484	{
485		int time_update;
486		struct timeval newtime = time;
487		long ltemp;
488
489		if (timedelta == 0) {
490			time_update = CPU_THISTICKLEN(tick);
491		} else {
492			time_update = CPU_THISTICKLEN(tick) + tickdelta;
493			timedelta -= tickdelta;
494		}
495		BUMPTIME(&mono_time, time_update);
496
497		/*
498		 * Compute the phase adjustment. If the low-order bits
499		 * (time_phase) of the update overflow, bump the high-order bits
500		 * (time_update).
501		 */
502		time_phase += time_adj;
503		if (time_phase <= -FINEUSEC) {
504		  ltemp = -time_phase >> SHIFT_SCALE;
505		  time_phase += ltemp << SHIFT_SCALE;
506		  time_update -= ltemp;
507		}
508		else if (time_phase >= FINEUSEC) {
509		  ltemp = time_phase >> SHIFT_SCALE;
510		  time_phase -= ltemp << SHIFT_SCALE;
511		  time_update += ltemp;
512		}
513
514		newtime.tv_usec += time_update;
515		/*
516		 * On rollover of the second the phase adjustment to be used for
517		 * the next second is calculated. Also, the maximum error is
518		 * increased by the tolerance. If the PPS frequency discipline
519		 * code is present, the phase is increased to compensate for the
520		 * CPU clock oscillator frequency error.
521		 *
522		 * On a 32-bit machine and given parameters in the timex.h
523		 * header file, the maximum phase adjustment is +-512 ms and
524		 * maximum frequency offset is a tad less than) +-512 ppm. On a
525		 * 64-bit machine, you shouldn't need to ask.
526		 */
527		if (newtime.tv_usec >= 1000000) {
528		  newtime.tv_usec -= 1000000;
529		  newtime.tv_sec++;
530		  time_maxerror += time_tolerance >> SHIFT_USEC;
531
532		  /*
533		   * Compute the phase adjustment for the next second. In
534		   * PLL mode, the offset is reduced by a fixed factor
535		   * times the time constant. In FLL mode the offset is
536		   * used directly. In either mode, the maximum phase
537		   * adjustment for each second is clamped so as to spread
538		   * the adjustment over not more than the number of
539		   * seconds between updates.
540		   */
541		  if (time_offset < 0) {
542		    ltemp = -time_offset;
543		    if (!(time_status & STA_FLL))
544			ltemp >>= SHIFT_KG + time_constant;
545		    if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
546			ltemp = (MAXPHASE / MINSEC) <<
547			    SHIFT_UPDATE;
548		    time_offset += ltemp;
549		    time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ -
550			SHIFT_UPDATE);
551		    } else {
552		        ltemp = time_offset;
553			if (!(time_status & STA_FLL))
554				ltemp >>= SHIFT_KG + time_constant;
555			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
556				ltemp = (MAXPHASE / MINSEC) <<
557				    SHIFT_UPDATE;
558			time_offset -= ltemp;
559			time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ -
560			    SHIFT_UPDATE);
561		    }
562
563		  /*
564		   * Compute the frequency estimate and additional phase
565		   * adjustment due to frequency error for the next
566		   * second. When the PPS signal is engaged, gnaw on the
567		   * watchdog counter and update the frequency computed by
568		   * the pll and the PPS signal.
569		   */
570#ifdef PPS_SYNC
571		  pps_valid++;
572		  if (pps_valid == PPS_VALID) {
573		    pps_jitter = MAXTIME;
574		    pps_stabil = MAXFREQ;
575		    time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
576				     STA_PPSWANDER | STA_PPSERROR);
577		  }
578		  ltemp = time_freq + pps_freq;
579#else
580		  ltemp = time_freq;
581#endif /* PPS_SYNC */
582		  if (ltemp < 0)
583		    time_adj -= -ltemp >>
584		      (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
585		  else
586		    time_adj += ltemp >>
587		      (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
588
589#if SHIFT_HZ == 7
590		  /*
591		   * When the CPU clock oscillator frequency is not a
592		   * power of two in Hz, the SHIFT_HZ is only an
593		   * approximate scale factor. In the SunOS kernel, this
594		   * results in a PLL gain factor of 1/1.28 = 0.78 what it
595		   * should be. In the following code the overall gain is
596		   * increased by a factor of 1.25, which results in a
597		   * residual error less than 3 percent.
598		   */
599		  /* Same thing applies for FreeBSD --GAW */
600		  if (hz == 100) {
601		    if (time_adj < 0)
602		      time_adj -= -time_adj >> 2;
603		    else
604		      time_adj += time_adj >> 2;
605		  }
606#endif /* SHIFT_HZ */
607
608		  /* XXX - this is really bogus, but can't be fixed until
609		     xntpd's idea of the system clock is fixed to know how
610		     the user wants leap seconds handled; in the mean time,
611		     we assume that users of NTP are running without proper
612		     leap second support (this is now the default anyway) */
613		  /*
614		   * Leap second processing. If in leap-insert state at
615		   * the end of the day, the system clock is set back one
616		   * second; if in leap-delete state, the system clock is
617		   * set ahead one second. The microtime() routine or
618		   * external clock driver will insure that reported time
619		   * is always monotonic. The ugly divides should be
620		   * replaced.
621		   */
622		  switch (time_state) {
623
624		  case TIME_OK:
625		    if (time_status & STA_INS)
626		      time_state = TIME_INS;
627		    else if (time_status & STA_DEL)
628		      time_state = TIME_DEL;
629		    break;
630
631		  case TIME_INS:
632		    if (newtime.tv_sec % 86400 == 0) {
633		      newtime.tv_sec--;
634		      time_state = TIME_OOP;
635		    }
636		    break;
637
638		  case TIME_DEL:
639		    if ((newtime.tv_sec + 1) % 86400 == 0) {
640		      newtime.tv_sec++;
641		      time_state = TIME_WAIT;
642		    }
643		    break;
644
645		  case TIME_OOP:
646		    time_state = TIME_WAIT;
647		    break;
648
649		  case TIME_WAIT:
650		    if (!(time_status & (STA_INS | STA_DEL)))
651		      time_state = TIME_OK;
652		  }
653		}
654		CPU_CLOCKUPDATE(&time, &newtime);
655	}
656
657	/*
658	 * Process callouts at a very low cpu priority, so we don't keep the
659	 * relatively high clock interrupt priority any longer than necessary.
660	 */
661	if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
662		if (CLKF_BASEPRI(frame)) {
663			/*
664			 * Save the overhead of a software interrupt;
665			 * it will happen as soon as we return, so do it now.
666			 */
667			(void)splsoftclock();
668			softclock();
669		} else
670			setsoftclock();
671	} else if (softticks + 1 == ticks) {
672		++softticks;
673	}
674}
675
676/*
677 * The callout mechanism is based on the work of Adam M. Costello and
678 * George Varghese, published in a technical report entitled "Redesigning
679 * the BSD Callout and Timer Facilities" and modified slightly for inclusion
680 * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
681 * used in this implementation was published by G.Varghese and A. Lauck in
682 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
683 * the Efficient Implementation of a Timer Facility" in the Proceedings of
684 * the 11th ACM Annual Symposium on Operating Systems Principles,
685 * Austin, Texas Nov 1987.
686 */
687/*
688 * Software (low priority) clock interrupt.
689 * Run periodic events from timeout queue.
690 */
691/*ARGSUSED*/
692void
693softclock()
694{
695	register struct callout *c;
696	register struct callout_tailq *bucket;
697	register int s;
698	register int curticks;
699	register int steps;	/*
700				 * Number of steps taken since
701				 * we last allowed interrupts.
702				 */
703
704	#ifndef MAX_SOFTCLOCK_STEPS
705	#define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */
706	#endif /* MAX_SOFTCLOCK_STEPS */
707
708	steps = 0;
709	s = splhigh();
710	while (softticks != ticks) {
711		softticks++;
712		/*
713		 * softticks may be modified by hard clock, so cache
714		 * it while we work on a given bucket.
715		 */
716		curticks = softticks;
717		bucket = &callwheel[curticks & callwheelmask];
718		c = TAILQ_FIRST(bucket);
719		while (c) {
720			if (c->c_time != curticks) {
721				c = TAILQ_NEXT(c, c_links.tqe);
722				++steps;
723				if (steps >= MAX_SOFTCLOCK_STEPS) {
724					nextsoftcheck = c;
725					/* Give interrupts a chance. */
726					splx(s);
727					s = splhigh();
728					c = nextsoftcheck;
729					steps = 0;
730				}
731			} else {
732				void (*c_func)(void *);
733				void *c_arg;
734
735				nextsoftcheck = TAILQ_NEXT(c, c_links.tqe);
736				TAILQ_REMOVE(bucket, c, c_links.tqe);
737				c_func = c->c_func;
738				c_arg = c->c_arg;
739				c->c_func = NULL;
740				SLIST_INSERT_HEAD(&callfree, c, c_links.sle);
741				splx(s);
742				c_func(c_arg);
743				s = splhigh();
744				steps = 0;
745				c = nextsoftcheck;
746			}
747		}
748	}
749	nextsoftcheck = NULL;
750	splx(s);
751}
752
753/*
754 * timeout --
755 *	Execute a function after a specified length of time.
756 *
757 * untimeout --
758 *	Cancel previous timeout function call.
759 *
760 * callout_handle_init --
761 *	Initialize a handle so that using it with untimeout is benign.
762 *
763 *	See AT&T BCI Driver Reference Manual for specification.  This
764 *	implementation differs from that one in that although an
765 *	identification value is returned from timeout, the original
766 *	arguments to timeout as well as the identifier are used to
767 *	identify entries for untimeout.
768 */
769struct callout_handle
770timeout(ftn, arg, to_ticks)
771	timeout_t ftn;
772	void *arg;
773	register int to_ticks;
774{
775	int s;
776	struct callout *new;
777	struct callout_handle handle;
778
779	if (to_ticks <= 0)
780		to_ticks = 1;
781
782	/* Lock out the clock. */
783	s = splhigh();
784
785	/* Fill in the next free callout structure. */
786	new = SLIST_FIRST(&callfree);
787	if (new == NULL)
788		/* XXX Attempt to malloc first */
789		panic("timeout table full");
790
791	SLIST_REMOVE_HEAD(&callfree, c_links.sle);
792	new->c_arg = arg;
793	new->c_func = ftn;
794	new->c_time = ticks + to_ticks;
795	TAILQ_INSERT_TAIL(&callwheel[new->c_time & callwheelmask],
796			  new, c_links.tqe);
797
798	splx(s);
799	handle.callout = new;
800	return (handle);
801}
802
803void
804untimeout(ftn, arg, handle)
805	timeout_t ftn;
806	void *arg;
807	struct callout_handle handle;
808{
809	register int s;
810
811	/*
812	 * Check for a handle that was initialized
813	 * by callout_handle_init, but never used
814	 * for a real timeout.
815	 */
816	if (handle.callout == NULL)
817		return;
818
819	s = splhigh();
820	if ((handle.callout->c_func == ftn)
821	 && (handle.callout->c_arg == arg)) {
822		if (nextsoftcheck == handle.callout) {
823			nextsoftcheck = TAILQ_NEXT(handle.callout, c_links.tqe);
824		}
825		TAILQ_REMOVE(&callwheel[handle.callout->c_time & callwheelmask],
826			     handle.callout, c_links.tqe);
827		handle.callout->c_func = NULL;
828		SLIST_INSERT_HEAD(&callfree, handle.callout, c_links.sle);
829	}
830	splx(s);
831}
832
833void
834callout_handle_init(struct callout_handle *handle)
835{
836	handle->callout = NULL;
837}
838
839void
840gettime(struct timeval *tvp)
841{
842	int s;
843
844	s = splclock();
845	/* XXX should use microtime() iff tv_usec is used. */
846	*tvp = time;
847	splx(s);
848}
849
850/*
851 * Compute number of hz until specified time.  Used to
852 * compute third argument to timeout() from an absolute time.
853 */
854int
855hzto(tv)
856	struct timeval *tv;
857{
858	register unsigned long ticks;
859	register long sec, usec;
860	int s;
861
862	/*
863	 * If the number of usecs in the whole seconds part of the time
864	 * difference fits in a long, then the total number of usecs will
865	 * fit in an unsigned long.  Compute the total and convert it to
866	 * ticks, rounding up and adding 1 to allow for the current tick
867	 * to expire.  Rounding also depends on unsigned long arithmetic
868	 * to avoid overflow.
869	 *
870	 * Otherwise, if the number of ticks in the whole seconds part of
871	 * the time difference fits in a long, then convert the parts to
872	 * ticks separately and add, using similar rounding methods and
873	 * overflow avoidance.  This method would work in the previous
874	 * case but it is slightly slower and assumes that hz is integral.
875	 *
876	 * Otherwise, round the time difference down to the maximum
877	 * representable value.
878	 *
879	 * If ints have 32 bits, then the maximum value for any timeout in
880	 * 10ms ticks is 248 days.
881	 */
882	s = splclock();
883	sec = tv->tv_sec - time.tv_sec;
884	usec = tv->tv_usec - time.tv_usec;
885	splx(s);
886	if (usec < 0) {
887		sec--;
888		usec += 1000000;
889	}
890	if (sec < 0) {
891#ifdef DIAGNOSTIC
892		printf("hzto: negative time difference %ld sec %ld usec\n",
893		       sec, usec);
894#endif
895		ticks = 1;
896	} else if (sec <= LONG_MAX / 1000000)
897		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
898			/ tick + 1;
899	else if (sec <= LONG_MAX / hz)
900		ticks = sec * hz
901			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
902	else
903		ticks = LONG_MAX;
904	if (ticks > INT_MAX)
905		ticks = INT_MAX;
906	return (ticks);
907}
908
909/*
910 * Start profiling on a process.
911 *
912 * Kernel profiling passes proc0 which never exits and hence
913 * keeps the profile clock running constantly.
914 */
915void
916startprofclock(p)
917	register struct proc *p;
918{
919	int s;
920
921	if ((p->p_flag & P_PROFIL) == 0) {
922		p->p_flag |= P_PROFIL;
923		if (++profprocs == 1 && stathz != 0) {
924			s = splstatclock();
925			psdiv = pscnt = psratio;
926			setstatclockrate(profhz);
927			splx(s);
928		}
929	}
930}
931
932/*
933 * Stop profiling on a process.
934 */
935void
936stopprofclock(p)
937	register struct proc *p;
938{
939	int s;
940
941	if (p->p_flag & P_PROFIL) {
942		p->p_flag &= ~P_PROFIL;
943		if (--profprocs == 0 && stathz != 0) {
944			s = splstatclock();
945			psdiv = pscnt = 1;
946			setstatclockrate(stathz);
947			splx(s);
948		}
949	}
950}
951
952/*
953 * Statistics clock.  Grab profile sample, and if divider reaches 0,
954 * do process and kernel statistics.
955 */
956void
957statclock(frame)
958	register struct clockframe *frame;
959{
960#ifdef GPROF
961	register struct gmonparam *g;
962#endif
963	register struct proc *p;
964	register int i;
965	struct pstats *pstats;
966	long rss;
967	struct rusage *ru;
968	struct vmspace *vm;
969
970	if (CLKF_USERMODE(frame)) {
971		p = curproc;
972		if (p->p_flag & P_PROFIL)
973			addupc_intr(p, CLKF_PC(frame), 1);
974		if (--pscnt > 0)
975			return;
976		/*
977		 * Came from user mode; CPU was in user state.
978		 * If this process is being profiled record the tick.
979		 */
980		p->p_uticks++;
981		if (p->p_nice > NZERO)
982			cp_time[CP_NICE]++;
983		else
984			cp_time[CP_USER]++;
985	} else {
986#ifdef GPROF
987		/*
988		 * Kernel statistics are just like addupc_intr, only easier.
989		 */
990		g = &_gmonparam;
991		if (g->state == GMON_PROF_ON) {
992			i = CLKF_PC(frame) - g->lowpc;
993			if (i < g->textsize) {
994				i /= HISTFRACTION * sizeof(*g->kcount);
995				g->kcount[i]++;
996			}
997		}
998#endif
999		if (--pscnt > 0)
1000			return;
1001		/*
1002		 * Came from kernel mode, so we were:
1003		 * - handling an interrupt,
1004		 * - doing syscall or trap work on behalf of the current
1005		 *   user process, or
1006		 * - spinning in the idle loop.
1007		 * Whichever it is, charge the time as appropriate.
1008		 * Note that we charge interrupts to the current process,
1009		 * regardless of whether they are ``for'' that process,
1010		 * so that we know how much of its real time was spent
1011		 * in ``non-process'' (i.e., interrupt) work.
1012		 */
1013		p = curproc;
1014		if (CLKF_INTR(frame)) {
1015			if (p != NULL)
1016				p->p_iticks++;
1017			cp_time[CP_INTR]++;
1018		} else if (p != NULL) {
1019			p->p_sticks++;
1020			cp_time[CP_SYS]++;
1021		} else
1022			cp_time[CP_IDLE]++;
1023	}
1024	pscnt = psdiv;
1025
1026	/*
1027	 * We maintain statistics shown by user-level statistics
1028	 * programs:  the amount of time in each cpu state, and
1029	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
1030	 *
1031	 * XXX	should either run linked list of drives, or (better)
1032	 *	grab timestamps in the start & done code.
1033	 */
1034	for (i = 0; i < DK_NDRIVE; i++)
1035		if (dk_busy & (1 << i))
1036			dk_time[i]++;
1037
1038	/*
1039	 * We adjust the priority of the current process.  The priority of
1040	 * a process gets worse as it accumulates CPU time.  The cpu usage
1041	 * estimator (p_estcpu) is increased here.  The formula for computing
1042	 * priorities (in kern_synch.c) will compute a different value each
1043	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
1044	 * quite quickly when the process is running (linearly), and decays
1045	 * away exponentially, at a rate which is proportionally slower when
1046	 * the system is busy.  The basic principal is that the system will
1047	 * 90% forget that the process used a lot of CPU time in 5 * loadav
1048	 * seconds.  This causes the system to favor processes which haven't
1049	 * run much recently, and to round-robin among other processes.
1050	 */
1051	if (p != NULL) {
1052		p->p_cpticks++;
1053		if (++p->p_estcpu == 0)
1054			p->p_estcpu--;
1055		if ((p->p_estcpu & 3) == 0) {
1056			resetpriority(p);
1057			if (p->p_priority >= PUSER)
1058				p->p_priority = p->p_usrpri;
1059		}
1060
1061		/* Update resource usage integrals and maximums. */
1062		if ((pstats = p->p_stats) != NULL &&
1063		    (ru = &pstats->p_ru) != NULL &&
1064		    (vm = p->p_vmspace) != NULL) {
1065			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
1066			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
1067			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
1068			rss = vm->vm_pmap.pm_stats.resident_count *
1069			      PAGE_SIZE / 1024;
1070			if (ru->ru_maxrss < rss)
1071				ru->ru_maxrss = rss;
1072        	}
1073	}
1074}
1075
1076/*
1077 * Return information about system clocks.
1078 */
1079static int
1080sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
1081{
1082	struct clockinfo clkinfo;
1083	/*
1084	 * Construct clockinfo structure.
1085	 */
1086	clkinfo.hz = hz;
1087	clkinfo.tick = tick;
1088	clkinfo.tickadj = tickadj;
1089	clkinfo.profhz = profhz;
1090	clkinfo.stathz = stathz ? stathz : hz;
1091	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1092}
1093
1094SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1095	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1096
1097#ifdef PPS_SYNC
1098/*
1099 * hardpps() - discipline CPU clock oscillator to external PPS signal
1100 *
1101 * This routine is called at each PPS interrupt in order to discipline
1102 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1103 * and leaves it in a handy spot for the hardclock() routine. It
1104 * integrates successive PPS phase differences and calculates the
1105 * frequency offset. This is used in hardclock() to discipline the CPU
1106 * clock oscillator so that intrinsic frequency error is cancelled out.
1107 * The code requires the caller to capture the time and hardware counter
1108 * value at the on-time PPS signal transition.
1109 *
1110 * Note that, on some Unix systems, this routine runs at an interrupt
1111 * priority level higher than the timer interrupt routine hardclock().
1112 * Therefore, the variables used are distinct from the hardclock()
1113 * variables, except for certain exceptions: The PPS frequency pps_freq
1114 * and phase pps_offset variables are determined by this routine and
1115 * updated atomically. The time_tolerance variable can be considered a
1116 * constant, since it is infrequently changed, and then only when the
1117 * PPS signal is disabled. The watchdog counter pps_valid is updated
1118 * once per second by hardclock() and is atomically cleared in this
1119 * routine.
1120 */
1121void
1122hardpps(tvp, usec)
1123	struct timeval *tvp;		/* time at PPS */
1124	long usec;			/* hardware counter at PPS */
1125{
1126	long u_usec, v_usec, bigtick;
1127	long cal_sec, cal_usec;
1128
1129	/*
1130	 * An occasional glitch can be produced when the PPS interrupt
1131	 * occurs in the hardclock() routine before the time variable is
1132	 * updated. Here the offset is discarded when the difference
1133	 * between it and the last one is greater than tick/2, but not
1134	 * if the interval since the first discard exceeds 30 s.
1135	 */
1136	time_status |= STA_PPSSIGNAL;
1137	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1138	pps_valid = 0;
1139	u_usec = -tvp->tv_usec;
1140	if (u_usec < -500000)
1141		u_usec += 1000000;
1142	v_usec = pps_offset - u_usec;
1143	if (v_usec < 0)
1144		v_usec = -v_usec;
1145	if (v_usec > (tick >> 1)) {
1146		if (pps_glitch > MAXGLITCH) {
1147			pps_glitch = 0;
1148			pps_tf[2] = u_usec;
1149			pps_tf[1] = u_usec;
1150		} else {
1151			pps_glitch++;
1152			u_usec = pps_offset;
1153		}
1154	} else
1155		pps_glitch = 0;
1156
1157	/*
1158	 * A three-stage median filter is used to help deglitch the pps
1159	 * time. The median sample becomes the time offset estimate; the
1160	 * difference between the other two samples becomes the time
1161	 * dispersion (jitter) estimate.
1162	 */
1163	pps_tf[2] = pps_tf[1];
1164	pps_tf[1] = pps_tf[0];
1165	pps_tf[0] = u_usec;
1166	if (pps_tf[0] > pps_tf[1]) {
1167		if (pps_tf[1] > pps_tf[2]) {
1168			pps_offset = pps_tf[1];		/* 0 1 2 */
1169			v_usec = pps_tf[0] - pps_tf[2];
1170		} else if (pps_tf[2] > pps_tf[0]) {
1171			pps_offset = pps_tf[0];		/* 2 0 1 */
1172			v_usec = pps_tf[2] - pps_tf[1];
1173		} else {
1174			pps_offset = pps_tf[2];		/* 0 2 1 */
1175			v_usec = pps_tf[0] - pps_tf[1];
1176		}
1177	} else {
1178		if (pps_tf[1] < pps_tf[2]) {
1179			pps_offset = pps_tf[1];		/* 2 1 0 */
1180			v_usec = pps_tf[2] - pps_tf[0];
1181		} else  if (pps_tf[2] < pps_tf[0]) {
1182			pps_offset = pps_tf[0];		/* 1 0 2 */
1183			v_usec = pps_tf[1] - pps_tf[2];
1184		} else {
1185			pps_offset = pps_tf[2];		/* 1 2 0 */
1186			v_usec = pps_tf[1] - pps_tf[0];
1187		}
1188	}
1189	if (v_usec > MAXTIME)
1190		pps_jitcnt++;
1191	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1192	if (v_usec < 0)
1193		pps_jitter -= -v_usec >> PPS_AVG;
1194	else
1195		pps_jitter += v_usec >> PPS_AVG;
1196	if (pps_jitter > (MAXTIME >> 1))
1197		time_status |= STA_PPSJITTER;
1198
1199	/*
1200	 * During the calibration interval adjust the starting time when
1201	 * the tick overflows. At the end of the interval compute the
1202	 * duration of the interval and the difference of the hardware
1203	 * counters at the beginning and end of the interval. This code
1204	 * is deliciously complicated by the fact valid differences may
1205	 * exceed the value of tick when using long calibration
1206	 * intervals and small ticks. Note that the counter can be
1207	 * greater than tick if caught at just the wrong instant, but
1208	 * the values returned and used here are correct.
1209	 */
1210	bigtick = (long)tick << SHIFT_USEC;
1211	pps_usec -= pps_freq;
1212	if (pps_usec >= bigtick)
1213		pps_usec -= bigtick;
1214	if (pps_usec < 0)
1215		pps_usec += bigtick;
1216	pps_time.tv_sec++;
1217	pps_count++;
1218	if (pps_count < (1 << pps_shift))
1219		return;
1220	pps_count = 0;
1221	pps_calcnt++;
1222	u_usec = usec << SHIFT_USEC;
1223	v_usec = pps_usec - u_usec;
1224	if (v_usec >= bigtick >> 1)
1225		v_usec -= bigtick;
1226	if (v_usec < -(bigtick >> 1))
1227		v_usec += bigtick;
1228	if (v_usec < 0)
1229		v_usec = -(-v_usec >> pps_shift);
1230	else
1231		v_usec = v_usec >> pps_shift;
1232	pps_usec = u_usec;
1233	cal_sec = tvp->tv_sec;
1234	cal_usec = tvp->tv_usec;
1235	cal_sec -= pps_time.tv_sec;
1236	cal_usec -= pps_time.tv_usec;
1237	if (cal_usec < 0) {
1238		cal_usec += 1000000;
1239		cal_sec--;
1240	}
1241	pps_time = *tvp;
1242
1243	/*
1244	 * Check for lost interrupts, noise, excessive jitter and
1245	 * excessive frequency error. The number of timer ticks during
1246	 * the interval may vary +-1 tick. Add to this a margin of one
1247	 * tick for the PPS signal jitter and maximum frequency
1248	 * deviation. If the limits are exceeded, the calibration
1249	 * interval is reset to the minimum and we start over.
1250	 */
1251	u_usec = (long)tick << 1;
1252	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1253	    || (cal_sec == 0 && cal_usec < u_usec))
1254	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
1255		pps_errcnt++;
1256		pps_shift = PPS_SHIFT;
1257		pps_intcnt = 0;
1258		time_status |= STA_PPSERROR;
1259		return;
1260	}
1261
1262	/*
1263	 * A three-stage median filter is used to help deglitch the pps
1264	 * frequency. The median sample becomes the frequency offset
1265	 * estimate; the difference between the other two samples
1266	 * becomes the frequency dispersion (stability) estimate.
1267	 */
1268	pps_ff[2] = pps_ff[1];
1269	pps_ff[1] = pps_ff[0];
1270	pps_ff[0] = v_usec;
1271	if (pps_ff[0] > pps_ff[1]) {
1272		if (pps_ff[1] > pps_ff[2]) {
1273			u_usec = pps_ff[1];		/* 0 1 2 */
1274			v_usec = pps_ff[0] - pps_ff[2];
1275		} else if (pps_ff[2] > pps_ff[0]) {
1276			u_usec = pps_ff[0];		/* 2 0 1 */
1277			v_usec = pps_ff[2] - pps_ff[1];
1278		} else {
1279			u_usec = pps_ff[2];		/* 0 2 1 */
1280			v_usec = pps_ff[0] - pps_ff[1];
1281		}
1282	} else {
1283		if (pps_ff[1] < pps_ff[2]) {
1284			u_usec = pps_ff[1];		/* 2 1 0 */
1285			v_usec = pps_ff[2] - pps_ff[0];
1286		} else  if (pps_ff[2] < pps_ff[0]) {
1287			u_usec = pps_ff[0];		/* 1 0 2 */
1288			v_usec = pps_ff[1] - pps_ff[2];
1289		} else {
1290			u_usec = pps_ff[2];		/* 1 2 0 */
1291			v_usec = pps_ff[1] - pps_ff[0];
1292		}
1293	}
1294
1295	/*
1296	 * Here the frequency dispersion (stability) is updated. If it
1297	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1298	 * offset is updated as well, but clamped to the tolerance. It
1299	 * will be processed later by the hardclock() routine.
1300	 */
1301	v_usec = (v_usec >> 1) - pps_stabil;
1302	if (v_usec < 0)
1303		pps_stabil -= -v_usec >> PPS_AVG;
1304	else
1305		pps_stabil += v_usec >> PPS_AVG;
1306	if (pps_stabil > MAXFREQ >> 2) {
1307		pps_stbcnt++;
1308		time_status |= STA_PPSWANDER;
1309		return;
1310	}
1311	if (time_status & STA_PPSFREQ) {
1312		if (u_usec < 0) {
1313			pps_freq -= -u_usec >> PPS_AVG;
1314			if (pps_freq < -time_tolerance)
1315				pps_freq = -time_tolerance;
1316			u_usec = -u_usec;
1317		} else {
1318			pps_freq += u_usec >> PPS_AVG;
1319			if (pps_freq > time_tolerance)
1320				pps_freq = time_tolerance;
1321		}
1322	}
1323
1324	/*
1325	 * Here the calibration interval is adjusted. If the maximum
1326	 * time difference is greater than tick / 4, reduce the interval
1327	 * by half. If this is not the case for four consecutive
1328	 * intervals, double the interval.
1329	 */
1330	if (u_usec << pps_shift > bigtick >> 2) {
1331		pps_intcnt = 0;
1332		if (pps_shift > PPS_SHIFT)
1333			pps_shift--;
1334	} else if (pps_intcnt >= 4) {
1335		pps_intcnt = 0;
1336		if (pps_shift < PPS_SHIFTMAX)
1337			pps_shift++;
1338	} else
1339		pps_intcnt++;
1340}
1341#endif /* PPS_SYNC */
1342