kern_timeout.c revision 254350
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_timeout.c 254350 2013-08-15 04:08:55Z markj $");
39
40#include "opt_callout_profiling.h"
41#include "opt_kdtrace.h"
42#if defined(__arm__)
43#include "opt_timer.h"
44#endif
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/bus.h>
49#include <sys/callout.h>
50#include <sys/file.h>
51#include <sys/interrupt.h>
52#include <sys/kernel.h>
53#include <sys/ktr.h>
54#include <sys/lock.h>
55#include <sys/malloc.h>
56#include <sys/mutex.h>
57#include <sys/proc.h>
58#include <sys/sdt.h>
59#include <sys/sleepqueue.h>
60#include <sys/sysctl.h>
61#include <sys/smp.h>
62
63#ifdef SMP
64#include <machine/cpu.h>
65#endif
66
67#ifndef NO_EVENTTIMERS
68DPCPU_DECLARE(sbintime_t, hardclocktime);
69#endif
70
71SDT_PROVIDER_DEFINE(callout_execute);
72SDT_PROBE_DEFINE1(callout_execute, kernel, , callout_start, callout-start,
73    "struct callout *");
74SDT_PROBE_DEFINE1(callout_execute, kernel, , callout_end, callout-end,
75    "struct callout *");
76
77#ifdef CALLOUT_PROFILING
78static int avg_depth;
79SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
80    "Average number of items examined per softclock call. Units = 1/1000");
81static int avg_gcalls;
82SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
83    "Average number of Giant callouts made per softclock call. Units = 1/1000");
84static int avg_lockcalls;
85SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
86    "Average number of lock callouts made per softclock call. Units = 1/1000");
87static int avg_mpcalls;
88SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
89    "Average number of MP callouts made per softclock call. Units = 1/1000");
90static int avg_depth_dir;
91SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
92    "Average number of direct callouts examined per callout_process call. "
93    "Units = 1/1000");
94static int avg_lockcalls_dir;
95SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
96    &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
97    "callout_process call. Units = 1/1000");
98static int avg_mpcalls_dir;
99SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
100    0, "Average number of MP direct callouts made per callout_process call. "
101    "Units = 1/1000");
102#endif
103
104static int ncallout;
105SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN, &ncallout, 0,
106    "Number of entries in callwheel and size of timeout() preallocation");
107
108/*
109 * TODO:
110 *	allocate more timeout table slots when table overflows.
111 */
112u_int callwheelsize, callwheelmask;
113
114/*
115 * The callout cpu exec entities represent informations necessary for
116 * describing the state of callouts currently running on the CPU and the ones
117 * necessary for migrating callouts to the new callout cpu. In particular,
118 * the first entry of the array cc_exec_entity holds informations for callout
119 * running in SWI thread context, while the second one holds informations
120 * for callout running directly from hardware interrupt context.
121 * The cached informations are very important for deferring migration when
122 * the migrating callout is already running.
123 */
124struct cc_exec {
125	struct callout		*cc_next;
126	struct callout		*cc_curr;
127#ifdef SMP
128	void			(*ce_migration_func)(void *);
129	void			*ce_migration_arg;
130	int			ce_migration_cpu;
131	sbintime_t		ce_migration_time;
132	sbintime_t		ce_migration_prec;
133#endif
134	bool			cc_cancel;
135	bool			cc_waiting;
136};
137
138/*
139 * There is one struct callout_cpu per cpu, holding all relevant
140 * state for the callout processing thread on the individual CPU.
141 */
142struct callout_cpu {
143	struct mtx_padalign	cc_lock;
144	struct cc_exec 		cc_exec_entity[2];
145	struct callout		*cc_callout;
146	struct callout_list	*cc_callwheel;
147	struct callout_tailq	cc_expireq;
148	struct callout_slist	cc_callfree;
149	sbintime_t		cc_firstevent;
150	sbintime_t		cc_lastscan;
151	void			*cc_cookie;
152	u_int			cc_bucket;
153};
154
155#define	cc_exec_curr		cc_exec_entity[0].cc_curr
156#define	cc_exec_next		cc_exec_entity[0].cc_next
157#define	cc_exec_cancel		cc_exec_entity[0].cc_cancel
158#define	cc_exec_waiting		cc_exec_entity[0].cc_waiting
159#define	cc_exec_curr_dir	cc_exec_entity[1].cc_curr
160#define	cc_exec_next_dir	cc_exec_entity[1].cc_next
161#define	cc_exec_cancel_dir	cc_exec_entity[1].cc_cancel
162#define	cc_exec_waiting_dir	cc_exec_entity[1].cc_waiting
163
164#ifdef SMP
165#define	cc_migration_func	cc_exec_entity[0].ce_migration_func
166#define	cc_migration_arg	cc_exec_entity[0].ce_migration_arg
167#define	cc_migration_cpu	cc_exec_entity[0].ce_migration_cpu
168#define	cc_migration_time	cc_exec_entity[0].ce_migration_time
169#define	cc_migration_prec	cc_exec_entity[0].ce_migration_prec
170#define	cc_migration_func_dir	cc_exec_entity[1].ce_migration_func
171#define	cc_migration_arg_dir	cc_exec_entity[1].ce_migration_arg
172#define	cc_migration_cpu_dir	cc_exec_entity[1].ce_migration_cpu
173#define	cc_migration_time_dir	cc_exec_entity[1].ce_migration_time
174#define	cc_migration_prec_dir	cc_exec_entity[1].ce_migration_prec
175
176struct callout_cpu cc_cpu[MAXCPU];
177#define	CPUBLOCK	MAXCPU
178#define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
179#define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
180#else
181struct callout_cpu cc_cpu;
182#define	CC_CPU(cpu)	&cc_cpu
183#define	CC_SELF()	&cc_cpu
184#endif
185#define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
186#define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
187#define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
188
189static int timeout_cpu;
190
191static void	callout_cpu_init(struct callout_cpu *cc);
192static void	softclock_call_cc(struct callout *c, struct callout_cpu *cc,
193#ifdef CALLOUT_PROFILING
194		    int *mpcalls, int *lockcalls, int *gcalls,
195#endif
196		    int direct);
197
198static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
199
200/**
201 * Locked by cc_lock:
202 *   cc_curr         - If a callout is in progress, it is cc_curr.
203 *                     If cc_curr is non-NULL, threads waiting in
204 *                     callout_drain() will be woken up as soon as the
205 *                     relevant callout completes.
206 *   cc_cancel       - Changing to 1 with both callout_lock and cc_lock held
207 *                     guarantees that the current callout will not run.
208 *                     The softclock() function sets this to 0 before it
209 *                     drops callout_lock to acquire c_lock, and it calls
210 *                     the handler only if curr_cancelled is still 0 after
211 *                     cc_lock is successfully acquired.
212 *   cc_waiting      - If a thread is waiting in callout_drain(), then
213 *                     callout_wait is nonzero.  Set only when
214 *                     cc_curr is non-NULL.
215 */
216
217/*
218 * Resets the execution entity tied to a specific callout cpu.
219 */
220static void
221cc_cce_cleanup(struct callout_cpu *cc, int direct)
222{
223
224	cc->cc_exec_entity[direct].cc_curr = NULL;
225	cc->cc_exec_entity[direct].cc_next = NULL;
226	cc->cc_exec_entity[direct].cc_cancel = false;
227	cc->cc_exec_entity[direct].cc_waiting = false;
228#ifdef SMP
229	cc->cc_exec_entity[direct].ce_migration_cpu = CPUBLOCK;
230	cc->cc_exec_entity[direct].ce_migration_time = 0;
231	cc->cc_exec_entity[direct].ce_migration_prec = 0;
232	cc->cc_exec_entity[direct].ce_migration_func = NULL;
233	cc->cc_exec_entity[direct].ce_migration_arg = NULL;
234#endif
235}
236
237/*
238 * Checks if migration is requested by a specific callout cpu.
239 */
240static int
241cc_cce_migrating(struct callout_cpu *cc, int direct)
242{
243
244#ifdef SMP
245	return (cc->cc_exec_entity[direct].ce_migration_cpu != CPUBLOCK);
246#else
247	return (0);
248#endif
249}
250
251/*
252 * Kernel low level callwheel initialization
253 * called on cpu0 during kernel startup.
254 */
255static void
256callout_callwheel_init(void *dummy)
257{
258	struct callout_cpu *cc;
259
260	/*
261	 * Calculate the size of the callout wheel and the preallocated
262	 * timeout() structures.
263	 * XXX: Clip callout to result of previous function of maxusers
264	 * maximum 384.  This is still huge, but acceptable.
265	 */
266	ncallout = imin(16 + maxproc + maxfiles, 18508);
267	TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
268
269	/*
270	 * Calculate callout wheel size, should be next power of two higher
271	 * than 'ncallout'.
272	 */
273	callwheelsize = 1 << fls(ncallout);
274	callwheelmask = callwheelsize - 1;
275
276	/*
277	 * Only cpu0 handles timeout(9) and receives a preallocation.
278	 *
279	 * XXX: Once all timeout(9) consumers are converted this can
280	 * be removed.
281	 */
282	timeout_cpu = PCPU_GET(cpuid);
283	cc = CC_CPU(timeout_cpu);
284	cc->cc_callout = malloc(ncallout * sizeof(struct callout),
285	    M_CALLOUT, M_WAITOK);
286	callout_cpu_init(cc);
287}
288SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
289
290/*
291 * Initialize the per-cpu callout structures.
292 */
293static void
294callout_cpu_init(struct callout_cpu *cc)
295{
296	struct callout *c;
297	int i;
298
299	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
300	SLIST_INIT(&cc->cc_callfree);
301	cc->cc_callwheel = malloc(sizeof(struct callout_list) * callwheelsize,
302	    M_CALLOUT, M_WAITOK);
303	for (i = 0; i < callwheelsize; i++)
304		LIST_INIT(&cc->cc_callwheel[i]);
305	TAILQ_INIT(&cc->cc_expireq);
306	cc->cc_firstevent = INT64_MAX;
307	for (i = 0; i < 2; i++)
308		cc_cce_cleanup(cc, i);
309	if (cc->cc_callout == NULL)	/* Only cpu0 handles timeout(9) */
310		return;
311	for (i = 0; i < ncallout; i++) {
312		c = &cc->cc_callout[i];
313		callout_init(c, 0);
314		c->c_flags = CALLOUT_LOCAL_ALLOC;
315		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
316	}
317}
318
319#ifdef SMP
320/*
321 * Switches the cpu tied to a specific callout.
322 * The function expects a locked incoming callout cpu and returns with
323 * locked outcoming callout cpu.
324 */
325static struct callout_cpu *
326callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
327{
328	struct callout_cpu *new_cc;
329
330	MPASS(c != NULL && cc != NULL);
331	CC_LOCK_ASSERT(cc);
332
333	/*
334	 * Avoid interrupts and preemption firing after the callout cpu
335	 * is blocked in order to avoid deadlocks as the new thread
336	 * may be willing to acquire the callout cpu lock.
337	 */
338	c->c_cpu = CPUBLOCK;
339	spinlock_enter();
340	CC_UNLOCK(cc);
341	new_cc = CC_CPU(new_cpu);
342	CC_LOCK(new_cc);
343	spinlock_exit();
344	c->c_cpu = new_cpu;
345	return (new_cc);
346}
347#endif
348
349/*
350 * Start standard softclock thread.
351 */
352static void
353start_softclock(void *dummy)
354{
355	struct callout_cpu *cc;
356#ifdef SMP
357	int cpu;
358#endif
359
360	cc = CC_CPU(timeout_cpu);
361	if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK,
362	    INTR_MPSAFE, &cc->cc_cookie))
363		panic("died while creating standard software ithreads");
364#ifdef SMP
365	CPU_FOREACH(cpu) {
366		if (cpu == timeout_cpu)
367			continue;
368		cc = CC_CPU(cpu);
369		cc->cc_callout = NULL;	/* Only cpu0 handles timeout(9). */
370		callout_cpu_init(cc);
371		if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK,
372		    INTR_MPSAFE, &cc->cc_cookie))
373			panic("died while creating standard software ithreads");
374	}
375#endif
376}
377SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
378
379#define	CC_HASH_SHIFT	8
380
381static inline u_int
382callout_hash(sbintime_t sbt)
383{
384
385	return (sbt >> (32 - CC_HASH_SHIFT));
386}
387
388static inline u_int
389callout_get_bucket(sbintime_t sbt)
390{
391
392	return (callout_hash(sbt) & callwheelmask);
393}
394
395void
396callout_process(sbintime_t now)
397{
398	struct callout *tmp, *tmpn;
399	struct callout_cpu *cc;
400	struct callout_list *sc;
401	sbintime_t first, last, max, tmp_max;
402	uint32_t lookahead;
403	u_int firstb, lastb, nowb;
404#ifdef CALLOUT_PROFILING
405	int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
406#endif
407
408	cc = CC_SELF();
409	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
410
411	/* Compute the buckets of the last scan and present times. */
412	firstb = callout_hash(cc->cc_lastscan);
413	cc->cc_lastscan = now;
414	nowb = callout_hash(now);
415
416	/* Compute the last bucket and minimum time of the bucket after it. */
417	if (nowb == firstb)
418		lookahead = (SBT_1S / 16);
419	else if (nowb - firstb == 1)
420		lookahead = (SBT_1S / 8);
421	else
422		lookahead = (SBT_1S / 2);
423	first = last = now;
424	first += (lookahead / 2);
425	last += lookahead;
426	last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
427	lastb = callout_hash(last) - 1;
428	max = last;
429
430	/*
431	 * Check if we wrapped around the entire wheel from the last scan.
432	 * In case, we need to scan entirely the wheel for pending callouts.
433	 */
434	if (lastb - firstb >= callwheelsize) {
435		lastb = firstb + callwheelsize - 1;
436		if (nowb - firstb >= callwheelsize)
437			nowb = lastb;
438	}
439
440	/* Iterate callwheel from firstb to nowb and then up to lastb. */
441	do {
442		sc = &cc->cc_callwheel[firstb & callwheelmask];
443		tmp = LIST_FIRST(sc);
444		while (tmp != NULL) {
445			/* Run the callout if present time within allowed. */
446			if (tmp->c_time <= now) {
447				/*
448				 * Consumer told us the callout may be run
449				 * directly from hardware interrupt context.
450				 */
451				if (tmp->c_flags & CALLOUT_DIRECT) {
452#ifdef CALLOUT_PROFILING
453					++depth_dir;
454#endif
455					cc->cc_exec_next_dir =
456					    LIST_NEXT(tmp, c_links.le);
457					cc->cc_bucket = firstb & callwheelmask;
458					LIST_REMOVE(tmp, c_links.le);
459					softclock_call_cc(tmp, cc,
460#ifdef CALLOUT_PROFILING
461					    &mpcalls_dir, &lockcalls_dir, NULL,
462#endif
463					    1);
464					tmp = cc->cc_exec_next_dir;
465				} else {
466					tmpn = LIST_NEXT(tmp, c_links.le);
467					LIST_REMOVE(tmp, c_links.le);
468					TAILQ_INSERT_TAIL(&cc->cc_expireq,
469					    tmp, c_links.tqe);
470					tmp->c_flags |= CALLOUT_PROCESSED;
471					tmp = tmpn;
472				}
473				continue;
474			}
475			/* Skip events from distant future. */
476			if (tmp->c_time >= max)
477				goto next;
478			/*
479			 * Event minimal time is bigger than present maximal
480			 * time, so it cannot be aggregated.
481			 */
482			if (tmp->c_time > last) {
483				lastb = nowb;
484				goto next;
485			}
486			/* Update first and last time, respecting this event. */
487			if (tmp->c_time < first)
488				first = tmp->c_time;
489			tmp_max = tmp->c_time + tmp->c_precision;
490			if (tmp_max < last)
491				last = tmp_max;
492next:
493			tmp = LIST_NEXT(tmp, c_links.le);
494		}
495		/* Proceed with the next bucket. */
496		firstb++;
497		/*
498		 * Stop if we looked after present time and found
499		 * some event we can't execute at now.
500		 * Stop if we looked far enough into the future.
501		 */
502	} while (((int)(firstb - lastb)) <= 0);
503	cc->cc_firstevent = last;
504#ifndef NO_EVENTTIMERS
505	cpu_new_callout(curcpu, last, first);
506#endif
507#ifdef CALLOUT_PROFILING
508	avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
509	avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
510	avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
511#endif
512	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
513	/*
514	 * swi_sched acquires the thread lock, so we don't want to call it
515	 * with cc_lock held; incorrect locking order.
516	 */
517	if (!TAILQ_EMPTY(&cc->cc_expireq))
518		swi_sched(cc->cc_cookie, 0);
519}
520
521static struct callout_cpu *
522callout_lock(struct callout *c)
523{
524	struct callout_cpu *cc;
525	int cpu;
526
527	for (;;) {
528		cpu = c->c_cpu;
529#ifdef SMP
530		if (cpu == CPUBLOCK) {
531			while (c->c_cpu == CPUBLOCK)
532				cpu_spinwait();
533			continue;
534		}
535#endif
536		cc = CC_CPU(cpu);
537		CC_LOCK(cc);
538		if (cpu == c->c_cpu)
539			break;
540		CC_UNLOCK(cc);
541	}
542	return (cc);
543}
544
545static void
546callout_cc_add(struct callout *c, struct callout_cpu *cc,
547    sbintime_t sbt, sbintime_t precision, void (*func)(void *),
548    void *arg, int cpu, int flags)
549{
550	int bucket;
551
552	CC_LOCK_ASSERT(cc);
553	if (sbt < cc->cc_lastscan)
554		sbt = cc->cc_lastscan;
555	c->c_arg = arg;
556	c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
557	if (flags & C_DIRECT_EXEC)
558		c->c_flags |= CALLOUT_DIRECT;
559	c->c_flags &= ~CALLOUT_PROCESSED;
560	c->c_func = func;
561	c->c_time = sbt;
562	c->c_precision = precision;
563	bucket = callout_get_bucket(c->c_time);
564	CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
565	    c, (int)(c->c_precision >> 32),
566	    (u_int)(c->c_precision & 0xffffffff));
567	LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
568	if (cc->cc_bucket == bucket)
569		cc->cc_exec_next_dir = c;
570#ifndef NO_EVENTTIMERS
571	/*
572	 * Inform the eventtimers(4) subsystem there's a new callout
573	 * that has been inserted, but only if really required.
574	 */
575	sbt = c->c_time + c->c_precision;
576	if (sbt < cc->cc_firstevent) {
577		cc->cc_firstevent = sbt;
578		cpu_new_callout(cpu, sbt, c->c_time);
579	}
580#endif
581}
582
583static void
584callout_cc_del(struct callout *c, struct callout_cpu *cc)
585{
586
587	if ((c->c_flags & CALLOUT_LOCAL_ALLOC) == 0)
588		return;
589	c->c_func = NULL;
590	SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
591}
592
593static void
594softclock_call_cc(struct callout *c, struct callout_cpu *cc,
595#ifdef CALLOUT_PROFILING
596    int *mpcalls, int *lockcalls, int *gcalls,
597#endif
598    int direct)
599{
600	void (*c_func)(void *);
601	void *c_arg;
602	struct lock_class *class;
603	struct lock_object *c_lock;
604	int c_flags, sharedlock;
605#ifdef SMP
606	struct callout_cpu *new_cc;
607	void (*new_func)(void *);
608	void *new_arg;
609	int flags, new_cpu;
610	sbintime_t new_prec, new_time;
611#endif
612#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
613	sbintime_t sbt1, sbt2;
614	struct timespec ts2;
615	static sbintime_t maxdt = 2 * SBT_1MS;	/* 2 msec */
616	static timeout_t *lastfunc;
617#endif
618
619	KASSERT((c->c_flags & (CALLOUT_PENDING | CALLOUT_ACTIVE)) ==
620	    (CALLOUT_PENDING | CALLOUT_ACTIVE),
621	    ("softclock_call_cc: pend|act %p %x", c, c->c_flags));
622	class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
623	sharedlock = (c->c_flags & CALLOUT_SHAREDLOCK) ? 0 : 1;
624	c_lock = c->c_lock;
625	c_func = c->c_func;
626	c_arg = c->c_arg;
627	c_flags = c->c_flags;
628	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
629		c->c_flags = CALLOUT_LOCAL_ALLOC;
630	else
631		c->c_flags &= ~CALLOUT_PENDING;
632	cc->cc_exec_entity[direct].cc_curr = c;
633	cc->cc_exec_entity[direct].cc_cancel = false;
634	CC_UNLOCK(cc);
635	if (c_lock != NULL) {
636		class->lc_lock(c_lock, sharedlock);
637		/*
638		 * The callout may have been cancelled
639		 * while we switched locks.
640		 */
641		if (cc->cc_exec_entity[direct].cc_cancel) {
642			class->lc_unlock(c_lock);
643			goto skip;
644		}
645		/* The callout cannot be stopped now. */
646		cc->cc_exec_entity[direct].cc_cancel = true;
647		if (c_lock == &Giant.lock_object) {
648#ifdef CALLOUT_PROFILING
649			(*gcalls)++;
650#endif
651			CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
652			    c, c_func, c_arg);
653		} else {
654#ifdef CALLOUT_PROFILING
655			(*lockcalls)++;
656#endif
657			CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
658			    c, c_func, c_arg);
659		}
660	} else {
661#ifdef CALLOUT_PROFILING
662		(*mpcalls)++;
663#endif
664		CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
665		    c, c_func, c_arg);
666	}
667#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
668	sbt1 = sbinuptime();
669#endif
670	THREAD_NO_SLEEPING();
671	SDT_PROBE(callout_execute, kernel, , callout_start, c, 0, 0, 0, 0);
672	c_func(c_arg);
673	SDT_PROBE(callout_execute, kernel, , callout_end, c, 0, 0, 0, 0);
674	THREAD_SLEEPING_OK();
675#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
676	sbt2 = sbinuptime();
677	sbt2 -= sbt1;
678	if (sbt2 > maxdt) {
679		if (lastfunc != c_func || sbt2 > maxdt * 2) {
680			ts2 = sbttots(sbt2);
681			printf(
682		"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
683			    c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
684		}
685		maxdt = sbt2;
686		lastfunc = c_func;
687	}
688#endif
689	CTR1(KTR_CALLOUT, "callout %p finished", c);
690	if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
691		class->lc_unlock(c_lock);
692skip:
693	CC_LOCK(cc);
694	KASSERT(cc->cc_exec_entity[direct].cc_curr == c, ("mishandled cc_curr"));
695	cc->cc_exec_entity[direct].cc_curr = NULL;
696	if (cc->cc_exec_entity[direct].cc_waiting) {
697		/*
698		 * There is someone waiting for the
699		 * callout to complete.
700		 * If the callout was scheduled for
701		 * migration just cancel it.
702		 */
703		if (cc_cce_migrating(cc, direct)) {
704			cc_cce_cleanup(cc, direct);
705
706			/*
707			 * It should be assert here that the callout is not
708			 * destroyed but that is not easy.
709			 */
710			c->c_flags &= ~CALLOUT_DFRMIGRATION;
711		}
712		cc->cc_exec_entity[direct].cc_waiting = false;
713		CC_UNLOCK(cc);
714		wakeup(&cc->cc_exec_entity[direct].cc_waiting);
715		CC_LOCK(cc);
716	} else if (cc_cce_migrating(cc, direct)) {
717		KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0,
718		    ("Migrating legacy callout %p", c));
719#ifdef SMP
720		/*
721		 * If the callout was scheduled for
722		 * migration just perform it now.
723		 */
724		new_cpu = cc->cc_exec_entity[direct].ce_migration_cpu;
725		new_time = cc->cc_exec_entity[direct].ce_migration_time;
726		new_prec = cc->cc_exec_entity[direct].ce_migration_prec;
727		new_func = cc->cc_exec_entity[direct].ce_migration_func;
728		new_arg = cc->cc_exec_entity[direct].ce_migration_arg;
729		cc_cce_cleanup(cc, direct);
730
731		/*
732		 * It should be assert here that the callout is not destroyed
733		 * but that is not easy.
734		 *
735		 * As first thing, handle deferred callout stops.
736		 */
737		if ((c->c_flags & CALLOUT_DFRMIGRATION) == 0) {
738			CTR3(KTR_CALLOUT,
739			     "deferred cancelled %p func %p arg %p",
740			     c, new_func, new_arg);
741			callout_cc_del(c, cc);
742			return;
743		}
744		c->c_flags &= ~CALLOUT_DFRMIGRATION;
745
746		new_cc = callout_cpu_switch(c, cc, new_cpu);
747		flags = (direct) ? C_DIRECT_EXEC : 0;
748		callout_cc_add(c, new_cc, new_time, new_prec, new_func,
749		    new_arg, new_cpu, flags);
750		CC_UNLOCK(new_cc);
751		CC_LOCK(cc);
752#else
753		panic("migration should not happen");
754#endif
755	}
756	/*
757	 * If the current callout is locally allocated (from
758	 * timeout(9)) then put it on the freelist.
759	 *
760	 * Note: we need to check the cached copy of c_flags because
761	 * if it was not local, then it's not safe to deref the
762	 * callout pointer.
763	 */
764	KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0 ||
765	    c->c_flags == CALLOUT_LOCAL_ALLOC,
766	    ("corrupted callout"));
767	if (c_flags & CALLOUT_LOCAL_ALLOC)
768		callout_cc_del(c, cc);
769}
770
771/*
772 * The callout mechanism is based on the work of Adam M. Costello and
773 * George Varghese, published in a technical report entitled "Redesigning
774 * the BSD Callout and Timer Facilities" and modified slightly for inclusion
775 * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
776 * used in this implementation was published by G. Varghese and T. Lauck in
777 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
778 * the Efficient Implementation of a Timer Facility" in the Proceedings of
779 * the 11th ACM Annual Symposium on Operating Systems Principles,
780 * Austin, Texas Nov 1987.
781 */
782
783/*
784 * Software (low priority) clock interrupt.
785 * Run periodic events from timeout queue.
786 */
787void
788softclock(void *arg)
789{
790	struct callout_cpu *cc;
791	struct callout *c;
792#ifdef CALLOUT_PROFILING
793	int depth = 0, gcalls = 0, lockcalls = 0, mpcalls = 0;
794#endif
795
796	cc = (struct callout_cpu *)arg;
797	CC_LOCK(cc);
798	while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
799		TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
800		softclock_call_cc(c, cc,
801#ifdef CALLOUT_PROFILING
802		    &mpcalls, &lockcalls, &gcalls,
803#endif
804		    0);
805#ifdef CALLOUT_PROFILING
806		++depth;
807#endif
808	}
809#ifdef CALLOUT_PROFILING
810	avg_depth += (depth * 1000 - avg_depth) >> 8;
811	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
812	avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
813	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
814#endif
815	CC_UNLOCK(cc);
816}
817
818/*
819 * timeout --
820 *	Execute a function after a specified length of time.
821 *
822 * untimeout --
823 *	Cancel previous timeout function call.
824 *
825 * callout_handle_init --
826 *	Initialize a handle so that using it with untimeout is benign.
827 *
828 *	See AT&T BCI Driver Reference Manual for specification.  This
829 *	implementation differs from that one in that although an
830 *	identification value is returned from timeout, the original
831 *	arguments to timeout as well as the identifier are used to
832 *	identify entries for untimeout.
833 */
834struct callout_handle
835timeout(ftn, arg, to_ticks)
836	timeout_t *ftn;
837	void *arg;
838	int to_ticks;
839{
840	struct callout_cpu *cc;
841	struct callout *new;
842	struct callout_handle handle;
843
844	cc = CC_CPU(timeout_cpu);
845	CC_LOCK(cc);
846	/* Fill in the next free callout structure. */
847	new = SLIST_FIRST(&cc->cc_callfree);
848	if (new == NULL)
849		/* XXX Attempt to malloc first */
850		panic("timeout table full");
851	SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
852	callout_reset(new, to_ticks, ftn, arg);
853	handle.callout = new;
854	CC_UNLOCK(cc);
855
856	return (handle);
857}
858
859void
860untimeout(ftn, arg, handle)
861	timeout_t *ftn;
862	void *arg;
863	struct callout_handle handle;
864{
865	struct callout_cpu *cc;
866
867	/*
868	 * Check for a handle that was initialized
869	 * by callout_handle_init, but never used
870	 * for a real timeout.
871	 */
872	if (handle.callout == NULL)
873		return;
874
875	cc = callout_lock(handle.callout);
876	if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
877		callout_stop(handle.callout);
878	CC_UNLOCK(cc);
879}
880
881void
882callout_handle_init(struct callout_handle *handle)
883{
884	handle->callout = NULL;
885}
886
887/*
888 * New interface; clients allocate their own callout structures.
889 *
890 * callout_reset() - establish or change a timeout
891 * callout_stop() - disestablish a timeout
892 * callout_init() - initialize a callout structure so that it can
893 *	safely be passed to callout_reset() and callout_stop()
894 *
895 * <sys/callout.h> defines three convenience macros:
896 *
897 * callout_active() - returns truth if callout has not been stopped,
898 *	drained, or deactivated since the last time the callout was
899 *	reset.
900 * callout_pending() - returns truth if callout is still waiting for timeout
901 * callout_deactivate() - marks the callout as having been serviced
902 */
903int
904callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t precision,
905    void (*ftn)(void *), void *arg, int cpu, int flags)
906{
907	sbintime_t to_sbt, pr;
908	struct callout_cpu *cc;
909	int cancelled, direct;
910
911	cancelled = 0;
912	if (flags & C_ABSOLUTE) {
913		to_sbt = sbt;
914	} else {
915		if ((flags & C_HARDCLOCK) && (sbt < tick_sbt))
916			sbt = tick_sbt;
917		if ((flags & C_HARDCLOCK) ||
918#ifdef NO_EVENTTIMERS
919		    sbt >= sbt_timethreshold) {
920			to_sbt = getsbinuptime();
921
922			/* Add safety belt for the case of hz > 1000. */
923			to_sbt += tc_tick_sbt - tick_sbt;
924#else
925		    sbt >= sbt_tickthreshold) {
926			/*
927			 * Obtain the time of the last hardclock() call on
928			 * this CPU directly from the kern_clocksource.c.
929			 * This value is per-CPU, but it is equal for all
930			 * active ones.
931			 */
932#ifdef __LP64__
933			to_sbt = DPCPU_GET(hardclocktime);
934#else
935			spinlock_enter();
936			to_sbt = DPCPU_GET(hardclocktime);
937			spinlock_exit();
938#endif
939#endif
940			if ((flags & C_HARDCLOCK) == 0)
941				to_sbt += tick_sbt;
942		} else
943			to_sbt = sbinuptime();
944		to_sbt += sbt;
945		pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
946		    sbt >> C_PRELGET(flags));
947		if (pr > precision)
948			precision = pr;
949	}
950	/*
951	 * Don't allow migration of pre-allocated callouts lest they
952	 * become unbalanced.
953	 */
954	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
955		cpu = c->c_cpu;
956	direct = (c->c_flags & CALLOUT_DIRECT) != 0;
957	KASSERT(!direct || c->c_lock == NULL,
958	    ("%s: direct callout %p has lock", __func__, c));
959	cc = callout_lock(c);
960	if (cc->cc_exec_entity[direct].cc_curr == c) {
961		/*
962		 * We're being asked to reschedule a callout which is
963		 * currently in progress.  If there is a lock then we
964		 * can cancel the callout if it has not really started.
965		 */
966		if (c->c_lock != NULL && !cc->cc_exec_entity[direct].cc_cancel)
967			cancelled = cc->cc_exec_entity[direct].cc_cancel = true;
968		if (cc->cc_exec_entity[direct].cc_waiting) {
969			/*
970			 * Someone has called callout_drain to kill this
971			 * callout.  Don't reschedule.
972			 */
973			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
974			    cancelled ? "cancelled" : "failed to cancel",
975			    c, c->c_func, c->c_arg);
976			CC_UNLOCK(cc);
977			return (cancelled);
978		}
979	}
980	if (c->c_flags & CALLOUT_PENDING) {
981		if ((c->c_flags & CALLOUT_PROCESSED) == 0) {
982			if (cc->cc_exec_next_dir == c)
983				cc->cc_exec_next_dir = LIST_NEXT(c, c_links.le);
984			LIST_REMOVE(c, c_links.le);
985		} else
986			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
987		cancelled = 1;
988		c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
989	}
990
991#ifdef SMP
992	/*
993	 * If the callout must migrate try to perform it immediately.
994	 * If the callout is currently running, just defer the migration
995	 * to a more appropriate moment.
996	 */
997	if (c->c_cpu != cpu) {
998		if (cc->cc_exec_entity[direct].cc_curr == c) {
999			cc->cc_exec_entity[direct].ce_migration_cpu = cpu;
1000			cc->cc_exec_entity[direct].ce_migration_time
1001			    = to_sbt;
1002			cc->cc_exec_entity[direct].ce_migration_prec
1003			    = precision;
1004			cc->cc_exec_entity[direct].ce_migration_func = ftn;
1005			cc->cc_exec_entity[direct].ce_migration_arg = arg;
1006			c->c_flags |= CALLOUT_DFRMIGRATION;
1007			CTR6(KTR_CALLOUT,
1008		    "migration of %p func %p arg %p in %d.%08x to %u deferred",
1009			    c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1010			    (u_int)(to_sbt & 0xffffffff), cpu);
1011			CC_UNLOCK(cc);
1012			return (cancelled);
1013		}
1014		cc = callout_cpu_switch(c, cc, cpu);
1015	}
1016#endif
1017
1018	callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags);
1019	CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1020	    cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1021	    (u_int)(to_sbt & 0xffffffff));
1022	CC_UNLOCK(cc);
1023
1024	return (cancelled);
1025}
1026
1027/*
1028 * Common idioms that can be optimized in the future.
1029 */
1030int
1031callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1032{
1033	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1034}
1035
1036int
1037callout_schedule(struct callout *c, int to_ticks)
1038{
1039	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1040}
1041
1042int
1043_callout_stop_safe(c, safe)
1044	struct	callout *c;
1045	int	safe;
1046{
1047	struct callout_cpu *cc, *old_cc;
1048	struct lock_class *class;
1049	int direct, sq_locked, use_lock;
1050
1051	/*
1052	 * Some old subsystems don't hold Giant while running a callout_stop(),
1053	 * so just discard this check for the moment.
1054	 */
1055	if (!safe && c->c_lock != NULL) {
1056		if (c->c_lock == &Giant.lock_object)
1057			use_lock = mtx_owned(&Giant);
1058		else {
1059			use_lock = 1;
1060			class = LOCK_CLASS(c->c_lock);
1061			class->lc_assert(c->c_lock, LA_XLOCKED);
1062		}
1063	} else
1064		use_lock = 0;
1065	direct = (c->c_flags & CALLOUT_DIRECT) != 0;
1066	sq_locked = 0;
1067	old_cc = NULL;
1068again:
1069	cc = callout_lock(c);
1070
1071	/*
1072	 * If the callout was migrating while the callout cpu lock was
1073	 * dropped,  just drop the sleepqueue lock and check the states
1074	 * again.
1075	 */
1076	if (sq_locked != 0 && cc != old_cc) {
1077#ifdef SMP
1078		CC_UNLOCK(cc);
1079		sleepq_release(&old_cc->cc_exec_entity[direct].cc_waiting);
1080		sq_locked = 0;
1081		old_cc = NULL;
1082		goto again;
1083#else
1084		panic("migration should not happen");
1085#endif
1086	}
1087
1088	/*
1089	 * If the callout isn't pending, it's not on the queue, so
1090	 * don't attempt to remove it from the queue.  We can try to
1091	 * stop it by other means however.
1092	 */
1093	if (!(c->c_flags & CALLOUT_PENDING)) {
1094		c->c_flags &= ~CALLOUT_ACTIVE;
1095
1096		/*
1097		 * If it wasn't on the queue and it isn't the current
1098		 * callout, then we can't stop it, so just bail.
1099		 */
1100		if (cc->cc_exec_entity[direct].cc_curr != c) {
1101			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1102			    c, c->c_func, c->c_arg);
1103			CC_UNLOCK(cc);
1104			if (sq_locked)
1105				sleepq_release(
1106				    &cc->cc_exec_entity[direct].cc_waiting);
1107			return (0);
1108		}
1109
1110		if (safe) {
1111			/*
1112			 * The current callout is running (or just
1113			 * about to run) and blocking is allowed, so
1114			 * just wait for the current invocation to
1115			 * finish.
1116			 */
1117			while (cc->cc_exec_entity[direct].cc_curr == c) {
1118				/*
1119				 * Use direct calls to sleepqueue interface
1120				 * instead of cv/msleep in order to avoid
1121				 * a LOR between cc_lock and sleepqueue
1122				 * chain spinlocks.  This piece of code
1123				 * emulates a msleep_spin() call actually.
1124				 *
1125				 * If we already have the sleepqueue chain
1126				 * locked, then we can safely block.  If we
1127				 * don't already have it locked, however,
1128				 * we have to drop the cc_lock to lock
1129				 * it.  This opens several races, so we
1130				 * restart at the beginning once we have
1131				 * both locks.  If nothing has changed, then
1132				 * we will end up back here with sq_locked
1133				 * set.
1134				 */
1135				if (!sq_locked) {
1136					CC_UNLOCK(cc);
1137					sleepq_lock(
1138					&cc->cc_exec_entity[direct].cc_waiting);
1139					sq_locked = 1;
1140					old_cc = cc;
1141					goto again;
1142				}
1143
1144				/*
1145				 * Migration could be cancelled here, but
1146				 * as long as it is still not sure when it
1147				 * will be packed up, just let softclock()
1148				 * take care of it.
1149				 */
1150				cc->cc_exec_entity[direct].cc_waiting = true;
1151				DROP_GIANT();
1152				CC_UNLOCK(cc);
1153				sleepq_add(
1154				    &cc->cc_exec_entity[direct].cc_waiting,
1155				    &cc->cc_lock.lock_object, "codrain",
1156				    SLEEPQ_SLEEP, 0);
1157				sleepq_wait(
1158				    &cc->cc_exec_entity[direct].cc_waiting,
1159					     0);
1160				sq_locked = 0;
1161				old_cc = NULL;
1162
1163				/* Reacquire locks previously released. */
1164				PICKUP_GIANT();
1165				CC_LOCK(cc);
1166			}
1167		} else if (use_lock &&
1168			    !cc->cc_exec_entity[direct].cc_cancel) {
1169			/*
1170			 * The current callout is waiting for its
1171			 * lock which we hold.  Cancel the callout
1172			 * and return.  After our caller drops the
1173			 * lock, the callout will be skipped in
1174			 * softclock().
1175			 */
1176			cc->cc_exec_entity[direct].cc_cancel = true;
1177			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1178			    c, c->c_func, c->c_arg);
1179			KASSERT(!cc_cce_migrating(cc, direct),
1180			    ("callout wrongly scheduled for migration"));
1181			CC_UNLOCK(cc);
1182			KASSERT(!sq_locked, ("sleepqueue chain locked"));
1183			return (1);
1184		} else if ((c->c_flags & CALLOUT_DFRMIGRATION) != 0) {
1185			c->c_flags &= ~CALLOUT_DFRMIGRATION;
1186			CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1187			    c, c->c_func, c->c_arg);
1188			CC_UNLOCK(cc);
1189			return (1);
1190		}
1191		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1192		    c, c->c_func, c->c_arg);
1193		CC_UNLOCK(cc);
1194		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1195		return (0);
1196	}
1197	if (sq_locked)
1198		sleepq_release(&cc->cc_exec_entity[direct].cc_waiting);
1199
1200	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1201
1202	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1203	    c, c->c_func, c->c_arg);
1204	if ((c->c_flags & CALLOUT_PROCESSED) == 0) {
1205		if (cc->cc_exec_next_dir == c)
1206			cc->cc_exec_next_dir = LIST_NEXT(c, c_links.le);
1207		LIST_REMOVE(c, c_links.le);
1208	} else
1209		TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1210	callout_cc_del(c, cc);
1211
1212	CC_UNLOCK(cc);
1213	return (1);
1214}
1215
1216void
1217callout_init(c, mpsafe)
1218	struct	callout *c;
1219	int mpsafe;
1220{
1221	bzero(c, sizeof *c);
1222	if (mpsafe) {
1223		c->c_lock = NULL;
1224		c->c_flags = CALLOUT_RETURNUNLOCKED;
1225	} else {
1226		c->c_lock = &Giant.lock_object;
1227		c->c_flags = 0;
1228	}
1229	c->c_cpu = timeout_cpu;
1230}
1231
1232void
1233_callout_init_lock(c, lock, flags)
1234	struct	callout *c;
1235	struct	lock_object *lock;
1236	int flags;
1237{
1238	bzero(c, sizeof *c);
1239	c->c_lock = lock;
1240	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1241	    ("callout_init_lock: bad flags %d", flags));
1242	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1243	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1244	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
1245	    (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
1246	    __func__));
1247	c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1248	c->c_cpu = timeout_cpu;
1249}
1250
1251#ifdef APM_FIXUP_CALLTODO
1252/*
1253 * Adjust the kernel calltodo timeout list.  This routine is used after
1254 * an APM resume to recalculate the calltodo timer list values with the
1255 * number of hz's we have been sleeping.  The next hardclock() will detect
1256 * that there are fired timers and run softclock() to execute them.
1257 *
1258 * Please note, I have not done an exhaustive analysis of what code this
1259 * might break.  I am motivated to have my select()'s and alarm()'s that
1260 * have expired during suspend firing upon resume so that the applications
1261 * which set the timer can do the maintanence the timer was for as close
1262 * as possible to the originally intended time.  Testing this code for a
1263 * week showed that resuming from a suspend resulted in 22 to 25 timers
1264 * firing, which seemed independant on whether the suspend was 2 hours or
1265 * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
1266 */
1267void
1268adjust_timeout_calltodo(time_change)
1269    struct timeval *time_change;
1270{
1271	register struct callout *p;
1272	unsigned long delta_ticks;
1273
1274	/*
1275	 * How many ticks were we asleep?
1276	 * (stolen from tvtohz()).
1277	 */
1278
1279	/* Don't do anything */
1280	if (time_change->tv_sec < 0)
1281		return;
1282	else if (time_change->tv_sec <= LONG_MAX / 1000000)
1283		delta_ticks = (time_change->tv_sec * 1000000 +
1284			       time_change->tv_usec + (tick - 1)) / tick + 1;
1285	else if (time_change->tv_sec <= LONG_MAX / hz)
1286		delta_ticks = time_change->tv_sec * hz +
1287			      (time_change->tv_usec + (tick - 1)) / tick + 1;
1288	else
1289		delta_ticks = LONG_MAX;
1290
1291	if (delta_ticks > INT_MAX)
1292		delta_ticks = INT_MAX;
1293
1294	/*
1295	 * Now rip through the timer calltodo list looking for timers
1296	 * to expire.
1297	 */
1298
1299	/* don't collide with softclock() */
1300	CC_LOCK(cc);
1301	for (p = calltodo.c_next; p != NULL; p = p->c_next) {
1302		p->c_time -= delta_ticks;
1303
1304		/* Break if the timer had more time on it than delta_ticks */
1305		if (p->c_time > 0)
1306			break;
1307
1308		/* take back the ticks the timer didn't use (p->c_time <= 0) */
1309		delta_ticks = -p->c_time;
1310	}
1311	CC_UNLOCK(cc);
1312
1313	return;
1314}
1315#endif /* APM_FIXUP_CALLTODO */
1316
1317static int
1318flssbt(sbintime_t sbt)
1319{
1320
1321	sbt += (uint64_t)sbt >> 1;
1322	if (sizeof(long) >= sizeof(sbintime_t))
1323		return (flsl(sbt));
1324	if (sbt >= SBT_1S)
1325		return (flsl(((uint64_t)sbt) >> 32) + 32);
1326	return (flsl(sbt));
1327}
1328
1329/*
1330 * Dump immediate statistic snapshot of the scheduled callouts.
1331 */
1332static int
1333sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1334{
1335	struct callout *tmp;
1336	struct callout_cpu *cc;
1337	struct callout_list *sc;
1338	sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1339	int ct[64], cpr[64], ccpbk[32];
1340	int error, val, i, count, tcum, pcum, maxc, c, medc;
1341#ifdef SMP
1342	int cpu;
1343#endif
1344
1345	val = 0;
1346	error = sysctl_handle_int(oidp, &val, 0, req);
1347	if (error != 0 || req->newptr == NULL)
1348		return (error);
1349	count = maxc = 0;
1350	st = spr = maxt = maxpr = 0;
1351	bzero(ccpbk, sizeof(ccpbk));
1352	bzero(ct, sizeof(ct));
1353	bzero(cpr, sizeof(cpr));
1354	now = sbinuptime();
1355#ifdef SMP
1356	CPU_FOREACH(cpu) {
1357		cc = CC_CPU(cpu);
1358#else
1359		cc = CC_CPU(timeout_cpu);
1360#endif
1361		CC_LOCK(cc);
1362		for (i = 0; i < callwheelsize; i++) {
1363			sc = &cc->cc_callwheel[i];
1364			c = 0;
1365			LIST_FOREACH(tmp, sc, c_links.le) {
1366				c++;
1367				t = tmp->c_time - now;
1368				if (t < 0)
1369					t = 0;
1370				st += t / SBT_1US;
1371				spr += tmp->c_precision / SBT_1US;
1372				if (t > maxt)
1373					maxt = t;
1374				if (tmp->c_precision > maxpr)
1375					maxpr = tmp->c_precision;
1376				ct[flssbt(t)]++;
1377				cpr[flssbt(tmp->c_precision)]++;
1378			}
1379			if (c > maxc)
1380				maxc = c;
1381			ccpbk[fls(c + c / 2)]++;
1382			count += c;
1383		}
1384		CC_UNLOCK(cc);
1385#ifdef SMP
1386	}
1387#endif
1388
1389	for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1390		tcum += ct[i];
1391	medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1392	for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1393		pcum += cpr[i];
1394	medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1395	for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1396		c += ccpbk[i];
1397	medc = (i >= 2) ? (1 << (i - 2)) : 0;
1398
1399	printf("Scheduled callouts statistic snapshot:\n");
1400	printf("  Callouts: %6d  Buckets: %6d*%-3d  Bucket size: 0.%06ds\n",
1401	    count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1402	printf("  C/Bk: med %5d         avg %6d.%06jd  max %6d\n",
1403	    medc,
1404	    count / callwheelsize / mp_ncpus,
1405	    (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1406	    maxc);
1407	printf("  Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1408	    medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1409	    (st / count) / 1000000, (st / count) % 1000000,
1410	    maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1411	printf("  Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1412	    medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1413	    (spr / count) / 1000000, (spr / count) % 1000000,
1414	    maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1415	printf("  Distribution:       \tbuckets\t   time\t   tcum\t"
1416	    "   prec\t   pcum\n");
1417	for (i = 0, tcum = pcum = 0; i < 64; i++) {
1418		if (ct[i] == 0 && cpr[i] == 0)
1419			continue;
1420		t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1421		tcum += ct[i];
1422		pcum += cpr[i];
1423		printf("  %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1424		    t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1425		    i - 1 - (32 - CC_HASH_SHIFT),
1426		    ct[i], tcum, cpr[i], pcum);
1427	}
1428	return (error);
1429}
1430SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1431    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1432    0, 0, sysctl_kern_callout_stat, "I",
1433    "Dump immediate statistic snapshot of the scheduled callouts");
1434