kern_timeout.c revision 242402
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_timeout.c 242402 2012-10-31 18:07:18Z attilio $");
39
40#include "opt_kdtrace.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/bus.h>
45#include <sys/callout.h>
46#include <sys/condvar.h>
47#include <sys/interrupt.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/malloc.h>
52#include <sys/mutex.h>
53#include <sys/proc.h>
54#include <sys/sdt.h>
55#include <sys/sleepqueue.h>
56#include <sys/sysctl.h>
57#include <sys/smp.h>
58
59#ifdef SMP
60#include <machine/cpu.h>
61#endif
62
63SDT_PROVIDER_DEFINE(callout_execute);
64SDT_PROBE_DEFINE(callout_execute, kernel, , callout_start, callout-start);
65SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_start, 0,
66    "struct callout *");
67SDT_PROBE_DEFINE(callout_execute, kernel, , callout_end, callout-end);
68SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_end, 0,
69    "struct callout *");
70
71static int avg_depth;
72SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
73    "Average number of items examined per softclock call. Units = 1/1000");
74static int avg_gcalls;
75SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
76    "Average number of Giant callouts made per softclock call. Units = 1/1000");
77static int avg_lockcalls;
78SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
79    "Average number of lock callouts made per softclock call. Units = 1/1000");
80static int avg_mpcalls;
81SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
82    "Average number of MP callouts made per softclock call. Units = 1/1000");
83/*
84 * TODO:
85 *	allocate more timeout table slots when table overflows.
86 */
87int callwheelsize, callwheelbits, callwheelmask;
88
89/*
90 * The callout cpu migration entity represents informations necessary for
91 * describing the migrating callout to the new callout cpu.
92 * The cached informations are very important for deferring migration when
93 * the migrating callout is already running.
94 */
95struct cc_mig_ent {
96#ifdef SMP
97	void	(*ce_migration_func)(void *);
98	void	*ce_migration_arg;
99	int	ce_migration_cpu;
100	int	ce_migration_ticks;
101#endif
102};
103
104/*
105 * There is one struct callout_cpu per cpu, holding all relevant
106 * state for the callout processing thread on the individual CPU.
107 * In particular:
108 *	cc_ticks is incremented once per tick in callout_cpu().
109 *	It tracks the global 'ticks' but in a way that the individual
110 *	threads should not worry about races in the order in which
111 *	hardclock() and hardclock_cpu() run on the various CPUs.
112 *	cc_softclock is advanced in callout_cpu() to point to the
113 *	first entry in cc_callwheel that may need handling. In turn,
114 *	a softclock() is scheduled so it can serve the various entries i
115 *	such that cc_softclock <= i <= cc_ticks .
116 *	XXX maybe cc_softclock and cc_ticks should be volatile ?
117 *
118 *	cc_ticks is also used in callout_reset_cpu() to determine
119 *	when the callout should be served.
120 */
121struct callout_cpu {
122	struct mtx_padalign	cc_lock;
123	struct cc_mig_ent	cc_migrating_entity;
124	struct callout		*cc_callout;
125	struct callout_tailq	*cc_callwheel;
126	struct callout_list	cc_callfree;
127	struct callout		*cc_next;
128	struct callout		*cc_curr;
129	void			*cc_cookie;
130	int 			cc_ticks;
131	int 			cc_softticks;
132	int			cc_cancel;
133	int			cc_waiting;
134	int 			cc_firsttick;
135};
136
137#ifdef SMP
138#define	cc_migration_func	cc_migrating_entity.ce_migration_func
139#define	cc_migration_arg	cc_migrating_entity.ce_migration_arg
140#define	cc_migration_cpu	cc_migrating_entity.ce_migration_cpu
141#define	cc_migration_ticks	cc_migrating_entity.ce_migration_ticks
142
143struct callout_cpu cc_cpu[MAXCPU];
144#define	CPUBLOCK	MAXCPU
145#define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
146#define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
147#else
148struct callout_cpu cc_cpu;
149#define	CC_CPU(cpu)	&cc_cpu
150#define	CC_SELF()	&cc_cpu
151#endif
152#define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
153#define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
154#define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
155
156static int timeout_cpu;
157void (*callout_new_inserted)(int cpu, int ticks) = NULL;
158
159static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
160
161/**
162 * Locked by cc_lock:
163 *   cc_curr         - If a callout is in progress, it is curr_callout.
164 *                     If curr_callout is non-NULL, threads waiting in
165 *                     callout_drain() will be woken up as soon as the
166 *                     relevant callout completes.
167 *   cc_cancel       - Changing to 1 with both callout_lock and c_lock held
168 *                     guarantees that the current callout will not run.
169 *                     The softclock() function sets this to 0 before it
170 *                     drops callout_lock to acquire c_lock, and it calls
171 *                     the handler only if curr_cancelled is still 0 after
172 *                     c_lock is successfully acquired.
173 *   cc_waiting      - If a thread is waiting in callout_drain(), then
174 *                     callout_wait is nonzero.  Set only when
175 *                     curr_callout is non-NULL.
176 */
177
178/*
179 * Resets the migration entity tied to a specific callout cpu.
180 */
181static void
182cc_cme_cleanup(struct callout_cpu *cc)
183{
184
185#ifdef SMP
186	cc->cc_migration_cpu = CPUBLOCK;
187	cc->cc_migration_ticks = 0;
188	cc->cc_migration_func = NULL;
189	cc->cc_migration_arg = NULL;
190#endif
191}
192
193/*
194 * Checks if migration is requested by a specific callout cpu.
195 */
196static int
197cc_cme_migrating(struct callout_cpu *cc)
198{
199
200#ifdef SMP
201	return (cc->cc_migration_cpu != CPUBLOCK);
202#else
203	return (0);
204#endif
205}
206
207/*
208 * kern_timeout_callwheel_alloc() - kernel low level callwheel initialization
209 *
210 *	This code is called very early in the kernel initialization sequence,
211 *	and may be called more then once.
212 */
213caddr_t
214kern_timeout_callwheel_alloc(caddr_t v)
215{
216	struct callout_cpu *cc;
217
218	timeout_cpu = PCPU_GET(cpuid);
219	cc = CC_CPU(timeout_cpu);
220	/*
221	 * Calculate callout wheel size
222	 */
223	for (callwheelsize = 1, callwheelbits = 0;
224	     callwheelsize < ncallout;
225	     callwheelsize <<= 1, ++callwheelbits)
226		;
227	callwheelmask = callwheelsize - 1;
228
229	cc->cc_callout = (struct callout *)v;
230	v = (caddr_t)(cc->cc_callout + ncallout);
231	cc->cc_callwheel = (struct callout_tailq *)v;
232	v = (caddr_t)(cc->cc_callwheel + callwheelsize);
233	return(v);
234}
235
236static void
237callout_cpu_init(struct callout_cpu *cc)
238{
239	struct callout *c;
240	int i;
241
242	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
243	SLIST_INIT(&cc->cc_callfree);
244	for (i = 0; i < callwheelsize; i++) {
245		TAILQ_INIT(&cc->cc_callwheel[i]);
246	}
247	cc_cme_cleanup(cc);
248	if (cc->cc_callout == NULL)
249		return;
250	for (i = 0; i < ncallout; i++) {
251		c = &cc->cc_callout[i];
252		callout_init(c, 0);
253		c->c_flags = CALLOUT_LOCAL_ALLOC;
254		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
255	}
256}
257
258#ifdef SMP
259/*
260 * Switches the cpu tied to a specific callout.
261 * The function expects a locked incoming callout cpu and returns with
262 * locked outcoming callout cpu.
263 */
264static struct callout_cpu *
265callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
266{
267	struct callout_cpu *new_cc;
268
269	MPASS(c != NULL && cc != NULL);
270	CC_LOCK_ASSERT(cc);
271
272	/*
273	 * Avoid interrupts and preemption firing after the callout cpu
274	 * is blocked in order to avoid deadlocks as the new thread
275	 * may be willing to acquire the callout cpu lock.
276	 */
277	c->c_cpu = CPUBLOCK;
278	spinlock_enter();
279	CC_UNLOCK(cc);
280	new_cc = CC_CPU(new_cpu);
281	CC_LOCK(new_cc);
282	spinlock_exit();
283	c->c_cpu = new_cpu;
284	return (new_cc);
285}
286#endif
287
288/*
289 * kern_timeout_callwheel_init() - initialize previously reserved callwheel
290 *				   space.
291 *
292 *	This code is called just once, after the space reserved for the
293 *	callout wheel has been finalized.
294 */
295void
296kern_timeout_callwheel_init(void)
297{
298	callout_cpu_init(CC_CPU(timeout_cpu));
299}
300
301/*
302 * Start standard softclock thread.
303 */
304static void
305start_softclock(void *dummy)
306{
307	struct callout_cpu *cc;
308#ifdef SMP
309	int cpu;
310#endif
311
312	cc = CC_CPU(timeout_cpu);
313	if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK,
314	    INTR_MPSAFE, &cc->cc_cookie))
315		panic("died while creating standard software ithreads");
316#ifdef SMP
317	CPU_FOREACH(cpu) {
318		if (cpu == timeout_cpu)
319			continue;
320		cc = CC_CPU(cpu);
321		if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK,
322		    INTR_MPSAFE, &cc->cc_cookie))
323			panic("died while creating standard software ithreads");
324		cc->cc_callout = NULL;	/* Only cpu0 handles timeout(). */
325		cc->cc_callwheel = malloc(
326		    sizeof(struct callout_tailq) * callwheelsize, M_CALLOUT,
327		    M_WAITOK);
328		callout_cpu_init(cc);
329	}
330#endif
331}
332
333SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
334
335void
336callout_tick(void)
337{
338	struct callout_cpu *cc;
339	int need_softclock;
340	int bucket;
341
342	/*
343	 * Process callouts at a very low cpu priority, so we don't keep the
344	 * relatively high clock interrupt priority any longer than necessary.
345	 */
346	need_softclock = 0;
347	cc = CC_SELF();
348	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
349	cc->cc_firsttick = cc->cc_ticks = ticks;
350	for (; (cc->cc_softticks - cc->cc_ticks) <= 0; cc->cc_softticks++) {
351		bucket = cc->cc_softticks & callwheelmask;
352		if (!TAILQ_EMPTY(&cc->cc_callwheel[bucket])) {
353			need_softclock = 1;
354			break;
355		}
356	}
357	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
358	/*
359	 * swi_sched acquires the thread lock, so we don't want to call it
360	 * with cc_lock held; incorrect locking order.
361	 */
362	if (need_softclock)
363		swi_sched(cc->cc_cookie, 0);
364}
365
366int
367callout_tickstofirst(int limit)
368{
369	struct callout_cpu *cc;
370	struct callout *c;
371	struct callout_tailq *sc;
372	int curticks;
373	int skip = 1;
374
375	cc = CC_SELF();
376	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
377	curticks = cc->cc_ticks;
378	while( skip < ncallout && skip < limit ) {
379		sc = &cc->cc_callwheel[ (curticks+skip) & callwheelmask ];
380		/* search scanning ticks */
381		TAILQ_FOREACH( c, sc, c_links.tqe ){
382			if (c->c_time - curticks <= ncallout)
383				goto out;
384		}
385		skip++;
386	}
387out:
388	cc->cc_firsttick = curticks + skip;
389	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
390	return (skip);
391}
392
393static struct callout_cpu *
394callout_lock(struct callout *c)
395{
396	struct callout_cpu *cc;
397	int cpu;
398
399	for (;;) {
400		cpu = c->c_cpu;
401#ifdef SMP
402		if (cpu == CPUBLOCK) {
403			while (c->c_cpu == CPUBLOCK)
404				cpu_spinwait();
405			continue;
406		}
407#endif
408		cc = CC_CPU(cpu);
409		CC_LOCK(cc);
410		if (cpu == c->c_cpu)
411			break;
412		CC_UNLOCK(cc);
413	}
414	return (cc);
415}
416
417static void
418callout_cc_add(struct callout *c, struct callout_cpu *cc, int to_ticks,
419    void (*func)(void *), void *arg, int cpu)
420{
421
422	CC_LOCK_ASSERT(cc);
423
424	if (to_ticks <= 0)
425		to_ticks = 1;
426	c->c_arg = arg;
427	c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
428	c->c_func = func;
429	c->c_time = ticks + to_ticks;
430	TAILQ_INSERT_TAIL(&cc->cc_callwheel[c->c_time & callwheelmask],
431	    c, c_links.tqe);
432	if ((c->c_time - cc->cc_firsttick) < 0 &&
433	    callout_new_inserted != NULL) {
434		cc->cc_firsttick = c->c_time;
435		(*callout_new_inserted)(cpu,
436		    to_ticks + (ticks - cc->cc_ticks));
437	}
438}
439
440static void
441callout_cc_del(struct callout *c, struct callout_cpu *cc)
442{
443
444	if (cc->cc_next == c)
445		cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
446	if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
447		c->c_func = NULL;
448		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
449	}
450}
451
452static struct callout *
453softclock_call_cc(struct callout *c, struct callout_cpu *cc, int *mpcalls,
454    int *lockcalls, int *gcalls)
455{
456	void (*c_func)(void *);
457	void *c_arg;
458	struct lock_class *class;
459	struct lock_object *c_lock;
460	int c_flags, sharedlock;
461#ifdef SMP
462	struct callout_cpu *new_cc;
463	void (*new_func)(void *);
464	void *new_arg;
465	int new_cpu, new_ticks;
466#endif
467#ifdef DIAGNOSTIC
468	struct bintime bt1, bt2;
469	struct timespec ts2;
470	static uint64_t maxdt = 36893488147419102LL;	/* 2 msec */
471	static timeout_t *lastfunc;
472#endif
473
474	cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
475	class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
476	sharedlock = (c->c_flags & CALLOUT_SHAREDLOCK) ? 0 : 1;
477	c_lock = c->c_lock;
478	c_func = c->c_func;
479	c_arg = c->c_arg;
480	c_flags = c->c_flags;
481	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
482		c->c_flags = CALLOUT_LOCAL_ALLOC;
483	else
484		c->c_flags &= ~CALLOUT_PENDING;
485	cc->cc_curr = c;
486	cc->cc_cancel = 0;
487	CC_UNLOCK(cc);
488	if (c_lock != NULL) {
489		class->lc_lock(c_lock, sharedlock);
490		/*
491		 * The callout may have been cancelled
492		 * while we switched locks.
493		 */
494		if (cc->cc_cancel) {
495			class->lc_unlock(c_lock);
496			goto skip;
497		}
498		/* The callout cannot be stopped now. */
499		cc->cc_cancel = 1;
500
501		if (c_lock == &Giant.lock_object) {
502			(*gcalls)++;
503			CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
504			    c, c_func, c_arg);
505		} else {
506			(*lockcalls)++;
507			CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
508			    c, c_func, c_arg);
509		}
510	} else {
511		(*mpcalls)++;
512		CTR3(KTR_CALLOUT, "callout mpsafe %p func %p arg %p",
513		    c, c_func, c_arg);
514	}
515#ifdef DIAGNOSTIC
516	binuptime(&bt1);
517#endif
518	THREAD_NO_SLEEPING();
519	SDT_PROBE(callout_execute, kernel, , callout_start, c, 0, 0, 0, 0);
520	c_func(c_arg);
521	SDT_PROBE(callout_execute, kernel, , callout_end, c, 0, 0, 0, 0);
522	THREAD_SLEEPING_OK();
523#ifdef DIAGNOSTIC
524	binuptime(&bt2);
525	bintime_sub(&bt2, &bt1);
526	if (bt2.frac > maxdt) {
527		if (lastfunc != c_func || bt2.frac > maxdt * 2) {
528			bintime2timespec(&bt2, &ts2);
529			printf(
530		"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
531			    c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
532		}
533		maxdt = bt2.frac;
534		lastfunc = c_func;
535	}
536#endif
537	CTR1(KTR_CALLOUT, "callout %p finished", c);
538	if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
539		class->lc_unlock(c_lock);
540skip:
541	CC_LOCK(cc);
542	/*
543	 * If the current callout is locally allocated (from
544	 * timeout(9)) then put it on the freelist.
545	 *
546	 * Note: we need to check the cached copy of c_flags because
547	 * if it was not local, then it's not safe to deref the
548	 * callout pointer.
549	 */
550	if (c_flags & CALLOUT_LOCAL_ALLOC) {
551		KASSERT(c->c_flags == CALLOUT_LOCAL_ALLOC,
552		    ("corrupted callout"));
553		c->c_func = NULL;
554		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
555	}
556	cc->cc_curr = NULL;
557	if (cc->cc_waiting) {
558		/*
559		 * There is someone waiting for the
560		 * callout to complete.
561		 * If the callout was scheduled for
562		 * migration just cancel it.
563		 */
564		if (cc_cme_migrating(cc))
565			cc_cme_cleanup(cc);
566		cc->cc_waiting = 0;
567		CC_UNLOCK(cc);
568		wakeup(&cc->cc_waiting);
569		CC_LOCK(cc);
570	} else if (cc_cme_migrating(cc)) {
571#ifdef SMP
572		/*
573		 * If the callout was scheduled for
574		 * migration just perform it now.
575		 */
576		new_cpu = cc->cc_migration_cpu;
577		new_ticks = cc->cc_migration_ticks;
578		new_func = cc->cc_migration_func;
579		new_arg = cc->cc_migration_arg;
580		cc_cme_cleanup(cc);
581
582		/*
583		 * Handle deferred callout stops
584		 */
585		if ((c->c_flags & CALLOUT_DFRMIGRATION) == 0) {
586			CTR3(KTR_CALLOUT,
587			     "deferred cancelled %p func %p arg %p",
588			     c, new_func, new_arg);
589			callout_cc_del(c, cc);
590			goto nextc;
591		}
592
593		c->c_flags &= ~CALLOUT_DFRMIGRATION;
594
595		/*
596		 * It should be assert here that the
597		 * callout is not destroyed but that
598		 * is not easy.
599		 */
600		new_cc = callout_cpu_switch(c, cc, new_cpu);
601		callout_cc_add(c, new_cc, new_ticks, new_func, new_arg,
602		    new_cpu);
603		CC_UNLOCK(new_cc);
604		CC_LOCK(cc);
605#else
606		panic("migration should not happen");
607#endif
608	}
609#ifdef SMP
610nextc:
611#endif
612	return (cc->cc_next);
613}
614
615/*
616 * The callout mechanism is based on the work of Adam M. Costello and
617 * George Varghese, published in a technical report entitled "Redesigning
618 * the BSD Callout and Timer Facilities" and modified slightly for inclusion
619 * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
620 * used in this implementation was published by G. Varghese and T. Lauck in
621 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
622 * the Efficient Implementation of a Timer Facility" in the Proceedings of
623 * the 11th ACM Annual Symposium on Operating Systems Principles,
624 * Austin, Texas Nov 1987.
625 */
626
627/*
628 * Software (low priority) clock interrupt.
629 * Run periodic events from timeout queue.
630 */
631void
632softclock(void *arg)
633{
634	struct callout_cpu *cc;
635	struct callout *c;
636	struct callout_tailq *bucket;
637	int curticks;
638	int steps;	/* #steps since we last allowed interrupts */
639	int depth;
640	int mpcalls;
641	int lockcalls;
642	int gcalls;
643
644#ifndef MAX_SOFTCLOCK_STEPS
645#define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */
646#endif /* MAX_SOFTCLOCK_STEPS */
647
648	mpcalls = 0;
649	lockcalls = 0;
650	gcalls = 0;
651	depth = 0;
652	steps = 0;
653	cc = (struct callout_cpu *)arg;
654	CC_LOCK(cc);
655	while (cc->cc_softticks - 1 != cc->cc_ticks) {
656		/*
657		 * cc_softticks may be modified by hard clock, so cache
658		 * it while we work on a given bucket.
659		 */
660		curticks = cc->cc_softticks;
661		cc->cc_softticks++;
662		bucket = &cc->cc_callwheel[curticks & callwheelmask];
663		c = TAILQ_FIRST(bucket);
664		while (c != NULL) {
665			depth++;
666			if (c->c_time != curticks) {
667				c = TAILQ_NEXT(c, c_links.tqe);
668				++steps;
669				if (steps >= MAX_SOFTCLOCK_STEPS) {
670					cc->cc_next = c;
671					/* Give interrupts a chance. */
672					CC_UNLOCK(cc);
673					;	/* nothing */
674					CC_LOCK(cc);
675					c = cc->cc_next;
676					steps = 0;
677				}
678			} else {
679				TAILQ_REMOVE(bucket, c, c_links.tqe);
680				c = softclock_call_cc(c, cc, &mpcalls,
681				    &lockcalls, &gcalls);
682				steps = 0;
683			}
684		}
685	}
686	avg_depth += (depth * 1000 - avg_depth) >> 8;
687	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
688	avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
689	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
690	cc->cc_next = NULL;
691	CC_UNLOCK(cc);
692}
693
694/*
695 * timeout --
696 *	Execute a function after a specified length of time.
697 *
698 * untimeout --
699 *	Cancel previous timeout function call.
700 *
701 * callout_handle_init --
702 *	Initialize a handle so that using it with untimeout is benign.
703 *
704 *	See AT&T BCI Driver Reference Manual for specification.  This
705 *	implementation differs from that one in that although an
706 *	identification value is returned from timeout, the original
707 *	arguments to timeout as well as the identifier are used to
708 *	identify entries for untimeout.
709 */
710struct callout_handle
711timeout(ftn, arg, to_ticks)
712	timeout_t *ftn;
713	void *arg;
714	int to_ticks;
715{
716	struct callout_cpu *cc;
717	struct callout *new;
718	struct callout_handle handle;
719
720	cc = CC_CPU(timeout_cpu);
721	CC_LOCK(cc);
722	/* Fill in the next free callout structure. */
723	new = SLIST_FIRST(&cc->cc_callfree);
724	if (new == NULL)
725		/* XXX Attempt to malloc first */
726		panic("timeout table full");
727	SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
728	callout_reset(new, to_ticks, ftn, arg);
729	handle.callout = new;
730	CC_UNLOCK(cc);
731
732	return (handle);
733}
734
735void
736untimeout(ftn, arg, handle)
737	timeout_t *ftn;
738	void *arg;
739	struct callout_handle handle;
740{
741	struct callout_cpu *cc;
742
743	/*
744	 * Check for a handle that was initialized
745	 * by callout_handle_init, but never used
746	 * for a real timeout.
747	 */
748	if (handle.callout == NULL)
749		return;
750
751	cc = callout_lock(handle.callout);
752	if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
753		callout_stop(handle.callout);
754	CC_UNLOCK(cc);
755}
756
757void
758callout_handle_init(struct callout_handle *handle)
759{
760	handle->callout = NULL;
761}
762
763/*
764 * New interface; clients allocate their own callout structures.
765 *
766 * callout_reset() - establish or change a timeout
767 * callout_stop() - disestablish a timeout
768 * callout_init() - initialize a callout structure so that it can
769 *	safely be passed to callout_reset() and callout_stop()
770 *
771 * <sys/callout.h> defines three convenience macros:
772 *
773 * callout_active() - returns truth if callout has not been stopped,
774 *	drained, or deactivated since the last time the callout was
775 *	reset.
776 * callout_pending() - returns truth if callout is still waiting for timeout
777 * callout_deactivate() - marks the callout as having been serviced
778 */
779int
780callout_reset_on(struct callout *c, int to_ticks, void (*ftn)(void *),
781    void *arg, int cpu)
782{
783	struct callout_cpu *cc;
784	int cancelled = 0;
785
786	/*
787	 * Don't allow migration of pre-allocated callouts lest they
788	 * become unbalanced.
789	 */
790	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
791		cpu = c->c_cpu;
792	cc = callout_lock(c);
793	if (cc->cc_curr == c) {
794		/*
795		 * We're being asked to reschedule a callout which is
796		 * currently in progress.  If there is a lock then we
797		 * can cancel the callout if it has not really started.
798		 */
799		if (c->c_lock != NULL && !cc->cc_cancel)
800			cancelled = cc->cc_cancel = 1;
801		if (cc->cc_waiting) {
802			/*
803			 * Someone has called callout_drain to kill this
804			 * callout.  Don't reschedule.
805			 */
806			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
807			    cancelled ? "cancelled" : "failed to cancel",
808			    c, c->c_func, c->c_arg);
809			CC_UNLOCK(cc);
810			return (cancelled);
811		}
812	}
813	if (c->c_flags & CALLOUT_PENDING) {
814		if (cc->cc_next == c) {
815			cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
816		}
817		TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
818		    c_links.tqe);
819
820		cancelled = 1;
821		c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
822	}
823
824#ifdef SMP
825	/*
826	 * If the callout must migrate try to perform it immediately.
827	 * If the callout is currently running, just defer the migration
828	 * to a more appropriate moment.
829	 */
830	if (c->c_cpu != cpu) {
831		if (cc->cc_curr == c) {
832			cc->cc_migration_cpu = cpu;
833			cc->cc_migration_ticks = to_ticks;
834			cc->cc_migration_func = ftn;
835			cc->cc_migration_arg = arg;
836			c->c_flags |= CALLOUT_DFRMIGRATION;
837			CTR5(KTR_CALLOUT,
838		    "migration of %p func %p arg %p in %d to %u deferred",
839			    c, c->c_func, c->c_arg, to_ticks, cpu);
840			CC_UNLOCK(cc);
841			return (cancelled);
842		}
843		cc = callout_cpu_switch(c, cc, cpu);
844	}
845#endif
846
847	callout_cc_add(c, cc, to_ticks, ftn, arg, cpu);
848	CTR5(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d",
849	    cancelled ? "re" : "", c, c->c_func, c->c_arg, to_ticks);
850	CC_UNLOCK(cc);
851
852	return (cancelled);
853}
854
855/*
856 * Common idioms that can be optimized in the future.
857 */
858int
859callout_schedule_on(struct callout *c, int to_ticks, int cpu)
860{
861	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
862}
863
864int
865callout_schedule(struct callout *c, int to_ticks)
866{
867	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
868}
869
870int
871_callout_stop_safe(c, safe)
872	struct	callout *c;
873	int	safe;
874{
875	struct callout_cpu *cc, *old_cc;
876	struct lock_class *class;
877	int use_lock, sq_locked;
878
879	/*
880	 * Some old subsystems don't hold Giant while running a callout_stop(),
881	 * so just discard this check for the moment.
882	 */
883	if (!safe && c->c_lock != NULL) {
884		if (c->c_lock == &Giant.lock_object)
885			use_lock = mtx_owned(&Giant);
886		else {
887			use_lock = 1;
888			class = LOCK_CLASS(c->c_lock);
889			class->lc_assert(c->c_lock, LA_XLOCKED);
890		}
891	} else
892		use_lock = 0;
893
894	sq_locked = 0;
895	old_cc = NULL;
896again:
897	cc = callout_lock(c);
898
899	/*
900	 * If the callout was migrating while the callout cpu lock was
901	 * dropped,  just drop the sleepqueue lock and check the states
902	 * again.
903	 */
904	if (sq_locked != 0 && cc != old_cc) {
905#ifdef SMP
906		CC_UNLOCK(cc);
907		sleepq_release(&old_cc->cc_waiting);
908		sq_locked = 0;
909		old_cc = NULL;
910		goto again;
911#else
912		panic("migration should not happen");
913#endif
914	}
915
916	/*
917	 * If the callout isn't pending, it's not on the queue, so
918	 * don't attempt to remove it from the queue.  We can try to
919	 * stop it by other means however.
920	 */
921	if (!(c->c_flags & CALLOUT_PENDING)) {
922		c->c_flags &= ~CALLOUT_ACTIVE;
923
924		/*
925		 * If it wasn't on the queue and it isn't the current
926		 * callout, then we can't stop it, so just bail.
927		 */
928		if (cc->cc_curr != c) {
929			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
930			    c, c->c_func, c->c_arg);
931			CC_UNLOCK(cc);
932			if (sq_locked)
933				sleepq_release(&cc->cc_waiting);
934			return (0);
935		}
936
937		if (safe) {
938			/*
939			 * The current callout is running (or just
940			 * about to run) and blocking is allowed, so
941			 * just wait for the current invocation to
942			 * finish.
943			 */
944			while (cc->cc_curr == c) {
945
946				/*
947				 * Use direct calls to sleepqueue interface
948				 * instead of cv/msleep in order to avoid
949				 * a LOR between cc_lock and sleepqueue
950				 * chain spinlocks.  This piece of code
951				 * emulates a msleep_spin() call actually.
952				 *
953				 * If we already have the sleepqueue chain
954				 * locked, then we can safely block.  If we
955				 * don't already have it locked, however,
956				 * we have to drop the cc_lock to lock
957				 * it.  This opens several races, so we
958				 * restart at the beginning once we have
959				 * both locks.  If nothing has changed, then
960				 * we will end up back here with sq_locked
961				 * set.
962				 */
963				if (!sq_locked) {
964					CC_UNLOCK(cc);
965					sleepq_lock(&cc->cc_waiting);
966					sq_locked = 1;
967					old_cc = cc;
968					goto again;
969				}
970
971				/*
972				 * Migration could be cancelled here, but
973				 * as long as it is still not sure when it
974				 * will be packed up, just let softclock()
975				 * take care of it.
976				 */
977				cc->cc_waiting = 1;
978				DROP_GIANT();
979				CC_UNLOCK(cc);
980				sleepq_add(&cc->cc_waiting,
981				    &cc->cc_lock.lock_object, "codrain",
982				    SLEEPQ_SLEEP, 0);
983				sleepq_wait(&cc->cc_waiting, 0);
984				sq_locked = 0;
985				old_cc = NULL;
986
987				/* Reacquire locks previously released. */
988				PICKUP_GIANT();
989				CC_LOCK(cc);
990			}
991		} else if (use_lock && !cc->cc_cancel) {
992			/*
993			 * The current callout is waiting for its
994			 * lock which we hold.  Cancel the callout
995			 * and return.  After our caller drops the
996			 * lock, the callout will be skipped in
997			 * softclock().
998			 */
999			cc->cc_cancel = 1;
1000			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1001			    c, c->c_func, c->c_arg);
1002			KASSERT(!cc_cme_migrating(cc),
1003			    ("callout wrongly scheduled for migration"));
1004			CC_UNLOCK(cc);
1005			KASSERT(!sq_locked, ("sleepqueue chain locked"));
1006			return (1);
1007		} else if ((c->c_flags & CALLOUT_DFRMIGRATION) != 0) {
1008			c->c_flags &= ~CALLOUT_DFRMIGRATION;
1009			CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1010			    c, c->c_func, c->c_arg);
1011			CC_UNLOCK(cc);
1012			return (1);
1013		}
1014		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1015		    c, c->c_func, c->c_arg);
1016		CC_UNLOCK(cc);
1017		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1018		return (0);
1019	}
1020	if (sq_locked)
1021		sleepq_release(&cc->cc_waiting);
1022
1023	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1024
1025	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1026	    c, c->c_func, c->c_arg);
1027	TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
1028	    c_links.tqe);
1029	callout_cc_del(c, cc);
1030
1031	CC_UNLOCK(cc);
1032	return (1);
1033}
1034
1035void
1036callout_init(c, mpsafe)
1037	struct	callout *c;
1038	int mpsafe;
1039{
1040	bzero(c, sizeof *c);
1041	if (mpsafe) {
1042		c->c_lock = NULL;
1043		c->c_flags = CALLOUT_RETURNUNLOCKED;
1044	} else {
1045		c->c_lock = &Giant.lock_object;
1046		c->c_flags = 0;
1047	}
1048	c->c_cpu = timeout_cpu;
1049}
1050
1051void
1052_callout_init_lock(c, lock, flags)
1053	struct	callout *c;
1054	struct	lock_object *lock;
1055	int flags;
1056{
1057	bzero(c, sizeof *c);
1058	c->c_lock = lock;
1059	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1060	    ("callout_init_lock: bad flags %d", flags));
1061	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1062	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1063	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
1064	    (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
1065	    __func__));
1066	c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1067	c->c_cpu = timeout_cpu;
1068}
1069
1070#ifdef APM_FIXUP_CALLTODO
1071/*
1072 * Adjust the kernel calltodo timeout list.  This routine is used after
1073 * an APM resume to recalculate the calltodo timer list values with the
1074 * number of hz's we have been sleeping.  The next hardclock() will detect
1075 * that there are fired timers and run softclock() to execute them.
1076 *
1077 * Please note, I have not done an exhaustive analysis of what code this
1078 * might break.  I am motivated to have my select()'s and alarm()'s that
1079 * have expired during suspend firing upon resume so that the applications
1080 * which set the timer can do the maintanence the timer was for as close
1081 * as possible to the originally intended time.  Testing this code for a
1082 * week showed that resuming from a suspend resulted in 22 to 25 timers
1083 * firing, which seemed independant on whether the suspend was 2 hours or
1084 * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
1085 */
1086void
1087adjust_timeout_calltodo(time_change)
1088    struct timeval *time_change;
1089{
1090	register struct callout *p;
1091	unsigned long delta_ticks;
1092
1093	/*
1094	 * How many ticks were we asleep?
1095	 * (stolen from tvtohz()).
1096	 */
1097
1098	/* Don't do anything */
1099	if (time_change->tv_sec < 0)
1100		return;
1101	else if (time_change->tv_sec <= LONG_MAX / 1000000)
1102		delta_ticks = (time_change->tv_sec * 1000000 +
1103			       time_change->tv_usec + (tick - 1)) / tick + 1;
1104	else if (time_change->tv_sec <= LONG_MAX / hz)
1105		delta_ticks = time_change->tv_sec * hz +
1106			      (time_change->tv_usec + (tick - 1)) / tick + 1;
1107	else
1108		delta_ticks = LONG_MAX;
1109
1110	if (delta_ticks > INT_MAX)
1111		delta_ticks = INT_MAX;
1112
1113	/*
1114	 * Now rip through the timer calltodo list looking for timers
1115	 * to expire.
1116	 */
1117
1118	/* don't collide with softclock() */
1119	CC_LOCK(cc);
1120	for (p = calltodo.c_next; p != NULL; p = p->c_next) {
1121		p->c_time -= delta_ticks;
1122
1123		/* Break if the timer had more time on it than delta_ticks */
1124		if (p->c_time > 0)
1125			break;
1126
1127		/* take back the ticks the timer didn't use (p->c_time <= 0) */
1128		delta_ticks = -p->c_time;
1129	}
1130	CC_UNLOCK(cc);
1131
1132	return;
1133}
1134#endif /* APM_FIXUP_CALLTODO */
1135