kern_timeout.c revision 234952
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_timeout.c 234952 2012-05-03 10:38:02Z kib $");
39
40#include "opt_kdtrace.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/bus.h>
45#include <sys/callout.h>
46#include <sys/condvar.h>
47#include <sys/interrupt.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/malloc.h>
52#include <sys/mutex.h>
53#include <sys/proc.h>
54#include <sys/sdt.h>
55#include <sys/sleepqueue.h>
56#include <sys/sysctl.h>
57#include <sys/smp.h>
58
59#ifdef SMP
60#include <machine/cpu.h>
61#endif
62
63SDT_PROVIDER_DEFINE(callout_execute);
64SDT_PROBE_DEFINE(callout_execute, kernel, , callout_start, callout-start);
65SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_start, 0,
66    "struct callout *");
67SDT_PROBE_DEFINE(callout_execute, kernel, , callout_end, callout-end);
68SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_end, 0,
69    "struct callout *");
70
71static int avg_depth;
72SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
73    "Average number of items examined per softclock call. Units = 1/1000");
74static int avg_gcalls;
75SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
76    "Average number of Giant callouts made per softclock call. Units = 1/1000");
77static int avg_lockcalls;
78SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
79    "Average number of lock callouts made per softclock call. Units = 1/1000");
80static int avg_mpcalls;
81SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
82    "Average number of MP callouts made per softclock call. Units = 1/1000");
83/*
84 * TODO:
85 *	allocate more timeout table slots when table overflows.
86 */
87int callwheelsize, callwheelbits, callwheelmask;
88
89/*
90 * The callout cpu migration entity represents informations necessary for
91 * describing the migrating callout to the new callout cpu.
92 * The cached informations are very important for deferring migration when
93 * the migrating callout is already running.
94 */
95struct cc_mig_ent {
96#ifdef SMP
97	void	(*ce_migration_func)(void *);
98	void	*ce_migration_arg;
99	int	ce_migration_cpu;
100	int	ce_migration_ticks;
101#endif
102};
103
104/*
105 * There is one struct callout_cpu per cpu, holding all relevant
106 * state for the callout processing thread on the individual CPU.
107 * In particular:
108 *	cc_ticks is incremented once per tick in callout_cpu().
109 *	It tracks the global 'ticks' but in a way that the individual
110 *	threads should not worry about races in the order in which
111 *	hardclock() and hardclock_cpu() run on the various CPUs.
112 *	cc_softclock is advanced in callout_cpu() to point to the
113 *	first entry in cc_callwheel that may need handling. In turn,
114 *	a softclock() is scheduled so it can serve the various entries i
115 *	such that cc_softclock <= i <= cc_ticks .
116 *	XXX maybe cc_softclock and cc_ticks should be volatile ?
117 *
118 *	cc_ticks is also used in callout_reset_cpu() to determine
119 *	when the callout should be served.
120 */
121struct callout_cpu {
122	struct cc_mig_ent	cc_migrating_entity;
123	struct mtx		cc_lock;
124	struct callout		*cc_callout;
125	struct callout_tailq	*cc_callwheel;
126	struct callout_list	cc_callfree;
127	struct callout		*cc_next;
128	struct callout		*cc_curr;
129	void			*cc_cookie;
130	int 			cc_ticks;
131	int 			cc_softticks;
132	int			cc_cancel;
133	int			cc_waiting;
134	int 			cc_firsttick;
135};
136
137#ifdef SMP
138#define	cc_migration_func	cc_migrating_entity.ce_migration_func
139#define	cc_migration_arg	cc_migrating_entity.ce_migration_arg
140#define	cc_migration_cpu	cc_migrating_entity.ce_migration_cpu
141#define	cc_migration_ticks	cc_migrating_entity.ce_migration_ticks
142
143struct callout_cpu cc_cpu[MAXCPU];
144#define	CPUBLOCK	MAXCPU
145#define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
146#define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
147#else
148struct callout_cpu cc_cpu;
149#define	CC_CPU(cpu)	&cc_cpu
150#define	CC_SELF()	&cc_cpu
151#endif
152#define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
153#define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
154#define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
155
156static int timeout_cpu;
157void (*callout_new_inserted)(int cpu, int ticks) = NULL;
158
159static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
160
161/**
162 * Locked by cc_lock:
163 *   cc_curr         - If a callout is in progress, it is curr_callout.
164 *                     If curr_callout is non-NULL, threads waiting in
165 *                     callout_drain() will be woken up as soon as the
166 *                     relevant callout completes.
167 *   cc_cancel       - Changing to 1 with both callout_lock and c_lock held
168 *                     guarantees that the current callout will not run.
169 *                     The softclock() function sets this to 0 before it
170 *                     drops callout_lock to acquire c_lock, and it calls
171 *                     the handler only if curr_cancelled is still 0 after
172 *                     c_lock is successfully acquired.
173 *   cc_waiting      - If a thread is waiting in callout_drain(), then
174 *                     callout_wait is nonzero.  Set only when
175 *                     curr_callout is non-NULL.
176 */
177
178/*
179 * Resets the migration entity tied to a specific callout cpu.
180 */
181static void
182cc_cme_cleanup(struct callout_cpu *cc)
183{
184
185#ifdef SMP
186	cc->cc_migration_cpu = CPUBLOCK;
187	cc->cc_migration_ticks = 0;
188	cc->cc_migration_func = NULL;
189	cc->cc_migration_arg = NULL;
190#endif
191}
192
193/*
194 * Checks if migration is requested by a specific callout cpu.
195 */
196static int
197cc_cme_migrating(struct callout_cpu *cc)
198{
199
200#ifdef SMP
201	return (cc->cc_migration_cpu != CPUBLOCK);
202#else
203	return (0);
204#endif
205}
206
207/*
208 * kern_timeout_callwheel_alloc() - kernel low level callwheel initialization
209 *
210 *	This code is called very early in the kernel initialization sequence,
211 *	and may be called more then once.
212 */
213caddr_t
214kern_timeout_callwheel_alloc(caddr_t v)
215{
216	struct callout_cpu *cc;
217
218	timeout_cpu = PCPU_GET(cpuid);
219	cc = CC_CPU(timeout_cpu);
220	/*
221	 * Calculate callout wheel size
222	 */
223	for (callwheelsize = 1, callwheelbits = 0;
224	     callwheelsize < ncallout;
225	     callwheelsize <<= 1, ++callwheelbits)
226		;
227	callwheelmask = callwheelsize - 1;
228
229	cc->cc_callout = (struct callout *)v;
230	v = (caddr_t)(cc->cc_callout + ncallout);
231	cc->cc_callwheel = (struct callout_tailq *)v;
232	v = (caddr_t)(cc->cc_callwheel + callwheelsize);
233	return(v);
234}
235
236static void
237callout_cpu_init(struct callout_cpu *cc)
238{
239	struct callout *c;
240	int i;
241
242	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
243	SLIST_INIT(&cc->cc_callfree);
244	for (i = 0; i < callwheelsize; i++) {
245		TAILQ_INIT(&cc->cc_callwheel[i]);
246	}
247	cc_cme_cleanup(cc);
248	if (cc->cc_callout == NULL)
249		return;
250	for (i = 0; i < ncallout; i++) {
251		c = &cc->cc_callout[i];
252		callout_init(c, 0);
253		c->c_flags = CALLOUT_LOCAL_ALLOC;
254		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
255	}
256}
257
258#ifdef SMP
259/*
260 * Switches the cpu tied to a specific callout.
261 * The function expects a locked incoming callout cpu and returns with
262 * locked outcoming callout cpu.
263 */
264static struct callout_cpu *
265callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
266{
267	struct callout_cpu *new_cc;
268
269	MPASS(c != NULL && cc != NULL);
270	CC_LOCK_ASSERT(cc);
271
272	/*
273	 * Avoid interrupts and preemption firing after the callout cpu
274	 * is blocked in order to avoid deadlocks as the new thread
275	 * may be willing to acquire the callout cpu lock.
276	 */
277	c->c_cpu = CPUBLOCK;
278	spinlock_enter();
279	CC_UNLOCK(cc);
280	new_cc = CC_CPU(new_cpu);
281	CC_LOCK(new_cc);
282	spinlock_exit();
283	c->c_cpu = new_cpu;
284	return (new_cc);
285}
286#endif
287
288/*
289 * kern_timeout_callwheel_init() - initialize previously reserved callwheel
290 *				   space.
291 *
292 *	This code is called just once, after the space reserved for the
293 *	callout wheel has been finalized.
294 */
295void
296kern_timeout_callwheel_init(void)
297{
298	callout_cpu_init(CC_CPU(timeout_cpu));
299}
300
301/*
302 * Start standard softclock thread.
303 */
304static void
305start_softclock(void *dummy)
306{
307	struct callout_cpu *cc;
308#ifdef SMP
309	int cpu;
310#endif
311
312	cc = CC_CPU(timeout_cpu);
313	if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK,
314	    INTR_MPSAFE, &cc->cc_cookie))
315		panic("died while creating standard software ithreads");
316#ifdef SMP
317	CPU_FOREACH(cpu) {
318		if (cpu == timeout_cpu)
319			continue;
320		cc = CC_CPU(cpu);
321		if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK,
322		    INTR_MPSAFE, &cc->cc_cookie))
323			panic("died while creating standard software ithreads");
324		cc->cc_callout = NULL;	/* Only cpu0 handles timeout(). */
325		cc->cc_callwheel = malloc(
326		    sizeof(struct callout_tailq) * callwheelsize, M_CALLOUT,
327		    M_WAITOK);
328		callout_cpu_init(cc);
329	}
330#endif
331}
332
333SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
334
335void
336callout_tick(void)
337{
338	struct callout_cpu *cc;
339	int need_softclock;
340	int bucket;
341
342	/*
343	 * Process callouts at a very low cpu priority, so we don't keep the
344	 * relatively high clock interrupt priority any longer than necessary.
345	 */
346	need_softclock = 0;
347	cc = CC_SELF();
348	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
349	cc->cc_firsttick = cc->cc_ticks = ticks;
350	for (; (cc->cc_softticks - cc->cc_ticks) <= 0; cc->cc_softticks++) {
351		bucket = cc->cc_softticks & callwheelmask;
352		if (!TAILQ_EMPTY(&cc->cc_callwheel[bucket])) {
353			need_softclock = 1;
354			break;
355		}
356	}
357	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
358	/*
359	 * swi_sched acquires the thread lock, so we don't want to call it
360	 * with cc_lock held; incorrect locking order.
361	 */
362	if (need_softclock)
363		swi_sched(cc->cc_cookie, 0);
364}
365
366int
367callout_tickstofirst(int limit)
368{
369	struct callout_cpu *cc;
370	struct callout *c;
371	struct callout_tailq *sc;
372	int curticks;
373	int skip = 1;
374
375	cc = CC_SELF();
376	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
377	curticks = cc->cc_ticks;
378	while( skip < ncallout && skip < limit ) {
379		sc = &cc->cc_callwheel[ (curticks+skip) & callwheelmask ];
380		/* search scanning ticks */
381		TAILQ_FOREACH( c, sc, c_links.tqe ){
382			if (c->c_time - curticks <= ncallout)
383				goto out;
384		}
385		skip++;
386	}
387out:
388	cc->cc_firsttick = curticks + skip;
389	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
390	return (skip);
391}
392
393static struct callout_cpu *
394callout_lock(struct callout *c)
395{
396	struct callout_cpu *cc;
397	int cpu;
398
399	for (;;) {
400		cpu = c->c_cpu;
401#ifdef SMP
402		if (cpu == CPUBLOCK) {
403			while (c->c_cpu == CPUBLOCK)
404				cpu_spinwait();
405			continue;
406		}
407#endif
408		cc = CC_CPU(cpu);
409		CC_LOCK(cc);
410		if (cpu == c->c_cpu)
411			break;
412		CC_UNLOCK(cc);
413	}
414	return (cc);
415}
416
417static void
418callout_cc_add(struct callout *c, struct callout_cpu *cc, int to_ticks,
419    void (*func)(void *), void *arg, int cpu)
420{
421
422	CC_LOCK_ASSERT(cc);
423
424	if (to_ticks <= 0)
425		to_ticks = 1;
426	c->c_arg = arg;
427	c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
428	c->c_func = func;
429	c->c_time = ticks + to_ticks;
430	TAILQ_INSERT_TAIL(&cc->cc_callwheel[c->c_time & callwheelmask],
431	    c, c_links.tqe);
432	if ((c->c_time - cc->cc_firsttick) < 0 &&
433	    callout_new_inserted != NULL) {
434		cc->cc_firsttick = c->c_time;
435		(*callout_new_inserted)(cpu,
436		    to_ticks + (ticks - cc->cc_ticks));
437	}
438}
439
440/*
441 * The callout mechanism is based on the work of Adam M. Costello and
442 * George Varghese, published in a technical report entitled "Redesigning
443 * the BSD Callout and Timer Facilities" and modified slightly for inclusion
444 * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
445 * used in this implementation was published by G. Varghese and T. Lauck in
446 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
447 * the Efficient Implementation of a Timer Facility" in the Proceedings of
448 * the 11th ACM Annual Symposium on Operating Systems Principles,
449 * Austin, Texas Nov 1987.
450 */
451
452/*
453 * Software (low priority) clock interrupt.
454 * Run periodic events from timeout queue.
455 */
456void
457softclock(void *arg)
458{
459	struct callout_cpu *cc;
460	struct callout *c;
461	struct callout_tailq *bucket;
462	int curticks;
463	int steps;	/* #steps since we last allowed interrupts */
464	int depth;
465	int mpcalls;
466	int lockcalls;
467	int gcalls;
468#ifdef DIAGNOSTIC
469	struct bintime bt1, bt2;
470	struct timespec ts2;
471	static uint64_t maxdt = 36893488147419102LL;	/* 2 msec */
472	static timeout_t *lastfunc;
473#endif
474
475#ifndef MAX_SOFTCLOCK_STEPS
476#define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */
477#endif /* MAX_SOFTCLOCK_STEPS */
478
479	mpcalls = 0;
480	lockcalls = 0;
481	gcalls = 0;
482	depth = 0;
483	steps = 0;
484	cc = (struct callout_cpu *)arg;
485	CC_LOCK(cc);
486	while (cc->cc_softticks - 1 != cc->cc_ticks) {
487		/*
488		 * cc_softticks may be modified by hard clock, so cache
489		 * it while we work on a given bucket.
490		 */
491		curticks = cc->cc_softticks;
492		cc->cc_softticks++;
493		bucket = &cc->cc_callwheel[curticks & callwheelmask];
494		c = TAILQ_FIRST(bucket);
495		while (c) {
496			depth++;
497			if (c->c_time != curticks) {
498				c = TAILQ_NEXT(c, c_links.tqe);
499				++steps;
500				if (steps >= MAX_SOFTCLOCK_STEPS) {
501					cc->cc_next = c;
502					/* Give interrupts a chance. */
503					CC_UNLOCK(cc);
504					;	/* nothing */
505					CC_LOCK(cc);
506					c = cc->cc_next;
507					steps = 0;
508				}
509			} else {
510				void (*c_func)(void *);
511				void *c_arg;
512				struct lock_class *class;
513				struct lock_object *c_lock;
514				int c_flags, sharedlock;
515
516				cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
517				TAILQ_REMOVE(bucket, c, c_links.tqe);
518				class = (c->c_lock != NULL) ?
519				    LOCK_CLASS(c->c_lock) : NULL;
520				sharedlock = (c->c_flags & CALLOUT_SHAREDLOCK) ?
521				    0 : 1;
522				c_lock = c->c_lock;
523				c_func = c->c_func;
524				c_arg = c->c_arg;
525				c_flags = c->c_flags;
526				if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
527					c->c_flags = CALLOUT_LOCAL_ALLOC;
528				} else {
529					c->c_flags =
530					    (c->c_flags & ~CALLOUT_PENDING);
531				}
532				cc->cc_curr = c;
533				cc->cc_cancel = 0;
534				CC_UNLOCK(cc);
535				if (c_lock != NULL) {
536					class->lc_lock(c_lock, sharedlock);
537					/*
538					 * The callout may have been cancelled
539					 * while we switched locks.
540					 */
541					if (cc->cc_cancel) {
542						class->lc_unlock(c_lock);
543						goto skip;
544					}
545					/* The callout cannot be stopped now. */
546					cc->cc_cancel = 1;
547
548					if (c_lock == &Giant.lock_object) {
549						gcalls++;
550						CTR3(KTR_CALLOUT,
551						    "callout %p func %p arg %p",
552						    c, c_func, c_arg);
553					} else {
554						lockcalls++;
555						CTR3(KTR_CALLOUT, "callout lock"
556						    " %p func %p arg %p",
557						    c, c_func, c_arg);
558					}
559				} else {
560					mpcalls++;
561					CTR3(KTR_CALLOUT,
562					    "callout mpsafe %p func %p arg %p",
563					    c, c_func, c_arg);
564				}
565#ifdef DIAGNOSTIC
566				binuptime(&bt1);
567#endif
568				THREAD_NO_SLEEPING();
569				SDT_PROBE(callout_execute, kernel, ,
570				    callout_start, c, 0, 0, 0, 0);
571				c_func(c_arg);
572				SDT_PROBE(callout_execute, kernel, ,
573				    callout_end, c, 0, 0, 0, 0);
574				THREAD_SLEEPING_OK();
575#ifdef DIAGNOSTIC
576				binuptime(&bt2);
577				bintime_sub(&bt2, &bt1);
578				if (bt2.frac > maxdt) {
579					if (lastfunc != c_func ||
580					    bt2.frac > maxdt * 2) {
581						bintime2timespec(&bt2, &ts2);
582						printf(
583			"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
584						    c_func, c_arg,
585						    (intmax_t)ts2.tv_sec,
586						    ts2.tv_nsec);
587					}
588					maxdt = bt2.frac;
589					lastfunc = c_func;
590				}
591#endif
592				CTR1(KTR_CALLOUT, "callout %p finished", c);
593				if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
594					class->lc_unlock(c_lock);
595			skip:
596				CC_LOCK(cc);
597				/*
598				 * If the current callout is locally
599				 * allocated (from timeout(9))
600				 * then put it on the freelist.
601				 *
602				 * Note: we need to check the cached
603				 * copy of c_flags because if it was not
604				 * local, then it's not safe to deref the
605				 * callout pointer.
606				 */
607				if (c_flags & CALLOUT_LOCAL_ALLOC) {
608					KASSERT(c->c_flags ==
609					    CALLOUT_LOCAL_ALLOC,
610					    ("corrupted callout"));
611					c->c_func = NULL;
612					SLIST_INSERT_HEAD(&cc->cc_callfree, c,
613					    c_links.sle);
614				}
615				cc->cc_curr = NULL;
616				if (cc->cc_waiting) {
617
618					/*
619					 * There is someone waiting for the
620					 * callout to complete.
621					 * If the callout was scheduled for
622					 * migration just cancel it.
623					 */
624					if (cc_cme_migrating(cc))
625						cc_cme_cleanup(cc);
626					cc->cc_waiting = 0;
627					CC_UNLOCK(cc);
628					wakeup(&cc->cc_waiting);
629					CC_LOCK(cc);
630				} else if (cc_cme_migrating(cc)) {
631#ifdef SMP
632					struct callout_cpu *new_cc;
633					void (*new_func)(void *);
634					void *new_arg;
635					int new_cpu, new_ticks;
636
637					/*
638					 * If the callout was scheduled for
639					 * migration just perform it now.
640					 */
641					new_cpu = cc->cc_migration_cpu;
642					new_ticks = cc->cc_migration_ticks;
643					new_func = cc->cc_migration_func;
644					new_arg = cc->cc_migration_arg;
645					cc_cme_cleanup(cc);
646
647					/*
648					 * Handle deferred callout stops
649					 */
650					if ((c->c_flags & CALLOUT_DFRMIGRATION)
651					    == 0) {
652						CTR3(KTR_CALLOUT,
653					"deferred cancelled %p func %p arg %p",
654						    c, new_func, new_arg);
655						if (cc->cc_next == c) {
656							cc->cc_next =
657							    TAILQ_NEXT(c,
658							    c_links.tqe);
659						}
660						if (c->c_flags &
661						    CALLOUT_LOCAL_ALLOC) {
662							c->c_func = NULL;
663							SLIST_INSERT_HEAD(
664							    &cc->cc_callfree, c,
665							    c_links.sle);
666						}
667						goto nextc;
668					} else {
669						c->c_flags &= ~
670						    CALLOUT_DFRMIGRATION;
671					}
672
673					/*
674					 * It should be assert here that the
675					 * callout is not destroyed but that
676					 * is not easy.
677					 */
678					new_cc = callout_cpu_switch(c, cc,
679					    new_cpu);
680					callout_cc_add(c, new_cc, new_ticks,
681					    new_func, new_arg, new_cpu);
682					CC_UNLOCK(new_cc);
683					CC_LOCK(cc);
684#else
685					panic("migration should not happen");
686#endif
687				}
688#ifdef SMP
689nextc:
690#endif
691				steps = 0;
692				c = cc->cc_next;
693			}
694		}
695	}
696	avg_depth += (depth * 1000 - avg_depth) >> 8;
697	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
698	avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
699	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
700	cc->cc_next = NULL;
701	CC_UNLOCK(cc);
702}
703
704/*
705 * timeout --
706 *	Execute a function after a specified length of time.
707 *
708 * untimeout --
709 *	Cancel previous timeout function call.
710 *
711 * callout_handle_init --
712 *	Initialize a handle so that using it with untimeout is benign.
713 *
714 *	See AT&T BCI Driver Reference Manual for specification.  This
715 *	implementation differs from that one in that although an
716 *	identification value is returned from timeout, the original
717 *	arguments to timeout as well as the identifier are used to
718 *	identify entries for untimeout.
719 */
720struct callout_handle
721timeout(ftn, arg, to_ticks)
722	timeout_t *ftn;
723	void *arg;
724	int to_ticks;
725{
726	struct callout_cpu *cc;
727	struct callout *new;
728	struct callout_handle handle;
729
730	cc = CC_CPU(timeout_cpu);
731	CC_LOCK(cc);
732	/* Fill in the next free callout structure. */
733	new = SLIST_FIRST(&cc->cc_callfree);
734	if (new == NULL)
735		/* XXX Attempt to malloc first */
736		panic("timeout table full");
737	SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
738	callout_reset(new, to_ticks, ftn, arg);
739	handle.callout = new;
740	CC_UNLOCK(cc);
741
742	return (handle);
743}
744
745void
746untimeout(ftn, arg, handle)
747	timeout_t *ftn;
748	void *arg;
749	struct callout_handle handle;
750{
751	struct callout_cpu *cc;
752
753	/*
754	 * Check for a handle that was initialized
755	 * by callout_handle_init, but never used
756	 * for a real timeout.
757	 */
758	if (handle.callout == NULL)
759		return;
760
761	cc = callout_lock(handle.callout);
762	if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
763		callout_stop(handle.callout);
764	CC_UNLOCK(cc);
765}
766
767void
768callout_handle_init(struct callout_handle *handle)
769{
770	handle->callout = NULL;
771}
772
773/*
774 * New interface; clients allocate their own callout structures.
775 *
776 * callout_reset() - establish or change a timeout
777 * callout_stop() - disestablish a timeout
778 * callout_init() - initialize a callout structure so that it can
779 *	safely be passed to callout_reset() and callout_stop()
780 *
781 * <sys/callout.h> defines three convenience macros:
782 *
783 * callout_active() - returns truth if callout has not been stopped,
784 *	drained, or deactivated since the last time the callout was
785 *	reset.
786 * callout_pending() - returns truth if callout is still waiting for timeout
787 * callout_deactivate() - marks the callout as having been serviced
788 */
789int
790callout_reset_on(struct callout *c, int to_ticks, void (*ftn)(void *),
791    void *arg, int cpu)
792{
793	struct callout_cpu *cc;
794	int cancelled = 0;
795
796	/*
797	 * Don't allow migration of pre-allocated callouts lest they
798	 * become unbalanced.
799	 */
800	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
801		cpu = c->c_cpu;
802	cc = callout_lock(c);
803	if (cc->cc_curr == c) {
804		/*
805		 * We're being asked to reschedule a callout which is
806		 * currently in progress.  If there is a lock then we
807		 * can cancel the callout if it has not really started.
808		 */
809		if (c->c_lock != NULL && !cc->cc_cancel)
810			cancelled = cc->cc_cancel = 1;
811		if (cc->cc_waiting) {
812			/*
813			 * Someone has called callout_drain to kill this
814			 * callout.  Don't reschedule.
815			 */
816			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
817			    cancelled ? "cancelled" : "failed to cancel",
818			    c, c->c_func, c->c_arg);
819			CC_UNLOCK(cc);
820			return (cancelled);
821		}
822	}
823	if (c->c_flags & CALLOUT_PENDING) {
824		if (cc->cc_next == c) {
825			cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
826		}
827		TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
828		    c_links.tqe);
829
830		cancelled = 1;
831		c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
832	}
833
834#ifdef SMP
835	/*
836	 * If the callout must migrate try to perform it immediately.
837	 * If the callout is currently running, just defer the migration
838	 * to a more appropriate moment.
839	 */
840	if (c->c_cpu != cpu) {
841		if (cc->cc_curr == c) {
842			cc->cc_migration_cpu = cpu;
843			cc->cc_migration_ticks = to_ticks;
844			cc->cc_migration_func = ftn;
845			cc->cc_migration_arg = arg;
846			c->c_flags |= CALLOUT_DFRMIGRATION;
847			CTR5(KTR_CALLOUT,
848		    "migration of %p func %p arg %p in %d to %u deferred",
849			    c, c->c_func, c->c_arg, to_ticks, cpu);
850			CC_UNLOCK(cc);
851			return (cancelled);
852		}
853		cc = callout_cpu_switch(c, cc, cpu);
854	}
855#endif
856
857	callout_cc_add(c, cc, to_ticks, ftn, arg, cpu);
858	CTR5(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d",
859	    cancelled ? "re" : "", c, c->c_func, c->c_arg, to_ticks);
860	CC_UNLOCK(cc);
861
862	return (cancelled);
863}
864
865/*
866 * Common idioms that can be optimized in the future.
867 */
868int
869callout_schedule_on(struct callout *c, int to_ticks, int cpu)
870{
871	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
872}
873
874int
875callout_schedule(struct callout *c, int to_ticks)
876{
877	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
878}
879
880int
881_callout_stop_safe(c, safe)
882	struct	callout *c;
883	int	safe;
884{
885	struct callout_cpu *cc, *old_cc;
886	struct lock_class *class;
887	int use_lock, sq_locked;
888
889	/*
890	 * Some old subsystems don't hold Giant while running a callout_stop(),
891	 * so just discard this check for the moment.
892	 */
893	if (!safe && c->c_lock != NULL) {
894		if (c->c_lock == &Giant.lock_object)
895			use_lock = mtx_owned(&Giant);
896		else {
897			use_lock = 1;
898			class = LOCK_CLASS(c->c_lock);
899			class->lc_assert(c->c_lock, LA_XLOCKED);
900		}
901	} else
902		use_lock = 0;
903
904	sq_locked = 0;
905	old_cc = NULL;
906again:
907	cc = callout_lock(c);
908
909	/*
910	 * If the callout was migrating while the callout cpu lock was
911	 * dropped,  just drop the sleepqueue lock and check the states
912	 * again.
913	 */
914	if (sq_locked != 0 && cc != old_cc) {
915#ifdef SMP
916		CC_UNLOCK(cc);
917		sleepq_release(&old_cc->cc_waiting);
918		sq_locked = 0;
919		old_cc = NULL;
920		goto again;
921#else
922		panic("migration should not happen");
923#endif
924	}
925
926	/*
927	 * If the callout isn't pending, it's not on the queue, so
928	 * don't attempt to remove it from the queue.  We can try to
929	 * stop it by other means however.
930	 */
931	if (!(c->c_flags & CALLOUT_PENDING)) {
932		c->c_flags &= ~CALLOUT_ACTIVE;
933
934		/*
935		 * If it wasn't on the queue and it isn't the current
936		 * callout, then we can't stop it, so just bail.
937		 */
938		if (cc->cc_curr != c) {
939			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
940			    c, c->c_func, c->c_arg);
941			CC_UNLOCK(cc);
942			if (sq_locked)
943				sleepq_release(&cc->cc_waiting);
944			return (0);
945		}
946
947		if (safe) {
948			/*
949			 * The current callout is running (or just
950			 * about to run) and blocking is allowed, so
951			 * just wait for the current invocation to
952			 * finish.
953			 */
954			while (cc->cc_curr == c) {
955
956				/*
957				 * Use direct calls to sleepqueue interface
958				 * instead of cv/msleep in order to avoid
959				 * a LOR between cc_lock and sleepqueue
960				 * chain spinlocks.  This piece of code
961				 * emulates a msleep_spin() call actually.
962				 *
963				 * If we already have the sleepqueue chain
964				 * locked, then we can safely block.  If we
965				 * don't already have it locked, however,
966				 * we have to drop the cc_lock to lock
967				 * it.  This opens several races, so we
968				 * restart at the beginning once we have
969				 * both locks.  If nothing has changed, then
970				 * we will end up back here with sq_locked
971				 * set.
972				 */
973				if (!sq_locked) {
974					CC_UNLOCK(cc);
975					sleepq_lock(&cc->cc_waiting);
976					sq_locked = 1;
977					old_cc = cc;
978					goto again;
979				}
980
981				/*
982				 * Migration could be cancelled here, but
983				 * as long as it is still not sure when it
984				 * will be packed up, just let softclock()
985				 * take care of it.
986				 */
987				cc->cc_waiting = 1;
988				DROP_GIANT();
989				CC_UNLOCK(cc);
990				sleepq_add(&cc->cc_waiting,
991				    &cc->cc_lock.lock_object, "codrain",
992				    SLEEPQ_SLEEP, 0);
993				sleepq_wait(&cc->cc_waiting, 0);
994				sq_locked = 0;
995				old_cc = NULL;
996
997				/* Reacquire locks previously released. */
998				PICKUP_GIANT();
999				CC_LOCK(cc);
1000			}
1001		} else if (use_lock && !cc->cc_cancel) {
1002			/*
1003			 * The current callout is waiting for its
1004			 * lock which we hold.  Cancel the callout
1005			 * and return.  After our caller drops the
1006			 * lock, the callout will be skipped in
1007			 * softclock().
1008			 */
1009			cc->cc_cancel = 1;
1010			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1011			    c, c->c_func, c->c_arg);
1012			KASSERT(!cc_cme_migrating(cc),
1013			    ("callout wrongly scheduled for migration"));
1014			CC_UNLOCK(cc);
1015			KASSERT(!sq_locked, ("sleepqueue chain locked"));
1016			return (1);
1017		} else if ((c->c_flags & CALLOUT_DFRMIGRATION) != 0) {
1018			c->c_flags &= ~CALLOUT_DFRMIGRATION;
1019			CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1020			    c, c->c_func, c->c_arg);
1021			CC_UNLOCK(cc);
1022			return (1);
1023		}
1024		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1025		    c, c->c_func, c->c_arg);
1026		CC_UNLOCK(cc);
1027		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1028		return (0);
1029	}
1030	if (sq_locked)
1031		sleepq_release(&cc->cc_waiting);
1032
1033	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1034
1035	if (cc->cc_next == c) {
1036		cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
1037	}
1038	TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
1039	    c_links.tqe);
1040
1041	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1042	    c, c->c_func, c->c_arg);
1043
1044	if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
1045		c->c_func = NULL;
1046		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
1047	}
1048	CC_UNLOCK(cc);
1049	return (1);
1050}
1051
1052void
1053callout_init(c, mpsafe)
1054	struct	callout *c;
1055	int mpsafe;
1056{
1057	bzero(c, sizeof *c);
1058	if (mpsafe) {
1059		c->c_lock = NULL;
1060		c->c_flags = CALLOUT_RETURNUNLOCKED;
1061	} else {
1062		c->c_lock = &Giant.lock_object;
1063		c->c_flags = 0;
1064	}
1065	c->c_cpu = timeout_cpu;
1066}
1067
1068void
1069_callout_init_lock(c, lock, flags)
1070	struct	callout *c;
1071	struct	lock_object *lock;
1072	int flags;
1073{
1074	bzero(c, sizeof *c);
1075	c->c_lock = lock;
1076	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1077	    ("callout_init_lock: bad flags %d", flags));
1078	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1079	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1080	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
1081	    (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
1082	    __func__));
1083	c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1084	c->c_cpu = timeout_cpu;
1085}
1086
1087#ifdef APM_FIXUP_CALLTODO
1088/*
1089 * Adjust the kernel calltodo timeout list.  This routine is used after
1090 * an APM resume to recalculate the calltodo timer list values with the
1091 * number of hz's we have been sleeping.  The next hardclock() will detect
1092 * that there are fired timers and run softclock() to execute them.
1093 *
1094 * Please note, I have not done an exhaustive analysis of what code this
1095 * might break.  I am motivated to have my select()'s and alarm()'s that
1096 * have expired during suspend firing upon resume so that the applications
1097 * which set the timer can do the maintanence the timer was for as close
1098 * as possible to the originally intended time.  Testing this code for a
1099 * week showed that resuming from a suspend resulted in 22 to 25 timers
1100 * firing, which seemed independant on whether the suspend was 2 hours or
1101 * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
1102 */
1103void
1104adjust_timeout_calltodo(time_change)
1105    struct timeval *time_change;
1106{
1107	register struct callout *p;
1108	unsigned long delta_ticks;
1109
1110	/*
1111	 * How many ticks were we asleep?
1112	 * (stolen from tvtohz()).
1113	 */
1114
1115	/* Don't do anything */
1116	if (time_change->tv_sec < 0)
1117		return;
1118	else if (time_change->tv_sec <= LONG_MAX / 1000000)
1119		delta_ticks = (time_change->tv_sec * 1000000 +
1120			       time_change->tv_usec + (tick - 1)) / tick + 1;
1121	else if (time_change->tv_sec <= LONG_MAX / hz)
1122		delta_ticks = time_change->tv_sec * hz +
1123			      (time_change->tv_usec + (tick - 1)) / tick + 1;
1124	else
1125		delta_ticks = LONG_MAX;
1126
1127	if (delta_ticks > INT_MAX)
1128		delta_ticks = INT_MAX;
1129
1130	/*
1131	 * Now rip through the timer calltodo list looking for timers
1132	 * to expire.
1133	 */
1134
1135	/* don't collide with softclock() */
1136	CC_LOCK(cc);
1137	for (p = calltodo.c_next; p != NULL; p = p->c_next) {
1138		p->c_time -= delta_ticks;
1139
1140		/* Break if the timer had more time on it than delta_ticks */
1141		if (p->c_time > 0)
1142			break;
1143
1144		/* take back the ticks the timer didn't use (p->c_time <= 0) */
1145		delta_ticks = -p->c_time;
1146	}
1147	CC_UNLOCK(cc);
1148
1149	return;
1150}
1151#endif /* APM_FIXUP_CALLTODO */
1152