kern_timeout.c revision 18855
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
39 * $Id: kern_clock.c,v 1.26 1996/07/30 16:59:22 bde Exp $
40 */
41
42/* Portions of this software are covered by the following: */
43/******************************************************************************
44 *                                                                            *
45 * Copyright (c) David L. Mills 1993, 1994                                    *
46 *                                                                            *
47 * Permission to use, copy, modify, and distribute this software and its      *
48 * documentation for any purpose and without fee is hereby granted, provided  *
49 * that the above copyright notice appears in all copies and that both the    *
50 * copyright notice and this permission notice appear in supporting           *
51 * documentation, and that the name University of Delaware not be used in     *
52 * advertising or publicity pertaining to distribution of the software        *
53 * without specific, written prior permission.  The University of Delaware    *
54 * makes no representations about the suitability this software for any       *
55 * purpose.  It is provided "as is" without express or implied warranty.      *
56 *                                                                            *
57 *****************************************************************************/
58
59#include "opt_cpu.h"		/* XXX */
60
61#include <sys/param.h>
62#include <sys/systm.h>
63#include <sys/dkstat.h>
64#include <sys/callout.h>
65#include <sys/kernel.h>
66#include <sys/proc.h>
67#include <sys/resourcevar.h>
68#include <sys/signalvar.h>
69#include <sys/timex.h>
70#include <vm/vm.h>
71#include <vm/vm_param.h>
72#include <vm/vm_prot.h>
73#include <vm/lock.h>
74#include <vm/pmap.h>
75#include <vm/vm_map.h>
76#include <sys/sysctl.h>
77
78#include <machine/cpu.h>
79#include <machine/clock.h>
80
81#ifdef GPROF
82#include <sys/gmon.h>
83#endif
84
85static void initclocks __P((void *dummy));
86SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
87
88/* Exported to machdep.c. */
89struct callout *callfree, *callout;
90
91static struct callout calltodo;
92
93/* Some of these don't belong here, but it's easiest to concentrate them. */
94static long cp_time[CPUSTATES];
95long dk_seek[DK_NDRIVE];
96static long dk_time[DK_NDRIVE];
97long dk_wds[DK_NDRIVE];
98long dk_wpms[DK_NDRIVE];
99long dk_xfer[DK_NDRIVE];
100
101int dk_busy;
102int dk_ndrive = 0;
103char dk_names[DK_NDRIVE][DK_NAMELEN];
104
105long tk_cancc;
106long tk_nin;
107long tk_nout;
108long tk_rawcc;
109
110/*
111 * Clock handling routines.
112 *
113 * This code is written to operate with two timers that run independently of
114 * each other.  The main clock, running hz times per second, is used to keep
115 * track of real time.  The second timer handles kernel and user profiling,
116 * and does resource use estimation.  If the second timer is programmable,
117 * it is randomized to avoid aliasing between the two clocks.  For example,
118 * the randomization prevents an adversary from always giving up the cpu
119 * just before its quantum expires.  Otherwise, it would never accumulate
120 * cpu ticks.  The mean frequency of the second timer is stathz.
121 *
122 * If no second timer exists, stathz will be zero; in this case we drive
123 * profiling and statistics off the main clock.  This WILL NOT be accurate;
124 * do not do it unless absolutely necessary.
125 *
126 * The statistics clock may (or may not) be run at a higher rate while
127 * profiling.  This profile clock runs at profhz.  We require that profhz
128 * be an integral multiple of stathz.
129 *
130 * If the statistics clock is running fast, it must be divided by the ratio
131 * profhz/stathz for statistics.  (For profiling, every tick counts.)
132 */
133
134/*
135 * TODO:
136 *	allocate more timeout table slots when table overflows.
137 */
138
139/*
140 * Bump a timeval by a small number of usec's.
141 */
142#define BUMPTIME(t, usec) { \
143	register volatile struct timeval *tp = (t); \
144	register long us; \
145 \
146	tp->tv_usec = us = tp->tv_usec + (usec); \
147	if (us >= 1000000) { \
148		tp->tv_usec = us - 1000000; \
149		tp->tv_sec++; \
150	} \
151}
152
153int	stathz;
154int	profhz;
155static int profprocs;
156int	ticks;
157static int psdiv, pscnt;	/* prof => stat divider */
158int psratio;			/* ratio: prof / stat */
159
160volatile struct	timeval time;
161volatile struct	timeval mono_time;
162
163/*
164 * Phase-lock loop (PLL) definitions
165 *
166 * The following variables are read and set by the ntp_adjtime() system
167 * call.
168 *
169 * time_state shows the state of the system clock, with values defined
170 * in the timex.h header file.
171 *
172 * time_status shows the status of the system clock, with bits defined
173 * in the timex.h header file.
174 *
175 * time_offset is used by the PLL to adjust the system time in small
176 * increments.
177 *
178 * time_constant determines the bandwidth or "stiffness" of the PLL.
179 *
180 * time_tolerance determines maximum frequency error or tolerance of the
181 * CPU clock oscillator and is a property of the architecture; however,
182 * in principle it could change as result of the presence of external
183 * discipline signals, for instance.
184 *
185 * time_precision is usually equal to the kernel tick variable; however,
186 * in cases where a precision clock counter or external clock is
187 * available, the resolution can be much less than this and depend on
188 * whether the external clock is working or not.
189 *
190 * time_maxerror is initialized by a ntp_adjtime() call and increased by
191 * the kernel once each second to reflect the maximum error
192 * bound growth.
193 *
194 * time_esterror is set and read by the ntp_adjtime() call, but
195 * otherwise not used by the kernel.
196 */
197int time_status = STA_UNSYNC;	/* clock status bits */
198int time_state = TIME_OK;	/* clock state */
199long time_offset = 0;		/* time offset (us) */
200long time_constant = 0;		/* pll time constant */
201long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
202long time_precision = 1;	/* clock precision (us) */
203long time_maxerror = MAXPHASE;	/* maximum error (us) */
204long time_esterror = MAXPHASE;	/* estimated error (us) */
205
206/*
207 * The following variables establish the state of the PLL and the
208 * residual time and frequency offset of the local clock. The scale
209 * factors are defined in the timex.h header file.
210 *
211 * time_phase and time_freq are the phase increment and the frequency
212 * increment, respectively, of the kernel time variable at each tick of
213 * the clock.
214 *
215 * time_freq is set via ntp_adjtime() from a value stored in a file when
216 * the synchronization daemon is first started. Its value is retrieved
217 * via ntp_adjtime() and written to the file about once per hour by the
218 * daemon.
219 *
220 * time_adj is the adjustment added to the value of tick at each timer
221 * interrupt and is recomputed at each timer interrupt.
222 *
223 * time_reftime is the second's portion of the system time on the last
224 * call to ntp_adjtime(). It is used to adjust the time_freq variable
225 * and to increase the time_maxerror as the time since last update
226 * increases.
227 */
228static long time_phase = 0;		/* phase offset (scaled us) */
229long time_freq = 0;		/* frequency offset (scaled ppm) */
230static long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
231static long time_reftime = 0;		/* time at last adjustment (s) */
232
233#ifdef PPS_SYNC
234/*
235 * The following variables are used only if the if the kernel PPS
236 * discipline code is configured (PPS_SYNC). The scale factors are
237 * defined in the timex.h header file.
238 *
239 * pps_time contains the time at each calibration interval, as read by
240 * microtime().
241 *
242 * pps_offset is the time offset produced by the time median filter
243 * pps_tf[], while pps_jitter is the dispersion measured by this
244 * filter.
245 *
246 * pps_freq is the frequency offset produced by the frequency median
247 * filter pps_ff[], while pps_stabil is the dispersion measured by
248 * this filter.
249 *
250 * pps_usec is latched from a high resolution counter or external clock
251 * at pps_time. Here we want the hardware counter contents only, not the
252 * contents plus the time_tv.usec as usual.
253 *
254 * pps_valid counts the number of seconds since the last PPS update. It
255 * is used as a watchdog timer to disable the PPS discipline should the
256 * PPS signal be lost.
257 *
258 * pps_glitch counts the number of seconds since the beginning of an
259 * offset burst more than tick/2 from current nominal offset. It is used
260 * mainly to suppress error bursts due to priority conflicts between the
261 * PPS interrupt and timer interrupt.
262 *
263 * pps_count counts the seconds of the calibration interval, the
264 * duration of which is pps_shift in powers of two.
265 *
266 * pps_intcnt counts the calibration intervals for use in the interval-
267 * adaptation algorithm. It's just too complicated for words.
268 */
269struct timeval pps_time;	/* kernel time at last interval */
270long pps_offset = 0;		/* pps time offset (us) */
271long pps_jitter = MAXTIME;	/* pps time dispersion (jitter) (us) */
272long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
273long pps_freq = 0;		/* frequency offset (scaled ppm) */
274long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
275long pps_ff[] = {0, 0, 0};	/* frequency offset median filter */
276long pps_usec = 0;		/* microsec counter at last interval */
277long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
278int pps_glitch = 0;		/* pps signal glitch counter */
279int pps_count = 0;		/* calibration interval counter (s) */
280int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
281int pps_intcnt = 0;		/* intervals at current duration */
282
283/*
284 * PPS signal quality monitors
285 *
286 * pps_jitcnt counts the seconds that have been discarded because the
287 * jitter measured by the time median filter exceeds the limit MAXTIME
288 * (100 us).
289 *
290 * pps_calcnt counts the frequency calibration intervals, which are
291 * variable from 4 s to 256 s.
292 *
293 * pps_errcnt counts the calibration intervals which have been discarded
294 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
295 * calibration interval jitter exceeds two ticks.
296 *
297 * pps_stbcnt counts the calibration intervals that have been discarded
298 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
299 */
300long pps_jitcnt = 0;		/* jitter limit exceeded */
301long pps_calcnt = 0;		/* calibration intervals */
302long pps_errcnt = 0;		/* calibration errors */
303long pps_stbcnt = 0;		/* stability limit exceeded */
304#endif /* PPS_SYNC */
305
306/* XXX none of this stuff works under FreeBSD */
307#ifdef EXT_CLOCK
308/*
309 * External clock definitions
310 *
311 * The following definitions and declarations are used only if an
312 * external clock (HIGHBALL or TPRO) is configured on the system.
313 */
314#define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
315
316/*
317 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
318 * interrupt and decremented once each second.
319 */
320int clock_count = 0;		/* CPU clock counter */
321
322#ifdef HIGHBALL
323/*
324 * The clock_offset and clock_cpu variables are used by the HIGHBALL
325 * interface. The clock_offset variable defines the offset between
326 * system time and the HIGBALL counters. The clock_cpu variable contains
327 * the offset between the system clock and the HIGHBALL clock for use in
328 * disciplining the kernel time variable.
329 */
330extern struct timeval clock_offset; /* Highball clock offset */
331long clock_cpu = 0;		/* CPU clock adjust */
332#endif /* HIGHBALL */
333#endif /* EXT_CLOCK */
334
335/*
336 * hardupdate() - local clock update
337 *
338 * This routine is called by ntp_adjtime() to update the local clock
339 * phase and frequency. This is used to implement an adaptive-parameter,
340 * first-order, type-II phase-lock loop. The code computes new time and
341 * frequency offsets each time it is called. The hardclock() routine
342 * amortizes these offsets at each tick interrupt. If the kernel PPS
343 * discipline code is configured (PPS_SYNC), the PPS signal itself
344 * determines the new time offset, instead of the calling argument.
345 * Presumably, calls to ntp_adjtime() occur only when the caller
346 * believes the local clock is valid within some bound (+-128 ms with
347 * NTP). If the caller's time is far different than the PPS time, an
348 * argument will ensue, and it's not clear who will lose.
349 *
350 * For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the
351 * maximum interval between updates is 4096 s and the maximum frequency
352 * offset is +-31.25 ms/s.
353 *
354 * Note: splclock() is in effect.
355 */
356void
357hardupdate(offset)
358	long offset;
359{
360	long ltemp, mtemp;
361
362	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
363		return;
364	ltemp = offset;
365#ifdef PPS_SYNC
366	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
367		ltemp = pps_offset;
368#endif /* PPS_SYNC */
369	if (ltemp > MAXPHASE)
370		time_offset = MAXPHASE << SHIFT_UPDATE;
371	else if (ltemp < -MAXPHASE)
372		time_offset = -(MAXPHASE << SHIFT_UPDATE);
373	else
374		time_offset = ltemp << SHIFT_UPDATE;
375	mtemp = time.tv_sec - time_reftime;
376	time_reftime = time.tv_sec;
377	if (mtemp > MAXSEC)
378		mtemp = 0;
379
380	/* ugly multiply should be replaced */
381	if (ltemp < 0)
382		time_freq -= (-ltemp * mtemp) >> (time_constant +
383		    time_constant + SHIFT_KF - SHIFT_USEC);
384	else
385		time_freq += (ltemp * mtemp) >> (time_constant +
386		    time_constant + SHIFT_KF - SHIFT_USEC);
387	if (time_freq > time_tolerance)
388		time_freq = time_tolerance;
389	else if (time_freq < -time_tolerance)
390		time_freq = -time_tolerance;
391}
392
393
394
395/*
396 * Initialize clock frequencies and start both clocks running.
397 */
398/* ARGSUSED*/
399static void
400initclocks(dummy)
401	void *dummy;
402{
403	register int i;
404
405	/*
406	 * Set divisors to 1 (normal case) and let the machine-specific
407	 * code do its bit.
408	 */
409	psdiv = pscnt = 1;
410	cpu_initclocks();
411
412	/*
413	 * Compute profhz/stathz, and fix profhz if needed.
414	 */
415	i = stathz ? stathz : hz;
416	if (profhz == 0)
417		profhz = i;
418	psratio = profhz / i;
419}
420
421/*
422 * The real-time timer, interrupting hz times per second.
423 */
424void
425hardclock(frame)
426	register struct clockframe *frame;
427{
428	register struct callout *p1;
429	register struct proc *p;
430	register int needsoft;
431
432	/*
433	 * Update real-time timeout queue.
434	 * At front of queue are some number of events which are ``due''.
435	 * The time to these is <= 0 and if negative represents the
436	 * number of ticks which have passed since it was supposed to happen.
437	 * The rest of the q elements (times > 0) are events yet to happen,
438	 * where the time for each is given as a delta from the previous.
439	 * Decrementing just the first of these serves to decrement the time
440	 * to all events.
441	 */
442	needsoft = 0;
443	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
444		if (--p1->c_time > 0)
445			break;
446		needsoft = 1;
447		if (p1->c_time == 0)
448			break;
449	}
450
451	p = curproc;
452	if (p) {
453		register struct pstats *pstats;
454
455		/*
456		 * Run current process's virtual and profile time, as needed.
457		 */
458		pstats = p->p_stats;
459		if (CLKF_USERMODE(frame) &&
460		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
461		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
462			psignal(p, SIGVTALRM);
463		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
464		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
465			psignal(p, SIGPROF);
466	}
467
468	/*
469	 * If no separate statistics clock is available, run it from here.
470	 */
471	if (stathz == 0)
472		statclock(frame);
473
474	/*
475	 * Increment the time-of-day.
476	 */
477	ticks++;
478	{
479		int time_update;
480		struct timeval newtime = time;
481		long ltemp;
482
483		if (timedelta == 0) {
484			time_update = CPU_THISTICKLEN(tick);
485		} else {
486			time_update = CPU_THISTICKLEN(tick) + tickdelta;
487			timedelta -= tickdelta;
488		}
489		BUMPTIME(&mono_time, time_update);
490
491		/*
492		 * Compute the phase adjustment. If the low-order bits
493		 * (time_phase) of the update overflow, bump the high-order bits
494		 * (time_update).
495		 */
496		time_phase += time_adj;
497		if (time_phase <= -FINEUSEC) {
498		  ltemp = -time_phase >> SHIFT_SCALE;
499		  time_phase += ltemp << SHIFT_SCALE;
500		  time_update -= ltemp;
501		}
502		else if (time_phase >= FINEUSEC) {
503		  ltemp = time_phase >> SHIFT_SCALE;
504		  time_phase -= ltemp << SHIFT_SCALE;
505		  time_update += ltemp;
506		}
507
508		newtime.tv_usec += time_update;
509		/*
510		 * On rollover of the second the phase adjustment to be used for
511		 * the next second is calculated. Also, the maximum error is
512		 * increased by the tolerance. If the PPS frequency discipline
513		 * code is present, the phase is increased to compensate for the
514		 * CPU clock oscillator frequency error.
515		 *
516		 * With SHIFT_SCALE = 23, the maximum frequency adjustment is
517		 * +-256 us per tick, or 25.6 ms/s at a clock frequency of 100
518		 * Hz. The time contribution is shifted right a minimum of two
519		 * bits, while the frequency contribution is a right shift.
520		 * Thus, overflow is prevented if the frequency contribution is
521		 * limited to half the maximum or 15.625 ms/s.
522		 */
523		if (newtime.tv_usec >= 1000000) {
524		  newtime.tv_usec -= 1000000;
525		  newtime.tv_sec++;
526		  time_maxerror += time_tolerance >> SHIFT_USEC;
527		  if (time_offset < 0) {
528		    ltemp = -time_offset >>
529		      (SHIFT_KG + time_constant);
530		    time_offset += ltemp;
531		    time_adj = -ltemp <<
532		      (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
533		  } else {
534		    ltemp = time_offset >>
535		      (SHIFT_KG + time_constant);
536		    time_offset -= ltemp;
537		    time_adj = ltemp <<
538		      (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
539		  }
540#ifdef PPS_SYNC
541		  /*
542		   * Gnaw on the watchdog counter and update the frequency
543		   * computed by the pll and the PPS signal.
544		   */
545		  pps_valid++;
546		  if (pps_valid == PPS_VALID) {
547		    pps_jitter = MAXTIME;
548		    pps_stabil = MAXFREQ;
549		    time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
550				     STA_PPSWANDER | STA_PPSERROR);
551		  }
552		  ltemp = time_freq + pps_freq;
553#else
554		  ltemp = time_freq;
555#endif /* PPS_SYNC */
556		  if (ltemp < 0)
557		    time_adj -= -ltemp >>
558		      (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
559		  else
560		    time_adj += ltemp >>
561		      (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
562
563		  /*
564		   * When the CPU clock oscillator frequency is not a
565		   * power of two in Hz, the SHIFT_HZ is only an
566		   * approximate scale factor. In the SunOS kernel, this
567		   * results in a PLL gain factor of 1/1.28 = 0.78 what it
568		   * should be. In the following code the overall gain is
569		   * increased by a factor of 1.25, which results in a
570		   * residual error less than 3 percent.
571		   */
572		  /* Same thing applies for FreeBSD --GAW */
573		  if (hz == 100) {
574		    if (time_adj < 0)
575		      time_adj -= -time_adj >> 2;
576		    else
577		      time_adj += time_adj >> 2;
578		  }
579
580		  /* XXX - this is really bogus, but can't be fixed until
581		     xntpd's idea of the system clock is fixed to know how
582		     the user wants leap seconds handled; in the mean time,
583		     we assume that users of NTP are running without proper
584		     leap second support (this is now the default anyway) */
585		  /*
586		   * Leap second processing. If in leap-insert state at
587		   * the end of the day, the system clock is set back one
588		   * second; if in leap-delete state, the system clock is
589		   * set ahead one second. The microtime() routine or
590		   * external clock driver will insure that reported time
591		   * is always monotonic. The ugly divides should be
592		   * replaced.
593		   */
594		  switch (time_state) {
595
596		  case TIME_OK:
597		    if (time_status & STA_INS)
598		      time_state = TIME_INS;
599		    else if (time_status & STA_DEL)
600		      time_state = TIME_DEL;
601		    break;
602
603		  case TIME_INS:
604		    if (newtime.tv_sec % 86400 == 0) {
605		      newtime.tv_sec--;
606		      time_state = TIME_OOP;
607		    }
608		    break;
609
610		  case TIME_DEL:
611		    if ((newtime.tv_sec + 1) % 86400 == 0) {
612		      newtime.tv_sec++;
613		      time_state = TIME_WAIT;
614		    }
615		    break;
616
617		  case TIME_OOP:
618		    time_state = TIME_WAIT;
619		    break;
620
621		  case TIME_WAIT:
622		    if (!(time_status & (STA_INS | STA_DEL)))
623		      time_state = TIME_OK;
624		  }
625		}
626		CPU_CLOCKUPDATE(&time, &newtime);
627	}
628
629	/*
630	 * Process callouts at a very low cpu priority, so we don't keep the
631	 * relatively high clock interrupt priority any longer than necessary.
632	 */
633	if (needsoft) {
634		if (CLKF_BASEPRI(frame)) {
635			/*
636			 * Save the overhead of a software interrupt;
637			 * it will happen as soon as we return, so do it now.
638			 */
639			(void)splsoftclock();
640			softclock();
641		} else
642			setsoftclock();
643	}
644}
645
646/*
647 * Software (low priority) clock interrupt.
648 * Run periodic events from timeout queue.
649 */
650/*ARGSUSED*/
651void
652softclock()
653{
654	register struct callout *c;
655	register void *arg;
656	register void (*func) __P((void *));
657	register int s;
658
659	s = splhigh();
660	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
661		func = c->c_func;
662		arg = c->c_arg;
663		calltodo.c_next = c->c_next;
664		c->c_next = callfree;
665		callfree = c;
666		splx(s);
667		(*func)(arg);
668		(void) splhigh();
669	}
670	splx(s);
671}
672
673/*
674 * timeout --
675 *	Execute a function after a specified length of time.
676 *
677 * untimeout --
678 *	Cancel previous timeout function call.
679 *
680 *	See AT&T BCI Driver Reference Manual for specification.  This
681 *	implementation differs from that one in that no identification
682 *	value is returned from timeout, rather, the original arguments
683 *	to timeout are used to identify entries for untimeout.
684 */
685void
686timeout(ftn, arg, ticks)
687	timeout_t ftn;
688	void *arg;
689	register int ticks;
690{
691	register struct callout *new, *p, *t;
692	register int s;
693
694	if (ticks <= 0)
695		ticks = 1;
696
697	/* Lock out the clock. */
698	s = splhigh();
699
700	/* Fill in the next free callout structure. */
701	if (callfree == NULL)
702		panic("timeout table full");
703	new = callfree;
704	callfree = new->c_next;
705	new->c_arg = arg;
706	new->c_func = ftn;
707
708	/*
709	 * The time for each event is stored as a difference from the time
710	 * of the previous event on the queue.  Walk the queue, correcting
711	 * the ticks argument for queue entries passed.  Correct the ticks
712	 * value for the queue entry immediately after the insertion point
713	 * as well.  Watch out for negative c_time values; these represent
714	 * overdue events.
715	 */
716	for (p = &calltodo;
717	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
718		if (t->c_time > 0)
719			ticks -= t->c_time;
720	new->c_time = ticks;
721	if (t != NULL)
722		t->c_time -= ticks;
723
724	/* Insert the new entry into the queue. */
725	p->c_next = new;
726	new->c_next = t;
727	splx(s);
728}
729
730void
731untimeout(ftn, arg)
732	timeout_t ftn;
733	void *arg;
734{
735	register struct callout *p, *t;
736	register int s;
737
738	s = splhigh();
739	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
740		if (t->c_func == ftn && t->c_arg == arg) {
741			/* Increment next entry's tick count. */
742			if (t->c_next && t->c_time > 0)
743				t->c_next->c_time += t->c_time;
744
745			/* Move entry from callout queue to callfree queue. */
746			p->c_next = t->c_next;
747			t->c_next = callfree;
748			callfree = t;
749			break;
750		}
751	splx(s);
752}
753
754/*
755 * Compute number of hz until specified time.  Used to
756 * compute third argument to timeout() from an absolute time.
757 */
758int
759hzto(tv)
760	struct timeval *tv;
761{
762	register unsigned long ticks;
763	register long sec, usec;
764	int s;
765
766	/*
767	 * If the number of usecs in the whole seconds part of the time
768	 * difference fits in a long, then the total number of usecs will
769	 * fit in an unsigned long.  Compute the total and convert it to
770	 * ticks, rounding up and adding 1 to allow for the current tick
771	 * to expire.  Rounding also depends on unsigned long arithmetic
772	 * to avoid overflow.
773	 *
774	 * Otherwise, if the number of ticks in the whole seconds part of
775	 * the time difference fits in a long, then convert the parts to
776	 * ticks separately and add, using similar rounding methods and
777	 * overflow avoidance.  This method would work in the previous
778	 * case but it is slightly slower and assumes that hz is integral.
779	 *
780	 * Otherwise, round the time difference down to the maximum
781	 * representable value.
782	 *
783	 * If ints have 32 bits, then the maximum value for any timeout in
784	 * 10ms ticks is 248 days.
785	 */
786	s = splclock();
787	sec = tv->tv_sec - time.tv_sec;
788	usec = tv->tv_usec - time.tv_usec;
789	splx(s);
790	if (usec < 0) {
791		sec--;
792		usec += 1000000;
793	}
794	if (sec < 0) {
795#ifdef DIAGNOSTIC
796		printf("hzto: negative time difference %ld sec %ld usec\n",
797		       sec, usec);
798#endif
799		ticks = 1;
800	} else if (sec <= LONG_MAX / 1000000)
801		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
802			/ tick + 1;
803	else if (sec <= LONG_MAX / hz)
804		ticks = sec * hz
805			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
806	else
807		ticks = LONG_MAX;
808	if (ticks > INT_MAX)
809		ticks = INT_MAX;
810	return (ticks);
811}
812
813/*
814 * Start profiling on a process.
815 *
816 * Kernel profiling passes proc0 which never exits and hence
817 * keeps the profile clock running constantly.
818 */
819void
820startprofclock(p)
821	register struct proc *p;
822{
823	int s;
824
825	if ((p->p_flag & P_PROFIL) == 0) {
826		p->p_flag |= P_PROFIL;
827		if (++profprocs == 1 && stathz != 0) {
828			s = splstatclock();
829			psdiv = pscnt = psratio;
830			setstatclockrate(profhz);
831			splx(s);
832		}
833	}
834}
835
836/*
837 * Stop profiling on a process.
838 */
839void
840stopprofclock(p)
841	register struct proc *p;
842{
843	int s;
844
845	if (p->p_flag & P_PROFIL) {
846		p->p_flag &= ~P_PROFIL;
847		if (--profprocs == 0 && stathz != 0) {
848			s = splstatclock();
849			psdiv = pscnt = 1;
850			setstatclockrate(stathz);
851			splx(s);
852		}
853	}
854}
855
856/*
857 * Statistics clock.  Grab profile sample, and if divider reaches 0,
858 * do process and kernel statistics.
859 */
860void
861statclock(frame)
862	register struct clockframe *frame;
863{
864#ifdef GPROF
865	register struct gmonparam *g;
866#endif
867	register struct proc *p;
868	register int i;
869	struct pstats *pstats;
870	long rss;
871	struct rusage *ru;
872	struct vmspace *vm;
873
874	if (CLKF_USERMODE(frame)) {
875		p = curproc;
876		if (p->p_flag & P_PROFIL)
877			addupc_intr(p, CLKF_PC(frame), 1);
878		if (--pscnt > 0)
879			return;
880		/*
881		 * Came from user mode; CPU was in user state.
882		 * If this process is being profiled record the tick.
883		 */
884		p->p_uticks++;
885		if (p->p_nice > NZERO)
886			cp_time[CP_NICE]++;
887		else
888			cp_time[CP_USER]++;
889	} else {
890#ifdef GPROF
891		/*
892		 * Kernel statistics are just like addupc_intr, only easier.
893		 */
894		g = &_gmonparam;
895		if (g->state == GMON_PROF_ON) {
896			i = CLKF_PC(frame) - g->lowpc;
897			if (i < g->textsize) {
898				i /= HISTFRACTION * sizeof(*g->kcount);
899				g->kcount[i]++;
900			}
901		}
902#endif
903		if (--pscnt > 0)
904			return;
905		/*
906		 * Came from kernel mode, so we were:
907		 * - handling an interrupt,
908		 * - doing syscall or trap work on behalf of the current
909		 *   user process, or
910		 * - spinning in the idle loop.
911		 * Whichever it is, charge the time as appropriate.
912		 * Note that we charge interrupts to the current process,
913		 * regardless of whether they are ``for'' that process,
914		 * so that we know how much of its real time was spent
915		 * in ``non-process'' (i.e., interrupt) work.
916		 */
917		p = curproc;
918		if (CLKF_INTR(frame)) {
919			if (p != NULL)
920				p->p_iticks++;
921			cp_time[CP_INTR]++;
922		} else if (p != NULL) {
923			p->p_sticks++;
924			cp_time[CP_SYS]++;
925		} else
926			cp_time[CP_IDLE]++;
927	}
928	pscnt = psdiv;
929
930	/*
931	 * We maintain statistics shown by user-level statistics
932	 * programs:  the amount of time in each cpu state, and
933	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
934	 *
935	 * XXX	should either run linked list of drives, or (better)
936	 *	grab timestamps in the start & done code.
937	 */
938	for (i = 0; i < DK_NDRIVE; i++)
939		if (dk_busy & (1 << i))
940			dk_time[i]++;
941
942	/*
943	 * We adjust the priority of the current process.  The priority of
944	 * a process gets worse as it accumulates CPU time.  The cpu usage
945	 * estimator (p_estcpu) is increased here.  The formula for computing
946	 * priorities (in kern_synch.c) will compute a different value each
947	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
948	 * quite quickly when the process is running (linearly), and decays
949	 * away exponentially, at a rate which is proportionally slower when
950	 * the system is busy.  The basic principal is that the system will
951	 * 90% forget that the process used a lot of CPU time in 5 * loadav
952	 * seconds.  This causes the system to favor processes which haven't
953	 * run much recently, and to round-robin among other processes.
954	 */
955	if (p != NULL) {
956		p->p_cpticks++;
957		if (++p->p_estcpu == 0)
958			p->p_estcpu--;
959		if ((p->p_estcpu & 3) == 0) {
960			resetpriority(p);
961			if (p->p_priority >= PUSER)
962				p->p_priority = p->p_usrpri;
963		}
964
965		/* Update resource usage integrals and maximums. */
966		if ((pstats = p->p_stats) != NULL &&
967		    (ru = &pstats->p_ru) != NULL &&
968		    (vm = p->p_vmspace) != NULL) {
969			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
970			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
971			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
972			rss = vm->vm_pmap.pm_stats.resident_count *
973			      PAGE_SIZE / 1024;
974			if (ru->ru_maxrss < rss)
975				ru->ru_maxrss = rss;
976        	}
977	}
978}
979
980/*
981 * Return information about system clocks.
982 */
983static int
984sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
985{
986	struct clockinfo clkinfo;
987	/*
988	 * Construct clockinfo structure.
989	 */
990	clkinfo.hz = hz;
991	clkinfo.tick = tick;
992	clkinfo.profhz = profhz;
993	clkinfo.stathz = stathz ? stathz : hz;
994	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
995}
996
997SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
998	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
999
1000/*#ifdef PPS_SYNC*/
1001#if 0
1002/* This code is completely bogus; if anybody ever wants to use it, get
1003 * the current version from Dave Mills. */
1004
1005/*
1006 * hardpps() - discipline CPU clock oscillator to external pps signal
1007 *
1008 * This routine is called at each PPS interrupt in order to discipline
1009 * the CPU clock oscillator to the PPS signal. It integrates successive
1010 * phase differences between the two oscillators and calculates the
1011 * frequency offset. This is used in hardclock() to discipline the CPU
1012 * clock oscillator so that intrinsic frequency error is cancelled out.
1013 * The code requires the caller to capture the time and hardware
1014 * counter value at the designated PPS signal transition.
1015 */
1016void
1017hardpps(tvp, usec)
1018	struct timeval *tvp;		/* time at PPS */
1019	long usec;			/* hardware counter at PPS */
1020{
1021	long u_usec, v_usec, bigtick;
1022	long cal_sec, cal_usec;
1023
1024	/*
1025	 * During the calibration interval adjust the starting time when
1026	 * the tick overflows. At the end of the interval compute the
1027	 * duration of the interval and the difference of the hardware
1028	 * counters at the beginning and end of the interval. This code
1029	 * is deliciously complicated by the fact valid differences may
1030	 * exceed the value of tick when using long calibration
1031	 * intervals and small ticks. Note that the counter can be
1032	 * greater than tick if caught at just the wrong instant, but
1033	 * the values returned and used here are correct.
1034	 */
1035	bigtick = (long)tick << SHIFT_USEC;
1036	pps_usec -= ntp_pll.ybar;
1037	if (pps_usec >= bigtick)
1038		pps_usec -= bigtick;
1039	if (pps_usec < 0)
1040		pps_usec += bigtick;
1041	pps_time.tv_sec++;
1042	pps_count++;
1043	if (pps_count < (1 << pps_shift))
1044		return;
1045	pps_count = 0;
1046	ntp_pll.calcnt++;
1047	u_usec = usec << SHIFT_USEC;
1048	v_usec = pps_usec - u_usec;
1049	if (v_usec >= bigtick >> 1)
1050		v_usec -= bigtick;
1051	if (v_usec < -(bigtick >> 1))
1052		v_usec += bigtick;
1053	if (v_usec < 0)
1054		v_usec = -(-v_usec >> ntp_pll.shift);
1055	else
1056		v_usec = v_usec >> ntp_pll.shift;
1057	pps_usec = u_usec;
1058	cal_sec = tvp->tv_sec;
1059	cal_usec = tvp->tv_usec;
1060	cal_sec -= pps_time.tv_sec;
1061	cal_usec -= pps_time.tv_usec;
1062	if (cal_usec < 0) {
1063		cal_usec += 1000000;
1064		cal_sec--;
1065	}
1066	pps_time = *tvp;
1067
1068	/*
1069	 * Check for lost interrupts, noise, excessive jitter and
1070	 * excessive frequency error. The number of timer ticks during
1071	 * the interval may vary +-1 tick. Add to this a margin of one
1072	 * tick for the PPS signal jitter and maximum frequency
1073	 * deviation. If the limits are exceeded, the calibration
1074	 * interval is reset to the minimum and we start over.
1075	 */
1076	u_usec = (long)tick << 1;
1077	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1078	    || (cal_sec == 0 && cal_usec < u_usec))
1079	    || v_usec > ntp_pll.tolerance || v_usec < -ntp_pll.tolerance) {
1080		ntp_pll.jitcnt++;
1081		ntp_pll.shift = NTP_PLL.SHIFT;
1082		pps_dispinc = PPS_DISPINC;
1083		ntp_pll.intcnt = 0;
1084		return;
1085	}
1086
1087	/*
1088	 * A three-stage median filter is used to help deglitch the pps
1089	 * signal. The median sample becomes the offset estimate; the
1090	 * difference between the other two samples becomes the
1091	 * dispersion estimate.
1092	 */
1093	pps_mf[2] = pps_mf[1];
1094	pps_mf[1] = pps_mf[0];
1095	pps_mf[0] = v_usec;
1096	if (pps_mf[0] > pps_mf[1]) {
1097		if (pps_mf[1] > pps_mf[2]) {
1098			u_usec = pps_mf[1];		/* 0 1 2 */
1099			v_usec = pps_mf[0] - pps_mf[2];
1100		} else if (pps_mf[2] > pps_mf[0]) {
1101			u_usec = pps_mf[0];		/* 2 0 1 */
1102			v_usec = pps_mf[2] - pps_mf[1];
1103		} else {
1104			u_usec = pps_mf[2];		/* 0 2 1 */
1105			v_usec = pps_mf[0] - pps_mf[1];
1106		}
1107	} else {
1108		if (pps_mf[1] < pps_mf[2]) {
1109			u_usec = pps_mf[1];		/* 2 1 0 */
1110			v_usec = pps_mf[2] - pps_mf[0];
1111		} else  if (pps_mf[2] < pps_mf[0]) {
1112			u_usec = pps_mf[0];		/* 1 0 2 */
1113			v_usec = pps_mf[1] - pps_mf[2];
1114		} else {
1115			u_usec = pps_mf[2];		/* 1 2 0 */
1116			v_usec = pps_mf[1] - pps_mf[0];
1117		}
1118	}
1119
1120	/*
1121	 * Here the dispersion average is updated. If it is less than
1122	 * the threshold pps_dispmax, the frequency average is updated
1123	 * as well, but clamped to the tolerance.
1124	 */
1125	v_usec = (v_usec >> 1) - ntp_pll.disp;
1126	if (v_usec < 0)
1127		ntp_pll.disp -= -v_usec >> PPS_AVG;
1128	else
1129		ntp_pll.disp += v_usec >> PPS_AVG;
1130	if (ntp_pll.disp > pps_dispmax) {
1131		ntp_pll.discnt++;
1132		return;
1133	}
1134	if (u_usec < 0) {
1135		ntp_pll.ybar -= -u_usec >> PPS_AVG;
1136		if (ntp_pll.ybar < -ntp_pll.tolerance)
1137			ntp_pll.ybar = -ntp_pll.tolerance;
1138		u_usec = -u_usec;
1139	} else {
1140		ntp_pll.ybar += u_usec >> PPS_AVG;
1141		if (ntp_pll.ybar > ntp_pll.tolerance)
1142			ntp_pll.ybar = ntp_pll.tolerance;
1143	}
1144
1145	/*
1146	 * Here the calibration interval is adjusted. If the maximum
1147	 * time difference is greater than tick/4, reduce the interval
1148	 * by half. If this is not the case for four consecutive
1149	 * intervals, double the interval.
1150	 */
1151	if (u_usec << ntp_pll.shift > bigtick >> 2) {
1152		ntp_pll.intcnt = 0;
1153		if (ntp_pll.shift > NTP_PLL.SHIFT) {
1154			ntp_pll.shift--;
1155			pps_dispinc <<= 1;
1156		}
1157	} else if (ntp_pll.intcnt >= 4) {
1158		ntp_pll.intcnt = 0;
1159		if (ntp_pll.shift < NTP_PLL.SHIFTMAX) {
1160			ntp_pll.shift++;
1161			pps_dispinc >>= 1;
1162		}
1163	} else
1164		ntp_pll.intcnt++;
1165}
1166#endif /* PPS_SYNC */
1167