pmap.c revision 248508
1219820Sjeff/*-
2219820Sjeff * Copyright (c) 1991 Regents of the University of California.
3219820Sjeff * All rights reserved.
4219820Sjeff * Copyright (c) 1994 John S. Dyson
5219820Sjeff * All rights reserved.
6219820Sjeff * Copyright (c) 1994 David Greenman
7219820Sjeff * All rights reserved.
8219820Sjeff * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9219820Sjeff * All rights reserved.
10219820Sjeff *
11219820Sjeff * This code is derived from software contributed to Berkeley by
12219820Sjeff * the Systems Programming Group of the University of Utah Computer
13219820Sjeff * Science Department and William Jolitz of UUNET Technologies Inc.
14219820Sjeff *
15219820Sjeff * Redistribution and use in source and binary forms, with or without
16219820Sjeff * modification, are permitted provided that the following conditions
17219820Sjeff * are met:
18219820Sjeff * 1. Redistributions of source code must retain the above copyright
19219820Sjeff *    notice, this list of conditions and the following disclaimer.
20219820Sjeff * 2. Redistributions in binary form must reproduce the above copyright
21219820Sjeff *    notice, this list of conditions and the following disclaimer in the
22219820Sjeff *    documentation and/or other materials provided with the distribution.
23219820Sjeff * 3. All advertising materials mentioning features or use of this software
24219820Sjeff *    must display the following acknowledgement:
25219820Sjeff *	This product includes software developed by the University of
26219820Sjeff *	California, Berkeley and its contributors.
27219820Sjeff * 4. Neither the name of the University nor the names of its contributors
28219820Sjeff *    may be used to endorse or promote products derived from this software
29219820Sjeff *    without specific prior written permission.
30219820Sjeff *
31219820Sjeff * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32219820Sjeff * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33219820Sjeff * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34219820Sjeff * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35219820Sjeff * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36219820Sjeff * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37219820Sjeff * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38219820Sjeff * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39219820Sjeff * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40219820Sjeff * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41219820Sjeff * SUCH DAMAGE.
42219820Sjeff *
43219820Sjeff *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44219820Sjeff */
45219820Sjeff/*-
46219820Sjeff * Copyright (c) 2003 Networks Associates Technology, Inc.
47219820Sjeff * All rights reserved.
48219820Sjeff *
49219820Sjeff * This software was developed for the FreeBSD Project by Jake Burkholder,
50219820Sjeff * Safeport Network Services, and Network Associates Laboratories, the
51219820Sjeff * Security Research Division of Network Associates, Inc. under
52219820Sjeff * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53219820Sjeff * CHATS research program.
54219820Sjeff *
55219820Sjeff * Redistribution and use in source and binary forms, with or without
56219820Sjeff * modification, are permitted provided that the following conditions
57219820Sjeff * are met:
58219820Sjeff * 1. Redistributions of source code must retain the above copyright
59219820Sjeff *    notice, this list of conditions and the following disclaimer.
60219820Sjeff * 2. Redistributions in binary form must reproduce the above copyright
61219820Sjeff *    notice, this list of conditions and the following disclaimer in the
62219820Sjeff *    documentation and/or other materials provided with the distribution.
63219820Sjeff *
64219820Sjeff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65219820Sjeff * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66219820Sjeff * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67219820Sjeff * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68219820Sjeff * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69219820Sjeff * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70219820Sjeff * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71219820Sjeff * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72219820Sjeff * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73219820Sjeff * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74219820Sjeff * SUCH DAMAGE.
75219820Sjeff */
76219820Sjeff
77219820Sjeff#include <sys/cdefs.h>
78219820Sjeff__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 248508 2013-03-19 14:13:12Z kib $");
79219820Sjeff
80219820Sjeff/*
81219820Sjeff *	Manages physical address maps.
82219820Sjeff *
83219820Sjeff *	Since the information managed by this module is
84219820Sjeff *	also stored by the logical address mapping module,
85219820Sjeff *	this module may throw away valid virtual-to-physical
86219820Sjeff *	mappings at almost any time.  However, invalidations
87219820Sjeff *	of virtual-to-physical mappings must be done as
88219820Sjeff *	requested.
89219820Sjeff *
90219820Sjeff *	In order to cope with hardware architectures which
91219820Sjeff *	make virtual-to-physical map invalidates expensive,
92219820Sjeff *	this module may delay invalidate or reduced protection
93219820Sjeff *	operations until such time as they are actually
94219820Sjeff *	necessary.  This module is given full information as
95219820Sjeff *	to which processors are currently using which maps,
96219820Sjeff *	and to when physical maps must be made correct.
97219820Sjeff */
98219820Sjeff
99219820Sjeff#include "opt_cpu.h"
100219820Sjeff#include "opt_pmap.h"
101219820Sjeff#include "opt_smp.h"
102219820Sjeff#include "opt_xbox.h"
103219820Sjeff
104219820Sjeff#include <sys/param.h>
105219820Sjeff#include <sys/systm.h>
106219820Sjeff#include <sys/kernel.h>
107219820Sjeff#include <sys/ktr.h>
108219820Sjeff#include <sys/lock.h>
109219820Sjeff#include <sys/malloc.h>
110219820Sjeff#include <sys/mman.h>
111219820Sjeff#include <sys/msgbuf.h>
112219820Sjeff#include <sys/mutex.h>
113219820Sjeff#include <sys/proc.h>
114219820Sjeff#include <sys/rwlock.h>
115219820Sjeff#include <sys/sf_buf.h>
116219820Sjeff#include <sys/sx.h>
117219820Sjeff#include <sys/vmmeter.h>
118219820Sjeff#include <sys/sched.h>
119219820Sjeff#include <sys/sysctl.h>
120219820Sjeff#ifdef SMP
121219820Sjeff#include <sys/smp.h>
122219820Sjeff#else
123219820Sjeff#include <sys/cpuset.h>
124219820Sjeff#endif
125219820Sjeff
126219820Sjeff#include <vm/vm.h>
127219820Sjeff#include <vm/vm_param.h>
128219820Sjeff#include <vm/vm_kern.h>
129219820Sjeff#include <vm/vm_page.h>
130219820Sjeff#include <vm/vm_map.h>
131219820Sjeff#include <vm/vm_object.h>
132219820Sjeff#include <vm/vm_extern.h>
133219820Sjeff#include <vm/vm_pageout.h>
134219820Sjeff#include <vm/vm_pager.h>
135219820Sjeff#include <vm/uma.h>
136219820Sjeff
137219820Sjeff#include <machine/cpu.h>
138219820Sjeff#include <machine/cputypes.h>
139219820Sjeff#include <machine/md_var.h>
140219820Sjeff#include <machine/pcb.h>
141219820Sjeff#include <machine/specialreg.h>
142219820Sjeff#ifdef SMP
143219820Sjeff#include <machine/smp.h>
144219820Sjeff#endif
145219820Sjeff
146219820Sjeff#ifdef XBOX
147219820Sjeff#include <machine/xbox.h>
148219820Sjeff#endif
149219820Sjeff
150219820Sjeff#include <xen/interface/xen.h>
151219820Sjeff#include <xen/hypervisor.h>
152219820Sjeff#include <machine/xen/hypercall.h>
153219820Sjeff#include <machine/xen/xenvar.h>
154219820Sjeff#include <machine/xen/xenfunc.h>
155219820Sjeff
156219820Sjeff#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
157219820Sjeff#define CPU_ENABLE_SSE
158219820Sjeff#endif
159219820Sjeff
160219820Sjeff#ifndef PMAP_SHPGPERPROC
161219820Sjeff#define PMAP_SHPGPERPROC 200
162219820Sjeff#endif
163219820Sjeff
164219820Sjeff#define DIAGNOSTIC
165219820Sjeff
166219820Sjeff#if !defined(DIAGNOSTIC)
167219820Sjeff#ifdef __GNUC_GNU_INLINE__
168219820Sjeff#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
169219820Sjeff#else
170219820Sjeff#define PMAP_INLINE	extern inline
171219820Sjeff#endif
172219820Sjeff#else
173219820Sjeff#define PMAP_INLINE
174219820Sjeff#endif
175219820Sjeff
176219820Sjeff#ifdef PV_STATS
177219820Sjeff#define PV_STAT(x)	do { x ; } while (0)
178219820Sjeff#else
179219820Sjeff#define PV_STAT(x)	do { } while (0)
180219820Sjeff#endif
181219820Sjeff
182219820Sjeff/*
183219820Sjeff * Get PDEs and PTEs for user/kernel address space
184219820Sjeff */
185219820Sjeff#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
186219820Sjeff#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
187219820Sjeff
188219820Sjeff#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
189219820Sjeff#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
190219820Sjeff#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
191219820Sjeff#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
192219820Sjeff#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
193219820Sjeff
194219820Sjeff#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
195219820Sjeff
196219820Sjeff#define HAMFISTED_LOCKING
197219820Sjeff#ifdef HAMFISTED_LOCKING
198219820Sjeffstatic struct mtx createdelete_lock;
199219820Sjeff#endif
200219820Sjeff
201219820Sjeffstruct pmap kernel_pmap_store;
202219820SjeffLIST_HEAD(pmaplist, pmap);
203219820Sjeffstatic struct pmaplist allpmaps;
204219820Sjeffstatic struct mtx allpmaps_lock;
205219820Sjeff
206219820Sjeffvm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
207219820Sjeffvm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
208219820Sjeffint pgeflag = 0;		/* PG_G or-in */
209219820Sjeffint pseflag = 0;		/* PG_PS or-in */
210219820Sjeff
211219820Sjeffint nkpt;
212219820Sjeffvm_offset_t kernel_vm_end;
213219820Sjeffextern u_int32_t KERNend;
214219820Sjeff
215219820Sjeff#ifdef PAE
216219820Sjeffpt_entry_t pg_nx;
217219820Sjeff#endif
218219820Sjeff
219219820Sjeffstatic SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
220219820Sjeff
221219820Sjeffstatic int pat_works;			/* Is page attribute table sane? */
222219820Sjeff
223219820Sjeff/*
224219820Sjeff * This lock is defined as static in other pmap implementations.  It cannot,
225219820Sjeff * however, be defined as static here, because it is (ab)used to serialize
226219820Sjeff * queued page table changes in other sources files.
227219820Sjeff */
228219820Sjeffstruct rwlock pvh_global_lock;
229219820Sjeff
230219820Sjeff/*
231219820Sjeff * Data for the pv entry allocation mechanism
232219820Sjeff */
233219820Sjeffstatic TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
234219820Sjeffstatic int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
235219820Sjeffstatic int shpgperproc = PMAP_SHPGPERPROC;
236219820Sjeff
237219820Sjeffstruct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
238219820Sjeffint pv_maxchunks;			/* How many chunks we have KVA for */
239219820Sjeffvm_offset_t pv_vafree;			/* freelist stored in the PTE */
240219820Sjeff
241219820Sjeff/*
242219820Sjeff * All those kernel PT submaps that BSD is so fond of
243219820Sjeff */
244219820Sjeffstruct sysmaps {
245219820Sjeff	struct	mtx lock;
246219820Sjeff	pt_entry_t *CMAP1;
247219820Sjeff	pt_entry_t *CMAP2;
248219820Sjeff	caddr_t	CADDR1;
249219820Sjeff	caddr_t	CADDR2;
250219820Sjeff};
251219820Sjeffstatic struct sysmaps sysmaps_pcpu[MAXCPU];
252219820Sjeffstatic pt_entry_t *CMAP3;
253219820Sjeffcaddr_t ptvmmap = 0;
254219820Sjeffstatic caddr_t CADDR3;
255219820Sjeffstruct msgbuf *msgbufp = 0;
256219820Sjeff
257219820Sjeff/*
258219820Sjeff * Crashdump maps.
259219820Sjeff */
260219820Sjeffstatic caddr_t crashdumpmap;
261219820Sjeff
262219820Sjeffstatic pt_entry_t *PMAP1 = 0, *PMAP2;
263219820Sjeffstatic pt_entry_t *PADDR1 = 0, *PADDR2;
264219820Sjeff#ifdef SMP
265219820Sjeffstatic int PMAP1cpu;
266219820Sjeffstatic int PMAP1changedcpu;
267219820SjeffSYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
268219820Sjeff	   &PMAP1changedcpu, 0,
269219820Sjeff	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
270219820Sjeff#endif
271219820Sjeffstatic int PMAP1changed;
272219820SjeffSYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
273219820Sjeff	   &PMAP1changed, 0,
274219820Sjeff	   "Number of times pmap_pte_quick changed PMAP1");
275219820Sjeffstatic int PMAP1unchanged;
276219820SjeffSYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
277219820Sjeff	   &PMAP1unchanged, 0,
278219820Sjeff	   "Number of times pmap_pte_quick didn't change PMAP1");
279219820Sjeffstatic struct mtx PMAP2mutex;
280219820Sjeff
281219820Sjeffstatic void	free_pv_chunk(struct pv_chunk *pc);
282219820Sjeffstatic void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
283219820Sjeffstatic pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
284219820Sjeffstatic void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
285219820Sjeffstatic pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
286219820Sjeff		    vm_offset_t va);
287219820Sjeff
288219820Sjeffstatic vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
289219820Sjeff    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
290static void pmap_flush_page(vm_page_t m);
291static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
292static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
293    vm_page_t *free);
294static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
295    vm_page_t *free);
296static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
297					vm_offset_t va);
298static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
299    vm_page_t m);
300
301static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
302
303static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags);
304static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free);
305static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
306static void pmap_pte_release(pt_entry_t *pte);
307static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
308static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
309
310static __inline void pagezero(void *page);
311
312CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
313CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
314
315/*
316 * If you get an error here, then you set KVA_PAGES wrong! See the
317 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
318 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
319 */
320CTASSERT(KERNBASE % (1 << 24) == 0);
321
322void
323pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
324{
325	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
326
327	switch (type) {
328	case SH_PD_SET_VA:
329#if 0
330		xen_queue_pt_update(shadow_pdir_ma,
331				    xpmap_ptom(val & ~(PG_RW)));
332#endif
333		xen_queue_pt_update(pdir_ma,
334				    xpmap_ptom(val));
335		break;
336	case SH_PD_SET_VA_MA:
337#if 0
338		xen_queue_pt_update(shadow_pdir_ma,
339				    val & ~(PG_RW));
340#endif
341		xen_queue_pt_update(pdir_ma, val);
342		break;
343	case SH_PD_SET_VA_CLEAR:
344#if 0
345		xen_queue_pt_update(shadow_pdir_ma, 0);
346#endif
347		xen_queue_pt_update(pdir_ma, 0);
348		break;
349	}
350}
351
352/*
353 *	Bootstrap the system enough to run with virtual memory.
354 *
355 *	On the i386 this is called after mapping has already been enabled
356 *	and just syncs the pmap module with what has already been done.
357 *	[We can't call it easily with mapping off since the kernel is not
358 *	mapped with PA == VA, hence we would have to relocate every address
359 *	from the linked base (virtual) address "KERNBASE" to the actual
360 *	(physical) address starting relative to 0]
361 */
362void
363pmap_bootstrap(vm_paddr_t firstaddr)
364{
365	vm_offset_t va;
366	pt_entry_t *pte, *unused;
367	struct sysmaps *sysmaps;
368	int i;
369
370	/*
371	 * Initialize the first available kernel virtual address.  However,
372	 * using "firstaddr" may waste a few pages of the kernel virtual
373	 * address space, because locore may not have mapped every physical
374	 * page that it allocated.  Preferably, locore would provide a first
375	 * unused virtual address in addition to "firstaddr".
376	 */
377	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
378
379	virtual_end = VM_MAX_KERNEL_ADDRESS;
380
381	/*
382	 * Initialize the kernel pmap (which is statically allocated).
383	 */
384	PMAP_LOCK_INIT(kernel_pmap);
385	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
386#ifdef PAE
387	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
388#endif
389	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
390	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
391
392 	/*
393	 * Initialize the global pv list lock.
394	 */
395	rw_init_flags(&pvh_global_lock, "pmap pv global", RW_RECURSE);
396
397	LIST_INIT(&allpmaps);
398	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
399	mtx_lock_spin(&allpmaps_lock);
400	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
401	mtx_unlock_spin(&allpmaps_lock);
402	if (nkpt == 0)
403		nkpt = NKPT;
404
405	/*
406	 * Reserve some special page table entries/VA space for temporary
407	 * mapping of pages.
408	 */
409#define	SYSMAP(c, p, v, n)	\
410	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
411
412	va = virtual_avail;
413	pte = vtopte(va);
414
415	/*
416	 * CMAP1/CMAP2 are used for zeroing and copying pages.
417	 * CMAP3 is used for the idle process page zeroing.
418	 */
419	for (i = 0; i < MAXCPU; i++) {
420		sysmaps = &sysmaps_pcpu[i];
421		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
422		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
423		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
424		PT_SET_MA(sysmaps->CADDR1, 0);
425		PT_SET_MA(sysmaps->CADDR2, 0);
426	}
427	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
428	PT_SET_MA(CADDR3, 0);
429
430	/*
431	 * Crashdump maps.
432	 */
433	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
434
435	/*
436	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
437	 */
438	SYSMAP(caddr_t, unused, ptvmmap, 1)
439
440	/*
441	 * msgbufp is used to map the system message buffer.
442	 */
443	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
444
445	/*
446	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
447	 * respectively.
448	 */
449	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
450	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
451
452	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
453
454	virtual_avail = va;
455
456	/*
457	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
458	 * physical memory region that is used by the ACPI wakeup code.  This
459	 * mapping must not have PG_G set.
460	 */
461#ifndef XEN
462	/*
463	 * leave here deliberately to show that this is not supported
464	 */
465#ifdef XBOX
466	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
467	 * an early stadium, we cannot yet neatly map video memory ... :-(
468	 * Better fixes are very welcome! */
469	if (!arch_i386_is_xbox)
470#endif
471	for (i = 1; i < NKPT; i++)
472		PTD[i] = 0;
473
474	/* Initialize the PAT MSR if present. */
475	pmap_init_pat();
476
477	/* Turn on PG_G on kernel page(s) */
478	pmap_set_pg();
479#endif
480
481#ifdef HAMFISTED_LOCKING
482	mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
483#endif
484}
485
486/*
487 * Setup the PAT MSR.
488 */
489void
490pmap_init_pat(void)
491{
492	uint64_t pat_msr;
493
494	/* Bail if this CPU doesn't implement PAT. */
495	if (!(cpu_feature & CPUID_PAT))
496		return;
497
498	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
499	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
500		/*
501		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
502		 * Program 4 and 5 as WP and WC.
503		 * Leave 6 and 7 as UC and UC-.
504		 */
505		pat_msr = rdmsr(MSR_PAT);
506		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
507		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
508		    PAT_VALUE(5, PAT_WRITE_COMBINING);
509		pat_works = 1;
510	} else {
511		/*
512		 * Due to some Intel errata, we can only safely use the lower 4
513		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
514		 * of UC-.
515		 *
516		 *   Intel Pentium III Processor Specification Update
517		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
518		 * or Mode C Paging)
519		 *
520		 *   Intel Pentium IV  Processor Specification Update
521		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
522		 */
523		pat_msr = rdmsr(MSR_PAT);
524		pat_msr &= ~PAT_MASK(2);
525		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
526		pat_works = 0;
527	}
528	wrmsr(MSR_PAT, pat_msr);
529}
530
531/*
532 * Initialize a vm_page's machine-dependent fields.
533 */
534void
535pmap_page_init(vm_page_t m)
536{
537
538	TAILQ_INIT(&m->md.pv_list);
539	m->md.pat_mode = PAT_WRITE_BACK;
540}
541
542/*
543 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
544 * Requirements:
545 *  - Must deal with pages in order to ensure that none of the PG_* bits
546 *    are ever set, PG_V in particular.
547 *  - Assumes we can write to ptes without pte_store() atomic ops, even
548 *    on PAE systems.  This should be ok.
549 *  - Assumes nothing will ever test these addresses for 0 to indicate
550 *    no mapping instead of correctly checking PG_V.
551 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
552 * Because PG_V is never set, there can be no mappings to invalidate.
553 */
554static int ptelist_count = 0;
555static vm_offset_t
556pmap_ptelist_alloc(vm_offset_t *head)
557{
558	vm_offset_t va;
559	vm_offset_t *phead = (vm_offset_t *)*head;
560
561	if (ptelist_count == 0) {
562		printf("out of memory!!!!!!\n");
563		return (0);	/* Out of memory */
564	}
565	ptelist_count--;
566	va = phead[ptelist_count];
567	return (va);
568}
569
570static void
571pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
572{
573	vm_offset_t *phead = (vm_offset_t *)*head;
574
575	phead[ptelist_count++] = va;
576}
577
578static void
579pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
580{
581	int i, nstackpages;
582	vm_offset_t va;
583	vm_page_t m;
584
585	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
586	for (i = 0; i < nstackpages; i++) {
587		va = (vm_offset_t)base + i * PAGE_SIZE;
588		m = vm_page_alloc(NULL, i,
589		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
590		    VM_ALLOC_ZERO);
591		pmap_qenter(va, &m, 1);
592	}
593
594	*head = (vm_offset_t)base;
595	for (i = npages - 1; i >= nstackpages; i--) {
596		va = (vm_offset_t)base + i * PAGE_SIZE;
597		pmap_ptelist_free(head, va);
598	}
599}
600
601
602/*
603 *	Initialize the pmap module.
604 *	Called by vm_init, to initialize any structures that the pmap
605 *	system needs to map virtual memory.
606 */
607void
608pmap_init(void)
609{
610
611	/*
612	 * Initialize the address space (zone) for the pv entries.  Set a
613	 * high water mark so that the system can recover from excessive
614	 * numbers of pv entries.
615	 */
616	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
617	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
618	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
619	pv_entry_max = roundup(pv_entry_max, _NPCPV);
620	pv_entry_high_water = 9 * (pv_entry_max / 10);
621
622	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
623	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
624	    PAGE_SIZE * pv_maxchunks);
625	if (pv_chunkbase == NULL)
626		panic("pmap_init: not enough kvm for pv chunks");
627	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
628}
629
630
631SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
632	"Max number of PV entries");
633SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
634	"Page share factor per proc");
635
636static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
637    "2/4MB page mapping counters");
638
639static u_long pmap_pde_mappings;
640SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
641    &pmap_pde_mappings, 0, "2/4MB page mappings");
642
643/***************************************************
644 * Low level helper routines.....
645 ***************************************************/
646
647/*
648 * Determine the appropriate bits to set in a PTE or PDE for a specified
649 * caching mode.
650 */
651int
652pmap_cache_bits(int mode, boolean_t is_pde)
653{
654	int pat_flag, pat_index, cache_bits;
655
656	/* The PAT bit is different for PTE's and PDE's. */
657	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
658
659	/* If we don't support PAT, map extended modes to older ones. */
660	if (!(cpu_feature & CPUID_PAT)) {
661		switch (mode) {
662		case PAT_UNCACHEABLE:
663		case PAT_WRITE_THROUGH:
664		case PAT_WRITE_BACK:
665			break;
666		case PAT_UNCACHED:
667		case PAT_WRITE_COMBINING:
668		case PAT_WRITE_PROTECTED:
669			mode = PAT_UNCACHEABLE;
670			break;
671		}
672	}
673
674	/* Map the caching mode to a PAT index. */
675	if (pat_works) {
676		switch (mode) {
677			case PAT_UNCACHEABLE:
678				pat_index = 3;
679				break;
680			case PAT_WRITE_THROUGH:
681				pat_index = 1;
682				break;
683			case PAT_WRITE_BACK:
684				pat_index = 0;
685				break;
686			case PAT_UNCACHED:
687				pat_index = 2;
688				break;
689			case PAT_WRITE_COMBINING:
690				pat_index = 5;
691				break;
692			case PAT_WRITE_PROTECTED:
693				pat_index = 4;
694				break;
695			default:
696				panic("Unknown caching mode %d\n", mode);
697		}
698	} else {
699		switch (mode) {
700			case PAT_UNCACHED:
701			case PAT_UNCACHEABLE:
702			case PAT_WRITE_PROTECTED:
703				pat_index = 3;
704				break;
705			case PAT_WRITE_THROUGH:
706				pat_index = 1;
707				break;
708			case PAT_WRITE_BACK:
709				pat_index = 0;
710				break;
711			case PAT_WRITE_COMBINING:
712				pat_index = 2;
713				break;
714			default:
715				panic("Unknown caching mode %d\n", mode);
716		}
717	}
718
719	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
720	cache_bits = 0;
721	if (pat_index & 0x4)
722		cache_bits |= pat_flag;
723	if (pat_index & 0x2)
724		cache_bits |= PG_NC_PCD;
725	if (pat_index & 0x1)
726		cache_bits |= PG_NC_PWT;
727	return (cache_bits);
728}
729#ifdef SMP
730/*
731 * For SMP, these functions have to use the IPI mechanism for coherence.
732 *
733 * N.B.: Before calling any of the following TLB invalidation functions,
734 * the calling processor must ensure that all stores updating a non-
735 * kernel page table are globally performed.  Otherwise, another
736 * processor could cache an old, pre-update entry without being
737 * invalidated.  This can happen one of two ways: (1) The pmap becomes
738 * active on another processor after its pm_active field is checked by
739 * one of the following functions but before a store updating the page
740 * table is globally performed. (2) The pmap becomes active on another
741 * processor before its pm_active field is checked but due to
742 * speculative loads one of the following functions stills reads the
743 * pmap as inactive on the other processor.
744 *
745 * The kernel page table is exempt because its pm_active field is
746 * immutable.  The kernel page table is always active on every
747 * processor.
748 */
749void
750pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
751{
752	cpuset_t other_cpus;
753	u_int cpuid;
754
755	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
756	    pmap, va);
757
758	sched_pin();
759	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
760		invlpg(va);
761		smp_invlpg(va);
762	} else {
763		cpuid = PCPU_GET(cpuid);
764		other_cpus = all_cpus;
765		CPU_CLR(cpuid, &other_cpus);
766		if (CPU_ISSET(cpuid, &pmap->pm_active))
767			invlpg(va);
768		CPU_AND(&other_cpus, &pmap->pm_active);
769		if (!CPU_EMPTY(&other_cpus))
770			smp_masked_invlpg(other_cpus, va);
771	}
772	sched_unpin();
773	PT_UPDATES_FLUSH();
774}
775
776void
777pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
778{
779	cpuset_t other_cpus;
780	vm_offset_t addr;
781	u_int cpuid;
782
783	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
784	    pmap, sva, eva);
785
786	sched_pin();
787	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
788		for (addr = sva; addr < eva; addr += PAGE_SIZE)
789			invlpg(addr);
790		smp_invlpg_range(sva, eva);
791	} else {
792		cpuid = PCPU_GET(cpuid);
793		other_cpus = all_cpus;
794		CPU_CLR(cpuid, &other_cpus);
795		if (CPU_ISSET(cpuid, &pmap->pm_active))
796			for (addr = sva; addr < eva; addr += PAGE_SIZE)
797				invlpg(addr);
798		CPU_AND(&other_cpus, &pmap->pm_active);
799		if (!CPU_EMPTY(&other_cpus))
800			smp_masked_invlpg_range(other_cpus, sva, eva);
801	}
802	sched_unpin();
803	PT_UPDATES_FLUSH();
804}
805
806void
807pmap_invalidate_all(pmap_t pmap)
808{
809	cpuset_t other_cpus;
810	u_int cpuid;
811
812	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
813
814	sched_pin();
815	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
816		invltlb();
817		smp_invltlb();
818	} else {
819		cpuid = PCPU_GET(cpuid);
820		other_cpus = all_cpus;
821		CPU_CLR(cpuid, &other_cpus);
822		if (CPU_ISSET(cpuid, &pmap->pm_active))
823			invltlb();
824		CPU_AND(&other_cpus, &pmap->pm_active);
825		if (!CPU_EMPTY(&other_cpus))
826			smp_masked_invltlb(other_cpus);
827	}
828	sched_unpin();
829}
830
831void
832pmap_invalidate_cache(void)
833{
834
835	sched_pin();
836	wbinvd();
837	smp_cache_flush();
838	sched_unpin();
839}
840#else /* !SMP */
841/*
842 * Normal, non-SMP, 486+ invalidation functions.
843 * We inline these within pmap.c for speed.
844 */
845PMAP_INLINE void
846pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
847{
848	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
849	    pmap, va);
850
851	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
852		invlpg(va);
853	PT_UPDATES_FLUSH();
854}
855
856PMAP_INLINE void
857pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
858{
859	vm_offset_t addr;
860
861	if (eva - sva > PAGE_SIZE)
862		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
863		    pmap, sva, eva);
864
865	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
866		for (addr = sva; addr < eva; addr += PAGE_SIZE)
867			invlpg(addr);
868	PT_UPDATES_FLUSH();
869}
870
871PMAP_INLINE void
872pmap_invalidate_all(pmap_t pmap)
873{
874
875	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
876
877	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
878		invltlb();
879}
880
881PMAP_INLINE void
882pmap_invalidate_cache(void)
883{
884
885	wbinvd();
886}
887#endif /* !SMP */
888
889#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
890
891void
892pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
893{
894
895	KASSERT((sva & PAGE_MASK) == 0,
896	    ("pmap_invalidate_cache_range: sva not page-aligned"));
897	KASSERT((eva & PAGE_MASK) == 0,
898	    ("pmap_invalidate_cache_range: eva not page-aligned"));
899
900	if (cpu_feature & CPUID_SS)
901		; /* If "Self Snoop" is supported, do nothing. */
902	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
903	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
904
905		/*
906		 * Otherwise, do per-cache line flush.  Use the mfence
907		 * instruction to insure that previous stores are
908		 * included in the write-back.  The processor
909		 * propagates flush to other processors in the cache
910		 * coherence domain.
911		 */
912		mfence();
913		for (; sva < eva; sva += cpu_clflush_line_size)
914			clflush(sva);
915		mfence();
916	} else {
917
918		/*
919		 * No targeted cache flush methods are supported by CPU,
920		 * or the supplied range is bigger than 2MB.
921		 * Globally invalidate cache.
922		 */
923		pmap_invalidate_cache();
924	}
925}
926
927void
928pmap_invalidate_cache_pages(vm_page_t *pages, int count)
929{
930	int i;
931
932	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
933	    (cpu_feature & CPUID_CLFSH) == 0) {
934		pmap_invalidate_cache();
935	} else {
936		for (i = 0; i < count; i++)
937			pmap_flush_page(pages[i]);
938	}
939}
940
941/*
942 * Are we current address space or kernel?  N.B. We return FALSE when
943 * a pmap's page table is in use because a kernel thread is borrowing
944 * it.  The borrowed page table can change spontaneously, making any
945 * dependence on its continued use subject to a race condition.
946 */
947static __inline int
948pmap_is_current(pmap_t pmap)
949{
950
951	return (pmap == kernel_pmap ||
952	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
953	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
954}
955
956/*
957 * If the given pmap is not the current or kernel pmap, the returned pte must
958 * be released by passing it to pmap_pte_release().
959 */
960pt_entry_t *
961pmap_pte(pmap_t pmap, vm_offset_t va)
962{
963	pd_entry_t newpf;
964	pd_entry_t *pde;
965
966	pde = pmap_pde(pmap, va);
967	if (*pde & PG_PS)
968		return (pde);
969	if (*pde != 0) {
970		/* are we current address space or kernel? */
971		if (pmap_is_current(pmap))
972			return (vtopte(va));
973		mtx_lock(&PMAP2mutex);
974		newpf = *pde & PG_FRAME;
975		if ((*PMAP2 & PG_FRAME) != newpf) {
976			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
977			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
978			    pmap, va, (*PMAP2 & 0xffffffff));
979		}
980		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
981	}
982	return (NULL);
983}
984
985/*
986 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
987 * being NULL.
988 */
989static __inline void
990pmap_pte_release(pt_entry_t *pte)
991{
992
993	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
994		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
995		    *PMAP2);
996		rw_wlock(&pvh_global_lock);
997		PT_SET_VA(PMAP2, 0, TRUE);
998		rw_wunlock(&pvh_global_lock);
999		mtx_unlock(&PMAP2mutex);
1000	}
1001}
1002
1003static __inline void
1004invlcaddr(void *caddr)
1005{
1006
1007	invlpg((u_int)caddr);
1008	PT_UPDATES_FLUSH();
1009}
1010
1011/*
1012 * Super fast pmap_pte routine best used when scanning
1013 * the pv lists.  This eliminates many coarse-grained
1014 * invltlb calls.  Note that many of the pv list
1015 * scans are across different pmaps.  It is very wasteful
1016 * to do an entire invltlb for checking a single mapping.
1017 *
1018 * If the given pmap is not the current pmap, pvh_global_lock
1019 * must be held and curthread pinned to a CPU.
1020 */
1021static pt_entry_t *
1022pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1023{
1024	pd_entry_t newpf;
1025	pd_entry_t *pde;
1026
1027	pde = pmap_pde(pmap, va);
1028	if (*pde & PG_PS)
1029		return (pde);
1030	if (*pde != 0) {
1031		/* are we current address space or kernel? */
1032		if (pmap_is_current(pmap))
1033			return (vtopte(va));
1034		rw_assert(&pvh_global_lock, RA_WLOCKED);
1035		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1036		newpf = *pde & PG_FRAME;
1037		if ((*PMAP1 & PG_FRAME) != newpf) {
1038			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1039			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1040			    pmap, va, (u_long)*PMAP1);
1041
1042#ifdef SMP
1043			PMAP1cpu = PCPU_GET(cpuid);
1044#endif
1045			PMAP1changed++;
1046		} else
1047#ifdef SMP
1048		if (PMAP1cpu != PCPU_GET(cpuid)) {
1049			PMAP1cpu = PCPU_GET(cpuid);
1050			invlcaddr(PADDR1);
1051			PMAP1changedcpu++;
1052		} else
1053#endif
1054			PMAP1unchanged++;
1055		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1056	}
1057	return (0);
1058}
1059
1060/*
1061 *	Routine:	pmap_extract
1062 *	Function:
1063 *		Extract the physical page address associated
1064 *		with the given map/virtual_address pair.
1065 */
1066vm_paddr_t
1067pmap_extract(pmap_t pmap, vm_offset_t va)
1068{
1069	vm_paddr_t rtval;
1070	pt_entry_t *pte;
1071	pd_entry_t pde;
1072	pt_entry_t pteval;
1073
1074	rtval = 0;
1075	PMAP_LOCK(pmap);
1076	pde = pmap->pm_pdir[va >> PDRSHIFT];
1077	if (pde != 0) {
1078		if ((pde & PG_PS) != 0) {
1079			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1080			PMAP_UNLOCK(pmap);
1081			return rtval;
1082		}
1083		pte = pmap_pte(pmap, va);
1084		pteval = *pte ? xpmap_mtop(*pte) : 0;
1085		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1086		pmap_pte_release(pte);
1087	}
1088	PMAP_UNLOCK(pmap);
1089	return (rtval);
1090}
1091
1092/*
1093 *	Routine:	pmap_extract_ma
1094 *	Function:
1095 *		Like pmap_extract, but returns machine address
1096 */
1097vm_paddr_t
1098pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1099{
1100	vm_paddr_t rtval;
1101	pt_entry_t *pte;
1102	pd_entry_t pde;
1103
1104	rtval = 0;
1105	PMAP_LOCK(pmap);
1106	pde = pmap->pm_pdir[va >> PDRSHIFT];
1107	if (pde != 0) {
1108		if ((pde & PG_PS) != 0) {
1109			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1110			PMAP_UNLOCK(pmap);
1111			return rtval;
1112		}
1113		pte = pmap_pte(pmap, va);
1114		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1115		pmap_pte_release(pte);
1116	}
1117	PMAP_UNLOCK(pmap);
1118	return (rtval);
1119}
1120
1121/*
1122 *	Routine:	pmap_extract_and_hold
1123 *	Function:
1124 *		Atomically extract and hold the physical page
1125 *		with the given pmap and virtual address pair
1126 *		if that mapping permits the given protection.
1127 */
1128vm_page_t
1129pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1130{
1131	pd_entry_t pde;
1132	pt_entry_t pte, *ptep;
1133	vm_page_t m;
1134	vm_paddr_t pa;
1135
1136	pa = 0;
1137	m = NULL;
1138	PMAP_LOCK(pmap);
1139retry:
1140	pde = PT_GET(pmap_pde(pmap, va));
1141	if (pde != 0) {
1142		if (pde & PG_PS) {
1143			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1144				if (vm_page_pa_tryrelock(pmap, (pde &
1145				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1146					goto retry;
1147				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1148				    (va & PDRMASK));
1149				vm_page_hold(m);
1150			}
1151		} else {
1152			ptep = pmap_pte(pmap, va);
1153			pte = PT_GET(ptep);
1154			pmap_pte_release(ptep);
1155			if (pte != 0 &&
1156			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1157				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1158				    &pa))
1159					goto retry;
1160				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1161				vm_page_hold(m);
1162			}
1163		}
1164	}
1165	PA_UNLOCK_COND(pa);
1166	PMAP_UNLOCK(pmap);
1167	return (m);
1168}
1169
1170/***************************************************
1171 * Low level mapping routines.....
1172 ***************************************************/
1173
1174/*
1175 * Add a wired page to the kva.
1176 * Note: not SMP coherent.
1177 *
1178 * This function may be used before pmap_bootstrap() is called.
1179 */
1180void
1181pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1182{
1183
1184	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1185}
1186
1187void
1188pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1189{
1190	pt_entry_t *pte;
1191
1192	pte = vtopte(va);
1193	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1194}
1195
1196static __inline void
1197pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1198{
1199
1200	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1201}
1202
1203/*
1204 * Remove a page from the kernel pagetables.
1205 * Note: not SMP coherent.
1206 *
1207 * This function may be used before pmap_bootstrap() is called.
1208 */
1209PMAP_INLINE void
1210pmap_kremove(vm_offset_t va)
1211{
1212	pt_entry_t *pte;
1213
1214	pte = vtopte(va);
1215	PT_CLEAR_VA(pte, FALSE);
1216}
1217
1218/*
1219 *	Used to map a range of physical addresses into kernel
1220 *	virtual address space.
1221 *
1222 *	The value passed in '*virt' is a suggested virtual address for
1223 *	the mapping. Architectures which can support a direct-mapped
1224 *	physical to virtual region can return the appropriate address
1225 *	within that region, leaving '*virt' unchanged. Other
1226 *	architectures should map the pages starting at '*virt' and
1227 *	update '*virt' with the first usable address after the mapped
1228 *	region.
1229 */
1230vm_offset_t
1231pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1232{
1233	vm_offset_t va, sva;
1234
1235	va = sva = *virt;
1236	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1237	    va, start, end, prot);
1238	while (start < end) {
1239		pmap_kenter(va, start);
1240		va += PAGE_SIZE;
1241		start += PAGE_SIZE;
1242	}
1243	pmap_invalidate_range(kernel_pmap, sva, va);
1244	*virt = va;
1245	return (sva);
1246}
1247
1248
1249/*
1250 * Add a list of wired pages to the kva
1251 * this routine is only used for temporary
1252 * kernel mappings that do not need to have
1253 * page modification or references recorded.
1254 * Note that old mappings are simply written
1255 * over.  The page *must* be wired.
1256 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1257 */
1258void
1259pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1260{
1261	pt_entry_t *endpte, *pte;
1262	vm_paddr_t pa;
1263	vm_offset_t va = sva;
1264	int mclcount = 0;
1265	multicall_entry_t mcl[16];
1266	multicall_entry_t *mclp = mcl;
1267	int error;
1268
1269	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1270	pte = vtopte(sva);
1271	endpte = pte + count;
1272	while (pte < endpte) {
1273		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1274
1275		mclp->op = __HYPERVISOR_update_va_mapping;
1276		mclp->args[0] = va;
1277		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1278		mclp->args[2] = (uint32_t)(pa >> 32);
1279		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1280
1281		va += PAGE_SIZE;
1282		pte++;
1283		ma++;
1284		mclp++;
1285		mclcount++;
1286		if (mclcount == 16) {
1287			error = HYPERVISOR_multicall(mcl, mclcount);
1288			mclp = mcl;
1289			mclcount = 0;
1290			KASSERT(error == 0, ("bad multicall %d", error));
1291		}
1292	}
1293	if (mclcount) {
1294		error = HYPERVISOR_multicall(mcl, mclcount);
1295		KASSERT(error == 0, ("bad multicall %d", error));
1296	}
1297
1298#ifdef INVARIANTS
1299	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1300		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1301#endif
1302}
1303
1304/*
1305 * This routine tears out page mappings from the
1306 * kernel -- it is meant only for temporary mappings.
1307 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1308 */
1309void
1310pmap_qremove(vm_offset_t sva, int count)
1311{
1312	vm_offset_t va;
1313
1314	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1315	va = sva;
1316	rw_wlock(&pvh_global_lock);
1317	critical_enter();
1318	while (count-- > 0) {
1319		pmap_kremove(va);
1320		va += PAGE_SIZE;
1321	}
1322	PT_UPDATES_FLUSH();
1323	pmap_invalidate_range(kernel_pmap, sva, va);
1324	critical_exit();
1325	rw_wunlock(&pvh_global_lock);
1326}
1327
1328/***************************************************
1329 * Page table page management routines.....
1330 ***************************************************/
1331static __inline void
1332pmap_free_zero_pages(vm_page_t free)
1333{
1334	vm_page_t m;
1335
1336	while (free != NULL) {
1337		m = free;
1338		free = (void *)m->object;
1339		m->object = NULL;
1340		vm_page_free_zero(m);
1341	}
1342}
1343
1344/*
1345 * Decrements a page table page's wire count, which is used to record the
1346 * number of valid page table entries within the page.  If the wire count
1347 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1348 * page table page was unmapped and FALSE otherwise.
1349 */
1350static inline boolean_t
1351pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
1352{
1353
1354	--m->wire_count;
1355	if (m->wire_count == 0) {
1356		_pmap_unwire_ptp(pmap, m, free);
1357		return (TRUE);
1358	} else
1359		return (FALSE);
1360}
1361
1362static void
1363_pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
1364{
1365	vm_offset_t pteva;
1366
1367	PT_UPDATES_FLUSH();
1368	/*
1369	 * unmap the page table page
1370	 */
1371	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1372	/*
1373	 * page *might* contain residual mapping :-/
1374	 */
1375	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1376	pmap_zero_page(m);
1377	--pmap->pm_stats.resident_count;
1378
1379	/*
1380	 * This is a release store so that the ordinary store unmapping
1381	 * the page table page is globally performed before TLB shoot-
1382	 * down is begun.
1383	 */
1384	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1385
1386	/*
1387	 * Do an invltlb to make the invalidated mapping
1388	 * take effect immediately.
1389	 */
1390	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1391	pmap_invalidate_page(pmap, pteva);
1392
1393	/*
1394	 * Put page on a list so that it is released after
1395	 * *ALL* TLB shootdown is done
1396	 */
1397	m->object = (void *)*free;
1398	*free = m;
1399}
1400
1401/*
1402 * After removing a page table entry, this routine is used to
1403 * conditionally free the page, and manage the hold/wire counts.
1404 */
1405static int
1406pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1407{
1408	pd_entry_t ptepde;
1409	vm_page_t mpte;
1410
1411	if (va >= VM_MAXUSER_ADDRESS)
1412		return (0);
1413	ptepde = PT_GET(pmap_pde(pmap, va));
1414	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1415	return (pmap_unwire_ptp(pmap, mpte, free));
1416}
1417
1418/*
1419 * Initialize the pmap for the swapper process.
1420 */
1421void
1422pmap_pinit0(pmap_t pmap)
1423{
1424
1425	PMAP_LOCK_INIT(pmap);
1426	/*
1427	 * Since the page table directory is shared with the kernel pmap,
1428	 * which is already included in the list "allpmaps", this pmap does
1429	 * not need to be inserted into that list.
1430	 */
1431	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1432#ifdef PAE
1433	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1434#endif
1435	CPU_ZERO(&pmap->pm_active);
1436	PCPU_SET(curpmap, pmap);
1437	TAILQ_INIT(&pmap->pm_pvchunk);
1438	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1439}
1440
1441/*
1442 * Initialize a preallocated and zeroed pmap structure,
1443 * such as one in a vmspace structure.
1444 */
1445int
1446pmap_pinit(pmap_t pmap)
1447{
1448	vm_page_t m, ptdpg[NPGPTD + 1];
1449	int npgptd = NPGPTD + 1;
1450	int i;
1451
1452#ifdef HAMFISTED_LOCKING
1453	mtx_lock(&createdelete_lock);
1454#endif
1455
1456	PMAP_LOCK_INIT(pmap);
1457
1458	/*
1459	 * No need to allocate page table space yet but we do need a valid
1460	 * page directory table.
1461	 */
1462	if (pmap->pm_pdir == NULL) {
1463		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1464		    NBPTD);
1465		if (pmap->pm_pdir == NULL) {
1466			PMAP_LOCK_DESTROY(pmap);
1467#ifdef HAMFISTED_LOCKING
1468			mtx_unlock(&createdelete_lock);
1469#endif
1470			return (0);
1471		}
1472#ifdef PAE
1473		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1474#endif
1475	}
1476
1477	/*
1478	 * allocate the page directory page(s)
1479	 */
1480	for (i = 0; i < npgptd;) {
1481		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1482		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1483		if (m == NULL)
1484			VM_WAIT;
1485		else {
1486			ptdpg[i++] = m;
1487		}
1488	}
1489
1490	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1491
1492	for (i = 0; i < NPGPTD; i++)
1493		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1494			pagezero(pmap->pm_pdir + (i * NPDEPG));
1495
1496	mtx_lock_spin(&allpmaps_lock);
1497	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1498	/* Copy the kernel page table directory entries. */
1499	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1500	mtx_unlock_spin(&allpmaps_lock);
1501
1502#ifdef PAE
1503	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1504	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1505		bzero(pmap->pm_pdpt, PAGE_SIZE);
1506	for (i = 0; i < NPGPTD; i++) {
1507		vm_paddr_t ma;
1508
1509		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1510		pmap->pm_pdpt[i] = ma | PG_V;
1511
1512	}
1513#endif
1514	for (i = 0; i < NPGPTD; i++) {
1515		pt_entry_t *pd;
1516		vm_paddr_t ma;
1517
1518		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1519		pd = pmap->pm_pdir + (i * NPDEPG);
1520		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1521#if 0
1522		xen_pgd_pin(ma);
1523#endif
1524	}
1525
1526#ifdef PAE
1527	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1528#endif
1529	rw_wlock(&pvh_global_lock);
1530	xen_flush_queue();
1531	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1532	for (i = 0; i < NPGPTD; i++) {
1533		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1534		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1535	}
1536	xen_flush_queue();
1537	rw_wunlock(&pvh_global_lock);
1538	CPU_ZERO(&pmap->pm_active);
1539	TAILQ_INIT(&pmap->pm_pvchunk);
1540	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1541
1542#ifdef HAMFISTED_LOCKING
1543	mtx_unlock(&createdelete_lock);
1544#endif
1545	return (1);
1546}
1547
1548/*
1549 * this routine is called if the page table page is not
1550 * mapped correctly.
1551 */
1552static vm_page_t
1553_pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags)
1554{
1555	vm_paddr_t ptema;
1556	vm_page_t m;
1557
1558	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1559	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1560	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1561
1562	/*
1563	 * Allocate a page table page.
1564	 */
1565	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1566	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1567		if (flags & M_WAITOK) {
1568			PMAP_UNLOCK(pmap);
1569			rw_wunlock(&pvh_global_lock);
1570			VM_WAIT;
1571			rw_wlock(&pvh_global_lock);
1572			PMAP_LOCK(pmap);
1573		}
1574
1575		/*
1576		 * Indicate the need to retry.  While waiting, the page table
1577		 * page may have been allocated.
1578		 */
1579		return (NULL);
1580	}
1581	if ((m->flags & PG_ZERO) == 0)
1582		pmap_zero_page(m);
1583
1584	/*
1585	 * Map the pagetable page into the process address space, if
1586	 * it isn't already there.
1587	 */
1588
1589	pmap->pm_stats.resident_count++;
1590
1591	ptema = VM_PAGE_TO_MACH(m);
1592	xen_pt_pin(ptema);
1593	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1594		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1595
1596	KASSERT(pmap->pm_pdir[ptepindex],
1597	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1598	return (m);
1599}
1600
1601static vm_page_t
1602pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1603{
1604	u_int ptepindex;
1605	pd_entry_t ptema;
1606	vm_page_t m;
1607
1608	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1609	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1610	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1611
1612	/*
1613	 * Calculate pagetable page index
1614	 */
1615	ptepindex = va >> PDRSHIFT;
1616retry:
1617	/*
1618	 * Get the page directory entry
1619	 */
1620	ptema = pmap->pm_pdir[ptepindex];
1621
1622	/*
1623	 * This supports switching from a 4MB page to a
1624	 * normal 4K page.
1625	 */
1626	if (ptema & PG_PS) {
1627		/*
1628		 * XXX
1629		 */
1630		pmap->pm_pdir[ptepindex] = 0;
1631		ptema = 0;
1632		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1633		pmap_invalidate_all(kernel_pmap);
1634	}
1635
1636	/*
1637	 * If the page table page is mapped, we just increment the
1638	 * hold count, and activate it.
1639	 */
1640	if (ptema & PG_V) {
1641		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1642		m->wire_count++;
1643	} else {
1644		/*
1645		 * Here if the pte page isn't mapped, or if it has
1646		 * been deallocated.
1647		 */
1648		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1649		    pmap, va, flags);
1650		m = _pmap_allocpte(pmap, ptepindex, flags);
1651		if (m == NULL && (flags & M_WAITOK))
1652			goto retry;
1653
1654		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1655	}
1656	return (m);
1657}
1658
1659
1660/***************************************************
1661* Pmap allocation/deallocation routines.
1662 ***************************************************/
1663
1664#ifdef SMP
1665/*
1666 * Deal with a SMP shootdown of other users of the pmap that we are
1667 * trying to dispose of.  This can be a bit hairy.
1668 */
1669static cpuset_t *lazymask;
1670static u_int lazyptd;
1671static volatile u_int lazywait;
1672
1673void pmap_lazyfix_action(void);
1674
1675void
1676pmap_lazyfix_action(void)
1677{
1678
1679#ifdef COUNT_IPIS
1680	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1681#endif
1682	if (rcr3() == lazyptd)
1683		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1684	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1685	atomic_store_rel_int(&lazywait, 1);
1686}
1687
1688static void
1689pmap_lazyfix_self(u_int cpuid)
1690{
1691
1692	if (rcr3() == lazyptd)
1693		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1694	CPU_CLR_ATOMIC(cpuid, lazymask);
1695}
1696
1697
1698static void
1699pmap_lazyfix(pmap_t pmap)
1700{
1701	cpuset_t mymask, mask;
1702	u_int cpuid, spins;
1703	int lsb;
1704
1705	mask = pmap->pm_active;
1706	while (!CPU_EMPTY(&mask)) {
1707		spins = 50000000;
1708
1709		/* Find least significant set bit. */
1710		lsb = cpusetobj_ffs(&mask);
1711		MPASS(lsb != 0);
1712		lsb--;
1713		CPU_SETOF(lsb, &mask);
1714		mtx_lock_spin(&smp_ipi_mtx);
1715#ifdef PAE
1716		lazyptd = vtophys(pmap->pm_pdpt);
1717#else
1718		lazyptd = vtophys(pmap->pm_pdir);
1719#endif
1720		cpuid = PCPU_GET(cpuid);
1721
1722		/* Use a cpuset just for having an easy check. */
1723		CPU_SETOF(cpuid, &mymask);
1724		if (!CPU_CMP(&mask, &mymask)) {
1725			lazymask = &pmap->pm_active;
1726			pmap_lazyfix_self(cpuid);
1727		} else {
1728			atomic_store_rel_int((u_int *)&lazymask,
1729			    (u_int)&pmap->pm_active);
1730			atomic_store_rel_int(&lazywait, 0);
1731			ipi_selected(mask, IPI_LAZYPMAP);
1732			while (lazywait == 0) {
1733				ia32_pause();
1734				if (--spins == 0)
1735					break;
1736			}
1737		}
1738		mtx_unlock_spin(&smp_ipi_mtx);
1739		if (spins == 0)
1740			printf("pmap_lazyfix: spun for 50000000\n");
1741		mask = pmap->pm_active;
1742	}
1743}
1744
1745#else	/* SMP */
1746
1747/*
1748 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1749 * unlikely to have to even execute this code, including the fact
1750 * that the cleanup is deferred until the parent does a wait(2), which
1751 * means that another userland process has run.
1752 */
1753static void
1754pmap_lazyfix(pmap_t pmap)
1755{
1756	u_int cr3;
1757
1758	cr3 = vtophys(pmap->pm_pdir);
1759	if (cr3 == rcr3()) {
1760		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1761		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
1762	}
1763}
1764#endif	/* SMP */
1765
1766/*
1767 * Release any resources held by the given physical map.
1768 * Called when a pmap initialized by pmap_pinit is being released.
1769 * Should only be called if the map contains no valid mappings.
1770 */
1771void
1772pmap_release(pmap_t pmap)
1773{
1774	vm_page_t m, ptdpg[2*NPGPTD+1];
1775	vm_paddr_t ma;
1776	int i;
1777#ifdef PAE
1778	int npgptd = NPGPTD + 1;
1779#else
1780	int npgptd = NPGPTD;
1781#endif
1782
1783	KASSERT(pmap->pm_stats.resident_count == 0,
1784	    ("pmap_release: pmap resident count %ld != 0",
1785	    pmap->pm_stats.resident_count));
1786	PT_UPDATES_FLUSH();
1787
1788#ifdef HAMFISTED_LOCKING
1789	mtx_lock(&createdelete_lock);
1790#endif
1791
1792	pmap_lazyfix(pmap);
1793	mtx_lock_spin(&allpmaps_lock);
1794	LIST_REMOVE(pmap, pm_list);
1795	mtx_unlock_spin(&allpmaps_lock);
1796
1797	for (i = 0; i < NPGPTD; i++)
1798		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1799	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1800#ifdef PAE
1801	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1802#endif
1803
1804	for (i = 0; i < npgptd; i++) {
1805		m = ptdpg[i];
1806		ma = VM_PAGE_TO_MACH(m);
1807		/* unpinning L1 and L2 treated the same */
1808#if 0
1809                xen_pgd_unpin(ma);
1810#else
1811		if (i == NPGPTD)
1812	                xen_pgd_unpin(ma);
1813#endif
1814#ifdef PAE
1815		if (i < NPGPTD)
1816			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1817			    ("pmap_release: got wrong ptd page"));
1818#endif
1819		m->wire_count--;
1820		atomic_subtract_int(&cnt.v_wire_count, 1);
1821		vm_page_free(m);
1822	}
1823#ifdef PAE
1824	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1825#endif
1826	PMAP_LOCK_DESTROY(pmap);
1827
1828#ifdef HAMFISTED_LOCKING
1829	mtx_unlock(&createdelete_lock);
1830#endif
1831}
1832
1833static int
1834kvm_size(SYSCTL_HANDLER_ARGS)
1835{
1836	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1837
1838	return (sysctl_handle_long(oidp, &ksize, 0, req));
1839}
1840SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1841    0, 0, kvm_size, "IU", "Size of KVM");
1842
1843static int
1844kvm_free(SYSCTL_HANDLER_ARGS)
1845{
1846	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1847
1848	return (sysctl_handle_long(oidp, &kfree, 0, req));
1849}
1850SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1851    0, 0, kvm_free, "IU", "Amount of KVM free");
1852
1853/*
1854 * grow the number of kernel page table entries, if needed
1855 */
1856void
1857pmap_growkernel(vm_offset_t addr)
1858{
1859	struct pmap *pmap;
1860	vm_paddr_t ptppaddr;
1861	vm_page_t nkpg;
1862	pd_entry_t newpdir;
1863
1864	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1865	if (kernel_vm_end == 0) {
1866		kernel_vm_end = KERNBASE;
1867		nkpt = 0;
1868		while (pdir_pde(PTD, kernel_vm_end)) {
1869			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1870			nkpt++;
1871			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1872				kernel_vm_end = kernel_map->max_offset;
1873				break;
1874			}
1875		}
1876	}
1877	addr = roundup2(addr, NBPDR);
1878	if (addr - 1 >= kernel_map->max_offset)
1879		addr = kernel_map->max_offset;
1880	while (kernel_vm_end < addr) {
1881		if (pdir_pde(PTD, kernel_vm_end)) {
1882			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1883			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1884				kernel_vm_end = kernel_map->max_offset;
1885				break;
1886			}
1887			continue;
1888		}
1889
1890		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1891		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1892		    VM_ALLOC_ZERO);
1893		if (nkpg == NULL)
1894			panic("pmap_growkernel: no memory to grow kernel");
1895
1896		nkpt++;
1897
1898		if ((nkpg->flags & PG_ZERO) == 0)
1899			pmap_zero_page(nkpg);
1900		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1901		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1902		rw_wlock(&pvh_global_lock);
1903		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1904		mtx_lock_spin(&allpmaps_lock);
1905		LIST_FOREACH(pmap, &allpmaps, pm_list)
1906			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1907
1908		mtx_unlock_spin(&allpmaps_lock);
1909		rw_wunlock(&pvh_global_lock);
1910
1911		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1912		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1913			kernel_vm_end = kernel_map->max_offset;
1914			break;
1915		}
1916	}
1917}
1918
1919
1920/***************************************************
1921 * page management routines.
1922 ***************************************************/
1923
1924CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1925CTASSERT(_NPCM == 11);
1926CTASSERT(_NPCPV == 336);
1927
1928static __inline struct pv_chunk *
1929pv_to_chunk(pv_entry_t pv)
1930{
1931
1932	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1933}
1934
1935#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1936
1937#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1938#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1939
1940static const uint32_t pc_freemask[_NPCM] = {
1941	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1942	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1943	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1944	PC_FREE0_9, PC_FREE10
1945};
1946
1947SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1948	"Current number of pv entries");
1949
1950#ifdef PV_STATS
1951static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1952
1953SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1954	"Current number of pv entry chunks");
1955SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1956	"Current number of pv entry chunks allocated");
1957SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1958	"Current number of pv entry chunks frees");
1959SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1960	"Number of times tried to get a chunk page but failed.");
1961
1962static long pv_entry_frees, pv_entry_allocs;
1963static int pv_entry_spare;
1964
1965SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1966	"Current number of pv entry frees");
1967SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1968	"Current number of pv entry allocs");
1969SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1970	"Current number of spare pv entries");
1971#endif
1972
1973/*
1974 * We are in a serious low memory condition.  Resort to
1975 * drastic measures to free some pages so we can allocate
1976 * another pv entry chunk.
1977 */
1978static vm_page_t
1979pmap_pv_reclaim(pmap_t locked_pmap)
1980{
1981	struct pch newtail;
1982	struct pv_chunk *pc;
1983	pmap_t pmap;
1984	pt_entry_t *pte, tpte;
1985	pv_entry_t pv;
1986	vm_offset_t va;
1987	vm_page_t free, m, m_pc;
1988	uint32_t inuse;
1989	int bit, field, freed;
1990
1991	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1992	pmap = NULL;
1993	free = m_pc = NULL;
1994	TAILQ_INIT(&newtail);
1995	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
1996	    free == NULL)) {
1997		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1998		if (pmap != pc->pc_pmap) {
1999			if (pmap != NULL) {
2000				pmap_invalidate_all(pmap);
2001				if (pmap != locked_pmap)
2002					PMAP_UNLOCK(pmap);
2003			}
2004			pmap = pc->pc_pmap;
2005			/* Avoid deadlock and lock recursion. */
2006			if (pmap > locked_pmap)
2007				PMAP_LOCK(pmap);
2008			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2009				pmap = NULL;
2010				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2011				continue;
2012			}
2013		}
2014
2015		/*
2016		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2017		 */
2018		freed = 0;
2019		for (field = 0; field < _NPCM; field++) {
2020			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2021			    inuse != 0; inuse &= ~(1UL << bit)) {
2022				bit = bsfl(inuse);
2023				pv = &pc->pc_pventry[field * 32 + bit];
2024				va = pv->pv_va;
2025				pte = pmap_pte(pmap, va);
2026				tpte = *pte;
2027				if ((tpte & PG_W) == 0)
2028					tpte = pte_load_clear(pte);
2029				pmap_pte_release(pte);
2030				if ((tpte & PG_W) != 0)
2031					continue;
2032				KASSERT(tpte != 0,
2033				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2034				    pmap, va));
2035				if ((tpte & PG_G) != 0)
2036					pmap_invalidate_page(pmap, va);
2037				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2038				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2039					vm_page_dirty(m);
2040				if ((tpte & PG_A) != 0)
2041					vm_page_aflag_set(m, PGA_REFERENCED);
2042				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2043				if (TAILQ_EMPTY(&m->md.pv_list))
2044					vm_page_aflag_clear(m, PGA_WRITEABLE);
2045				pc->pc_map[field] |= 1UL << bit;
2046				pmap_unuse_pt(pmap, va, &free);
2047				freed++;
2048			}
2049		}
2050		if (freed == 0) {
2051			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2052			continue;
2053		}
2054		/* Every freed mapping is for a 4 KB page. */
2055		pmap->pm_stats.resident_count -= freed;
2056		PV_STAT(pv_entry_frees += freed);
2057		PV_STAT(pv_entry_spare += freed);
2058		pv_entry_count -= freed;
2059		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2060		for (field = 0; field < _NPCM; field++)
2061			if (pc->pc_map[field] != pc_freemask[field]) {
2062				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2063				    pc_list);
2064				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2065
2066				/*
2067				 * One freed pv entry in locked_pmap is
2068				 * sufficient.
2069				 */
2070				if (pmap == locked_pmap)
2071					goto out;
2072				break;
2073			}
2074		if (field == _NPCM) {
2075			PV_STAT(pv_entry_spare -= _NPCPV);
2076			PV_STAT(pc_chunk_count--);
2077			PV_STAT(pc_chunk_frees++);
2078			/* Entire chunk is free; return it. */
2079			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2080			pmap_qremove((vm_offset_t)pc, 1);
2081			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2082			break;
2083		}
2084	}
2085out:
2086	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2087	if (pmap != NULL) {
2088		pmap_invalidate_all(pmap);
2089		if (pmap != locked_pmap)
2090			PMAP_UNLOCK(pmap);
2091	}
2092	if (m_pc == NULL && pv_vafree != 0 && free != NULL) {
2093		m_pc = free;
2094		free = (void *)m_pc->object;
2095		/* Recycle a freed page table page. */
2096		m_pc->wire_count = 1;
2097		atomic_add_int(&cnt.v_wire_count, 1);
2098	}
2099	pmap_free_zero_pages(free);
2100	return (m_pc);
2101}
2102
2103/*
2104 * free the pv_entry back to the free list
2105 */
2106static void
2107free_pv_entry(pmap_t pmap, pv_entry_t pv)
2108{
2109	struct pv_chunk *pc;
2110	int idx, field, bit;
2111
2112	rw_assert(&pvh_global_lock, RA_WLOCKED);
2113	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2114	PV_STAT(pv_entry_frees++);
2115	PV_STAT(pv_entry_spare++);
2116	pv_entry_count--;
2117	pc = pv_to_chunk(pv);
2118	idx = pv - &pc->pc_pventry[0];
2119	field = idx / 32;
2120	bit = idx % 32;
2121	pc->pc_map[field] |= 1ul << bit;
2122	for (idx = 0; idx < _NPCM; idx++)
2123		if (pc->pc_map[idx] != pc_freemask[idx]) {
2124			/*
2125			 * 98% of the time, pc is already at the head of the
2126			 * list.  If it isn't already, move it to the head.
2127			 */
2128			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2129			    pc)) {
2130				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2131				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2132				    pc_list);
2133			}
2134			return;
2135		}
2136	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2137	free_pv_chunk(pc);
2138}
2139
2140static void
2141free_pv_chunk(struct pv_chunk *pc)
2142{
2143	vm_page_t m;
2144
2145 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2146	PV_STAT(pv_entry_spare -= _NPCPV);
2147	PV_STAT(pc_chunk_count--);
2148	PV_STAT(pc_chunk_frees++);
2149	/* entire chunk is free, return it */
2150	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2151	pmap_qremove((vm_offset_t)pc, 1);
2152	vm_page_unwire(m, 0);
2153	vm_page_free(m);
2154	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2155}
2156
2157/*
2158 * get a new pv_entry, allocating a block from the system
2159 * when needed.
2160 */
2161static pv_entry_t
2162get_pv_entry(pmap_t pmap, boolean_t try)
2163{
2164	static const struct timeval printinterval = { 60, 0 };
2165	static struct timeval lastprint;
2166	int bit, field;
2167	pv_entry_t pv;
2168	struct pv_chunk *pc;
2169	vm_page_t m;
2170
2171	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2172	rw_assert(&pvh_global_lock, RA_WLOCKED);
2173	PV_STAT(pv_entry_allocs++);
2174	pv_entry_count++;
2175	if (pv_entry_count > pv_entry_high_water)
2176		if (ratecheck(&lastprint, &printinterval))
2177			printf("Approaching the limit on PV entries, consider "
2178			    "increasing either the vm.pmap.shpgperproc or the "
2179			    "vm.pmap.pv_entry_max tunable.\n");
2180retry:
2181	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2182	if (pc != NULL) {
2183		for (field = 0; field < _NPCM; field++) {
2184			if (pc->pc_map[field]) {
2185				bit = bsfl(pc->pc_map[field]);
2186				break;
2187			}
2188		}
2189		if (field < _NPCM) {
2190			pv = &pc->pc_pventry[field * 32 + bit];
2191			pc->pc_map[field] &= ~(1ul << bit);
2192			/* If this was the last item, move it to tail */
2193			for (field = 0; field < _NPCM; field++)
2194				if (pc->pc_map[field] != 0) {
2195					PV_STAT(pv_entry_spare--);
2196					return (pv);	/* not full, return */
2197				}
2198			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2199			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2200			PV_STAT(pv_entry_spare--);
2201			return (pv);
2202		}
2203	}
2204	/*
2205	 * Access to the ptelist "pv_vafree" is synchronized by the page
2206	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2207	 * remain non-empty until pmap_ptelist_alloc() completes.
2208	 */
2209	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2210	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2211		if (try) {
2212			pv_entry_count--;
2213			PV_STAT(pc_chunk_tryfail++);
2214			return (NULL);
2215		}
2216		m = pmap_pv_reclaim(pmap);
2217		if (m == NULL)
2218			goto retry;
2219	}
2220	PV_STAT(pc_chunk_count++);
2221	PV_STAT(pc_chunk_allocs++);
2222	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2223	pmap_qenter((vm_offset_t)pc, &m, 1);
2224	if ((m->flags & PG_ZERO) == 0)
2225		pagezero(pc);
2226	pc->pc_pmap = pmap;
2227	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2228	for (field = 1; field < _NPCM; field++)
2229		pc->pc_map[field] = pc_freemask[field];
2230	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2231	pv = &pc->pc_pventry[0];
2232	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2233	PV_STAT(pv_entry_spare += _NPCPV - 1);
2234	return (pv);
2235}
2236
2237static __inline pv_entry_t
2238pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2239{
2240	pv_entry_t pv;
2241
2242	rw_assert(&pvh_global_lock, RA_WLOCKED);
2243	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2244		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2245			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2246			break;
2247		}
2248	}
2249	return (pv);
2250}
2251
2252static void
2253pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2254{
2255	pv_entry_t pv;
2256
2257	pv = pmap_pvh_remove(pvh, pmap, va);
2258	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2259	free_pv_entry(pmap, pv);
2260}
2261
2262static void
2263pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2264{
2265
2266	rw_assert(&pvh_global_lock, RA_WLOCKED);
2267	pmap_pvh_free(&m->md, pmap, va);
2268	if (TAILQ_EMPTY(&m->md.pv_list))
2269		vm_page_aflag_clear(m, PGA_WRITEABLE);
2270}
2271
2272/*
2273 * Conditionally create a pv entry.
2274 */
2275static boolean_t
2276pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2277{
2278	pv_entry_t pv;
2279
2280	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2281	rw_assert(&pvh_global_lock, RA_WLOCKED);
2282	if (pv_entry_count < pv_entry_high_water &&
2283	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2284		pv->pv_va = va;
2285		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2286		return (TRUE);
2287	} else
2288		return (FALSE);
2289}
2290
2291/*
2292 * pmap_remove_pte: do the things to unmap a page in a process
2293 */
2294static int
2295pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2296{
2297	pt_entry_t oldpte;
2298	vm_page_t m;
2299
2300	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2301	    pmap, (u_long)*ptq, va);
2302
2303	rw_assert(&pvh_global_lock, RA_WLOCKED);
2304	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2305	oldpte = *ptq;
2306	PT_SET_VA_MA(ptq, 0, TRUE);
2307	KASSERT(oldpte != 0,
2308	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2309	if (oldpte & PG_W)
2310		pmap->pm_stats.wired_count -= 1;
2311	/*
2312	 * Machines that don't support invlpg, also don't support
2313	 * PG_G.
2314	 */
2315	if (oldpte & PG_G)
2316		pmap_invalidate_page(kernel_pmap, va);
2317	pmap->pm_stats.resident_count -= 1;
2318	if (oldpte & PG_MANAGED) {
2319		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2320		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2321			vm_page_dirty(m);
2322		if (oldpte & PG_A)
2323			vm_page_aflag_set(m, PGA_REFERENCED);
2324		pmap_remove_entry(pmap, m, va);
2325	}
2326	return (pmap_unuse_pt(pmap, va, free));
2327}
2328
2329/*
2330 * Remove a single page from a process address space
2331 */
2332static void
2333pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2334{
2335	pt_entry_t *pte;
2336
2337	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2338	    pmap, va);
2339
2340	rw_assert(&pvh_global_lock, RA_WLOCKED);
2341	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2342	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2343	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2344		return;
2345	pmap_remove_pte(pmap, pte, va, free);
2346	pmap_invalidate_page(pmap, va);
2347	if (*PMAP1)
2348		PT_SET_MA(PADDR1, 0);
2349
2350}
2351
2352/*
2353 *	Remove the given range of addresses from the specified map.
2354 *
2355 *	It is assumed that the start and end are properly
2356 *	rounded to the page size.
2357 */
2358void
2359pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2360{
2361	vm_offset_t pdnxt;
2362	pd_entry_t ptpaddr;
2363	pt_entry_t *pte;
2364	vm_page_t free = NULL;
2365	int anyvalid;
2366
2367	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2368	    pmap, sva, eva);
2369
2370	/*
2371	 * Perform an unsynchronized read.  This is, however, safe.
2372	 */
2373	if (pmap->pm_stats.resident_count == 0)
2374		return;
2375
2376	anyvalid = 0;
2377
2378	rw_wlock(&pvh_global_lock);
2379	sched_pin();
2380	PMAP_LOCK(pmap);
2381
2382	/*
2383	 * special handling of removing one page.  a very
2384	 * common operation and easy to short circuit some
2385	 * code.
2386	 */
2387	if ((sva + PAGE_SIZE == eva) &&
2388	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2389		pmap_remove_page(pmap, sva, &free);
2390		goto out;
2391	}
2392
2393	for (; sva < eva; sva = pdnxt) {
2394		u_int pdirindex;
2395
2396		/*
2397		 * Calculate index for next page table.
2398		 */
2399		pdnxt = (sva + NBPDR) & ~PDRMASK;
2400		if (pdnxt < sva)
2401			pdnxt = eva;
2402		if (pmap->pm_stats.resident_count == 0)
2403			break;
2404
2405		pdirindex = sva >> PDRSHIFT;
2406		ptpaddr = pmap->pm_pdir[pdirindex];
2407
2408		/*
2409		 * Weed out invalid mappings. Note: we assume that the page
2410		 * directory table is always allocated, and in kernel virtual.
2411		 */
2412		if (ptpaddr == 0)
2413			continue;
2414
2415		/*
2416		 * Check for large page.
2417		 */
2418		if ((ptpaddr & PG_PS) != 0) {
2419			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2420			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2421			anyvalid = 1;
2422			continue;
2423		}
2424
2425		/*
2426		 * Limit our scan to either the end of the va represented
2427		 * by the current page table page, or to the end of the
2428		 * range being removed.
2429		 */
2430		if (pdnxt > eva)
2431			pdnxt = eva;
2432
2433		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2434		    sva += PAGE_SIZE) {
2435			if ((*pte & PG_V) == 0)
2436				continue;
2437
2438			/*
2439			 * The TLB entry for a PG_G mapping is invalidated
2440			 * by pmap_remove_pte().
2441			 */
2442			if ((*pte & PG_G) == 0)
2443				anyvalid = 1;
2444			if (pmap_remove_pte(pmap, pte, sva, &free))
2445				break;
2446		}
2447	}
2448	PT_UPDATES_FLUSH();
2449	if (*PMAP1)
2450		PT_SET_VA_MA(PMAP1, 0, TRUE);
2451out:
2452	if (anyvalid)
2453		pmap_invalidate_all(pmap);
2454	sched_unpin();
2455	rw_wunlock(&pvh_global_lock);
2456	PMAP_UNLOCK(pmap);
2457	pmap_free_zero_pages(free);
2458}
2459
2460/*
2461 *	Routine:	pmap_remove_all
2462 *	Function:
2463 *		Removes this physical page from
2464 *		all physical maps in which it resides.
2465 *		Reflects back modify bits to the pager.
2466 *
2467 *	Notes:
2468 *		Original versions of this routine were very
2469 *		inefficient because they iteratively called
2470 *		pmap_remove (slow...)
2471 */
2472
2473void
2474pmap_remove_all(vm_page_t m)
2475{
2476	pv_entry_t pv;
2477	pmap_t pmap;
2478	pt_entry_t *pte, tpte;
2479	vm_page_t free;
2480
2481	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2482	    ("pmap_remove_all: page %p is not managed", m));
2483	free = NULL;
2484	rw_wlock(&pvh_global_lock);
2485	sched_pin();
2486	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2487		pmap = PV_PMAP(pv);
2488		PMAP_LOCK(pmap);
2489		pmap->pm_stats.resident_count--;
2490		pte = pmap_pte_quick(pmap, pv->pv_va);
2491		tpte = *pte;
2492		PT_SET_VA_MA(pte, 0, TRUE);
2493		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
2494		    pmap, pv->pv_va));
2495		if (tpte & PG_W)
2496			pmap->pm_stats.wired_count--;
2497		if (tpte & PG_A)
2498			vm_page_aflag_set(m, PGA_REFERENCED);
2499
2500		/*
2501		 * Update the vm_page_t clean and reference bits.
2502		 */
2503		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2504			vm_page_dirty(m);
2505		pmap_unuse_pt(pmap, pv->pv_va, &free);
2506		pmap_invalidate_page(pmap, pv->pv_va);
2507		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2508		free_pv_entry(pmap, pv);
2509		PMAP_UNLOCK(pmap);
2510	}
2511	vm_page_aflag_clear(m, PGA_WRITEABLE);
2512	PT_UPDATES_FLUSH();
2513	if (*PMAP1)
2514		PT_SET_MA(PADDR1, 0);
2515	sched_unpin();
2516	rw_wunlock(&pvh_global_lock);
2517	pmap_free_zero_pages(free);
2518}
2519
2520/*
2521 *	Set the physical protection on the
2522 *	specified range of this map as requested.
2523 */
2524void
2525pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2526{
2527	vm_offset_t pdnxt;
2528	pd_entry_t ptpaddr;
2529	pt_entry_t *pte;
2530	int anychanged;
2531
2532	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2533	    pmap, sva, eva, prot);
2534
2535	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2536		pmap_remove(pmap, sva, eva);
2537		return;
2538	}
2539
2540#ifdef PAE
2541	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2542	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2543		return;
2544#else
2545	if (prot & VM_PROT_WRITE)
2546		return;
2547#endif
2548
2549	anychanged = 0;
2550
2551	rw_wlock(&pvh_global_lock);
2552	sched_pin();
2553	PMAP_LOCK(pmap);
2554	for (; sva < eva; sva = pdnxt) {
2555		pt_entry_t obits, pbits;
2556		u_int pdirindex;
2557
2558		pdnxt = (sva + NBPDR) & ~PDRMASK;
2559		if (pdnxt < sva)
2560			pdnxt = eva;
2561
2562		pdirindex = sva >> PDRSHIFT;
2563		ptpaddr = pmap->pm_pdir[pdirindex];
2564
2565		/*
2566		 * Weed out invalid mappings. Note: we assume that the page
2567		 * directory table is always allocated, and in kernel virtual.
2568		 */
2569		if (ptpaddr == 0)
2570			continue;
2571
2572		/*
2573		 * Check for large page.
2574		 */
2575		if ((ptpaddr & PG_PS) != 0) {
2576			if ((prot & VM_PROT_WRITE) == 0)
2577				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2578#ifdef PAE
2579			if ((prot & VM_PROT_EXECUTE) == 0)
2580				pmap->pm_pdir[pdirindex] |= pg_nx;
2581#endif
2582			anychanged = 1;
2583			continue;
2584		}
2585
2586		if (pdnxt > eva)
2587			pdnxt = eva;
2588
2589		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2590		    sva += PAGE_SIZE) {
2591			vm_page_t m;
2592
2593retry:
2594			/*
2595			 * Regardless of whether a pte is 32 or 64 bits in
2596			 * size, PG_RW, PG_A, and PG_M are among the least
2597			 * significant 32 bits.
2598			 */
2599			obits = pbits = *pte;
2600			if ((pbits & PG_V) == 0)
2601				continue;
2602
2603			if ((prot & VM_PROT_WRITE) == 0) {
2604				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2605				    (PG_MANAGED | PG_M | PG_RW)) {
2606					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2607					    PG_FRAME);
2608					vm_page_dirty(m);
2609				}
2610				pbits &= ~(PG_RW | PG_M);
2611			}
2612#ifdef PAE
2613			if ((prot & VM_PROT_EXECUTE) == 0)
2614				pbits |= pg_nx;
2615#endif
2616
2617			if (pbits != obits) {
2618				obits = *pte;
2619				PT_SET_VA_MA(pte, pbits, TRUE);
2620				if (*pte != pbits)
2621					goto retry;
2622				if (obits & PG_G)
2623					pmap_invalidate_page(pmap, sva);
2624				else
2625					anychanged = 1;
2626			}
2627		}
2628	}
2629	PT_UPDATES_FLUSH();
2630	if (*PMAP1)
2631		PT_SET_VA_MA(PMAP1, 0, TRUE);
2632	if (anychanged)
2633		pmap_invalidate_all(pmap);
2634	sched_unpin();
2635	rw_wunlock(&pvh_global_lock);
2636	PMAP_UNLOCK(pmap);
2637}
2638
2639/*
2640 *	Insert the given physical page (p) at
2641 *	the specified virtual address (v) in the
2642 *	target physical map with the protection requested.
2643 *
2644 *	If specified, the page will be wired down, meaning
2645 *	that the related pte can not be reclaimed.
2646 *
2647 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2648 *	or lose information.  That is, this routine must actually
2649 *	insert this page into the given map NOW.
2650 */
2651void
2652pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2653    vm_prot_t prot, boolean_t wired)
2654{
2655	pd_entry_t *pde;
2656	pt_entry_t *pte;
2657	pt_entry_t newpte, origpte;
2658	pv_entry_t pv;
2659	vm_paddr_t opa, pa;
2660	vm_page_t mpte, om;
2661	boolean_t invlva;
2662
2663	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2664	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2665	va = trunc_page(va);
2666	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2667	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2668	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2669	    va));
2670	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == 0)
2671		VM_OBJECT_ASSERT_WLOCKED(m->object);
2672
2673	mpte = NULL;
2674
2675	rw_wlock(&pvh_global_lock);
2676	PMAP_LOCK(pmap);
2677	sched_pin();
2678
2679	/*
2680	 * In the case that a page table page is not
2681	 * resident, we are creating it here.
2682	 */
2683	if (va < VM_MAXUSER_ADDRESS) {
2684		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2685	}
2686
2687	pde = pmap_pde(pmap, va);
2688	if ((*pde & PG_PS) != 0)
2689		panic("pmap_enter: attempted pmap_enter on 4MB page");
2690	pte = pmap_pte_quick(pmap, va);
2691
2692	/*
2693	 * Page Directory table entry not valid, we need a new PT page
2694	 */
2695	if (pte == NULL) {
2696		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2697			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2698	}
2699
2700	pa = VM_PAGE_TO_PHYS(m);
2701	om = NULL;
2702	opa = origpte = 0;
2703
2704#if 0
2705	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2706		pte, *pte));
2707#endif
2708	origpte = *pte;
2709	if (origpte)
2710		origpte = xpmap_mtop(origpte);
2711	opa = origpte & PG_FRAME;
2712
2713	/*
2714	 * Mapping has not changed, must be protection or wiring change.
2715	 */
2716	if (origpte && (opa == pa)) {
2717		/*
2718		 * Wiring change, just update stats. We don't worry about
2719		 * wiring PT pages as they remain resident as long as there
2720		 * are valid mappings in them. Hence, if a user page is wired,
2721		 * the PT page will be also.
2722		 */
2723		if (wired && ((origpte & PG_W) == 0))
2724			pmap->pm_stats.wired_count++;
2725		else if (!wired && (origpte & PG_W))
2726			pmap->pm_stats.wired_count--;
2727
2728		/*
2729		 * Remove extra pte reference
2730		 */
2731		if (mpte)
2732			mpte->wire_count--;
2733
2734		if (origpte & PG_MANAGED) {
2735			om = m;
2736			pa |= PG_MANAGED;
2737		}
2738		goto validate;
2739	}
2740
2741	pv = NULL;
2742
2743	/*
2744	 * Mapping has changed, invalidate old range and fall through to
2745	 * handle validating new mapping.
2746	 */
2747	if (opa) {
2748		if (origpte & PG_W)
2749			pmap->pm_stats.wired_count--;
2750		if (origpte & PG_MANAGED) {
2751			om = PHYS_TO_VM_PAGE(opa);
2752			pv = pmap_pvh_remove(&om->md, pmap, va);
2753		} else if (va < VM_MAXUSER_ADDRESS)
2754			printf("va=0x%x is unmanaged :-( \n", va);
2755
2756		if (mpte != NULL) {
2757			mpte->wire_count--;
2758			KASSERT(mpte->wire_count > 0,
2759			    ("pmap_enter: missing reference to page table page,"
2760			     " va: 0x%x", va));
2761		}
2762	} else
2763		pmap->pm_stats.resident_count++;
2764
2765	/*
2766	 * Enter on the PV list if part of our managed memory.
2767	 */
2768	if ((m->oflags & VPO_UNMANAGED) == 0) {
2769		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2770		    ("pmap_enter: managed mapping within the clean submap"));
2771		if (pv == NULL)
2772			pv = get_pv_entry(pmap, FALSE);
2773		pv->pv_va = va;
2774		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2775		pa |= PG_MANAGED;
2776	} else if (pv != NULL)
2777		free_pv_entry(pmap, pv);
2778
2779	/*
2780	 * Increment counters
2781	 */
2782	if (wired)
2783		pmap->pm_stats.wired_count++;
2784
2785validate:
2786	/*
2787	 * Now validate mapping with desired protection/wiring.
2788	 */
2789	newpte = (pt_entry_t)(pa | PG_V);
2790	if ((prot & VM_PROT_WRITE) != 0) {
2791		newpte |= PG_RW;
2792		if ((newpte & PG_MANAGED) != 0)
2793			vm_page_aflag_set(m, PGA_WRITEABLE);
2794	}
2795#ifdef PAE
2796	if ((prot & VM_PROT_EXECUTE) == 0)
2797		newpte |= pg_nx;
2798#endif
2799	if (wired)
2800		newpte |= PG_W;
2801	if (va < VM_MAXUSER_ADDRESS)
2802		newpte |= PG_U;
2803	if (pmap == kernel_pmap)
2804		newpte |= pgeflag;
2805
2806	critical_enter();
2807	/*
2808	 * if the mapping or permission bits are different, we need
2809	 * to update the pte.
2810	 */
2811	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2812		if (origpte) {
2813			invlva = FALSE;
2814			origpte = *pte;
2815			PT_SET_VA(pte, newpte | PG_A, FALSE);
2816			if (origpte & PG_A) {
2817				if (origpte & PG_MANAGED)
2818					vm_page_aflag_set(om, PGA_REFERENCED);
2819				if (opa != VM_PAGE_TO_PHYS(m))
2820					invlva = TRUE;
2821#ifdef PAE
2822				if ((origpte & PG_NX) == 0 &&
2823				    (newpte & PG_NX) != 0)
2824					invlva = TRUE;
2825#endif
2826			}
2827			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2828				if ((origpte & PG_MANAGED) != 0)
2829					vm_page_dirty(om);
2830				if ((prot & VM_PROT_WRITE) == 0)
2831					invlva = TRUE;
2832			}
2833			if ((origpte & PG_MANAGED) != 0 &&
2834			    TAILQ_EMPTY(&om->md.pv_list))
2835				vm_page_aflag_clear(om, PGA_WRITEABLE);
2836			if (invlva)
2837				pmap_invalidate_page(pmap, va);
2838		} else{
2839			PT_SET_VA(pte, newpte | PG_A, FALSE);
2840		}
2841
2842	}
2843	PT_UPDATES_FLUSH();
2844	critical_exit();
2845	if (*PMAP1)
2846		PT_SET_VA_MA(PMAP1, 0, TRUE);
2847	sched_unpin();
2848	rw_wunlock(&pvh_global_lock);
2849	PMAP_UNLOCK(pmap);
2850}
2851
2852/*
2853 * Maps a sequence of resident pages belonging to the same object.
2854 * The sequence begins with the given page m_start.  This page is
2855 * mapped at the given virtual address start.  Each subsequent page is
2856 * mapped at a virtual address that is offset from start by the same
2857 * amount as the page is offset from m_start within the object.  The
2858 * last page in the sequence is the page with the largest offset from
2859 * m_start that can be mapped at a virtual address less than the given
2860 * virtual address end.  Not every virtual page between start and end
2861 * is mapped; only those for which a resident page exists with the
2862 * corresponding offset from m_start are mapped.
2863 */
2864void
2865pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2866    vm_page_t m_start, vm_prot_t prot)
2867{
2868	vm_page_t m, mpte;
2869	vm_pindex_t diff, psize;
2870	multicall_entry_t mcl[16];
2871	multicall_entry_t *mclp = mcl;
2872	int error, count = 0;
2873
2874	VM_OBJECT_ASSERT_WLOCKED(m_start->object);
2875	psize = atop(end - start);
2876	mpte = NULL;
2877	m = m_start;
2878	rw_wlock(&pvh_global_lock);
2879	PMAP_LOCK(pmap);
2880	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2881		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2882		    prot, mpte);
2883		m = TAILQ_NEXT(m, listq);
2884		if (count == 16) {
2885			error = HYPERVISOR_multicall(mcl, count);
2886			KASSERT(error == 0, ("bad multicall %d", error));
2887			mclp = mcl;
2888			count = 0;
2889		}
2890	}
2891	if (count) {
2892		error = HYPERVISOR_multicall(mcl, count);
2893		KASSERT(error == 0, ("bad multicall %d", error));
2894	}
2895	rw_wunlock(&pvh_global_lock);
2896	PMAP_UNLOCK(pmap);
2897}
2898
2899/*
2900 * this code makes some *MAJOR* assumptions:
2901 * 1. Current pmap & pmap exists.
2902 * 2. Not wired.
2903 * 3. Read access.
2904 * 4. No page table pages.
2905 * but is *MUCH* faster than pmap_enter...
2906 */
2907
2908void
2909pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2910{
2911	multicall_entry_t mcl, *mclp;
2912	int count = 0;
2913	mclp = &mcl;
2914
2915	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2916	    pmap, va, m, prot);
2917
2918	rw_wlock(&pvh_global_lock);
2919	PMAP_LOCK(pmap);
2920	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2921	if (count)
2922		HYPERVISOR_multicall(&mcl, count);
2923	rw_wunlock(&pvh_global_lock);
2924	PMAP_UNLOCK(pmap);
2925}
2926
2927#ifdef notyet
2928void
2929pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2930{
2931	int i, error, index = 0;
2932	multicall_entry_t mcl[16];
2933	multicall_entry_t *mclp = mcl;
2934
2935	PMAP_LOCK(pmap);
2936	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2937		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2938			continue;
2939
2940		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2941		if (index == 16) {
2942			error = HYPERVISOR_multicall(mcl, index);
2943			mclp = mcl;
2944			index = 0;
2945			KASSERT(error == 0, ("bad multicall %d", error));
2946		}
2947	}
2948	if (index) {
2949		error = HYPERVISOR_multicall(mcl, index);
2950		KASSERT(error == 0, ("bad multicall %d", error));
2951	}
2952
2953	PMAP_UNLOCK(pmap);
2954}
2955#endif
2956
2957static vm_page_t
2958pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2959    vm_prot_t prot, vm_page_t mpte)
2960{
2961	pt_entry_t *pte;
2962	vm_paddr_t pa;
2963	vm_page_t free;
2964	multicall_entry_t *mcl = *mclpp;
2965
2966	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2967	    (m->oflags & VPO_UNMANAGED) != 0,
2968	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2969	rw_assert(&pvh_global_lock, RA_WLOCKED);
2970	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2971
2972	/*
2973	 * In the case that a page table page is not
2974	 * resident, we are creating it here.
2975	 */
2976	if (va < VM_MAXUSER_ADDRESS) {
2977		u_int ptepindex;
2978		pd_entry_t ptema;
2979
2980		/*
2981		 * Calculate pagetable page index
2982		 */
2983		ptepindex = va >> PDRSHIFT;
2984		if (mpte && (mpte->pindex == ptepindex)) {
2985			mpte->wire_count++;
2986		} else {
2987			/*
2988			 * Get the page directory entry
2989			 */
2990			ptema = pmap->pm_pdir[ptepindex];
2991
2992			/*
2993			 * If the page table page is mapped, we just increment
2994			 * the hold count, and activate it.
2995			 */
2996			if (ptema & PG_V) {
2997				if (ptema & PG_PS)
2998					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2999				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
3000				mpte->wire_count++;
3001			} else {
3002				mpte = _pmap_allocpte(pmap, ptepindex,
3003				    M_NOWAIT);
3004				if (mpte == NULL)
3005					return (mpte);
3006			}
3007		}
3008	} else {
3009		mpte = NULL;
3010	}
3011
3012	/*
3013	 * This call to vtopte makes the assumption that we are
3014	 * entering the page into the current pmap.  In order to support
3015	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3016	 * But that isn't as quick as vtopte.
3017	 */
3018	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3019	pte = vtopte(va);
3020	if (*pte & PG_V) {
3021		if (mpte != NULL) {
3022			mpte->wire_count--;
3023			mpte = NULL;
3024		}
3025		return (mpte);
3026	}
3027
3028	/*
3029	 * Enter on the PV list if part of our managed memory.
3030	 */
3031	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3032	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3033		if (mpte != NULL) {
3034			free = NULL;
3035			if (pmap_unwire_ptp(pmap, mpte, &free)) {
3036				pmap_invalidate_page(pmap, va);
3037				pmap_free_zero_pages(free);
3038			}
3039
3040			mpte = NULL;
3041		}
3042		return (mpte);
3043	}
3044
3045	/*
3046	 * Increment counters
3047	 */
3048	pmap->pm_stats.resident_count++;
3049
3050	pa = VM_PAGE_TO_PHYS(m);
3051#ifdef PAE
3052	if ((prot & VM_PROT_EXECUTE) == 0)
3053		pa |= pg_nx;
3054#endif
3055
3056#if 0
3057	/*
3058	 * Now validate mapping with RO protection
3059	 */
3060	if ((m->oflags & VPO_UNMANAGED) != 0)
3061		pte_store(pte, pa | PG_V | PG_U);
3062	else
3063		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3064#else
3065	/*
3066	 * Now validate mapping with RO protection
3067	 */
3068	if ((m->oflags & VPO_UNMANAGED) != 0)
3069		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3070	else
3071		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3072
3073	mcl->op = __HYPERVISOR_update_va_mapping;
3074	mcl->args[0] = va;
3075	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3076	mcl->args[2] = (uint32_t)(pa >> 32);
3077	mcl->args[3] = 0;
3078	*mclpp = mcl + 1;
3079	*count = *count + 1;
3080#endif
3081	return (mpte);
3082}
3083
3084/*
3085 * Make a temporary mapping for a physical address.  This is only intended
3086 * to be used for panic dumps.
3087 */
3088void *
3089pmap_kenter_temporary(vm_paddr_t pa, int i)
3090{
3091	vm_offset_t va;
3092	vm_paddr_t ma = xpmap_ptom(pa);
3093
3094	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3095	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3096	invlpg(va);
3097	return ((void *)crashdumpmap);
3098}
3099
3100/*
3101 * This code maps large physical mmap regions into the
3102 * processor address space.  Note that some shortcuts
3103 * are taken, but the code works.
3104 */
3105void
3106pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3107    vm_pindex_t pindex, vm_size_t size)
3108{
3109	pd_entry_t *pde;
3110	vm_paddr_t pa, ptepa;
3111	vm_page_t p;
3112	int pat_mode;
3113
3114	VM_OBJECT_ASSERT_WLOCKED(object);
3115	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3116	    ("pmap_object_init_pt: non-device object"));
3117	if (pseflag &&
3118	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3119		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3120			return;
3121		p = vm_page_lookup(object, pindex);
3122		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3123		    ("pmap_object_init_pt: invalid page %p", p));
3124		pat_mode = p->md.pat_mode;
3125
3126		/*
3127		 * Abort the mapping if the first page is not physically
3128		 * aligned to a 2/4MB page boundary.
3129		 */
3130		ptepa = VM_PAGE_TO_PHYS(p);
3131		if (ptepa & (NBPDR - 1))
3132			return;
3133
3134		/*
3135		 * Skip the first page.  Abort the mapping if the rest of
3136		 * the pages are not physically contiguous or have differing
3137		 * memory attributes.
3138		 */
3139		p = TAILQ_NEXT(p, listq);
3140		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3141		    pa += PAGE_SIZE) {
3142			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3143			    ("pmap_object_init_pt: invalid page %p", p));
3144			if (pa != VM_PAGE_TO_PHYS(p) ||
3145			    pat_mode != p->md.pat_mode)
3146				return;
3147			p = TAILQ_NEXT(p, listq);
3148		}
3149
3150		/*
3151		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3152		 * "size" is a multiple of 2/4M, adding the PAT setting to
3153		 * "pa" will not affect the termination of this loop.
3154		 */
3155		PMAP_LOCK(pmap);
3156		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3157		    size; pa += NBPDR) {
3158			pde = pmap_pde(pmap, addr);
3159			if (*pde == 0) {
3160				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3161				    PG_U | PG_RW | PG_V);
3162				pmap->pm_stats.resident_count += NBPDR /
3163				    PAGE_SIZE;
3164				pmap_pde_mappings++;
3165			}
3166			/* Else continue on if the PDE is already valid. */
3167			addr += NBPDR;
3168		}
3169		PMAP_UNLOCK(pmap);
3170	}
3171}
3172
3173/*
3174 *	Routine:	pmap_change_wiring
3175 *	Function:	Change the wiring attribute for a map/virtual-address
3176 *			pair.
3177 *	In/out conditions:
3178 *			The mapping must already exist in the pmap.
3179 */
3180void
3181pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3182{
3183	pt_entry_t *pte;
3184
3185	rw_wlock(&pvh_global_lock);
3186	PMAP_LOCK(pmap);
3187	pte = pmap_pte(pmap, va);
3188
3189	if (wired && !pmap_pte_w(pte)) {
3190		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3191		pmap->pm_stats.wired_count++;
3192	} else if (!wired && pmap_pte_w(pte)) {
3193		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3194		pmap->pm_stats.wired_count--;
3195	}
3196
3197	/*
3198	 * Wiring is not a hardware characteristic so there is no need to
3199	 * invalidate TLB.
3200	 */
3201	pmap_pte_release(pte);
3202	PMAP_UNLOCK(pmap);
3203	rw_wunlock(&pvh_global_lock);
3204}
3205
3206
3207
3208/*
3209 *	Copy the range specified by src_addr/len
3210 *	from the source map to the range dst_addr/len
3211 *	in the destination map.
3212 *
3213 *	This routine is only advisory and need not do anything.
3214 */
3215
3216void
3217pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3218    vm_offset_t src_addr)
3219{
3220	vm_page_t   free;
3221	vm_offset_t addr;
3222	vm_offset_t end_addr = src_addr + len;
3223	vm_offset_t pdnxt;
3224
3225	if (dst_addr != src_addr)
3226		return;
3227
3228	if (!pmap_is_current(src_pmap)) {
3229		CTR2(KTR_PMAP,
3230		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3231		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3232
3233		return;
3234	}
3235	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3236	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3237
3238#ifdef HAMFISTED_LOCKING
3239	mtx_lock(&createdelete_lock);
3240#endif
3241
3242	rw_wlock(&pvh_global_lock);
3243	if (dst_pmap < src_pmap) {
3244		PMAP_LOCK(dst_pmap);
3245		PMAP_LOCK(src_pmap);
3246	} else {
3247		PMAP_LOCK(src_pmap);
3248		PMAP_LOCK(dst_pmap);
3249	}
3250	sched_pin();
3251	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3252		pt_entry_t *src_pte, *dst_pte;
3253		vm_page_t dstmpte, srcmpte;
3254		pd_entry_t srcptepaddr;
3255		u_int ptepindex;
3256
3257		KASSERT(addr < UPT_MIN_ADDRESS,
3258		    ("pmap_copy: invalid to pmap_copy page tables"));
3259
3260		pdnxt = (addr + NBPDR) & ~PDRMASK;
3261		if (pdnxt < addr)
3262			pdnxt = end_addr;
3263		ptepindex = addr >> PDRSHIFT;
3264
3265		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3266		if (srcptepaddr == 0)
3267			continue;
3268
3269		if (srcptepaddr & PG_PS) {
3270			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3271				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3272				dst_pmap->pm_stats.resident_count +=
3273				    NBPDR / PAGE_SIZE;
3274			}
3275			continue;
3276		}
3277
3278		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3279		KASSERT(srcmpte->wire_count > 0,
3280		    ("pmap_copy: source page table page is unused"));
3281
3282		if (pdnxt > end_addr)
3283			pdnxt = end_addr;
3284
3285		src_pte = vtopte(addr);
3286		while (addr < pdnxt) {
3287			pt_entry_t ptetemp;
3288			ptetemp = *src_pte;
3289			/*
3290			 * we only virtual copy managed pages
3291			 */
3292			if ((ptetemp & PG_MANAGED) != 0) {
3293				dstmpte = pmap_allocpte(dst_pmap, addr,
3294				    M_NOWAIT);
3295				if (dstmpte == NULL)
3296					goto out;
3297				dst_pte = pmap_pte_quick(dst_pmap, addr);
3298				if (*dst_pte == 0 &&
3299				    pmap_try_insert_pv_entry(dst_pmap, addr,
3300				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3301					/*
3302					 * Clear the wired, modified, and
3303					 * accessed (referenced) bits
3304					 * during the copy.
3305					 */
3306					KASSERT(ptetemp != 0, ("src_pte not set"));
3307					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3308					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3309					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3310						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3311					dst_pmap->pm_stats.resident_count++;
3312	 			} else {
3313					free = NULL;
3314					if (pmap_unwire_ptp(dst_pmap, dstmpte,
3315					    &free)) {
3316						pmap_invalidate_page(dst_pmap,
3317						    addr);
3318						pmap_free_zero_pages(free);
3319					}
3320					goto out;
3321				}
3322				if (dstmpte->wire_count >= srcmpte->wire_count)
3323					break;
3324			}
3325			addr += PAGE_SIZE;
3326			src_pte++;
3327		}
3328	}
3329out:
3330	PT_UPDATES_FLUSH();
3331	sched_unpin();
3332	rw_wunlock(&pvh_global_lock);
3333	PMAP_UNLOCK(src_pmap);
3334	PMAP_UNLOCK(dst_pmap);
3335
3336#ifdef HAMFISTED_LOCKING
3337	mtx_unlock(&createdelete_lock);
3338#endif
3339}
3340
3341static __inline void
3342pagezero(void *page)
3343{
3344#if defined(I686_CPU)
3345	if (cpu_class == CPUCLASS_686) {
3346#if defined(CPU_ENABLE_SSE)
3347		if (cpu_feature & CPUID_SSE2)
3348			sse2_pagezero(page);
3349		else
3350#endif
3351			i686_pagezero(page);
3352	} else
3353#endif
3354		bzero(page, PAGE_SIZE);
3355}
3356
3357/*
3358 *	pmap_zero_page zeros the specified hardware page by mapping
3359 *	the page into KVM and using bzero to clear its contents.
3360 */
3361void
3362pmap_zero_page(vm_page_t m)
3363{
3364	struct sysmaps *sysmaps;
3365
3366	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3367	mtx_lock(&sysmaps->lock);
3368	if (*sysmaps->CMAP2)
3369		panic("pmap_zero_page: CMAP2 busy");
3370	sched_pin();
3371	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3372	pagezero(sysmaps->CADDR2);
3373	PT_SET_MA(sysmaps->CADDR2, 0);
3374	sched_unpin();
3375	mtx_unlock(&sysmaps->lock);
3376}
3377
3378/*
3379 *	pmap_zero_page_area zeros the specified hardware page by mapping
3380 *	the page into KVM and using bzero to clear its contents.
3381 *
3382 *	off and size may not cover an area beyond a single hardware page.
3383 */
3384void
3385pmap_zero_page_area(vm_page_t m, int off, int size)
3386{
3387	struct sysmaps *sysmaps;
3388
3389	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3390	mtx_lock(&sysmaps->lock);
3391	if (*sysmaps->CMAP2)
3392		panic("pmap_zero_page_area: CMAP2 busy");
3393	sched_pin();
3394	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3395
3396	if (off == 0 && size == PAGE_SIZE)
3397		pagezero(sysmaps->CADDR2);
3398	else
3399		bzero((char *)sysmaps->CADDR2 + off, size);
3400	PT_SET_MA(sysmaps->CADDR2, 0);
3401	sched_unpin();
3402	mtx_unlock(&sysmaps->lock);
3403}
3404
3405/*
3406 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3407 *	the page into KVM and using bzero to clear its contents.  This
3408 *	is intended to be called from the vm_pagezero process only and
3409 *	outside of Giant.
3410 */
3411void
3412pmap_zero_page_idle(vm_page_t m)
3413{
3414
3415	if (*CMAP3)
3416		panic("pmap_zero_page_idle: CMAP3 busy");
3417	sched_pin();
3418	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3419	pagezero(CADDR3);
3420	PT_SET_MA(CADDR3, 0);
3421	sched_unpin();
3422}
3423
3424/*
3425 *	pmap_copy_page copies the specified (machine independent)
3426 *	page by mapping the page into virtual memory and using
3427 *	bcopy to copy the page, one machine dependent page at a
3428 *	time.
3429 */
3430void
3431pmap_copy_page(vm_page_t src, vm_page_t dst)
3432{
3433	struct sysmaps *sysmaps;
3434
3435	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3436	mtx_lock(&sysmaps->lock);
3437	if (*sysmaps->CMAP1)
3438		panic("pmap_copy_page: CMAP1 busy");
3439	if (*sysmaps->CMAP2)
3440		panic("pmap_copy_page: CMAP2 busy");
3441	sched_pin();
3442	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3443	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3444	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3445	PT_SET_MA(sysmaps->CADDR1, 0);
3446	PT_SET_MA(sysmaps->CADDR2, 0);
3447	sched_unpin();
3448	mtx_unlock(&sysmaps->lock);
3449}
3450
3451int unmapped_buf_allowed = 1;
3452
3453void
3454pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
3455    vm_offset_t b_offset, int xfersize)
3456{
3457	struct sysmaps *sysmaps;
3458	vm_page_t a_pg, b_pg;
3459	char *a_cp, *b_cp;
3460	vm_offset_t a_pg_offset, b_pg_offset;
3461	int cnt;
3462
3463	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3464	mtx_lock(&sysmaps->lock);
3465	if (*sysmaps->CMAP1 != 0)
3466		panic("pmap_copy_pages: CMAP1 busy");
3467	if (*sysmaps->CMAP2 != 0)
3468		panic("pmap_copy_pages: CMAP2 busy");
3469	sched_pin();
3470	while (xfersize > 0) {
3471		a_pg = ma[a_offset >> PAGE_SHIFT];
3472		a_pg_offset = a_offset & PAGE_MASK;
3473		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
3474		b_pg = mb[b_offset >> PAGE_SHIFT];
3475		b_pg_offset = b_offset & PAGE_MASK;
3476		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
3477		PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(a_pg) | PG_A);
3478		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
3479		    VM_PAGE_TO_MACH(b_pg) | PG_A | PG_M);
3480		a_cp = sysmaps->CADDR1 + a_pg_offset;
3481		b_cp = sysmaps->CADDR2 + b_pg_offset;
3482		bcopy(a_cp, b_cp, cnt);
3483		a_offset += cnt;
3484		b_offset += cnt;
3485		xfersize -= cnt;
3486	}
3487	PT_SET_MA(sysmaps->CADDR1, 0);
3488	PT_SET_MA(sysmaps->CADDR2, 0);
3489	sched_unpin();
3490	mtx_unlock(&sysmaps->lock);
3491}
3492
3493/*
3494 * Returns true if the pmap's pv is one of the first
3495 * 16 pvs linked to from this page.  This count may
3496 * be changed upwards or downwards in the future; it
3497 * is only necessary that true be returned for a small
3498 * subset of pmaps for proper page aging.
3499 */
3500boolean_t
3501pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3502{
3503	pv_entry_t pv;
3504	int loops = 0;
3505	boolean_t rv;
3506
3507	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3508	    ("pmap_page_exists_quick: page %p is not managed", m));
3509	rv = FALSE;
3510	rw_wlock(&pvh_global_lock);
3511	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3512		if (PV_PMAP(pv) == pmap) {
3513			rv = TRUE;
3514			break;
3515		}
3516		loops++;
3517		if (loops >= 16)
3518			break;
3519	}
3520	rw_wunlock(&pvh_global_lock);
3521	return (rv);
3522}
3523
3524/*
3525 *	pmap_page_wired_mappings:
3526 *
3527 *	Return the number of managed mappings to the given physical page
3528 *	that are wired.
3529 */
3530int
3531pmap_page_wired_mappings(vm_page_t m)
3532{
3533	pv_entry_t pv;
3534	pt_entry_t *pte;
3535	pmap_t pmap;
3536	int count;
3537
3538	count = 0;
3539	if ((m->oflags & VPO_UNMANAGED) != 0)
3540		return (count);
3541	rw_wlock(&pvh_global_lock);
3542	sched_pin();
3543	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3544		pmap = PV_PMAP(pv);
3545		PMAP_LOCK(pmap);
3546		pte = pmap_pte_quick(pmap, pv->pv_va);
3547		if ((*pte & PG_W) != 0)
3548			count++;
3549		PMAP_UNLOCK(pmap);
3550	}
3551	sched_unpin();
3552	rw_wunlock(&pvh_global_lock);
3553	return (count);
3554}
3555
3556/*
3557 * Returns TRUE if the given page is mapped.  Otherwise, returns FALSE.
3558 */
3559boolean_t
3560pmap_page_is_mapped(vm_page_t m)
3561{
3562
3563	if ((m->oflags & VPO_UNMANAGED) != 0)
3564		return (FALSE);
3565	return (!TAILQ_EMPTY(&m->md.pv_list));
3566}
3567
3568/*
3569 * Remove all pages from specified address space
3570 * this aids process exit speeds.  Also, this code
3571 * is special cased for current process only, but
3572 * can have the more generic (and slightly slower)
3573 * mode enabled.  This is much faster than pmap_remove
3574 * in the case of running down an entire address space.
3575 */
3576void
3577pmap_remove_pages(pmap_t pmap)
3578{
3579	pt_entry_t *pte, tpte;
3580	vm_page_t m, free = NULL;
3581	pv_entry_t pv;
3582	struct pv_chunk *pc, *npc;
3583	int field, idx;
3584	int32_t bit;
3585	uint32_t inuse, bitmask;
3586	int allfree;
3587
3588	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3589
3590	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3591		printf("warning: pmap_remove_pages called with non-current pmap\n");
3592		return;
3593	}
3594	rw_wlock(&pvh_global_lock);
3595	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3596	PMAP_LOCK(pmap);
3597	sched_pin();
3598	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3599		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
3600		    pc->pc_pmap));
3601		allfree = 1;
3602		for (field = 0; field < _NPCM; field++) {
3603			inuse = ~pc->pc_map[field] & pc_freemask[field];
3604			while (inuse != 0) {
3605				bit = bsfl(inuse);
3606				bitmask = 1UL << bit;
3607				idx = field * 32 + bit;
3608				pv = &pc->pc_pventry[idx];
3609				inuse &= ~bitmask;
3610
3611				pte = vtopte(pv->pv_va);
3612				tpte = *pte ? xpmap_mtop(*pte) : 0;
3613
3614				if (tpte == 0) {
3615					printf(
3616					    "TPTE at %p  IS ZERO @ VA %08x\n",
3617					    pte, pv->pv_va);
3618					panic("bad pte");
3619				}
3620
3621/*
3622 * We cannot remove wired pages from a process' mapping at this time
3623 */
3624				if (tpte & PG_W) {
3625					allfree = 0;
3626					continue;
3627				}
3628
3629				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3630				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3631				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3632				    m, (uintmax_t)m->phys_addr,
3633				    (uintmax_t)tpte));
3634
3635				KASSERT(m < &vm_page_array[vm_page_array_size],
3636					("pmap_remove_pages: bad tpte %#jx",
3637					(uintmax_t)tpte));
3638
3639
3640				PT_CLEAR_VA(pte, FALSE);
3641
3642				/*
3643				 * Update the vm_page_t clean/reference bits.
3644				 */
3645				if (tpte & PG_M)
3646					vm_page_dirty(m);
3647
3648				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3649				if (TAILQ_EMPTY(&m->md.pv_list))
3650					vm_page_aflag_clear(m, PGA_WRITEABLE);
3651
3652				pmap_unuse_pt(pmap, pv->pv_va, &free);
3653
3654				/* Mark free */
3655				PV_STAT(pv_entry_frees++);
3656				PV_STAT(pv_entry_spare++);
3657				pv_entry_count--;
3658				pc->pc_map[field] |= bitmask;
3659				pmap->pm_stats.resident_count--;
3660			}
3661		}
3662		PT_UPDATES_FLUSH();
3663		if (allfree) {
3664			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3665			free_pv_chunk(pc);
3666		}
3667	}
3668	PT_UPDATES_FLUSH();
3669	if (*PMAP1)
3670		PT_SET_MA(PADDR1, 0);
3671
3672	sched_unpin();
3673	pmap_invalidate_all(pmap);
3674	rw_wunlock(&pvh_global_lock);
3675	PMAP_UNLOCK(pmap);
3676	pmap_free_zero_pages(free);
3677}
3678
3679/*
3680 *	pmap_is_modified:
3681 *
3682 *	Return whether or not the specified physical page was modified
3683 *	in any physical maps.
3684 */
3685boolean_t
3686pmap_is_modified(vm_page_t m)
3687{
3688	pv_entry_t pv;
3689	pt_entry_t *pte;
3690	pmap_t pmap;
3691	boolean_t rv;
3692
3693	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3694	    ("pmap_is_modified: page %p is not managed", m));
3695	rv = FALSE;
3696
3697	/*
3698	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
3699	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
3700	 * is clear, no PTEs can have PG_M set.
3701	 */
3702	VM_OBJECT_ASSERT_WLOCKED(m->object);
3703	if ((m->oflags & VPO_BUSY) == 0 &&
3704	    (m->aflags & PGA_WRITEABLE) == 0)
3705		return (rv);
3706	rw_wlock(&pvh_global_lock);
3707	sched_pin();
3708	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3709		pmap = PV_PMAP(pv);
3710		PMAP_LOCK(pmap);
3711		pte = pmap_pte_quick(pmap, pv->pv_va);
3712		rv = (*pte & PG_M) != 0;
3713		PMAP_UNLOCK(pmap);
3714		if (rv)
3715			break;
3716	}
3717	if (*PMAP1)
3718		PT_SET_MA(PADDR1, 0);
3719	sched_unpin();
3720	rw_wunlock(&pvh_global_lock);
3721	return (rv);
3722}
3723
3724/*
3725 *	pmap_is_prefaultable:
3726 *
3727 *	Return whether or not the specified virtual address is elgible
3728 *	for prefault.
3729 */
3730static boolean_t
3731pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3732{
3733	pt_entry_t *pte;
3734	boolean_t rv = FALSE;
3735
3736	return (rv);
3737
3738	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3739		pte = vtopte(addr);
3740		rv = (*pte == 0);
3741	}
3742	return (rv);
3743}
3744
3745boolean_t
3746pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3747{
3748	boolean_t rv;
3749
3750	PMAP_LOCK(pmap);
3751	rv = pmap_is_prefaultable_locked(pmap, addr);
3752	PMAP_UNLOCK(pmap);
3753	return (rv);
3754}
3755
3756boolean_t
3757pmap_is_referenced(vm_page_t m)
3758{
3759	pv_entry_t pv;
3760	pt_entry_t *pte;
3761	pmap_t pmap;
3762	boolean_t rv;
3763
3764	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3765	    ("pmap_is_referenced: page %p is not managed", m));
3766	rv = FALSE;
3767	rw_wlock(&pvh_global_lock);
3768	sched_pin();
3769	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3770		pmap = PV_PMAP(pv);
3771		PMAP_LOCK(pmap);
3772		pte = pmap_pte_quick(pmap, pv->pv_va);
3773		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3774		PMAP_UNLOCK(pmap);
3775		if (rv)
3776			break;
3777	}
3778	if (*PMAP1)
3779		PT_SET_MA(PADDR1, 0);
3780	sched_unpin();
3781	rw_wunlock(&pvh_global_lock);
3782	return (rv);
3783}
3784
3785void
3786pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3787{
3788	int i, npages = round_page(len) >> PAGE_SHIFT;
3789	for (i = 0; i < npages; i++) {
3790		pt_entry_t *pte;
3791		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3792		rw_wlock(&pvh_global_lock);
3793		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3794		rw_wunlock(&pvh_global_lock);
3795		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3796		pmap_pte_release(pte);
3797	}
3798}
3799
3800void
3801pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3802{
3803	int i, npages = round_page(len) >> PAGE_SHIFT;
3804	for (i = 0; i < npages; i++) {
3805		pt_entry_t *pte;
3806		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3807		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3808		rw_wlock(&pvh_global_lock);
3809		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3810		rw_wunlock(&pvh_global_lock);
3811		pmap_pte_release(pte);
3812	}
3813}
3814
3815/*
3816 * Clear the write and modified bits in each of the given page's mappings.
3817 */
3818void
3819pmap_remove_write(vm_page_t m)
3820{
3821	pv_entry_t pv;
3822	pmap_t pmap;
3823	pt_entry_t oldpte, *pte;
3824
3825	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3826	    ("pmap_remove_write: page %p is not managed", m));
3827
3828	/*
3829	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
3830	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
3831	 * is clear, no page table entries need updating.
3832	 */
3833	VM_OBJECT_ASSERT_WLOCKED(m->object);
3834	if ((m->oflags & VPO_BUSY) == 0 &&
3835	    (m->aflags & PGA_WRITEABLE) == 0)
3836		return;
3837	rw_wlock(&pvh_global_lock);
3838	sched_pin();
3839	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3840		pmap = PV_PMAP(pv);
3841		PMAP_LOCK(pmap);
3842		pte = pmap_pte_quick(pmap, pv->pv_va);
3843retry:
3844		oldpte = *pte;
3845		if ((oldpte & PG_RW) != 0) {
3846			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3847
3848			/*
3849			 * Regardless of whether a pte is 32 or 64 bits
3850			 * in size, PG_RW and PG_M are among the least
3851			 * significant 32 bits.
3852			 */
3853			PT_SET_VA_MA(pte, newpte, TRUE);
3854			if (*pte != newpte)
3855				goto retry;
3856
3857			if ((oldpte & PG_M) != 0)
3858				vm_page_dirty(m);
3859			pmap_invalidate_page(pmap, pv->pv_va);
3860		}
3861		PMAP_UNLOCK(pmap);
3862	}
3863	vm_page_aflag_clear(m, PGA_WRITEABLE);
3864	PT_UPDATES_FLUSH();
3865	if (*PMAP1)
3866		PT_SET_MA(PADDR1, 0);
3867	sched_unpin();
3868	rw_wunlock(&pvh_global_lock);
3869}
3870
3871/*
3872 *	pmap_ts_referenced:
3873 *
3874 *	Return a count of reference bits for a page, clearing those bits.
3875 *	It is not necessary for every reference bit to be cleared, but it
3876 *	is necessary that 0 only be returned when there are truly no
3877 *	reference bits set.
3878 *
3879 *	XXX: The exact number of bits to check and clear is a matter that
3880 *	should be tested and standardized at some point in the future for
3881 *	optimal aging of shared pages.
3882 */
3883int
3884pmap_ts_referenced(vm_page_t m)
3885{
3886	pv_entry_t pv, pvf, pvn;
3887	pmap_t pmap;
3888	pt_entry_t *pte;
3889	int rtval = 0;
3890
3891	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3892	    ("pmap_ts_referenced: page %p is not managed", m));
3893	rw_wlock(&pvh_global_lock);
3894	sched_pin();
3895	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3896		pvf = pv;
3897		do {
3898			pvn = TAILQ_NEXT(pv, pv_next);
3899			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3900			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3901			pmap = PV_PMAP(pv);
3902			PMAP_LOCK(pmap);
3903			pte = pmap_pte_quick(pmap, pv->pv_va);
3904			if ((*pte & PG_A) != 0) {
3905				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3906				pmap_invalidate_page(pmap, pv->pv_va);
3907				rtval++;
3908				if (rtval > 4)
3909					pvn = NULL;
3910			}
3911			PMAP_UNLOCK(pmap);
3912		} while ((pv = pvn) != NULL && pv != pvf);
3913	}
3914	PT_UPDATES_FLUSH();
3915	if (*PMAP1)
3916		PT_SET_MA(PADDR1, 0);
3917	sched_unpin();
3918	rw_wunlock(&pvh_global_lock);
3919	return (rtval);
3920}
3921
3922/*
3923 *	Clear the modify bits on the specified physical page.
3924 */
3925void
3926pmap_clear_modify(vm_page_t m)
3927{
3928	pv_entry_t pv;
3929	pmap_t pmap;
3930	pt_entry_t *pte;
3931
3932	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3933	    ("pmap_clear_modify: page %p is not managed", m));
3934	VM_OBJECT_ASSERT_WLOCKED(m->object);
3935	KASSERT((m->oflags & VPO_BUSY) == 0,
3936	    ("pmap_clear_modify: page %p is busy", m));
3937
3938	/*
3939	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
3940	 * If the object containing the page is locked and the page is not
3941	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
3942	 */
3943	if ((m->aflags & PGA_WRITEABLE) == 0)
3944		return;
3945	rw_wlock(&pvh_global_lock);
3946	sched_pin();
3947	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3948		pmap = PV_PMAP(pv);
3949		PMAP_LOCK(pmap);
3950		pte = pmap_pte_quick(pmap, pv->pv_va);
3951		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3952			/*
3953			 * Regardless of whether a pte is 32 or 64 bits
3954			 * in size, PG_M is among the least significant
3955			 * 32 bits.
3956			 */
3957			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3958			pmap_invalidate_page(pmap, pv->pv_va);
3959		}
3960		PMAP_UNLOCK(pmap);
3961	}
3962	sched_unpin();
3963	rw_wunlock(&pvh_global_lock);
3964}
3965
3966/*
3967 *	pmap_clear_reference:
3968 *
3969 *	Clear the reference bit on the specified physical page.
3970 */
3971void
3972pmap_clear_reference(vm_page_t m)
3973{
3974	pv_entry_t pv;
3975	pmap_t pmap;
3976	pt_entry_t *pte;
3977
3978	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3979	    ("pmap_clear_reference: page %p is not managed", m));
3980	rw_wlock(&pvh_global_lock);
3981	sched_pin();
3982	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3983		pmap = PV_PMAP(pv);
3984		PMAP_LOCK(pmap);
3985		pte = pmap_pte_quick(pmap, pv->pv_va);
3986		if ((*pte & PG_A) != 0) {
3987			/*
3988			 * Regardless of whether a pte is 32 or 64 bits
3989			 * in size, PG_A is among the least significant
3990			 * 32 bits.
3991			 */
3992			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3993			pmap_invalidate_page(pmap, pv->pv_va);
3994		}
3995		PMAP_UNLOCK(pmap);
3996	}
3997	sched_unpin();
3998	rw_wunlock(&pvh_global_lock);
3999}
4000
4001/*
4002 * Miscellaneous support routines follow
4003 */
4004
4005/*
4006 * Map a set of physical memory pages into the kernel virtual
4007 * address space. Return a pointer to where it is mapped. This
4008 * routine is intended to be used for mapping device memory,
4009 * NOT real memory.
4010 */
4011void *
4012pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4013{
4014	vm_offset_t va, offset;
4015	vm_size_t tmpsize;
4016
4017	offset = pa & PAGE_MASK;
4018	size = round_page(offset + size);
4019	pa = pa & PG_FRAME;
4020
4021	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4022		va = KERNBASE + pa;
4023	else
4024		va = kmem_alloc_nofault(kernel_map, size);
4025	if (!va)
4026		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4027
4028	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4029		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4030	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4031	pmap_invalidate_cache_range(va, va + size);
4032	return ((void *)(va + offset));
4033}
4034
4035void *
4036pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4037{
4038
4039	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4040}
4041
4042void *
4043pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4044{
4045
4046	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4047}
4048
4049void
4050pmap_unmapdev(vm_offset_t va, vm_size_t size)
4051{
4052	vm_offset_t base, offset;
4053
4054	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4055		return;
4056	base = trunc_page(va);
4057	offset = va & PAGE_MASK;
4058	size = round_page(offset + size);
4059	kmem_free(kernel_map, base, size);
4060}
4061
4062/*
4063 * Sets the memory attribute for the specified page.
4064 */
4065void
4066pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4067{
4068
4069	m->md.pat_mode = ma;
4070	if ((m->flags & PG_FICTITIOUS) != 0)
4071		return;
4072
4073	/*
4074	 * If "m" is a normal page, flush it from the cache.
4075	 * See pmap_invalidate_cache_range().
4076	 *
4077	 * First, try to find an existing mapping of the page by sf
4078	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4079	 * flushes the cache.
4080	 */
4081	if (sf_buf_invalidate_cache(m))
4082		return;
4083
4084	/*
4085	 * If page is not mapped by sf buffer, but CPU does not
4086	 * support self snoop, map the page transient and do
4087	 * invalidation. In the worst case, whole cache is flushed by
4088	 * pmap_invalidate_cache_range().
4089	 */
4090	if ((cpu_feature & CPUID_SS) == 0)
4091		pmap_flush_page(m);
4092}
4093
4094static void
4095pmap_flush_page(vm_page_t m)
4096{
4097	struct sysmaps *sysmaps;
4098	vm_offset_t sva, eva;
4099
4100	if ((cpu_feature & CPUID_CLFSH) != 0) {
4101		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4102		mtx_lock(&sysmaps->lock);
4103		if (*sysmaps->CMAP2)
4104			panic("pmap_flush_page: CMAP2 busy");
4105		sched_pin();
4106		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4107		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
4108		    pmap_cache_bits(m->md.pat_mode, 0));
4109		invlcaddr(sysmaps->CADDR2);
4110		sva = (vm_offset_t)sysmaps->CADDR2;
4111		eva = sva + PAGE_SIZE;
4112
4113		/*
4114		 * Use mfence despite the ordering implied by
4115		 * mtx_{un,}lock() because clflush is not guaranteed
4116		 * to be ordered by any other instruction.
4117		 */
4118		mfence();
4119		for (; sva < eva; sva += cpu_clflush_line_size)
4120			clflush(sva);
4121		mfence();
4122		PT_SET_MA(sysmaps->CADDR2, 0);
4123		sched_unpin();
4124		mtx_unlock(&sysmaps->lock);
4125	} else
4126		pmap_invalidate_cache();
4127}
4128
4129/*
4130 * Changes the specified virtual address range's memory type to that given by
4131 * the parameter "mode".  The specified virtual address range must be
4132 * completely contained within either the kernel map.
4133 *
4134 * Returns zero if the change completed successfully, and either EINVAL or
4135 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4136 * of the virtual address range was not mapped, and ENOMEM is returned if
4137 * there was insufficient memory available to complete the change.
4138 */
4139int
4140pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4141{
4142	vm_offset_t base, offset, tmpva;
4143	pt_entry_t *pte;
4144	u_int opte, npte;
4145	pd_entry_t *pde;
4146	boolean_t changed;
4147
4148	base = trunc_page(va);
4149	offset = va & PAGE_MASK;
4150	size = round_page(offset + size);
4151
4152	/* Only supported on kernel virtual addresses. */
4153	if (base <= VM_MAXUSER_ADDRESS)
4154		return (EINVAL);
4155
4156	/* 4MB pages and pages that aren't mapped aren't supported. */
4157	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4158		pde = pmap_pde(kernel_pmap, tmpva);
4159		if (*pde & PG_PS)
4160			return (EINVAL);
4161		if ((*pde & PG_V) == 0)
4162			return (EINVAL);
4163		pte = vtopte(va);
4164		if ((*pte & PG_V) == 0)
4165			return (EINVAL);
4166	}
4167
4168	changed = FALSE;
4169
4170	/*
4171	 * Ok, all the pages exist and are 4k, so run through them updating
4172	 * their cache mode.
4173	 */
4174	for (tmpva = base; size > 0; ) {
4175		pte = vtopte(tmpva);
4176
4177		/*
4178		 * The cache mode bits are all in the low 32-bits of the
4179		 * PTE, so we can just spin on updating the low 32-bits.
4180		 */
4181		do {
4182			opte = *(u_int *)pte;
4183			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4184			npte |= pmap_cache_bits(mode, 0);
4185			PT_SET_VA_MA(pte, npte, TRUE);
4186		} while (npte != opte && (*pte != npte));
4187		if (npte != opte)
4188			changed = TRUE;
4189		tmpva += PAGE_SIZE;
4190		size -= PAGE_SIZE;
4191	}
4192
4193	/*
4194	 * Flush CPU caches to make sure any data isn't cached that
4195	 * shouldn't be, etc.
4196	 */
4197	if (changed) {
4198		pmap_invalidate_range(kernel_pmap, base, tmpva);
4199		pmap_invalidate_cache_range(base, tmpva);
4200	}
4201	return (0);
4202}
4203
4204/*
4205 * perform the pmap work for mincore
4206 */
4207int
4208pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4209{
4210	pt_entry_t *ptep, pte;
4211	vm_paddr_t pa;
4212	int val;
4213
4214	PMAP_LOCK(pmap);
4215retry:
4216	ptep = pmap_pte(pmap, addr);
4217	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4218	pmap_pte_release(ptep);
4219	val = 0;
4220	if ((pte & PG_V) != 0) {
4221		val |= MINCORE_INCORE;
4222		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4223			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4224		if ((pte & PG_A) != 0)
4225			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4226	}
4227	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4228	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4229	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4230		pa = pte & PG_FRAME;
4231		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4232		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4233			goto retry;
4234	} else
4235		PA_UNLOCK_COND(*locked_pa);
4236	PMAP_UNLOCK(pmap);
4237	return (val);
4238}
4239
4240void
4241pmap_activate(struct thread *td)
4242{
4243	pmap_t	pmap, oldpmap;
4244	u_int	cpuid;
4245	u_int32_t  cr3;
4246
4247	critical_enter();
4248	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4249	oldpmap = PCPU_GET(curpmap);
4250	cpuid = PCPU_GET(cpuid);
4251#if defined(SMP)
4252	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
4253	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
4254#else
4255	CPU_CLR(cpuid, &oldpmap->pm_active);
4256	CPU_SET(cpuid, &pmap->pm_active);
4257#endif
4258#ifdef PAE
4259	cr3 = vtophys(pmap->pm_pdpt);
4260#else
4261	cr3 = vtophys(pmap->pm_pdir);
4262#endif
4263	/*
4264	 * pmap_activate is for the current thread on the current cpu
4265	 */
4266	td->td_pcb->pcb_cr3 = cr3;
4267	PT_UPDATES_FLUSH();
4268	load_cr3(cr3);
4269	PCPU_SET(curpmap, pmap);
4270	critical_exit();
4271}
4272
4273void
4274pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4275{
4276}
4277
4278/*
4279 *	Increase the starting virtual address of the given mapping if a
4280 *	different alignment might result in more superpage mappings.
4281 */
4282void
4283pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4284    vm_offset_t *addr, vm_size_t size)
4285{
4286	vm_offset_t superpage_offset;
4287
4288	if (size < NBPDR)
4289		return;
4290	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4291		offset += ptoa(object->pg_color);
4292	superpage_offset = offset & PDRMASK;
4293	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4294	    (*addr & PDRMASK) == superpage_offset)
4295		return;
4296	if ((*addr & PDRMASK) < superpage_offset)
4297		*addr = (*addr & ~PDRMASK) + superpage_offset;
4298	else
4299		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4300}
4301
4302void
4303pmap_suspend()
4304{
4305	pmap_t pmap;
4306	int i, pdir, offset;
4307	vm_paddr_t pdirma;
4308	mmu_update_t mu[4];
4309
4310	/*
4311	 * We need to remove the recursive mapping structure from all
4312	 * our pmaps so that Xen doesn't get confused when it restores
4313	 * the page tables. The recursive map lives at page directory
4314	 * index PTDPTDI. We assume that the suspend code has stopped
4315	 * the other vcpus (if any).
4316	 */
4317	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4318		for (i = 0; i < 4; i++) {
4319			/*
4320			 * Figure out which page directory (L2) page
4321			 * contains this bit of the recursive map and
4322			 * the offset within that page of the map
4323			 * entry
4324			 */
4325			pdir = (PTDPTDI + i) / NPDEPG;
4326			offset = (PTDPTDI + i) % NPDEPG;
4327			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4328			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4329			mu[i].val = 0;
4330		}
4331		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4332	}
4333}
4334
4335void
4336pmap_resume()
4337{
4338	pmap_t pmap;
4339	int i, pdir, offset;
4340	vm_paddr_t pdirma;
4341	mmu_update_t mu[4];
4342
4343	/*
4344	 * Restore the recursive map that we removed on suspend.
4345	 */
4346	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4347		for (i = 0; i < 4; i++) {
4348			/*
4349			 * Figure out which page directory (L2) page
4350			 * contains this bit of the recursive map and
4351			 * the offset within that page of the map
4352			 * entry
4353			 */
4354			pdir = (PTDPTDI + i) / NPDEPG;
4355			offset = (PTDPTDI + i) % NPDEPG;
4356			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4357			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4358			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4359		}
4360		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4361	}
4362}
4363
4364#if defined(PMAP_DEBUG)
4365pmap_pid_dump(int pid)
4366{
4367	pmap_t pmap;
4368	struct proc *p;
4369	int npte = 0;
4370	int index;
4371
4372	sx_slock(&allproc_lock);
4373	FOREACH_PROC_IN_SYSTEM(p) {
4374		if (p->p_pid != pid)
4375			continue;
4376
4377		if (p->p_vmspace) {
4378			int i,j;
4379			index = 0;
4380			pmap = vmspace_pmap(p->p_vmspace);
4381			for (i = 0; i < NPDEPTD; i++) {
4382				pd_entry_t *pde;
4383				pt_entry_t *pte;
4384				vm_offset_t base = i << PDRSHIFT;
4385
4386				pde = &pmap->pm_pdir[i];
4387				if (pde && pmap_pde_v(pde)) {
4388					for (j = 0; j < NPTEPG; j++) {
4389						vm_offset_t va = base + (j << PAGE_SHIFT);
4390						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4391							if (index) {
4392								index = 0;
4393								printf("\n");
4394							}
4395							sx_sunlock(&allproc_lock);
4396							return (npte);
4397						}
4398						pte = pmap_pte(pmap, va);
4399						if (pte && pmap_pte_v(pte)) {
4400							pt_entry_t pa;
4401							vm_page_t m;
4402							pa = PT_GET(pte);
4403							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4404							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4405								va, pa, m->hold_count, m->wire_count, m->flags);
4406							npte++;
4407							index++;
4408							if (index >= 2) {
4409								index = 0;
4410								printf("\n");
4411							} else {
4412								printf(" ");
4413							}
4414						}
4415					}
4416				}
4417			}
4418		}
4419	}
4420	sx_sunlock(&allproc_lock);
4421	return (npte);
4422}
4423#endif
4424
4425#if defined(DEBUG)
4426
4427static void	pads(pmap_t pm);
4428void		pmap_pvdump(vm_paddr_t pa);
4429
4430/* print address space of pmap*/
4431static void
4432pads(pmap_t pm)
4433{
4434	int i, j;
4435	vm_paddr_t va;
4436	pt_entry_t *ptep;
4437
4438	if (pm == kernel_pmap)
4439		return;
4440	for (i = 0; i < NPDEPTD; i++)
4441		if (pm->pm_pdir[i])
4442			for (j = 0; j < NPTEPG; j++) {
4443				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4444				if (pm == kernel_pmap && va < KERNBASE)
4445					continue;
4446				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4447					continue;
4448				ptep = pmap_pte(pm, va);
4449				if (pmap_pte_v(ptep))
4450					printf("%x:%x ", va, *ptep);
4451			};
4452
4453}
4454
4455void
4456pmap_pvdump(vm_paddr_t pa)
4457{
4458	pv_entry_t pv;
4459	pmap_t pmap;
4460	vm_page_t m;
4461
4462	printf("pa %x", pa);
4463	m = PHYS_TO_VM_PAGE(pa);
4464	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4465		pmap = PV_PMAP(pv);
4466		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4467		pads(pmap);
4468	}
4469	printf(" ");
4470}
4471#endif
4472