mem.c revision 50477
1/*-
2 * Copyright (c) 1988 University of Utah.
3 * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the Systems Programming Group of the University of Utah Computer
8 * Science Department, and code derived from software contributed to
9 * Berkeley by William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: Utah $Hdr: mem.c 1.13 89/10/08$
40 *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
41 * $FreeBSD: head/sys/i386/i386/mem.c 50477 1999-08-28 01:08:13Z peter $
42 */
43
44/*
45 * Memory special file
46 */
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/conf.h>
51#include <sys/buf.h>
52#include <sys/kernel.h>
53#include <sys/uio.h>
54#include <sys/ioccom.h>
55#include <sys/malloc.h>
56#include <sys/memrange.h>
57#include <sys/proc.h>
58#include <sys/signalvar.h>
59
60#include <machine/frame.h>
61#include <machine/md_var.h>
62#include <machine/random.h>
63#include <machine/psl.h>
64#include <machine/specialreg.h>
65#include <i386/isa/intr_machdep.h>
66
67#include <vm/vm.h>
68#include <vm/vm_prot.h>
69#include <vm/pmap.h>
70#include <vm/vm_extern.h>
71
72
73static	d_open_t	mmopen;
74static	d_close_t	mmclose;
75static	d_read_t	mmrw;
76static	d_ioctl_t	mmioctl;
77static	d_mmap_t	memmmap;
78static	d_poll_t	mmpoll;
79
80#define CDEV_MAJOR 2
81static struct cdevsw mem_cdevsw = {
82	/* open */	mmopen,
83	/* close */	mmclose,
84	/* read */	mmrw,
85	/* write */	mmrw,
86	/* ioctl */	mmioctl,
87	/* stop */	nostop,
88	/* reset */	noreset,
89	/* devtotty */	nodevtotty,
90	/* poll */	mmpoll,
91	/* mmap */	memmmap,
92	/* strategy */	nostrategy,
93	/* name */	"mem",
94	/* parms */	noparms,
95	/* maj */	CDEV_MAJOR,
96	/* dump */	nodump,
97	/* psize */	nopsize,
98	/* flags */	0,
99	/* maxio */	0,
100	/* bmaj */	-1
101};
102
103static struct random_softc random_softc[16];
104static caddr_t	zbuf;
105
106MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
107static int mem_ioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
108static int random_ioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
109
110struct mem_range_softc mem_range_softc;
111
112
113static int
114mmclose(dev, flags, fmt, p)
115	dev_t dev;
116	int flags;
117	int fmt;
118	struct proc *p;
119{
120	switch (minor(dev)) {
121	case 14:
122		curproc->p_md.md_regs->tf_eflags &= ~PSL_IOPL;
123		break;
124	default:
125		break;
126	}
127	return(0);
128}
129
130static int
131mmopen(dev, flags, fmt, p)
132	dev_t dev;
133	int flags;
134	int fmt;
135	struct proc *p;
136{
137	int error;
138
139	switch (minor(dev)) {
140	case 14:
141		error = suser(p);
142		if (error != 0)
143			return (error);
144		if (securelevel > 0)
145			return (EPERM);
146		curproc->p_md.md_regs->tf_eflags |= PSL_IOPL;
147		break;
148	default:
149		break;
150	}
151	return(0);
152}
153
154static int
155mmrw(dev, uio, flags)
156	dev_t dev;
157	struct uio *uio;
158	int flags;
159{
160	register int o;
161	register u_int c, v;
162	u_int poolsize;
163	register struct iovec *iov;
164	int error = 0;
165	caddr_t buf = NULL;
166
167	while (uio->uio_resid > 0 && error == 0) {
168		iov = uio->uio_iov;
169		if (iov->iov_len == 0) {
170			uio->uio_iov++;
171			uio->uio_iovcnt--;
172			if (uio->uio_iovcnt < 0)
173				panic("mmrw");
174			continue;
175		}
176		switch (minor(dev)) {
177
178/* minor device 0 is physical memory */
179		case 0:
180			v = uio->uio_offset;
181			pmap_enter(kernel_pmap, (vm_offset_t)ptvmmap, v,
182				uio->uio_rw == UIO_READ ? VM_PROT_READ : VM_PROT_WRITE,
183				TRUE);
184			o = (int)uio->uio_offset & PAGE_MASK;
185			c = (u_int)(PAGE_SIZE - ((int)iov->iov_base & PAGE_MASK));
186			c = min(c, (u_int)(PAGE_SIZE - o));
187			c = min(c, (u_int)iov->iov_len);
188			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
189			pmap_remove(kernel_pmap, (vm_offset_t)ptvmmap,
190				    (vm_offset_t)&ptvmmap[PAGE_SIZE]);
191			continue;
192
193/* minor device 1 is kernel memory */
194		case 1: {
195			vm_offset_t addr, eaddr;
196			c = iov->iov_len;
197
198			/*
199			 * Make sure that all of the pages are currently resident so
200			 * that we don't create any zero-fill pages.
201			 */
202			addr = trunc_page(uio->uio_offset);
203			eaddr = round_page(uio->uio_offset + c);
204
205			if (addr < (vm_offset_t)VADDR(PTDPTDI, 0))
206				return EFAULT;
207			if (eaddr >= (vm_offset_t)VADDR(APTDPTDI, 0))
208				return EFAULT;
209			for (; addr < eaddr; addr += PAGE_SIZE)
210				if (pmap_extract(kernel_pmap, addr) == 0)
211					return EFAULT;
212
213			if (!kernacc((caddr_t)(int)uio->uio_offset, c,
214			    uio->uio_rw == UIO_READ ? B_READ : B_WRITE))
215				return(EFAULT);
216			error = uiomove((caddr_t)(int)uio->uio_offset, (int)c, uio);
217			continue;
218		}
219
220/* minor device 2 is EOF/RATHOLE */
221		case 2:
222			if (uio->uio_rw == UIO_READ)
223				return (0);
224			c = iov->iov_len;
225			break;
226
227/* minor device 3 (/dev/random) is source of filth on read, rathole on write */
228		case 3:
229			if (uio->uio_rw == UIO_WRITE) {
230				c = iov->iov_len;
231				break;
232			}
233			if (buf == NULL)
234				buf = (caddr_t)
235				    malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
236			c = min(iov->iov_len, PAGE_SIZE);
237			poolsize = read_random(buf, c);
238			if (poolsize == 0) {
239				if (buf)
240					free(buf, M_TEMP);
241				return (0);
242			}
243			c = min(c, poolsize);
244			error = uiomove(buf, (int)c, uio);
245			continue;
246
247/* minor device 4 (/dev/urandom) is source of muck on read, rathole on write */
248		case 4:
249			if (uio->uio_rw == UIO_WRITE) {
250				c = iov->iov_len;
251				break;
252			}
253			if (CURSIG(curproc) != 0) {
254				/*
255				 * Use tsleep() to get the error code right.
256				 * It should return immediately.
257				 */
258				error = tsleep(&random_softc[0],
259				    PZERO | PCATCH, "urand", 1);
260				if (error != 0 && error != EWOULDBLOCK)
261					continue;
262			}
263			if (buf == NULL)
264				buf = (caddr_t)
265				    malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
266			c = min(iov->iov_len, PAGE_SIZE);
267			poolsize = read_random_unlimited(buf, c);
268			c = min(c, poolsize);
269			error = uiomove(buf, (int)c, uio);
270			continue;
271
272/* minor device 12 (/dev/zero) is source of nulls on read, rathole on write */
273		case 12:
274			if (uio->uio_rw == UIO_WRITE) {
275				c = iov->iov_len;
276				break;
277			}
278			if (zbuf == NULL) {
279				zbuf = (caddr_t)
280				    malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
281				bzero(zbuf, PAGE_SIZE);
282			}
283			c = min(iov->iov_len, PAGE_SIZE);
284			error = uiomove(zbuf, (int)c, uio);
285			continue;
286
287#ifdef notyet
288/* 386 I/O address space (/dev/ioport[bwl]) is a read/write access to seperate
289   i/o device address bus, different than memory bus. Semantics here are
290   very different than ordinary read/write, as if iov_len is a multiple
291   an implied string move from a single port will be done. Note that lseek
292   must be used to set the port number reliably. */
293		case 14:
294			if (iov->iov_len == 1) {
295				u_char tmp;
296				tmp = inb(uio->uio_offset);
297				error = uiomove (&tmp, iov->iov_len, uio);
298			} else {
299				if (!useracc((caddr_t)iov->iov_base,
300					iov->iov_len, uio->uio_rw))
301					return (EFAULT);
302				insb(uio->uio_offset, iov->iov_base,
303					iov->iov_len);
304			}
305			break;
306		case 15:
307			if (iov->iov_len == sizeof (short)) {
308				u_short tmp;
309				tmp = inw(uio->uio_offset);
310				error = uiomove (&tmp, iov->iov_len, uio);
311			} else {
312				if (!useracc((caddr_t)iov->iov_base,
313					iov->iov_len, uio->uio_rw))
314					return (EFAULT);
315				insw(uio->uio_offset, iov->iov_base,
316					iov->iov_len/ sizeof (short));
317			}
318			break;
319		case 16:
320			if (iov->iov_len == sizeof (long)) {
321				u_long tmp;
322				tmp = inl(uio->uio_offset);
323				error = uiomove (&tmp, iov->iov_len, uio);
324			} else {
325				if (!useracc((caddr_t)iov->iov_base,
326					iov->iov_len, uio->uio_rw))
327					return (EFAULT);
328				insl(uio->uio_offset, iov->iov_base,
329					iov->iov_len/ sizeof (long));
330			}
331			break;
332#endif
333
334		default:
335			return (ENXIO);
336		}
337		if (error)
338			break;
339		iov->iov_base += c;
340		iov->iov_len -= c;
341		uio->uio_offset += c;
342		uio->uio_resid -= c;
343	}
344	if (buf)
345		free(buf, M_TEMP);
346	return (error);
347}
348
349
350
351
352/*******************************************************\
353* allow user processes to MMAP some memory sections	*
354* instead of going through read/write			*
355\*******************************************************/
356static int
357memmmap(dev_t dev, vm_offset_t offset, int nprot)
358{
359	switch (minor(dev))
360	{
361
362/* minor device 0 is physical memory */
363	case 0:
364        	return i386_btop(offset);
365
366/* minor device 1 is kernel memory */
367	case 1:
368        	return i386_btop(vtophys(offset));
369
370	default:
371		return -1;
372	}
373}
374
375static int
376mmioctl(dev, cmd, data, flags, p)
377	dev_t dev;
378	u_long cmd;
379	caddr_t data;
380	int flags;
381	struct proc *p;
382{
383
384	switch (minor(dev)) {
385	case 0:
386		return mem_ioctl(dev, cmd, data, flags, p);
387	case 3:
388	case 4:
389		return random_ioctl(dev, cmd, data, flags, p);
390	}
391	return (ENODEV);
392}
393
394/*
395 * Operations for changing memory attributes.
396 *
397 * This is basically just an ioctl shim for mem_range_attr_get
398 * and mem_range_attr_set.
399 */
400static int
401mem_ioctl(dev, cmd, data, flags, p)
402	dev_t dev;
403	u_long cmd;
404	caddr_t data;
405	int flags;
406	struct proc *p;
407{
408	int nd, error = 0;
409	struct mem_range_op *mo = (struct mem_range_op *)data;
410	struct mem_range_desc *md;
411
412	/* is this for us? */
413	if ((cmd != MEMRANGE_GET) &&
414	    (cmd != MEMRANGE_SET))
415		return(ENODEV);
416
417	/* any chance we can handle this? */
418	if (mem_range_softc.mr_op == NULL)
419		return(EOPNOTSUPP);
420
421	/* do we have any descriptors? */
422	if (mem_range_softc.mr_ndesc == 0)
423		return(ENXIO);
424
425	switch(cmd) {
426	case MEMRANGE_GET:
427		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
428		if (nd > 0) {
429			md = (struct mem_range_desc *)
430				malloc(nd * sizeof(struct mem_range_desc),
431				       M_MEMDESC, M_WAITOK);
432			mem_range_attr_get(md, &nd);
433			error = copyout(md, mo->mo_desc,
434					nd * sizeof(struct mem_range_desc));
435			free(md, M_MEMDESC);
436		} else {
437			nd = mem_range_softc.mr_ndesc;
438		}
439		mo->mo_arg[0] = nd;
440		break;
441
442	case MEMRANGE_SET:
443		md = (struct mem_range_desc *)malloc(sizeof(struct mem_range_desc),
444						    M_MEMDESC, M_WAITOK);
445		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
446		/* clamp description string */
447		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
448		if (error == 0)
449			error = mem_range_attr_set(md, &mo->mo_arg[0]);
450		free(md, M_MEMDESC);
451		break;
452
453	default:
454		error = EOPNOTSUPP;
455	}
456	return(error);
457}
458
459/*
460 * Implementation-neutral, kernel-callable functions for manipulating
461 * memory range attributes.
462 */
463void
464mem_range_attr_get(struct mem_range_desc *mrd, int *arg)
465{
466	if (*arg == 0) {
467		*arg = mem_range_softc.mr_ndesc;
468	} else {
469		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
470	}
471}
472
473int
474mem_range_attr_set(struct mem_range_desc *mrd, int *arg)
475{
476	return(mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
477}
478
479#ifdef SMP
480void
481mem_range_AP_init(void)
482{
483	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
484		return(mem_range_softc.mr_op->initAP(&mem_range_softc));
485}
486#endif
487
488static int
489random_ioctl(dev, cmd, data, flags, p)
490	dev_t dev;
491	u_long cmd;
492	caddr_t data;
493	int flags;
494	struct proc *p;
495{
496	static intrmask_t interrupt_allowed;
497	intrmask_t interrupt_mask;
498	int error, intr;
499	struct random_softc *sc;
500
501	/*
502	 * We're the random or urandom device.  The only ioctls are for
503	 * selecting and inspecting which interrupts are used in the muck
504	 * gathering business.
505	 */
506	if (cmd != MEM_SETIRQ && cmd != MEM_CLEARIRQ && cmd != MEM_RETURNIRQ)
507		return (ENOTTY);
508
509	/*
510	 * Even inspecting the state is privileged, since it gives a hint
511	 * about how easily the randomness might be guessed.
512	 */
513	error = suser(p);
514	if (error != 0)
515		return (error);
516
517	/*
518	 * XXX the data is 16-bit due to a historical botch, so we use
519	 * magic 16's instead of ICU_LEN and can't support 24 interrupts
520	 * under SMP.
521	 */
522	intr = *(int16_t *)data;
523	if (cmd != MEM_RETURNIRQ && (intr < 0 || intr >= 16))
524		return (EINVAL);
525
526	interrupt_mask = 1 << intr;
527	sc = &random_softc[intr];
528	switch (cmd) {
529	case MEM_SETIRQ:
530		if (interrupt_allowed & interrupt_mask)
531			break;
532		interrupt_allowed |= interrupt_mask;
533		sc->sc_intr = intr;
534		disable_intr();
535		sc->sc_handler = intr_handler[intr];
536		intr_handler[intr] = add_interrupt_randomness;
537		sc->sc_arg = intr_unit[intr];
538		intr_unit[intr] = sc;
539		enable_intr();
540		break;
541	case MEM_CLEARIRQ:
542		if (!(interrupt_allowed & interrupt_mask))
543			break;
544		interrupt_allowed &= ~interrupt_mask;
545		disable_intr();
546		intr_handler[intr] = sc->sc_handler;
547		intr_unit[intr] = sc->sc_arg;
548		enable_intr();
549		break;
550	case MEM_RETURNIRQ:
551		*(u_int16_t *)data = interrupt_allowed;
552		break;
553	default:
554		return (ENOTTY);
555	}
556	return (0);
557}
558
559int
560mmpoll(dev, events, p)
561	dev_t dev;
562	int events;
563	struct proc *p;
564{
565	switch (minor(dev)) {
566	case 3:		/* /dev/random */
567		return random_poll(dev, events, p);
568	case 4:		/* /dev/urandom */
569	default:
570		return seltrue(dev, events, p);
571	}
572}
573
574/*
575 * Routine that identifies /dev/mem and /dev/kmem.
576 *
577 * A minimal stub routine can always return 0.
578 */
579int
580iskmemdev(dev)
581	dev_t dev;
582{
583
584	return ((major(dev) == mem_cdevsw.d_maj)
585	      && (minor(dev) == 0 || minor(dev) == 1));
586}
587
588int
589iszerodev(dev)
590	dev_t dev;
591{
592	return ((major(dev) == mem_cdevsw.d_maj)
593	  && minor(dev) == 12);
594}
595
596static void
597mem_drvinit(void *unused)
598{
599
600	/* Initialise memory range handling */
601	if (mem_range_softc.mr_op != NULL)
602		mem_range_softc.mr_op->init(&mem_range_softc);
603
604	make_dev(&mem_cdevsw, 0, UID_ROOT, GID_KMEM, 0640, "mem");
605	make_dev(&mem_cdevsw, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
606	make_dev(&mem_cdevsw, 2, UID_ROOT, GID_WHEEL, 0666, "null");
607	make_dev(&mem_cdevsw, 3, UID_ROOT, GID_WHEEL, 0644, "random");
608	make_dev(&mem_cdevsw, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
609	make_dev(&mem_cdevsw, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
610	make_dev(&mem_cdevsw, 14, UID_ROOT, GID_WHEEL, 0600, "io");
611}
612
613SYSINIT(memdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,mem_drvinit,NULL)
614
615