if_ste.c revision 84147
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/pci/if_ste.c 84147 2001-09-29 19:28:31Z jlemon $
33 */
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/sockio.h>
38#include <sys/mbuf.h>
39#include <sys/malloc.h>
40#include <sys/kernel.h>
41#include <sys/socket.h>
42
43#include <net/if.h>
44#include <net/if_arp.h>
45#include <net/ethernet.h>
46#include <net/if_dl.h>
47#include <net/if_media.h>
48
49#include <net/bpf.h>
50
51#include <vm/vm.h>              /* for vtophys */
52#include <vm/pmap.h>            /* for vtophys */
53#include <machine/bus_memio.h>
54#include <machine/bus_pio.h>
55#include <machine/bus.h>
56#include <machine/resource.h>
57#include <sys/bus.h>
58#include <sys/rman.h>
59
60#include <dev/mii/mii.h>
61#include <dev/mii/miivar.h>
62
63#include <pci/pcireg.h>
64#include <pci/pcivar.h>
65
66/* "controller miibus0" required.  See GENERIC if you get errors here. */
67#include "miibus_if.h"
68
69#define STE_USEIOSPACE
70
71#include <pci/if_stereg.h>
72
73MODULE_DEPEND(ste, miibus, 1, 1, 1);
74
75#if !defined(lint)
76static const char rcsid[] =
77  "$FreeBSD: head/sys/pci/if_ste.c 84147 2001-09-29 19:28:31Z jlemon $";
78#endif
79
80/*
81 * Various supported device vendors/types and their names.
82 */
83static struct ste_type ste_devs[] = {
84	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
85	{ DL_VENDORID, DL_DEVICEID_550TX, "D-Link DFE-550TX 10/100BaseTX" },
86	{ 0, 0, NULL }
87};
88
89static int ste_probe		__P((device_t));
90static int ste_attach		__P((device_t));
91static int ste_detach		__P((device_t));
92static void ste_init		__P((void *));
93static void ste_intr		__P((void *));
94static void ste_rxeof		__P((struct ste_softc *));
95static void ste_txeoc		__P((struct ste_softc *));
96static void ste_txeof		__P((struct ste_softc *));
97static void ste_stats_update	__P((void *));
98static void ste_stop		__P((struct ste_softc *));
99static void ste_reset		__P((struct ste_softc *));
100static int ste_ioctl		__P((struct ifnet *, u_long, caddr_t));
101static int ste_encap		__P((struct ste_softc *, struct ste_chain *,
102					struct mbuf *));
103static void ste_start		__P((struct ifnet *));
104static void ste_watchdog	__P((struct ifnet *));
105static void ste_shutdown	__P((device_t));
106static int ste_newbuf		__P((struct ste_softc *,
107					struct ste_chain_onefrag *,
108					struct mbuf *));
109static int ste_ifmedia_upd	__P((struct ifnet *));
110static void ste_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
111
112static void ste_mii_sync	__P((struct ste_softc *));
113static void ste_mii_send	__P((struct ste_softc *, u_int32_t, int));
114static int ste_mii_readreg	__P((struct ste_softc *,
115					struct ste_mii_frame *));
116static int ste_mii_writereg	__P((struct ste_softc *,
117					struct ste_mii_frame *));
118static int ste_miibus_readreg	__P((device_t, int, int));
119static int ste_miibus_writereg	__P((device_t, int, int, int));
120static void ste_miibus_statchg	__P((device_t));
121
122static int ste_eeprom_wait	__P((struct ste_softc *));
123static int ste_read_eeprom	__P((struct ste_softc *, caddr_t, int,
124							int, int));
125static void ste_wait		__P((struct ste_softc *));
126static u_int8_t ste_calchash	__P((caddr_t));
127static void ste_setmulti	__P((struct ste_softc *));
128static int ste_init_rx_list	__P((struct ste_softc *));
129static void ste_init_tx_list	__P((struct ste_softc *));
130
131#ifdef STE_USEIOSPACE
132#define STE_RES			SYS_RES_IOPORT
133#define STE_RID			STE_PCI_LOIO
134#else
135#define STE_RES			SYS_RES_MEMORY
136#define STE_RID			STE_PCI_LOMEM
137#endif
138
139static device_method_t ste_methods[] = {
140	/* Device interface */
141	DEVMETHOD(device_probe,		ste_probe),
142	DEVMETHOD(device_attach,	ste_attach),
143	DEVMETHOD(device_detach,	ste_detach),
144	DEVMETHOD(device_shutdown,	ste_shutdown),
145
146	/* bus interface */
147	DEVMETHOD(bus_print_child,	bus_generic_print_child),
148	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
149
150	/* MII interface */
151	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
152	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
153	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
154
155	{ 0, 0 }
156};
157
158static driver_t ste_driver = {
159	"ste",
160	ste_methods,
161	sizeof(struct ste_softc)
162};
163
164static devclass_t ste_devclass;
165
166DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, 0, 0);
167DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
168
169#define STE_SETBIT4(sc, reg, x)				\
170	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
171
172#define STE_CLRBIT4(sc, reg, x)				\
173	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
174
175#define STE_SETBIT2(sc, reg, x)				\
176	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
177
178#define STE_CLRBIT2(sc, reg, x)				\
179	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
180
181#define STE_SETBIT1(sc, reg, x)				\
182	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
183
184#define STE_CLRBIT1(sc, reg, x)				\
185	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
186
187
188#define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
189#define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
190
191/*
192 * Sync the PHYs by setting data bit and strobing the clock 32 times.
193 */
194static void ste_mii_sync(sc)
195	struct ste_softc		*sc;
196{
197	register int		i;
198
199	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
200
201	for (i = 0; i < 32; i++) {
202		MII_SET(STE_PHYCTL_MCLK);
203		DELAY(1);
204		MII_CLR(STE_PHYCTL_MCLK);
205		DELAY(1);
206	}
207
208	return;
209}
210
211/*
212 * Clock a series of bits through the MII.
213 */
214static void ste_mii_send(sc, bits, cnt)
215	struct ste_softc		*sc;
216	u_int32_t		bits;
217	int			cnt;
218{
219	int			i;
220
221	MII_CLR(STE_PHYCTL_MCLK);
222
223	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
224                if (bits & i) {
225			MII_SET(STE_PHYCTL_MDATA);
226                } else {
227			MII_CLR(STE_PHYCTL_MDATA);
228                }
229		DELAY(1);
230		MII_CLR(STE_PHYCTL_MCLK);
231		DELAY(1);
232		MII_SET(STE_PHYCTL_MCLK);
233	}
234}
235
236/*
237 * Read an PHY register through the MII.
238 */
239static int ste_mii_readreg(sc, frame)
240	struct ste_softc		*sc;
241	struct ste_mii_frame	*frame;
242
243{
244	int			i, ack;
245
246	STE_LOCK(sc);
247
248	/*
249	 * Set up frame for RX.
250	 */
251	frame->mii_stdelim = STE_MII_STARTDELIM;
252	frame->mii_opcode = STE_MII_READOP;
253	frame->mii_turnaround = 0;
254	frame->mii_data = 0;
255
256	CSR_WRITE_2(sc, STE_PHYCTL, 0);
257	/*
258 	 * Turn on data xmit.
259	 */
260	MII_SET(STE_PHYCTL_MDIR);
261
262	ste_mii_sync(sc);
263
264	/*
265	 * Send command/address info.
266	 */
267	ste_mii_send(sc, frame->mii_stdelim, 2);
268	ste_mii_send(sc, frame->mii_opcode, 2);
269	ste_mii_send(sc, frame->mii_phyaddr, 5);
270	ste_mii_send(sc, frame->mii_regaddr, 5);
271
272	/* Turn off xmit. */
273	MII_CLR(STE_PHYCTL_MDIR);
274
275	/* Idle bit */
276	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
277	DELAY(1);
278	MII_SET(STE_PHYCTL_MCLK);
279	DELAY(1);
280
281	/* Check for ack */
282	MII_CLR(STE_PHYCTL_MCLK);
283	DELAY(1);
284	MII_SET(STE_PHYCTL_MCLK);
285	DELAY(1);
286	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
287
288	/*
289	 * Now try reading data bits. If the ack failed, we still
290	 * need to clock through 16 cycles to keep the PHY(s) in sync.
291	 */
292	if (ack) {
293		for(i = 0; i < 16; i++) {
294			MII_CLR(STE_PHYCTL_MCLK);
295			DELAY(1);
296			MII_SET(STE_PHYCTL_MCLK);
297			DELAY(1);
298		}
299		goto fail;
300	}
301
302	for (i = 0x8000; i; i >>= 1) {
303		MII_CLR(STE_PHYCTL_MCLK);
304		DELAY(1);
305		if (!ack) {
306			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
307				frame->mii_data |= i;
308			DELAY(1);
309		}
310		MII_SET(STE_PHYCTL_MCLK);
311		DELAY(1);
312	}
313
314fail:
315
316	MII_CLR(STE_PHYCTL_MCLK);
317	DELAY(1);
318	MII_SET(STE_PHYCTL_MCLK);
319	DELAY(1);
320
321	STE_UNLOCK(sc);
322
323	if (ack)
324		return(1);
325	return(0);
326}
327
328/*
329 * Write to a PHY register through the MII.
330 */
331static int ste_mii_writereg(sc, frame)
332	struct ste_softc		*sc;
333	struct ste_mii_frame	*frame;
334
335{
336	STE_LOCK(sc);
337
338	/*
339	 * Set up frame for TX.
340	 */
341
342	frame->mii_stdelim = STE_MII_STARTDELIM;
343	frame->mii_opcode = STE_MII_WRITEOP;
344	frame->mii_turnaround = STE_MII_TURNAROUND;
345
346	/*
347 	 * Turn on data output.
348	 */
349	MII_SET(STE_PHYCTL_MDIR);
350
351	ste_mii_sync(sc);
352
353	ste_mii_send(sc, frame->mii_stdelim, 2);
354	ste_mii_send(sc, frame->mii_opcode, 2);
355	ste_mii_send(sc, frame->mii_phyaddr, 5);
356	ste_mii_send(sc, frame->mii_regaddr, 5);
357	ste_mii_send(sc, frame->mii_turnaround, 2);
358	ste_mii_send(sc, frame->mii_data, 16);
359
360	/* Idle bit. */
361	MII_SET(STE_PHYCTL_MCLK);
362	DELAY(1);
363	MII_CLR(STE_PHYCTL_MCLK);
364	DELAY(1);
365
366	/*
367	 * Turn off xmit.
368	 */
369	MII_CLR(STE_PHYCTL_MDIR);
370
371	STE_UNLOCK(sc);
372
373	return(0);
374}
375
376static int ste_miibus_readreg(dev, phy, reg)
377	device_t		dev;
378	int			phy, reg;
379{
380	struct ste_softc	*sc;
381	struct ste_mii_frame	frame;
382
383	sc = device_get_softc(dev);
384
385	bzero((char *)&frame, sizeof(frame));
386
387	frame.mii_phyaddr = phy;
388	frame.mii_regaddr = reg;
389	ste_mii_readreg(sc, &frame);
390
391	return(frame.mii_data);
392}
393
394static int ste_miibus_writereg(dev, phy, reg, data)
395	device_t		dev;
396	int			phy, reg, data;
397{
398	struct ste_softc	*sc;
399	struct ste_mii_frame	frame;
400
401	sc = device_get_softc(dev);
402	bzero((char *)&frame, sizeof(frame));
403
404	frame.mii_phyaddr = phy;
405	frame.mii_regaddr = reg;
406	frame.mii_data = data;
407
408	ste_mii_writereg(sc, &frame);
409
410	return(0);
411}
412
413static void ste_miibus_statchg(dev)
414	device_t		dev;
415{
416	struct ste_softc	*sc;
417	struct mii_data		*mii;
418
419	sc = device_get_softc(dev);
420	STE_LOCK(sc);
421	mii = device_get_softc(sc->ste_miibus);
422
423	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
424		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
425	} else {
426		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
427	}
428	STE_UNLOCK(sc);
429
430	return;
431}
432
433static int ste_ifmedia_upd(ifp)
434	struct ifnet		*ifp;
435{
436	struct ste_softc	*sc;
437	struct mii_data		*mii;
438
439	sc = ifp->if_softc;
440	mii = device_get_softc(sc->ste_miibus);
441	sc->ste_link = 0;
442	if (mii->mii_instance) {
443		struct mii_softc	*miisc;
444		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
445			mii_phy_reset(miisc);
446	}
447	mii_mediachg(mii);
448
449	return(0);
450}
451
452static void ste_ifmedia_sts(ifp, ifmr)
453	struct ifnet		*ifp;
454	struct ifmediareq	*ifmr;
455{
456	struct ste_softc	*sc;
457	struct mii_data		*mii;
458
459	sc = ifp->if_softc;
460	mii = device_get_softc(sc->ste_miibus);
461
462	mii_pollstat(mii);
463	ifmr->ifm_active = mii->mii_media_active;
464	ifmr->ifm_status = mii->mii_media_status;
465
466	return;
467}
468
469static void ste_wait(sc)
470	struct ste_softc		*sc;
471{
472	register int		i;
473
474	for (i = 0; i < STE_TIMEOUT; i++) {
475		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
476			break;
477	}
478
479	if (i == STE_TIMEOUT)
480		printf("ste%d: command never completed!\n", sc->ste_unit);
481
482	return;
483}
484
485/*
486 * The EEPROM is slow: give it time to come ready after issuing
487 * it a command.
488 */
489static int ste_eeprom_wait(sc)
490	struct ste_softc		*sc;
491{
492	int			i;
493
494	DELAY(1000);
495
496	for (i = 0; i < 100; i++) {
497		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
498			DELAY(1000);
499		else
500			break;
501	}
502
503	if (i == 100) {
504		printf("ste%d: eeprom failed to come ready\n", sc->ste_unit);
505		return(1);
506	}
507
508	return(0);
509}
510
511/*
512 * Read a sequence of words from the EEPROM. Note that ethernet address
513 * data is stored in the EEPROM in network byte order.
514 */
515static int ste_read_eeprom(sc, dest, off, cnt, swap)
516	struct ste_softc		*sc;
517	caddr_t			dest;
518	int			off;
519	int			cnt;
520	int			swap;
521{
522	int			err = 0, i;
523	u_int16_t		word = 0, *ptr;
524
525	if (ste_eeprom_wait(sc))
526		return(1);
527
528	for (i = 0; i < cnt; i++) {
529		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
530		err = ste_eeprom_wait(sc);
531		if (err)
532			break;
533		word = CSR_READ_2(sc, STE_EEPROM_DATA);
534		ptr = (u_int16_t *)(dest + (i * 2));
535		if (swap)
536			*ptr = ntohs(word);
537		else
538			*ptr = word;
539	}
540
541	return(err ? 1 : 0);
542}
543
544static u_int8_t ste_calchash(addr)
545	caddr_t			addr;
546{
547
548	u_int32_t		crc, carry;
549	int			i, j;
550	u_int8_t		c;
551
552	/* Compute CRC for the address value. */
553	crc = 0xFFFFFFFF; /* initial value */
554
555	for (i = 0; i < 6; i++) {
556		c = *(addr + i);
557		for (j = 0; j < 8; j++) {
558			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
559			crc <<= 1;
560			c >>= 1;
561			if (carry)
562				crc = (crc ^ 0x04c11db6) | carry;
563		}
564	}
565
566	/* return the filter bit position */
567	return(crc & 0x0000003F);
568}
569
570static void ste_setmulti(sc)
571	struct ste_softc	*sc;
572{
573	struct ifnet		*ifp;
574	int			h = 0;
575	u_int32_t		hashes[2] = { 0, 0 };
576	struct ifmultiaddr	*ifma;
577
578	ifp = &sc->arpcom.ac_if;
579	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
580		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
581		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
582		return;
583	}
584
585	/* first, zot all the existing hash bits */
586	CSR_WRITE_2(sc, STE_MAR0, 0);
587	CSR_WRITE_2(sc, STE_MAR1, 0);
588	CSR_WRITE_2(sc, STE_MAR2, 0);
589	CSR_WRITE_2(sc, STE_MAR3, 0);
590
591	/* now program new ones */
592	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
593		if (ifma->ifma_addr->sa_family != AF_LINK)
594			continue;
595		h = ste_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
596		if (h < 32)
597			hashes[0] |= (1 << h);
598		else
599			hashes[1] |= (1 << (h - 32));
600	}
601
602	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
603	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
604	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
605	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
606	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
607	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
608
609	return;
610}
611
612static void ste_intr(xsc)
613	void			*xsc;
614{
615	struct ste_softc	*sc;
616	struct ifnet		*ifp;
617	u_int16_t		status;
618
619	sc = xsc;
620	STE_LOCK(sc);
621	ifp = &sc->arpcom.ac_if;
622
623	/* See if this is really our interrupt. */
624	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH)) {
625		STE_UNLOCK(sc);
626		return;
627	}
628
629	for (;;) {
630		status = CSR_READ_2(sc, STE_ISR_ACK);
631
632		if (!(status & STE_INTRS))
633			break;
634
635		if (status & STE_ISR_RX_DMADONE)
636			ste_rxeof(sc);
637
638		if (status & STE_ISR_TX_DMADONE)
639			ste_txeof(sc);
640
641		if (status & STE_ISR_TX_DONE)
642			ste_txeoc(sc);
643
644		if (status & STE_ISR_STATS_OFLOW) {
645			untimeout(ste_stats_update, sc, sc->ste_stat_ch);
646			ste_stats_update(sc);
647		}
648
649		if (status & STE_ISR_HOSTERR) {
650			ste_reset(sc);
651			ste_init(sc);
652		}
653	}
654
655	/* Re-enable interrupts */
656	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
657
658	if (ifp->if_snd.ifq_head != NULL)
659		ste_start(ifp);
660
661	STE_UNLOCK(sc);
662
663	return;
664}
665
666/*
667 * A frame has been uploaded: pass the resulting mbuf chain up to
668 * the higher level protocols.
669 */
670static void ste_rxeof(sc)
671	struct ste_softc		*sc;
672{
673        struct ether_header	*eh;
674        struct mbuf		*m;
675        struct ifnet		*ifp;
676	struct ste_chain_onefrag	*cur_rx;
677	int			total_len = 0;
678	u_int32_t		rxstat;
679
680	ifp = &sc->arpcom.ac_if;
681
682again:
683
684	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)) {
685		cur_rx = sc->ste_cdata.ste_rx_head;
686		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
687
688		/*
689		 * If an error occurs, update stats, clear the
690		 * status word and leave the mbuf cluster in place:
691		 * it should simply get re-used next time this descriptor
692	 	 * comes up in the ring.
693		 */
694		if (rxstat & STE_RXSTAT_FRAME_ERR) {
695			ifp->if_ierrors++;
696			cur_rx->ste_ptr->ste_status = 0;
697			continue;
698		}
699
700		/*
701		 * If there error bit was not set, the upload complete
702		 * bit should be set which means we have a valid packet.
703		 * If not, something truly strange has happened.
704		 */
705		if (!(rxstat & STE_RXSTAT_DMADONE)) {
706			printf("ste%d: bad receive status -- packet dropped",
707							sc->ste_unit);
708			ifp->if_ierrors++;
709			cur_rx->ste_ptr->ste_status = 0;
710			continue;
711		}
712
713		/* No errors; receive the packet. */
714		m = cur_rx->ste_mbuf;
715		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
716
717		/*
718		 * Try to conjure up a new mbuf cluster. If that
719		 * fails, it means we have an out of memory condition and
720		 * should leave the buffer in place and continue. This will
721		 * result in a lost packet, but there's little else we
722		 * can do in this situation.
723		 */
724		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
725			ifp->if_ierrors++;
726			cur_rx->ste_ptr->ste_status = 0;
727			continue;
728		}
729
730		ifp->if_ipackets++;
731		eh = mtod(m, struct ether_header *);
732		m->m_pkthdr.rcvif = ifp;
733		m->m_pkthdr.len = m->m_len = total_len;
734
735		/* Remove header from mbuf and pass it on. */
736		m_adj(m, sizeof(struct ether_header));
737		ether_input(ifp, eh, m);
738	}
739
740	/*
741	 * Handle the 'end of channel' condition. When the upload
742	 * engine hits the end of the RX ring, it will stall. This
743	 * is our cue to flush the RX ring, reload the uplist pointer
744	 * register and unstall the engine.
745	 * XXX This is actually a little goofy. With the ThunderLAN
746	 * chip, you get an interrupt when the receiver hits the end
747	 * of the receive ring, which tells you exactly when you
748	 * you need to reload the ring pointer. Here we have to
749	 * fake it. I'm mad at myself for not being clever enough
750	 * to avoid the use of a goto here.
751	 */
752	if (CSR_READ_4(sc, STE_RX_DMALIST_PTR) == 0 ||
753		CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_RXDMA_STOPPED) {
754		STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
755		ste_wait(sc);
756		CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
757			vtophys(&sc->ste_ldata->ste_rx_list[0]));
758		sc->ste_cdata.ste_rx_head = &sc->ste_cdata.ste_rx_chain[0];
759		STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
760		goto again;
761	}
762
763	return;
764}
765
766static void ste_txeoc(sc)
767	struct ste_softc	*sc;
768{
769	u_int8_t		txstat;
770	struct ifnet		*ifp;
771
772	ifp = &sc->arpcom.ac_if;
773
774	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
775	    STE_TXSTATUS_TXDONE) {
776		if (txstat & STE_TXSTATUS_UNDERRUN ||
777		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
778		    txstat & STE_TXSTATUS_RECLAIMERR) {
779			ifp->if_oerrors++;
780			printf("ste%d: transmission error: %x\n",
781			    sc->ste_unit, txstat);
782
783			ste_reset(sc);
784			ste_init(sc);
785
786			if (txstat & STE_TXSTATUS_UNDERRUN &&
787			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
788				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
789				printf("ste%d: tx underrun, increasing tx"
790				    " start threshold to %d bytes\n",
791				    sc->ste_unit, sc->ste_tx_thresh);
792			}
793			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
794			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
795			    (STE_PACKET_SIZE >> 4));
796		}
797		ste_init(sc);
798		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
799	}
800
801	return;
802}
803
804static void ste_txeof(sc)
805	struct ste_softc	*sc;
806{
807	struct ste_chain	*cur_tx = NULL;
808	struct ifnet		*ifp;
809	int			idx;
810
811	ifp = &sc->arpcom.ac_if;
812
813	idx = sc->ste_cdata.ste_tx_cons;
814	while(idx != sc->ste_cdata.ste_tx_prod) {
815		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
816
817		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
818			break;
819
820		if (cur_tx->ste_mbuf != NULL) {
821			m_freem(cur_tx->ste_mbuf);
822			cur_tx->ste_mbuf = NULL;
823		}
824
825		ifp->if_opackets++;
826
827		sc->ste_cdata.ste_tx_cnt--;
828		STE_INC(idx, STE_TX_LIST_CNT);
829		ifp->if_timer = 0;
830	}
831
832	sc->ste_cdata.ste_tx_cons = idx;
833
834	if (cur_tx != NULL)
835		ifp->if_flags &= ~IFF_OACTIVE;
836
837	return;
838}
839
840static void ste_stats_update(xsc)
841	void			*xsc;
842{
843	struct ste_softc	*sc;
844	struct ste_stats	stats;
845	struct ifnet		*ifp;
846	struct mii_data		*mii;
847	int			i;
848	u_int8_t		*p;
849
850	sc = xsc;
851	STE_LOCK(sc);
852
853	ifp = &sc->arpcom.ac_if;
854	mii = device_get_softc(sc->ste_miibus);
855
856	p = (u_int8_t *)&stats;
857
858	for (i = 0; i < sizeof(stats); i++) {
859		*p = CSR_READ_1(sc, STE_STATS + i);
860		p++;
861	}
862
863	ifp->if_collisions += stats.ste_single_colls +
864	    stats.ste_multi_colls + stats.ste_late_colls;
865
866	mii_tick(mii);
867	if (!sc->ste_link && mii->mii_media_status & IFM_ACTIVE &&
868	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
869		sc->ste_link++;
870		if (ifp->if_snd.ifq_head != NULL)
871			ste_start(ifp);
872	}
873
874	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
875	STE_UNLOCK(sc);
876
877	return;
878}
879
880
881/*
882 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
883 * IDs against our list and return a device name if we find a match.
884 */
885static int ste_probe(dev)
886	device_t		dev;
887{
888	struct ste_type		*t;
889
890	t = ste_devs;
891
892	while(t->ste_name != NULL) {
893		if ((pci_get_vendor(dev) == t->ste_vid) &&
894		    (pci_get_device(dev) == t->ste_did)) {
895			device_set_desc(dev, t->ste_name);
896			return(0);
897		}
898		t++;
899	}
900
901	return(ENXIO);
902}
903
904/*
905 * Attach the interface. Allocate softc structures, do ifmedia
906 * setup and ethernet/BPF attach.
907 */
908static int ste_attach(dev)
909	device_t		dev;
910{
911	u_int32_t		command;
912	struct ste_softc	*sc;
913	struct ifnet		*ifp;
914	int			unit, error = 0, rid;
915
916	sc = device_get_softc(dev);
917	unit = device_get_unit(dev);
918	bzero(sc, sizeof(struct ste_softc));
919
920	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
921	STE_LOCK(sc);
922
923	/*
924	 * Handle power management nonsense.
925	 */
926	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
927		u_int32_t		iobase, membase, irq;
928
929		/* Save important PCI config data. */
930		iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
931		membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
932		irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
933
934		/* Reset the power state. */
935		printf("ste%d: chip is in D%d power mode "
936		    "-- setting to D0\n", unit,
937		    pci_get_powerstate(dev));
938		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
939
940		/* Restore PCI config data. */
941		pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
942		pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
943		pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
944	}
945
946	/*
947	 * Map control/status registers.
948	 */
949	pci_enable_busmaster(dev);
950	pci_enable_io(dev, SYS_RES_IOPORT);
951	pci_enable_io(dev, SYS_RES_MEMORY);
952	command = pci_read_config(dev, PCIR_COMMAND, 4);
953
954#ifdef STE_USEIOSPACE
955	if (!(command & PCIM_CMD_PORTEN)) {
956		printf("ste%d: failed to enable I/O ports!\n", unit);
957		error = ENXIO;
958		goto fail;
959	}
960#else
961	if (!(command & PCIM_CMD_MEMEN)) {
962		printf("ste%d: failed to enable memory mapping!\n", unit);
963		error = ENXIO;
964		goto fail;
965	}
966#endif
967
968	rid = STE_RID;
969	sc->ste_res = bus_alloc_resource(dev, STE_RES, &rid,
970	    0, ~0, 1, RF_ACTIVE);
971
972	if (sc->ste_res == NULL) {
973		printf ("ste%d: couldn't map ports/memory\n", unit);
974		error = ENXIO;
975		goto fail;
976	}
977
978	sc->ste_btag = rman_get_bustag(sc->ste_res);
979	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
980
981	rid = 0;
982	sc->ste_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
983	    RF_SHAREABLE | RF_ACTIVE);
984
985	if (sc->ste_irq == NULL) {
986		printf("ste%d: couldn't map interrupt\n", unit);
987		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
988		error = ENXIO;
989		goto fail;
990	}
991
992	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
993	    ste_intr, sc, &sc->ste_intrhand);
994
995	if (error) {
996		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
997		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
998		printf("ste%d: couldn't set up irq\n", unit);
999		goto fail;
1000	}
1001
1002	callout_handle_init(&sc->ste_stat_ch);
1003
1004	/* Reset the adapter. */
1005	ste_reset(sc);
1006
1007	/*
1008	 * Get station address from the EEPROM.
1009	 */
1010	if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1011	    STE_EEADDR_NODE0, 3, 0)) {
1012		printf("ste%d: failed to read station address\n", unit);
1013		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1014		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1015		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1016		error = ENXIO;;
1017		goto fail;
1018	}
1019
1020	/*
1021	 * A Sundance chip was detected. Inform the world.
1022	 */
1023	printf("ste%d: Ethernet address: %6D\n", unit,
1024	    sc->arpcom.ac_enaddr, ":");
1025
1026	sc->ste_unit = unit;
1027
1028	/* Allocate the descriptor queues. */
1029	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
1030	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1031
1032	if (sc->ste_ldata == NULL) {
1033		printf("ste%d: no memory for list buffers!\n", unit);
1034		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1035		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1036		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1037		error = ENXIO;
1038		goto fail;
1039	}
1040
1041	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1042
1043	/* Do MII setup. */
1044	if (mii_phy_probe(dev, &sc->ste_miibus,
1045		ste_ifmedia_upd, ste_ifmedia_sts)) {
1046		printf("ste%d: MII without any phy!\n", sc->ste_unit);
1047		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1048		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1049		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1050		contigfree(sc->ste_ldata,
1051		    sizeof(struct ste_list_data), M_DEVBUF);
1052		error = ENXIO;
1053		goto fail;
1054	}
1055
1056	ifp = &sc->arpcom.ac_if;
1057	ifp->if_softc = sc;
1058	ifp->if_unit = unit;
1059	ifp->if_name = "ste";
1060	ifp->if_mtu = ETHERMTU;
1061	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1062	ifp->if_ioctl = ste_ioctl;
1063	ifp->if_output = ether_output;
1064	ifp->if_start = ste_start;
1065	ifp->if_watchdog = ste_watchdog;
1066	ifp->if_init = ste_init;
1067	ifp->if_baudrate = 10000000;
1068	ifp->if_snd.ifq_maxlen = STE_TX_LIST_CNT - 1;
1069
1070	/*
1071	 * Call MI attach routine.
1072	 */
1073	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1074	STE_UNLOCK(sc);
1075	return(0);
1076
1077fail:
1078	STE_UNLOCK(sc);
1079	mtx_destroy(&sc->ste_mtx);
1080	return(error);
1081}
1082
1083static int ste_detach(dev)
1084	device_t		dev;
1085{
1086	struct ste_softc	*sc;
1087	struct ifnet		*ifp;
1088
1089	sc = device_get_softc(dev);
1090	STE_LOCK(sc);
1091	ifp = &sc->arpcom.ac_if;
1092
1093	ste_stop(sc);
1094	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1095
1096	bus_generic_detach(dev);
1097	device_delete_child(dev, sc->ste_miibus);
1098
1099	bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1100	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1101	bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1102
1103	contigfree(sc->ste_ldata, sizeof(struct ste_list_data), M_DEVBUF);
1104
1105	STE_UNLOCK(sc);
1106	mtx_destroy(&sc->ste_mtx);
1107
1108	return(0);
1109}
1110
1111static int ste_newbuf(sc, c, m)
1112	struct ste_softc	*sc;
1113	struct ste_chain_onefrag	*c;
1114	struct mbuf		*m;
1115{
1116	struct mbuf		*m_new = NULL;
1117
1118	if (m == NULL) {
1119		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1120		if (m_new == NULL) {
1121			printf("ste%d: no memory for rx list -- "
1122			    "packet dropped\n", sc->ste_unit);
1123			return(ENOBUFS);
1124		}
1125		MCLGET(m_new, M_DONTWAIT);
1126		if (!(m_new->m_flags & M_EXT)) {
1127			printf("ste%d: no memory for rx list -- "
1128			    "packet dropped\n", sc->ste_unit);
1129			m_freem(m_new);
1130			return(ENOBUFS);
1131		}
1132		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1133	} else {
1134		m_new = m;
1135		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1136		m_new->m_data = m_new->m_ext.ext_buf;
1137	}
1138
1139	m_adj(m_new, ETHER_ALIGN);
1140
1141	c->ste_mbuf = m_new;
1142	c->ste_ptr->ste_status = 0;
1143	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1144	c->ste_ptr->ste_frag.ste_len = 1536 | STE_FRAG_LAST;
1145
1146	return(0);
1147}
1148
1149static int ste_init_rx_list(sc)
1150	struct ste_softc	*sc;
1151{
1152	struct ste_chain_data	*cd;
1153	struct ste_list_data	*ld;
1154	int			i;
1155
1156	cd = &sc->ste_cdata;
1157	ld = sc->ste_ldata;
1158
1159	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1160		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1161		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1162			return(ENOBUFS);
1163		if (i == (STE_RX_LIST_CNT - 1)) {
1164			cd->ste_rx_chain[i].ste_next =
1165			    &cd->ste_rx_chain[0];
1166			ld->ste_rx_list[i].ste_next =
1167			    vtophys(&ld->ste_rx_list[0]);
1168		} else {
1169			cd->ste_rx_chain[i].ste_next =
1170			    &cd->ste_rx_chain[i + 1];
1171			ld->ste_rx_list[i].ste_next =
1172			    vtophys(&ld->ste_rx_list[i + 1]);
1173		}
1174
1175	}
1176
1177	cd->ste_rx_head = &cd->ste_rx_chain[0];
1178
1179	return(0);
1180}
1181
1182static void ste_init_tx_list(sc)
1183	struct ste_softc	*sc;
1184{
1185	struct ste_chain_data	*cd;
1186	struct ste_list_data	*ld;
1187	int			i;
1188
1189	cd = &sc->ste_cdata;
1190	ld = sc->ste_ldata;
1191	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1192		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1193		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1194		if (i == (STE_TX_LIST_CNT - 1))
1195			cd->ste_tx_chain[i].ste_next =
1196			    &cd->ste_tx_chain[0];
1197		else
1198			cd->ste_tx_chain[i].ste_next =
1199			    &cd->ste_tx_chain[i + 1];
1200		if (i == 0)
1201			cd->ste_tx_chain[i].ste_prev =
1202			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1203		else
1204			cd->ste_tx_chain[i].ste_prev =
1205			     &cd->ste_tx_chain[i - 1];
1206	}
1207
1208
1209	bzero((char *)ld->ste_tx_list,
1210	    sizeof(struct ste_desc) * STE_TX_LIST_CNT);
1211
1212	cd->ste_tx_prod = 0;
1213	cd->ste_tx_cons = 0;
1214	cd->ste_tx_cnt = 0;
1215
1216	return;
1217}
1218
1219static void ste_init(xsc)
1220	void			*xsc;
1221{
1222	struct ste_softc	*sc;
1223	int			i;
1224	struct ifnet		*ifp;
1225	struct mii_data		*mii;
1226
1227	sc = xsc;
1228	STE_LOCK(sc);
1229	ifp = &sc->arpcom.ac_if;
1230	mii = device_get_softc(sc->ste_miibus);
1231
1232	ste_stop(sc);
1233
1234	/* Init our MAC address */
1235	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1236		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1237	}
1238
1239	/* Init RX list */
1240	if (ste_init_rx_list(sc) == ENOBUFS) {
1241		printf("ste%d: initialization failed: no "
1242		    "memory for RX buffers\n", sc->ste_unit);
1243		ste_stop(sc);
1244		STE_UNLOCK(sc);
1245		return;
1246	}
1247
1248	/* Init TX descriptors */
1249	ste_init_tx_list(sc);
1250
1251	/* Set the TX freethresh value */
1252	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1253
1254	/* Set the TX start threshold for best performance. */
1255	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1256
1257	/* Set the TX reclaim threshold. */
1258	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1259
1260	/* Set up the RX filter. */
1261	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1262
1263	/* If we want promiscuous mode, set the allframes bit. */
1264	if (ifp->if_flags & IFF_PROMISC) {
1265		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1266	} else {
1267		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1268	}
1269
1270	/* Set capture broadcast bit to accept broadcast frames. */
1271	if (ifp->if_flags & IFF_BROADCAST) {
1272		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1273	} else {
1274		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1275	}
1276
1277	ste_setmulti(sc);
1278
1279	/* Load the address of the RX list. */
1280	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1281	ste_wait(sc);
1282	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1283	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1284	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1285	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1286
1287	/* Set TX polling interval */
1288	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1289
1290	/* Load address of the TX list */
1291	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1292	ste_wait(sc);
1293	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1294	    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1295	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1296	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1297	ste_wait(sc);
1298
1299	/* Enable receiver and transmitter */
1300	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1301	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1302	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1303
1304	/* Enable stats counters. */
1305	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1306
1307	/* Enable interrupts. */
1308	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1309	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1310
1311	ste_ifmedia_upd(ifp);
1312
1313	ifp->if_flags |= IFF_RUNNING;
1314	ifp->if_flags &= ~IFF_OACTIVE;
1315
1316	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
1317	STE_UNLOCK(sc);
1318
1319	return;
1320}
1321
1322static void ste_stop(sc)
1323	struct ste_softc	*sc;
1324{
1325	int			i;
1326	struct ifnet		*ifp;
1327
1328	STE_LOCK(sc);
1329	ifp = &sc->arpcom.ac_if;
1330
1331	untimeout(ste_stats_update, sc, sc->ste_stat_ch);
1332
1333	CSR_WRITE_2(sc, STE_IMR, 0);
1334	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1335	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1336	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1337	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1338	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1339	ste_wait(sc);
1340
1341	sc->ste_link = 0;
1342
1343	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1344		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1345			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1346			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1347		}
1348	}
1349
1350	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1351		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1352			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1353			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1354		}
1355	}
1356
1357	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1358	STE_UNLOCK(sc);
1359
1360	return;
1361}
1362
1363static void ste_reset(sc)
1364	struct ste_softc	*sc;
1365{
1366	int			i;
1367
1368	STE_SETBIT4(sc, STE_ASICCTL,
1369	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1370	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1371	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1372	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1373	    STE_ASICCTL_EXTRESET_RESET);
1374
1375	DELAY(100000);
1376
1377	for (i = 0; i < STE_TIMEOUT; i++) {
1378		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1379			break;
1380	}
1381
1382	if (i == STE_TIMEOUT)
1383		printf("ste%d: global reset never completed\n", sc->ste_unit);
1384
1385	return;
1386}
1387
1388static int ste_ioctl(ifp, command, data)
1389	struct ifnet		*ifp;
1390	u_long			command;
1391	caddr_t			data;
1392{
1393	struct ste_softc	*sc;
1394	struct ifreq		*ifr;
1395	struct mii_data		*mii;
1396	int			error = 0;
1397
1398	sc = ifp->if_softc;
1399	STE_LOCK(sc);
1400	ifr = (struct ifreq *)data;
1401
1402	switch(command) {
1403	case SIOCSIFADDR:
1404	case SIOCGIFADDR:
1405	case SIOCSIFMTU:
1406		error = ether_ioctl(ifp, command, data);
1407		break;
1408	case SIOCSIFFLAGS:
1409		if (ifp->if_flags & IFF_UP) {
1410			if (ifp->if_flags & IFF_RUNNING &&
1411			    ifp->if_flags & IFF_PROMISC &&
1412			    !(sc->ste_if_flags & IFF_PROMISC)) {
1413				STE_SETBIT1(sc, STE_RX_MODE,
1414				    STE_RXMODE_PROMISC);
1415			} else if (ifp->if_flags & IFF_RUNNING &&
1416			    !(ifp->if_flags & IFF_PROMISC) &&
1417			    sc->ste_if_flags & IFF_PROMISC) {
1418				STE_CLRBIT1(sc, STE_RX_MODE,
1419				    STE_RXMODE_PROMISC);
1420			} else if (!(ifp->if_flags & IFF_RUNNING)) {
1421				sc->ste_tx_thresh = STE_MIN_FRAMELEN;
1422				ste_init(sc);
1423			}
1424		} else {
1425			if (ifp->if_flags & IFF_RUNNING)
1426				ste_stop(sc);
1427		}
1428		sc->ste_if_flags = ifp->if_flags;
1429		error = 0;
1430		break;
1431	case SIOCADDMULTI:
1432	case SIOCDELMULTI:
1433		ste_setmulti(sc);
1434		error = 0;
1435		break;
1436	case SIOCGIFMEDIA:
1437	case SIOCSIFMEDIA:
1438		mii = device_get_softc(sc->ste_miibus);
1439		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1440		break;
1441	default:
1442		error = EINVAL;
1443		break;
1444	}
1445
1446	STE_UNLOCK(sc);
1447
1448	return(error);
1449}
1450
1451static int ste_encap(sc, c, m_head)
1452	struct ste_softc	*sc;
1453	struct ste_chain	*c;
1454	struct mbuf		*m_head;
1455{
1456	int			frag = 0;
1457	struct ste_frag		*f = NULL;
1458	struct mbuf		*m;
1459	struct ste_desc		*d;
1460	int			total_len = 0;
1461
1462	d = c->ste_ptr;
1463	d->ste_ctl = 0;
1464	d->ste_next = 0;
1465
1466	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1467		if (m->m_len != 0) {
1468			if (frag == STE_MAXFRAGS)
1469				break;
1470			total_len += m->m_len;
1471			f = &c->ste_ptr->ste_frags[frag];
1472			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1473			f->ste_len = m->m_len;
1474			frag++;
1475		}
1476	}
1477
1478	c->ste_mbuf = m_head;
1479	c->ste_ptr->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1480	c->ste_ptr->ste_ctl = total_len;
1481
1482	return(0);
1483}
1484
1485static void ste_start(ifp)
1486	struct ifnet		*ifp;
1487{
1488	struct ste_softc	*sc;
1489	struct mbuf		*m_head = NULL;
1490	struct ste_chain	*prev = NULL, *cur_tx = NULL, *start_tx;
1491	int			idx;
1492
1493	sc = ifp->if_softc;
1494	STE_LOCK(sc);
1495
1496	if (!sc->ste_link) {
1497		STE_UNLOCK(sc);
1498		return;
1499	}
1500
1501	if (ifp->if_flags & IFF_OACTIVE) {
1502		STE_UNLOCK(sc);
1503		return;
1504	}
1505
1506	idx = sc->ste_cdata.ste_tx_prod;
1507	start_tx = &sc->ste_cdata.ste_tx_chain[idx];
1508
1509	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1510
1511		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1512			ifp->if_flags |= IFF_OACTIVE;
1513			break;
1514		}
1515
1516		IF_DEQUEUE(&ifp->if_snd, m_head);
1517		if (m_head == NULL)
1518			break;
1519
1520		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1521
1522		ste_encap(sc, cur_tx, m_head);
1523
1524		if (prev != NULL)
1525			prev->ste_ptr->ste_next = cur_tx->ste_phys;
1526		prev = cur_tx;
1527
1528		/*
1529		 * If there's a BPF listener, bounce a copy of this frame
1530		 * to him.
1531	 	 */
1532		if (ifp->if_bpf)
1533			bpf_mtap(ifp, cur_tx->ste_mbuf);
1534
1535		STE_INC(idx, STE_TX_LIST_CNT);
1536		sc->ste_cdata.ste_tx_cnt++;
1537	}
1538
1539	if (cur_tx == NULL) {
1540		STE_UNLOCK(sc);
1541		return;
1542	}
1543
1544	cur_tx->ste_ptr->ste_ctl |= STE_TXCTL_DMAINTR;
1545
1546	/* Start transmission */
1547	sc->ste_cdata.ste_tx_prod = idx;
1548	start_tx->ste_prev->ste_ptr->ste_next = start_tx->ste_phys;
1549
1550	ifp->if_timer = 5;
1551	STE_UNLOCK(sc);
1552
1553	return;
1554}
1555
1556static void ste_watchdog(ifp)
1557	struct ifnet		*ifp;
1558{
1559	struct ste_softc	*sc;
1560
1561	sc = ifp->if_softc;
1562	STE_LOCK(sc);
1563
1564	ifp->if_oerrors++;
1565	printf("ste%d: watchdog timeout\n", sc->ste_unit);
1566
1567	ste_txeoc(sc);
1568	ste_txeof(sc);
1569	ste_rxeof(sc);
1570	ste_reset(sc);
1571	ste_init(sc);
1572
1573	if (ifp->if_snd.ifq_head != NULL)
1574		ste_start(ifp);
1575	STE_UNLOCK(sc);
1576
1577	return;
1578}
1579
1580static void ste_shutdown(dev)
1581	device_t		dev;
1582{
1583	struct ste_softc	*sc;
1584
1585	sc = device_get_softc(dev);
1586
1587	ste_stop(sc);
1588
1589	return;
1590}
1591