if_ste.c revision 71228
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/pci/if_ste.c 71228 2001-01-19 01:59:14Z bmilekic $
33 */
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/sockio.h>
38#include <sys/mbuf.h>
39#include <sys/malloc.h>
40#include <sys/kernel.h>
41#include <sys/socket.h>
42
43#include <net/if.h>
44#include <net/if_arp.h>
45#include <net/ethernet.h>
46#include <net/if_dl.h>
47#include <net/if_media.h>
48
49#include <net/bpf.h>
50
51#include <vm/vm.h>              /* for vtophys */
52#include <vm/pmap.h>            /* for vtophys */
53#include <machine/bus_memio.h>
54#include <machine/bus_pio.h>
55#include <machine/bus.h>
56#include <machine/resource.h>
57#include <sys/bus.h>
58#include <sys/rman.h>
59
60#include <dev/mii/mii.h>
61#include <dev/mii/miivar.h>
62
63#include <pci/pcireg.h>
64#include <pci/pcivar.h>
65
66/* "controller miibus0" required.  See GENERIC if you get errors here. */
67#include "miibus_if.h"
68
69#define STE_USEIOSPACE
70
71#include <pci/if_stereg.h>
72
73MODULE_DEPEND(ste, miibus, 1, 1, 1);
74
75#if !defined(lint)
76static const char rcsid[] =
77  "$FreeBSD: head/sys/pci/if_ste.c 71228 2001-01-19 01:59:14Z bmilekic $";
78#endif
79
80/*
81 * Various supported device vendors/types and their names.
82 */
83static struct ste_type ste_devs[] = {
84	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
85	{ DL_VENDORID, DL_DEVICEID_550TX, "D-Link DFE-550TX 10/100BaseTX" },
86	{ 0, 0, NULL }
87};
88
89static int ste_probe		__P((device_t));
90static int ste_attach		__P((device_t));
91static int ste_detach		__P((device_t));
92static void ste_init		__P((void *));
93static void ste_intr		__P((void *));
94static void ste_rxeof		__P((struct ste_softc *));
95static void ste_txeoc		__P((struct ste_softc *));
96static void ste_txeof		__P((struct ste_softc *));
97static void ste_stats_update	__P((void *));
98static void ste_stop		__P((struct ste_softc *));
99static void ste_reset		__P((struct ste_softc *));
100static int ste_ioctl		__P((struct ifnet *, u_long, caddr_t));
101static int ste_encap		__P((struct ste_softc *, struct ste_chain *,
102					struct mbuf *));
103static void ste_start		__P((struct ifnet *));
104static void ste_watchdog	__P((struct ifnet *));
105static void ste_shutdown	__P((device_t));
106static int ste_newbuf		__P((struct ste_softc *,
107					struct ste_chain_onefrag *,
108					struct mbuf *));
109static int ste_ifmedia_upd	__P((struct ifnet *));
110static void ste_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
111
112static void ste_mii_sync	__P((struct ste_softc *));
113static void ste_mii_send	__P((struct ste_softc *, u_int32_t, int));
114static int ste_mii_readreg	__P((struct ste_softc *,
115					struct ste_mii_frame *));
116static int ste_mii_writereg	__P((struct ste_softc *,
117					struct ste_mii_frame *));
118static int ste_miibus_readreg	__P((device_t, int, int));
119static int ste_miibus_writereg	__P((device_t, int, int, int));
120static void ste_miibus_statchg	__P((device_t));
121
122static int ste_eeprom_wait	__P((struct ste_softc *));
123static int ste_read_eeprom	__P((struct ste_softc *, caddr_t, int,
124							int, int));
125static void ste_wait		__P((struct ste_softc *));
126static u_int8_t ste_calchash	__P((caddr_t));
127static void ste_setmulti	__P((struct ste_softc *));
128static int ste_init_rx_list	__P((struct ste_softc *));
129static void ste_init_tx_list	__P((struct ste_softc *));
130
131#ifdef STE_USEIOSPACE
132#define STE_RES			SYS_RES_IOPORT
133#define STE_RID			STE_PCI_LOIO
134#else
135#define STE_RES			SYS_RES_MEMORY
136#define STE_RID			STE_PCI_LOMEM
137#endif
138
139static device_method_t ste_methods[] = {
140	/* Device interface */
141	DEVMETHOD(device_probe,		ste_probe),
142	DEVMETHOD(device_attach,	ste_attach),
143	DEVMETHOD(device_detach,	ste_detach),
144	DEVMETHOD(device_shutdown,	ste_shutdown),
145
146	/* bus interface */
147	DEVMETHOD(bus_print_child,	bus_generic_print_child),
148	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
149
150	/* MII interface */
151	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
152	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
153	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
154
155	{ 0, 0 }
156};
157
158static driver_t ste_driver = {
159	"ste",
160	ste_methods,
161	sizeof(struct ste_softc)
162};
163
164static devclass_t ste_devclass;
165
166DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, 0, 0);
167DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
168
169#define STE_SETBIT4(sc, reg, x)				\
170	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
171
172#define STE_CLRBIT4(sc, reg, x)				\
173	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
174
175#define STE_SETBIT2(sc, reg, x)				\
176	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
177
178#define STE_CLRBIT2(sc, reg, x)				\
179	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
180
181#define STE_SETBIT1(sc, reg, x)				\
182	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
183
184#define STE_CLRBIT1(sc, reg, x)				\
185	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
186
187
188#define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
189#define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
190
191/*
192 * Sync the PHYs by setting data bit and strobing the clock 32 times.
193 */
194static void ste_mii_sync(sc)
195	struct ste_softc		*sc;
196{
197	register int		i;
198
199	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
200
201	for (i = 0; i < 32; i++) {
202		MII_SET(STE_PHYCTL_MCLK);
203		DELAY(1);
204		MII_CLR(STE_PHYCTL_MCLK);
205		DELAY(1);
206	}
207
208	return;
209}
210
211/*
212 * Clock a series of bits through the MII.
213 */
214static void ste_mii_send(sc, bits, cnt)
215	struct ste_softc		*sc;
216	u_int32_t		bits;
217	int			cnt;
218{
219	int			i;
220
221	MII_CLR(STE_PHYCTL_MCLK);
222
223	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
224                if (bits & i) {
225			MII_SET(STE_PHYCTL_MDATA);
226                } else {
227			MII_CLR(STE_PHYCTL_MDATA);
228                }
229		DELAY(1);
230		MII_CLR(STE_PHYCTL_MCLK);
231		DELAY(1);
232		MII_SET(STE_PHYCTL_MCLK);
233	}
234}
235
236/*
237 * Read an PHY register through the MII.
238 */
239static int ste_mii_readreg(sc, frame)
240	struct ste_softc		*sc;
241	struct ste_mii_frame	*frame;
242
243{
244	int			i, ack;
245
246	STE_LOCK(sc);
247
248	/*
249	 * Set up frame for RX.
250	 */
251	frame->mii_stdelim = STE_MII_STARTDELIM;
252	frame->mii_opcode = STE_MII_READOP;
253	frame->mii_turnaround = 0;
254	frame->mii_data = 0;
255
256	CSR_WRITE_2(sc, STE_PHYCTL, 0);
257	/*
258 	 * Turn on data xmit.
259	 */
260	MII_SET(STE_PHYCTL_MDIR);
261
262	ste_mii_sync(sc);
263
264	/*
265	 * Send command/address info.
266	 */
267	ste_mii_send(sc, frame->mii_stdelim, 2);
268	ste_mii_send(sc, frame->mii_opcode, 2);
269	ste_mii_send(sc, frame->mii_phyaddr, 5);
270	ste_mii_send(sc, frame->mii_regaddr, 5);
271
272	/* Turn off xmit. */
273	MII_CLR(STE_PHYCTL_MDIR);
274
275	/* Idle bit */
276	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
277	DELAY(1);
278	MII_SET(STE_PHYCTL_MCLK);
279	DELAY(1);
280
281	/* Check for ack */
282	MII_CLR(STE_PHYCTL_MCLK);
283	DELAY(1);
284	MII_SET(STE_PHYCTL_MCLK);
285	DELAY(1);
286	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
287
288	/*
289	 * Now try reading data bits. If the ack failed, we still
290	 * need to clock through 16 cycles to keep the PHY(s) in sync.
291	 */
292	if (ack) {
293		for(i = 0; i < 16; i++) {
294			MII_CLR(STE_PHYCTL_MCLK);
295			DELAY(1);
296			MII_SET(STE_PHYCTL_MCLK);
297			DELAY(1);
298		}
299		goto fail;
300	}
301
302	for (i = 0x8000; i; i >>= 1) {
303		MII_CLR(STE_PHYCTL_MCLK);
304		DELAY(1);
305		if (!ack) {
306			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
307				frame->mii_data |= i;
308			DELAY(1);
309		}
310		MII_SET(STE_PHYCTL_MCLK);
311		DELAY(1);
312	}
313
314fail:
315
316	MII_CLR(STE_PHYCTL_MCLK);
317	DELAY(1);
318	MII_SET(STE_PHYCTL_MCLK);
319	DELAY(1);
320
321	STE_UNLOCK(sc);
322
323	if (ack)
324		return(1);
325	return(0);
326}
327
328/*
329 * Write to a PHY register through the MII.
330 */
331static int ste_mii_writereg(sc, frame)
332	struct ste_softc		*sc;
333	struct ste_mii_frame	*frame;
334
335{
336	STE_LOCK(sc);
337
338	/*
339	 * Set up frame for TX.
340	 */
341
342	frame->mii_stdelim = STE_MII_STARTDELIM;
343	frame->mii_opcode = STE_MII_WRITEOP;
344	frame->mii_turnaround = STE_MII_TURNAROUND;
345
346	/*
347 	 * Turn on data output.
348	 */
349	MII_SET(STE_PHYCTL_MDIR);
350
351	ste_mii_sync(sc);
352
353	ste_mii_send(sc, frame->mii_stdelim, 2);
354	ste_mii_send(sc, frame->mii_opcode, 2);
355	ste_mii_send(sc, frame->mii_phyaddr, 5);
356	ste_mii_send(sc, frame->mii_regaddr, 5);
357	ste_mii_send(sc, frame->mii_turnaround, 2);
358	ste_mii_send(sc, frame->mii_data, 16);
359
360	/* Idle bit. */
361	MII_SET(STE_PHYCTL_MCLK);
362	DELAY(1);
363	MII_CLR(STE_PHYCTL_MCLK);
364	DELAY(1);
365
366	/*
367	 * Turn off xmit.
368	 */
369	MII_CLR(STE_PHYCTL_MDIR);
370
371	STE_UNLOCK(sc);
372
373	return(0);
374}
375
376static int ste_miibus_readreg(dev, phy, reg)
377	device_t		dev;
378	int			phy, reg;
379{
380	struct ste_softc	*sc;
381	struct ste_mii_frame	frame;
382
383	sc = device_get_softc(dev);
384
385	bzero((char *)&frame, sizeof(frame));
386
387	frame.mii_phyaddr = phy;
388	frame.mii_regaddr = reg;
389	ste_mii_readreg(sc, &frame);
390
391	return(frame.mii_data);
392}
393
394static int ste_miibus_writereg(dev, phy, reg, data)
395	device_t		dev;
396	int			phy, reg, data;
397{
398	struct ste_softc	*sc;
399	struct ste_mii_frame	frame;
400
401	sc = device_get_softc(dev);
402	bzero((char *)&frame, sizeof(frame));
403
404	frame.mii_phyaddr = phy;
405	frame.mii_regaddr = reg;
406	frame.mii_data = data;
407
408	ste_mii_writereg(sc, &frame);
409
410	return(0);
411}
412
413static void ste_miibus_statchg(dev)
414	device_t		dev;
415{
416	struct ste_softc	*sc;
417	struct mii_data		*mii;
418
419	sc = device_get_softc(dev);
420	STE_LOCK(sc);
421	mii = device_get_softc(sc->ste_miibus);
422
423	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
424		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
425	} else {
426		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
427	}
428	STE_UNLOCK(sc);
429
430	return;
431}
432
433static int ste_ifmedia_upd(ifp)
434	struct ifnet		*ifp;
435{
436	struct ste_softc	*sc;
437	struct mii_data		*mii;
438
439	sc = ifp->if_softc;
440	mii = device_get_softc(sc->ste_miibus);
441	sc->ste_link = 0;
442	if (mii->mii_instance) {
443		struct mii_softc	*miisc;
444		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
445		    miisc = LIST_NEXT(miisc, mii_list))
446			mii_phy_reset(miisc);
447	}
448	mii_mediachg(mii);
449
450	return(0);
451}
452
453static void ste_ifmedia_sts(ifp, ifmr)
454	struct ifnet		*ifp;
455	struct ifmediareq	*ifmr;
456{
457	struct ste_softc	*sc;
458	struct mii_data		*mii;
459
460	sc = ifp->if_softc;
461	mii = device_get_softc(sc->ste_miibus);
462
463	mii_pollstat(mii);
464	ifmr->ifm_active = mii->mii_media_active;
465	ifmr->ifm_status = mii->mii_media_status;
466
467	return;
468}
469
470static void ste_wait(sc)
471	struct ste_softc		*sc;
472{
473	register int		i;
474
475	for (i = 0; i < STE_TIMEOUT; i++) {
476		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
477			break;
478	}
479
480	if (i == STE_TIMEOUT)
481		printf("ste%d: command never completed!\n", sc->ste_unit);
482
483	return;
484}
485
486/*
487 * The EEPROM is slow: give it time to come ready after issuing
488 * it a command.
489 */
490static int ste_eeprom_wait(sc)
491	struct ste_softc		*sc;
492{
493	int			i;
494
495	DELAY(1000);
496
497	for (i = 0; i < 100; i++) {
498		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
499			DELAY(1000);
500		else
501			break;
502	}
503
504	if (i == 100) {
505		printf("ste%d: eeprom failed to come ready\n", sc->ste_unit);
506		return(1);
507	}
508
509	return(0);
510}
511
512/*
513 * Read a sequence of words from the EEPROM. Note that ethernet address
514 * data is stored in the EEPROM in network byte order.
515 */
516static int ste_read_eeprom(sc, dest, off, cnt, swap)
517	struct ste_softc		*sc;
518	caddr_t			dest;
519	int			off;
520	int			cnt;
521	int			swap;
522{
523	int			err = 0, i;
524	u_int16_t		word = 0, *ptr;
525
526	if (ste_eeprom_wait(sc))
527		return(1);
528
529	for (i = 0; i < cnt; i++) {
530		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
531		err = ste_eeprom_wait(sc);
532		if (err)
533			break;
534		word = CSR_READ_2(sc, STE_EEPROM_DATA);
535		ptr = (u_int16_t *)(dest + (i * 2));
536		if (swap)
537			*ptr = ntohs(word);
538		else
539			*ptr = word;
540	}
541
542	return(err ? 1 : 0);
543}
544
545static u_int8_t ste_calchash(addr)
546	caddr_t			addr;
547{
548
549	u_int32_t		crc, carry;
550	int			i, j;
551	u_int8_t		c;
552
553	/* Compute CRC for the address value. */
554	crc = 0xFFFFFFFF; /* initial value */
555
556	for (i = 0; i < 6; i++) {
557		c = *(addr + i);
558		for (j = 0; j < 8; j++) {
559			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
560			crc <<= 1;
561			c >>= 1;
562			if (carry)
563				crc = (crc ^ 0x04c11db6) | carry;
564		}
565	}
566
567	/* return the filter bit position */
568	return(crc & 0x0000003F);
569}
570
571static void ste_setmulti(sc)
572	struct ste_softc	*sc;
573{
574	struct ifnet		*ifp;
575	int			h = 0;
576	u_int32_t		hashes[2] = { 0, 0 };
577	struct ifmultiaddr	*ifma;
578
579	ifp = &sc->arpcom.ac_if;
580	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
581		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
582		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
583		return;
584	}
585
586	/* first, zot all the existing hash bits */
587	CSR_WRITE_4(sc, STE_MAR0, 0);
588	CSR_WRITE_4(sc, STE_MAR1, 0);
589
590	/* now program new ones */
591	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
592	    ifma = ifma->ifma_link.le_next) {
593		if (ifma->ifma_addr->sa_family != AF_LINK)
594			continue;
595		h = ste_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
596		if (h < 32)
597			hashes[0] |= (1 << h);
598		else
599			hashes[1] |= (1 << (h - 32));
600	}
601
602	CSR_WRITE_4(sc, STE_MAR0, hashes[0]);
603	CSR_WRITE_4(sc, STE_MAR1, hashes[1]);
604	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
605	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
606
607	return;
608}
609
610static void ste_intr(xsc)
611	void			*xsc;
612{
613	struct ste_softc	*sc;
614	struct ifnet		*ifp;
615	u_int16_t		status;
616
617	sc = xsc;
618	STE_LOCK(sc);
619	ifp = &sc->arpcom.ac_if;
620
621	/* See if this is really our interrupt. */
622	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH)) {
623		STE_UNLOCK(sc);
624		return;
625	}
626
627	for (;;) {
628		status = CSR_READ_2(sc, STE_ISR_ACK);
629
630		if (!(status & STE_INTRS))
631			break;
632
633		if (status & STE_ISR_RX_DMADONE)
634			ste_rxeof(sc);
635
636		if (status & STE_ISR_TX_DMADONE)
637			ste_txeof(sc);
638
639		if (status & STE_ISR_TX_DONE)
640			ste_txeoc(sc);
641
642		if (status & STE_ISR_STATS_OFLOW) {
643			untimeout(ste_stats_update, sc, sc->ste_stat_ch);
644			ste_stats_update(sc);
645		}
646
647		if (status & STE_ISR_HOSTERR) {
648			ste_reset(sc);
649			ste_init(sc);
650		}
651	}
652
653	/* Re-enable interrupts */
654	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
655
656	if (ifp->if_snd.ifq_head != NULL)
657		ste_start(ifp);
658
659	STE_UNLOCK(sc);
660
661	return;
662}
663
664/*
665 * A frame has been uploaded: pass the resulting mbuf chain up to
666 * the higher level protocols.
667 */
668static void ste_rxeof(sc)
669	struct ste_softc		*sc;
670{
671        struct ether_header	*eh;
672        struct mbuf		*m;
673        struct ifnet		*ifp;
674	struct ste_chain_onefrag	*cur_rx;
675	int			total_len = 0;
676	u_int32_t		rxstat;
677
678	ifp = &sc->arpcom.ac_if;
679
680again:
681
682	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)) {
683		cur_rx = sc->ste_cdata.ste_rx_head;
684		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
685
686		/*
687		 * If an error occurs, update stats, clear the
688		 * status word and leave the mbuf cluster in place:
689		 * it should simply get re-used next time this descriptor
690	 	 * comes up in the ring.
691		 */
692		if (rxstat & STE_RXSTAT_FRAME_ERR) {
693			ifp->if_ierrors++;
694			cur_rx->ste_ptr->ste_status = 0;
695			continue;
696		}
697
698		/*
699		 * If there error bit was not set, the upload complete
700		 * bit should be set which means we have a valid packet.
701		 * If not, something truly strange has happened.
702		 */
703		if (!(rxstat & STE_RXSTAT_DMADONE)) {
704			printf("ste%d: bad receive status -- packet dropped",
705							sc->ste_unit);
706			ifp->if_ierrors++;
707			cur_rx->ste_ptr->ste_status = 0;
708			continue;
709		}
710
711		/* No errors; receive the packet. */
712		m = cur_rx->ste_mbuf;
713		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
714
715		/*
716		 * Try to conjure up a new mbuf cluster. If that
717		 * fails, it means we have an out of memory condition and
718		 * should leave the buffer in place and continue. This will
719		 * result in a lost packet, but there's little else we
720		 * can do in this situation.
721		 */
722		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
723			ifp->if_ierrors++;
724			cur_rx->ste_ptr->ste_status = 0;
725			continue;
726		}
727
728		ifp->if_ipackets++;
729		eh = mtod(m, struct ether_header *);
730		m->m_pkthdr.rcvif = ifp;
731		m->m_pkthdr.len = m->m_len = total_len;
732
733		/* Remove header from mbuf and pass it on. */
734		m_adj(m, sizeof(struct ether_header));
735		ether_input(ifp, eh, m);
736	}
737
738	/*
739	 * Handle the 'end of channel' condition. When the upload
740	 * engine hits the end of the RX ring, it will stall. This
741	 * is our cue to flush the RX ring, reload the uplist pointer
742	 * register and unstall the engine.
743	 * XXX This is actually a little goofy. With the ThunderLAN
744	 * chip, you get an interrupt when the receiver hits the end
745	 * of the receive ring, which tells you exactly when you
746	 * you need to reload the ring pointer. Here we have to
747	 * fake it. I'm mad at myself for not being clever enough
748	 * to avoid the use of a goto here.
749	 */
750	if (CSR_READ_4(sc, STE_RX_DMALIST_PTR) == 0 ||
751		CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_RXDMA_STOPPED) {
752		STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
753		ste_wait(sc);
754		CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
755			vtophys(&sc->ste_ldata->ste_rx_list[0]));
756		sc->ste_cdata.ste_rx_head = &sc->ste_cdata.ste_rx_chain[0];
757		STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
758		goto again;
759	}
760
761	return;
762}
763
764static void ste_txeoc(sc)
765	struct ste_softc	*sc;
766{
767	u_int8_t		txstat;
768	struct ifnet		*ifp;
769
770	ifp = &sc->arpcom.ac_if;
771
772	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
773	    STE_TXSTATUS_TXDONE) {
774		if (txstat & STE_TXSTATUS_UNDERRUN ||
775		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
776		    txstat & STE_TXSTATUS_RECLAIMERR) {
777			ifp->if_oerrors++;
778			printf("ste%d: transmission error: %x\n",
779			    sc->ste_unit, txstat);
780
781			ste_reset(sc);
782			ste_init(sc);
783
784			if (txstat & STE_TXSTATUS_UNDERRUN &&
785			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
786				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
787				printf("ste%d: tx underrun, increasing tx"
788				    " start threshold to %d bytes\n",
789				    sc->ste_unit, sc->ste_tx_thresh);
790			}
791			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
792			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
793			    (STE_PACKET_SIZE >> 4));
794		}
795		ste_init(sc);
796		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
797	}
798
799	return;
800}
801
802static void ste_txeof(sc)
803	struct ste_softc	*sc;
804{
805	struct ste_chain	*cur_tx = NULL;
806	struct ifnet		*ifp;
807	int			idx;
808
809	ifp = &sc->arpcom.ac_if;
810
811	idx = sc->ste_cdata.ste_tx_cons;
812	while(idx != sc->ste_cdata.ste_tx_prod) {
813		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
814
815		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
816			break;
817
818		if (cur_tx->ste_mbuf != NULL) {
819			m_freem(cur_tx->ste_mbuf);
820			cur_tx->ste_mbuf = NULL;
821		}
822
823		ifp->if_opackets++;
824
825		sc->ste_cdata.ste_tx_cnt--;
826		STE_INC(idx, STE_TX_LIST_CNT);
827		ifp->if_timer = 0;
828	}
829
830	sc->ste_cdata.ste_tx_cons = idx;
831
832	if (cur_tx != NULL)
833		ifp->if_flags &= ~IFF_OACTIVE;
834
835	return;
836}
837
838static void ste_stats_update(xsc)
839	void			*xsc;
840{
841	struct ste_softc	*sc;
842	struct ste_stats	stats;
843	struct ifnet		*ifp;
844	struct mii_data		*mii;
845	int			i;
846	u_int8_t		*p;
847
848	sc = xsc;
849	STE_LOCK(sc);
850
851	ifp = &sc->arpcom.ac_if;
852	mii = device_get_softc(sc->ste_miibus);
853
854	p = (u_int8_t *)&stats;
855
856	for (i = 0; i < sizeof(stats); i++) {
857		*p = CSR_READ_1(sc, STE_STATS + i);
858		p++;
859	}
860
861	ifp->if_collisions += stats.ste_single_colls +
862	    stats.ste_multi_colls + stats.ste_late_colls;
863
864	mii_tick(mii);
865	if (!sc->ste_link) {
866		mii_pollstat(mii);
867		if (mii->mii_media_status & IFM_ACTIVE &&
868		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
869			sc->ste_link++;
870			if (ifp->if_snd.ifq_head != NULL)
871				ste_start(ifp);
872	}
873
874	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
875	STE_UNLOCK(sc);
876
877	return;
878}
879
880
881/*
882 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
883 * IDs against our list and return a device name if we find a match.
884 */
885static int ste_probe(dev)
886	device_t		dev;
887{
888	struct ste_type		*t;
889
890	t = ste_devs;
891
892	while(t->ste_name != NULL) {
893		if ((pci_get_vendor(dev) == t->ste_vid) &&
894		    (pci_get_device(dev) == t->ste_did)) {
895			device_set_desc(dev, t->ste_name);
896			return(0);
897		}
898		t++;
899	}
900
901	return(ENXIO);
902}
903
904/*
905 * Attach the interface. Allocate softc structures, do ifmedia
906 * setup and ethernet/BPF attach.
907 */
908static int ste_attach(dev)
909	device_t		dev;
910{
911	u_int32_t		command;
912	struct ste_softc	*sc;
913	struct ifnet		*ifp;
914	int			unit, error = 0, rid;
915
916	sc = device_get_softc(dev);
917	unit = device_get_unit(dev);
918	bzero(sc, sizeof(struct ste_softc));
919
920	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
921	STE_LOCK(sc);
922
923	/*
924	 * Handle power management nonsense.
925	 */
926	command = pci_read_config(dev, STE_PCI_CAPID, 4) & 0x000000FF;
927	if (command == 0x01) {
928
929		command = pci_read_config(dev, STE_PCI_PWRMGMTCTRL, 4);
930		if (command & STE_PSTATE_MASK) {
931			u_int32_t		iobase, membase, irq;
932
933			/* Save important PCI config data. */
934			iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
935			membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
936			irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
937
938			/* Reset the power state. */
939			printf("ste%d: chip is in D%d power mode "
940			"-- setting to D0\n", unit, command & STE_PSTATE_MASK);
941			command &= 0xFFFFFFFC;
942			pci_write_config(dev, STE_PCI_PWRMGMTCTRL, command, 4);
943
944			/* Restore PCI config data. */
945			pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
946			pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
947			pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
948		}
949	}
950
951	/*
952	 * Map control/status registers.
953	 */
954	command = pci_read_config(dev, PCIR_COMMAND, 4);
955	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
956	pci_write_config(dev, PCIR_COMMAND, command, 4);
957	command = pci_read_config(dev, PCIR_COMMAND, 4);
958
959#ifdef STE_USEIOSPACE
960	if (!(command & PCIM_CMD_PORTEN)) {
961		printf("ste%d: failed to enable I/O ports!\n", unit);
962		error = ENXIO;
963		goto fail;
964	}
965#else
966	if (!(command & PCIM_CMD_MEMEN)) {
967		printf("ste%d: failed to enable memory mapping!\n", unit);
968		error = ENXIO;
969		goto fail;
970	}
971#endif
972
973	rid = STE_RID;
974	sc->ste_res = bus_alloc_resource(dev, STE_RES, &rid,
975	    0, ~0, 1, RF_ACTIVE);
976
977	if (sc->ste_res == NULL) {
978		printf ("ste%d: couldn't map ports/memory\n", unit);
979		error = ENXIO;
980		goto fail;
981	}
982
983	sc->ste_btag = rman_get_bustag(sc->ste_res);
984	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
985
986	rid = 0;
987	sc->ste_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
988	    RF_SHAREABLE | RF_ACTIVE);
989
990	if (sc->ste_irq == NULL) {
991		printf("ste%d: couldn't map interrupt\n", unit);
992		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
993		error = ENXIO;
994		goto fail;
995	}
996
997	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
998	    ste_intr, sc, &sc->ste_intrhand);
999
1000	if (error) {
1001		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1002		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1003		printf("ste%d: couldn't set up irq\n", unit);
1004		goto fail;
1005	}
1006
1007	callout_handle_init(&sc->ste_stat_ch);
1008
1009	/* Reset the adapter. */
1010	ste_reset(sc);
1011
1012	/*
1013	 * Get station address from the EEPROM.
1014	 */
1015	if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1016	    STE_EEADDR_NODE0, 3, 0)) {
1017		printf("ste%d: failed to read station address\n", unit);
1018		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1019		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1020		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1021		error = ENXIO;;
1022		goto fail;
1023	}
1024
1025	/*
1026	 * A Sundance chip was detected. Inform the world.
1027	 */
1028	printf("ste%d: Ethernet address: %6D\n", unit,
1029	    sc->arpcom.ac_enaddr, ":");
1030
1031	sc->ste_unit = unit;
1032
1033	/* Allocate the descriptor queues. */
1034	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
1035	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1036
1037	if (sc->ste_ldata == NULL) {
1038		printf("ste%d: no memory for list buffers!\n", unit);
1039		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1040		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1041		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1042		error = ENXIO;
1043		goto fail;
1044	}
1045
1046	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1047
1048	/* Do MII setup. */
1049	if (mii_phy_probe(dev, &sc->ste_miibus,
1050		ste_ifmedia_upd, ste_ifmedia_sts)) {
1051		printf("ste%d: MII without any phy!\n", sc->ste_unit);
1052		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1053		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1054		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1055		contigfree(sc->ste_ldata,
1056		    sizeof(struct ste_list_data), M_DEVBUF);
1057		error = ENXIO;
1058		goto fail;
1059	}
1060
1061	ifp = &sc->arpcom.ac_if;
1062	ifp->if_softc = sc;
1063	ifp->if_unit = unit;
1064	ifp->if_name = "ste";
1065	ifp->if_mtu = ETHERMTU;
1066	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1067	ifp->if_ioctl = ste_ioctl;
1068	ifp->if_output = ether_output;
1069	ifp->if_start = ste_start;
1070	ifp->if_watchdog = ste_watchdog;
1071	ifp->if_init = ste_init;
1072	ifp->if_baudrate = 10000000;
1073	ifp->if_snd.ifq_maxlen = STE_TX_LIST_CNT - 1;
1074
1075	/*
1076	 * Call MI attach routine.
1077	 */
1078	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1079	STE_UNLOCK(sc);
1080	return(0);
1081
1082fail:
1083	STE_UNLOCK(sc);
1084	mtx_destroy(&sc->ste_mtx);
1085	return(error);
1086}
1087
1088static int ste_detach(dev)
1089	device_t		dev;
1090{
1091	struct ste_softc	*sc;
1092	struct ifnet		*ifp;
1093
1094	sc = device_get_softc(dev);
1095	STE_LOCK(sc);
1096	ifp = &sc->arpcom.ac_if;
1097
1098	ste_stop(sc);
1099	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1100
1101	bus_generic_detach(dev);
1102	device_delete_child(dev, sc->ste_miibus);
1103
1104	bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1105	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1106	bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1107
1108	contigfree(sc->ste_ldata, sizeof(struct ste_list_data), M_DEVBUF);
1109
1110	STE_UNLOCK(sc);
1111	mtx_destroy(&sc->ste_mtx);
1112
1113	return(0);
1114}
1115
1116static int ste_newbuf(sc, c, m)
1117	struct ste_softc	*sc;
1118	struct ste_chain_onefrag	*c;
1119	struct mbuf		*m;
1120{
1121	struct mbuf		*m_new = NULL;
1122
1123	if (m == NULL) {
1124		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1125		if (m_new == NULL) {
1126			printf("ste%d: no memory for rx list -- "
1127			    "packet dropped\n", sc->ste_unit);
1128			return(ENOBUFS);
1129		}
1130		MCLGET(m_new, M_DONTWAIT);
1131		if (!(m_new->m_flags & M_EXT)) {
1132			printf("ste%d: no memory for rx list -- "
1133			    "packet dropped\n", sc->ste_unit);
1134			m_freem(m_new);
1135			return(ENOBUFS);
1136		}
1137		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1138	} else {
1139		m_new = m;
1140		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1141		m_new->m_data = m_new->m_ext.ext_buf;
1142	}
1143
1144	m_adj(m_new, ETHER_ALIGN);
1145
1146	c->ste_mbuf = m_new;
1147	c->ste_ptr->ste_status = 0;
1148	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1149	c->ste_ptr->ste_frag.ste_len = 1536 | STE_FRAG_LAST;
1150
1151	return(0);
1152}
1153
1154static int ste_init_rx_list(sc)
1155	struct ste_softc	*sc;
1156{
1157	struct ste_chain_data	*cd;
1158	struct ste_list_data	*ld;
1159	int			i;
1160
1161	cd = &sc->ste_cdata;
1162	ld = sc->ste_ldata;
1163
1164	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1165		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1166		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1167			return(ENOBUFS);
1168		if (i == (STE_RX_LIST_CNT - 1)) {
1169			cd->ste_rx_chain[i].ste_next =
1170			    &cd->ste_rx_chain[0];
1171			ld->ste_rx_list[i].ste_next =
1172			    vtophys(&ld->ste_rx_list[0]);
1173		} else {
1174			cd->ste_rx_chain[i].ste_next =
1175			    &cd->ste_rx_chain[i + 1];
1176			ld->ste_rx_list[i].ste_next =
1177			    vtophys(&ld->ste_rx_list[i + 1]);
1178		}
1179
1180	}
1181
1182	cd->ste_rx_head = &cd->ste_rx_chain[0];
1183
1184	return(0);
1185}
1186
1187static void ste_init_tx_list(sc)
1188	struct ste_softc	*sc;
1189{
1190	struct ste_chain_data	*cd;
1191	struct ste_list_data	*ld;
1192	int			i;
1193
1194	cd = &sc->ste_cdata;
1195	ld = sc->ste_ldata;
1196	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1197		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1198		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1199		if (i == (STE_TX_LIST_CNT - 1))
1200			cd->ste_tx_chain[i].ste_next =
1201			    &cd->ste_tx_chain[0];
1202		else
1203			cd->ste_tx_chain[i].ste_next =
1204			    &cd->ste_tx_chain[i + 1];
1205		if (i == 0)
1206			cd->ste_tx_chain[i].ste_prev =
1207			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1208		else
1209			cd->ste_tx_chain[i].ste_prev =
1210			     &cd->ste_tx_chain[i - 1];
1211	}
1212
1213
1214	bzero((char *)ld->ste_tx_list,
1215	    sizeof(struct ste_desc) * STE_TX_LIST_CNT);
1216
1217	cd->ste_tx_prod = 0;
1218	cd->ste_tx_cons = 0;
1219	cd->ste_tx_cnt = 0;
1220
1221	return;
1222}
1223
1224static void ste_init(xsc)
1225	void			*xsc;
1226{
1227	struct ste_softc	*sc;
1228	int			i;
1229	struct ifnet		*ifp;
1230	struct mii_data		*mii;
1231
1232	sc = xsc;
1233	STE_LOCK(sc);
1234	ifp = &sc->arpcom.ac_if;
1235	mii = device_get_softc(sc->ste_miibus);
1236
1237	ste_stop(sc);
1238
1239	/* Init our MAC address */
1240	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1241		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1242	}
1243
1244	/* Init RX list */
1245	if (ste_init_rx_list(sc) == ENOBUFS) {
1246		printf("ste%d: initialization failed: no "
1247		    "memory for RX buffers\n", sc->ste_unit);
1248		ste_stop(sc);
1249		STE_UNLOCK(sc);
1250		return;
1251	}
1252
1253	/* Init TX descriptors */
1254	ste_init_tx_list(sc);
1255
1256	/* Set the TX freethresh value */
1257	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1258
1259	/* Set the TX start threshold for best performance. */
1260	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1261
1262	/* Set the TX reclaim threshold. */
1263	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1264
1265	/* Set up the RX filter. */
1266	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1267
1268	/* If we want promiscuous mode, set the allframes bit. */
1269	if (ifp->if_flags & IFF_PROMISC) {
1270		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1271	} else {
1272		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1273	}
1274
1275	/* Set capture broadcast bit to accept broadcast frames. */
1276	if (ifp->if_flags & IFF_BROADCAST) {
1277		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1278	} else {
1279		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1280	}
1281
1282	ste_setmulti(sc);
1283
1284	/* Load the address of the RX list. */
1285	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1286	ste_wait(sc);
1287	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1288	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1289	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1290	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1291
1292	/* Set TX polling interval */
1293	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1294
1295	/* Load address of the TX list */
1296	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1297	ste_wait(sc);
1298	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1299	    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1300	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1301	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1302	ste_wait(sc);
1303
1304	/* Enable receiver and transmitter */
1305	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1306	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1307	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1308
1309	/* Enable stats counters. */
1310	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1311
1312	/* Enable interrupts. */
1313	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1314	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1315
1316	ste_ifmedia_upd(ifp);
1317
1318	ifp->if_flags |= IFF_RUNNING;
1319	ifp->if_flags &= ~IFF_OACTIVE;
1320
1321	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
1322	STE_UNLOCK(sc);
1323
1324	return;
1325}
1326
1327static void ste_stop(sc)
1328	struct ste_softc	*sc;
1329{
1330	int			i;
1331	struct ifnet		*ifp;
1332
1333	STE_LOCK(sc);
1334	ifp = &sc->arpcom.ac_if;
1335
1336	untimeout(ste_stats_update, sc, sc->ste_stat_ch);
1337
1338	CSR_WRITE_2(sc, STE_IMR, 0);
1339	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1340	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1341	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1342	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1343	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1344	ste_wait(sc);
1345
1346	sc->ste_link = 0;
1347
1348	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1349		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1350			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1351			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1352		}
1353	}
1354
1355	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1356		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1357			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1358			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1359		}
1360	}
1361
1362	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1363	STE_UNLOCK(sc);
1364
1365	return;
1366}
1367
1368static void ste_reset(sc)
1369	struct ste_softc	*sc;
1370{
1371	int			i;
1372
1373	STE_SETBIT4(sc, STE_ASICCTL,
1374	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1375	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1376	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1377	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1378	    STE_ASICCTL_EXTRESET_RESET);
1379
1380	DELAY(100000);
1381
1382	for (i = 0; i < STE_TIMEOUT; i++) {
1383		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1384			break;
1385	}
1386
1387	if (i == STE_TIMEOUT)
1388		printf("ste%d: global reset never completed\n", sc->ste_unit);
1389
1390	return;
1391}
1392
1393static int ste_ioctl(ifp, command, data)
1394	struct ifnet		*ifp;
1395	u_long			command;
1396	caddr_t			data;
1397{
1398	struct ste_softc	*sc;
1399	struct ifreq		*ifr;
1400	struct mii_data		*mii;
1401	int			error = 0;
1402
1403	sc = ifp->if_softc;
1404	STE_LOCK(sc);
1405	ifr = (struct ifreq *)data;
1406
1407	switch(command) {
1408	case SIOCSIFADDR:
1409	case SIOCGIFADDR:
1410	case SIOCSIFMTU:
1411		error = ether_ioctl(ifp, command, data);
1412		break;
1413	case SIOCSIFFLAGS:
1414		if (ifp->if_flags & IFF_UP) {
1415			if (ifp->if_flags & IFF_RUNNING &&
1416			    ifp->if_flags & IFF_PROMISC &&
1417			    !(sc->ste_if_flags & IFF_PROMISC)) {
1418				STE_SETBIT1(sc, STE_RX_MODE,
1419				    STE_RXMODE_PROMISC);
1420			} else if (ifp->if_flags & IFF_RUNNING &&
1421			    !(ifp->if_flags & IFF_PROMISC) &&
1422			    sc->ste_if_flags & IFF_PROMISC) {
1423				STE_CLRBIT1(sc, STE_RX_MODE,
1424				    STE_RXMODE_PROMISC);
1425			} else if (!(ifp->if_flags & IFF_RUNNING)) {
1426				sc->ste_tx_thresh = STE_MIN_FRAMELEN;
1427				ste_init(sc);
1428			}
1429		} else {
1430			if (ifp->if_flags & IFF_RUNNING)
1431				ste_stop(sc);
1432		}
1433		sc->ste_if_flags = ifp->if_flags;
1434		error = 0;
1435		break;
1436	case SIOCADDMULTI:
1437	case SIOCDELMULTI:
1438		ste_setmulti(sc);
1439		error = 0;
1440		break;
1441	case SIOCGIFMEDIA:
1442	case SIOCSIFMEDIA:
1443		mii = device_get_softc(sc->ste_miibus);
1444		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1445		break;
1446	default:
1447		error = EINVAL;
1448		break;
1449	}
1450
1451	STE_UNLOCK(sc);
1452
1453	return(error);
1454}
1455
1456static int ste_encap(sc, c, m_head)
1457	struct ste_softc	*sc;
1458	struct ste_chain	*c;
1459	struct mbuf		*m_head;
1460{
1461	int			frag = 0;
1462	struct ste_frag		*f = NULL;
1463	struct mbuf		*m;
1464	struct ste_desc		*d;
1465	int			total_len = 0;
1466
1467	d = c->ste_ptr;
1468	d->ste_ctl = 0;
1469	d->ste_next = 0;
1470
1471	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1472		if (m->m_len != 0) {
1473			if (frag == STE_MAXFRAGS)
1474				break;
1475			total_len += m->m_len;
1476			f = &c->ste_ptr->ste_frags[frag];
1477			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1478			f->ste_len = m->m_len;
1479			frag++;
1480		}
1481	}
1482
1483	c->ste_mbuf = m_head;
1484	c->ste_ptr->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1485	c->ste_ptr->ste_ctl = total_len;
1486
1487	return(0);
1488}
1489
1490static void ste_start(ifp)
1491	struct ifnet		*ifp;
1492{
1493	struct ste_softc	*sc;
1494	struct mbuf		*m_head = NULL;
1495	struct ste_chain	*prev = NULL, *cur_tx = NULL, *start_tx;
1496	int			idx;
1497
1498	sc = ifp->if_softc;
1499	STE_LOCK(sc);
1500
1501	if (!sc->ste_link) {
1502		STE_UNLOCK(sc);
1503		return;
1504	}
1505
1506	if (ifp->if_flags & IFF_OACTIVE) {
1507		STE_UNLOCK(sc);
1508		return;
1509	}
1510
1511	idx = sc->ste_cdata.ste_tx_prod;
1512	start_tx = &sc->ste_cdata.ste_tx_chain[idx];
1513
1514	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1515
1516		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1517			ifp->if_flags |= IFF_OACTIVE;
1518			break;
1519		}
1520
1521		IF_DEQUEUE(&ifp->if_snd, m_head);
1522		if (m_head == NULL)
1523			break;
1524
1525		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1526
1527		ste_encap(sc, cur_tx, m_head);
1528
1529		if (prev != NULL)
1530			prev->ste_ptr->ste_next = cur_tx->ste_phys;
1531		prev = cur_tx;
1532
1533		/*
1534		 * If there's a BPF listener, bounce a copy of this frame
1535		 * to him.
1536	 	 */
1537		if (ifp->if_bpf)
1538			bpf_mtap(ifp, cur_tx->ste_mbuf);
1539
1540		STE_INC(idx, STE_TX_LIST_CNT);
1541		sc->ste_cdata.ste_tx_cnt++;
1542	}
1543
1544	if (cur_tx == NULL) {
1545		STE_UNLOCK(sc);
1546		return;
1547	}
1548
1549	cur_tx->ste_ptr->ste_ctl |= STE_TXCTL_DMAINTR;
1550
1551	/* Start transmission */
1552	sc->ste_cdata.ste_tx_prod = idx;
1553	start_tx->ste_prev->ste_ptr->ste_next = start_tx->ste_phys;
1554
1555	ifp->if_timer = 5;
1556	STE_UNLOCK(sc);
1557
1558	return;
1559}
1560
1561static void ste_watchdog(ifp)
1562	struct ifnet		*ifp;
1563{
1564	struct ste_softc	*sc;
1565
1566	sc = ifp->if_softc;
1567	STE_LOCK(sc);
1568
1569	ifp->if_oerrors++;
1570	printf("ste%d: watchdog timeout\n", sc->ste_unit);
1571
1572	ste_txeoc(sc);
1573	ste_txeof(sc);
1574	ste_rxeof(sc);
1575	ste_reset(sc);
1576	ste_init(sc);
1577
1578	if (ifp->if_snd.ifq_head != NULL)
1579		ste_start(ifp);
1580	STE_UNLOCK(sc);
1581
1582	return;
1583}
1584
1585static void ste_shutdown(dev)
1586	device_t		dev;
1587{
1588	struct ste_softc	*sc;
1589
1590	sc = device_get_softc(dev);
1591
1592	ste_stop(sc);
1593
1594	return;
1595}
1596