if_ste.c revision 67164
10SN/A/*
22362SN/A * Copyright (c) 1997, 1998, 1999
30SN/A *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
40SN/A *
50SN/A * Redistribution and use in source and binary forms, with or without
60SN/A * modification, are permitted provided that the following conditions
72362SN/A * are met:
80SN/A * 1. Redistributions of source code must retain the above copyright
92362SN/A *    notice, this list of conditions and the following disclaimer.
100SN/A * 2. Redistributions in binary form must reproduce the above copyright
110SN/A *    notice, this list of conditions and the following disclaimer in the
120SN/A *    documentation and/or other materials provided with the distribution.
130SN/A * 3. All advertising materials mentioning features or use of this software
140SN/A *    must display the following acknowledgement:
150SN/A *	This product includes software developed by Bill Paul.
160SN/A * 4. Neither the name of the author nor the names of any co-contributors
170SN/A *    may be used to endorse or promote products derived from this software
180SN/A *    without specific prior written permission.
190SN/A *
200SN/A * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
212362SN/A * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
222362SN/A * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
232362SN/A * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
240SN/A * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
250SN/A * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
260SN/A * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
270SN/A * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
280SN/A * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
290SN/A * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
300SN/A * THE POSSIBILITY OF SUCH DAMAGE.
310SN/A *
320SN/A * $FreeBSD: head/sys/pci/if_ste.c 67164 2000-10-15 14:19:01Z phk $
330SN/A */
340SN/A
350SN/A#include <sys/param.h>
360SN/A#include <sys/systm.h>
370SN/A#include <sys/sockio.h>
380SN/A#include <sys/mbuf.h>
390SN/A#include <sys/malloc.h>
400SN/A#include <sys/kernel.h>
410SN/A#include <sys/socket.h>
420SN/A
430SN/A#include <net/if.h>
440SN/A#include <net/if_arp.h>
450SN/A#include <net/ethernet.h>
460SN/A#include <net/if_dl.h>
470SN/A#include <net/if_media.h>
480SN/A
490SN/A#include <net/bpf.h>
500SN/A
510SN/A#include <vm/vm.h>              /* for vtophys */
520SN/A#include <vm/pmap.h>            /* for vtophys */
530SN/A#include <machine/bus_memio.h>
540SN/A#include <machine/bus_pio.h>
550SN/A#include <machine/bus.h>
560SN/A#include <machine/resource.h>
570SN/A#include <sys/bus.h>
580SN/A#include <sys/rman.h>
590SN/A
600SN/A#include <dev/mii/mii.h>
610SN/A#include <dev/mii/miivar.h>
620SN/A
630SN/A#include <pci/pcireg.h>
640SN/A#include <pci/pcivar.h>
650SN/A
660SN/A/* "controller miibus0" required.  See GENERIC if you get errors here. */
670SN/A#include "miibus_if.h"
680SN/A
690SN/A#define STE_USEIOSPACE
700SN/A
710SN/A#include <pci/if_stereg.h>
720SN/A
730SN/AMODULE_DEPEND(ste, miibus, 1, 1, 1);
740SN/A
750SN/A#if !defined(lint)
760SN/Astatic const char rcsid[] =
770SN/A  "$FreeBSD: head/sys/pci/if_ste.c 67164 2000-10-15 14:19:01Z phk $";
780SN/A#endif
790SN/A
800SN/A/*
810SN/A * Various supported device vendors/types and their names.
820SN/A */
83static struct ste_type ste_devs[] = {
84	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
85	{ DL_VENDORID, DL_DEVICEID_550TX, "D-Link DFE-550TX 10/100BaseTX" },
86	{ 0, 0, NULL }
87};
88
89static int ste_probe		__P((device_t));
90static int ste_attach		__P((device_t));
91static int ste_detach		__P((device_t));
92static void ste_init		__P((void *));
93static void ste_intr		__P((void *));
94static void ste_rxeof		__P((struct ste_softc *));
95static void ste_txeoc		__P((struct ste_softc *));
96static void ste_txeof		__P((struct ste_softc *));
97static void ste_stats_update	__P((void *));
98static void ste_stop		__P((struct ste_softc *));
99static void ste_reset		__P((struct ste_softc *));
100static int ste_ioctl		__P((struct ifnet *, u_long, caddr_t));
101static int ste_encap		__P((struct ste_softc *, struct ste_chain *,
102					struct mbuf *));
103static void ste_start		__P((struct ifnet *));
104static void ste_watchdog	__P((struct ifnet *));
105static void ste_shutdown	__P((device_t));
106static int ste_newbuf		__P((struct ste_softc *,
107					struct ste_chain_onefrag *,
108					struct mbuf *));
109static int ste_ifmedia_upd	__P((struct ifnet *));
110static void ste_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
111
112static void ste_mii_sync	__P((struct ste_softc *));
113static void ste_mii_send	__P((struct ste_softc *, u_int32_t, int));
114static int ste_mii_readreg	__P((struct ste_softc *,
115					struct ste_mii_frame *));
116static int ste_mii_writereg	__P((struct ste_softc *,
117					struct ste_mii_frame *));
118static int ste_miibus_readreg	__P((device_t, int, int));
119static int ste_miibus_writereg	__P((device_t, int, int, int));
120static void ste_miibus_statchg	__P((device_t));
121
122static int ste_eeprom_wait	__P((struct ste_softc *));
123static int ste_read_eeprom	__P((struct ste_softc *, caddr_t, int,
124							int, int));
125static void ste_wait		__P((struct ste_softc *));
126static u_int8_t ste_calchash	__P((caddr_t));
127static void ste_setmulti	__P((struct ste_softc *));
128static int ste_init_rx_list	__P((struct ste_softc *));
129static void ste_init_tx_list	__P((struct ste_softc *));
130
131#ifdef STE_USEIOSPACE
132#define STE_RES			SYS_RES_IOPORT
133#define STE_RID			STE_PCI_LOIO
134#else
135#define STE_RES			SYS_RES_MEMORY
136#define STE_RID			STE_PCI_LOMEM
137#endif
138
139static device_method_t ste_methods[] = {
140	/* Device interface */
141	DEVMETHOD(device_probe,		ste_probe),
142	DEVMETHOD(device_attach,	ste_attach),
143	DEVMETHOD(device_detach,	ste_detach),
144	DEVMETHOD(device_shutdown,	ste_shutdown),
145
146	/* bus interface */
147	DEVMETHOD(bus_print_child,	bus_generic_print_child),
148	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
149
150	/* MII interface */
151	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
152	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
153	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
154
155	{ 0, 0 }
156};
157
158static driver_t ste_driver = {
159	"ste",
160	ste_methods,
161	sizeof(struct ste_softc)
162};
163
164static devclass_t ste_devclass;
165
166DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, 0, 0);
167DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
168
169#define STE_SETBIT4(sc, reg, x)				\
170	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
171
172#define STE_CLRBIT4(sc, reg, x)				\
173	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
174
175#define STE_SETBIT2(sc, reg, x)				\
176	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
177
178#define STE_CLRBIT2(sc, reg, x)				\
179	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
180
181#define STE_SETBIT1(sc, reg, x)				\
182	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
183
184#define STE_CLRBIT1(sc, reg, x)				\
185	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
186
187
188#define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
189#define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
190
191/*
192 * Sync the PHYs by setting data bit and strobing the clock 32 times.
193 */
194static void ste_mii_sync(sc)
195	struct ste_softc		*sc;
196{
197	register int		i;
198
199	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
200
201	for (i = 0; i < 32; i++) {
202		MII_SET(STE_PHYCTL_MCLK);
203		DELAY(1);
204		MII_CLR(STE_PHYCTL_MCLK);
205		DELAY(1);
206	}
207
208	return;
209}
210
211/*
212 * Clock a series of bits through the MII.
213 */
214static void ste_mii_send(sc, bits, cnt)
215	struct ste_softc		*sc;
216	u_int32_t		bits;
217	int			cnt;
218{
219	int			i;
220
221	MII_CLR(STE_PHYCTL_MCLK);
222
223	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
224                if (bits & i) {
225			MII_SET(STE_PHYCTL_MDATA);
226                } else {
227			MII_CLR(STE_PHYCTL_MDATA);
228                }
229		DELAY(1);
230		MII_CLR(STE_PHYCTL_MCLK);
231		DELAY(1);
232		MII_SET(STE_PHYCTL_MCLK);
233	}
234}
235
236/*
237 * Read an PHY register through the MII.
238 */
239static int ste_mii_readreg(sc, frame)
240	struct ste_softc		*sc;
241	struct ste_mii_frame	*frame;
242
243{
244	int			i, ack;
245
246	STE_LOCK(sc);
247
248	/*
249	 * Set up frame for RX.
250	 */
251	frame->mii_stdelim = STE_MII_STARTDELIM;
252	frame->mii_opcode = STE_MII_READOP;
253	frame->mii_turnaround = 0;
254	frame->mii_data = 0;
255
256	CSR_WRITE_2(sc, STE_PHYCTL, 0);
257	/*
258 	 * Turn on data xmit.
259	 */
260	MII_SET(STE_PHYCTL_MDIR);
261
262	ste_mii_sync(sc);
263
264	/*
265	 * Send command/address info.
266	 */
267	ste_mii_send(sc, frame->mii_stdelim, 2);
268	ste_mii_send(sc, frame->mii_opcode, 2);
269	ste_mii_send(sc, frame->mii_phyaddr, 5);
270	ste_mii_send(sc, frame->mii_regaddr, 5);
271
272	/* Turn off xmit. */
273	MII_CLR(STE_PHYCTL_MDIR);
274
275	/* Idle bit */
276	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
277	DELAY(1);
278	MII_SET(STE_PHYCTL_MCLK);
279	DELAY(1);
280
281	/* Check for ack */
282	MII_CLR(STE_PHYCTL_MCLK);
283	DELAY(1);
284	MII_SET(STE_PHYCTL_MCLK);
285	DELAY(1);
286	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
287
288	/*
289	 * Now try reading data bits. If the ack failed, we still
290	 * need to clock through 16 cycles to keep the PHY(s) in sync.
291	 */
292	if (ack) {
293		for(i = 0; i < 16; i++) {
294			MII_CLR(STE_PHYCTL_MCLK);
295			DELAY(1);
296			MII_SET(STE_PHYCTL_MCLK);
297			DELAY(1);
298		}
299		goto fail;
300	}
301
302	for (i = 0x8000; i; i >>= 1) {
303		MII_CLR(STE_PHYCTL_MCLK);
304		DELAY(1);
305		if (!ack) {
306			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
307				frame->mii_data |= i;
308			DELAY(1);
309		}
310		MII_SET(STE_PHYCTL_MCLK);
311		DELAY(1);
312	}
313
314fail:
315
316	MII_CLR(STE_PHYCTL_MCLK);
317	DELAY(1);
318	MII_SET(STE_PHYCTL_MCLK);
319	DELAY(1);
320
321	STE_UNLOCK(sc);
322
323	if (ack)
324		return(1);
325	return(0);
326}
327
328/*
329 * Write to a PHY register through the MII.
330 */
331static int ste_mii_writereg(sc, frame)
332	struct ste_softc		*sc;
333	struct ste_mii_frame	*frame;
334
335{
336	STE_LOCK(sc);
337
338	/*
339	 * Set up frame for TX.
340	 */
341
342	frame->mii_stdelim = STE_MII_STARTDELIM;
343	frame->mii_opcode = STE_MII_WRITEOP;
344	frame->mii_turnaround = STE_MII_TURNAROUND;
345
346	/*
347 	 * Turn on data output.
348	 */
349	MII_SET(STE_PHYCTL_MDIR);
350
351	ste_mii_sync(sc);
352
353	ste_mii_send(sc, frame->mii_stdelim, 2);
354	ste_mii_send(sc, frame->mii_opcode, 2);
355	ste_mii_send(sc, frame->mii_phyaddr, 5);
356	ste_mii_send(sc, frame->mii_regaddr, 5);
357	ste_mii_send(sc, frame->mii_turnaround, 2);
358	ste_mii_send(sc, frame->mii_data, 16);
359
360	/* Idle bit. */
361	MII_SET(STE_PHYCTL_MCLK);
362	DELAY(1);
363	MII_CLR(STE_PHYCTL_MCLK);
364	DELAY(1);
365
366	/*
367	 * Turn off xmit.
368	 */
369	MII_CLR(STE_PHYCTL_MDIR);
370
371	STE_UNLOCK(sc);
372
373	return(0);
374}
375
376static int ste_miibus_readreg(dev, phy, reg)
377	device_t		dev;
378	int			phy, reg;
379{
380	struct ste_softc	*sc;
381	struct ste_mii_frame	frame;
382
383	sc = device_get_softc(dev);
384
385	bzero((char *)&frame, sizeof(frame));
386
387	frame.mii_phyaddr = phy;
388	frame.mii_regaddr = reg;
389	ste_mii_readreg(sc, &frame);
390
391	return(frame.mii_data);
392}
393
394static int ste_miibus_writereg(dev, phy, reg, data)
395	device_t		dev;
396	int			phy, reg, data;
397{
398	struct ste_softc	*sc;
399	struct ste_mii_frame	frame;
400
401	sc = device_get_softc(dev);
402	bzero((char *)&frame, sizeof(frame));
403
404	frame.mii_phyaddr = phy;
405	frame.mii_regaddr = reg;
406	frame.mii_data = data;
407
408	ste_mii_writereg(sc, &frame);
409
410	return(0);
411}
412
413static void ste_miibus_statchg(dev)
414	device_t		dev;
415{
416	struct ste_softc	*sc;
417	struct mii_data		*mii;
418
419	sc = device_get_softc(dev);
420	STE_LOCK(sc);
421	mii = device_get_softc(sc->ste_miibus);
422
423	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
424		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
425	} else {
426		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
427	}
428	STE_UNLOCK(sc);
429
430	return;
431}
432
433static int ste_ifmedia_upd(ifp)
434	struct ifnet		*ifp;
435{
436	struct ste_softc	*sc;
437	struct mii_data		*mii;
438
439	sc = ifp->if_softc;
440	mii = device_get_softc(sc->ste_miibus);
441	sc->ste_link = 0;
442	if (mii->mii_instance) {
443		struct mii_softc	*miisc;
444		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
445		    miisc = LIST_NEXT(miisc, mii_list))
446			mii_phy_reset(miisc);
447	}
448	mii_mediachg(mii);
449
450	return(0);
451}
452
453static void ste_ifmedia_sts(ifp, ifmr)
454	struct ifnet		*ifp;
455	struct ifmediareq	*ifmr;
456{
457	struct ste_softc	*sc;
458	struct mii_data		*mii;
459
460	sc = ifp->if_softc;
461	mii = device_get_softc(sc->ste_miibus);
462
463	mii_pollstat(mii);
464	ifmr->ifm_active = mii->mii_media_active;
465	ifmr->ifm_status = mii->mii_media_status;
466
467	return;
468}
469
470static void ste_wait(sc)
471	struct ste_softc		*sc;
472{
473	register int		i;
474
475	for (i = 0; i < STE_TIMEOUT; i++) {
476		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
477			break;
478	}
479
480	if (i == STE_TIMEOUT)
481		printf("ste%d: command never completed!\n", sc->ste_unit);
482
483	return;
484}
485
486/*
487 * The EEPROM is slow: give it time to come ready after issuing
488 * it a command.
489 */
490static int ste_eeprom_wait(sc)
491	struct ste_softc		*sc;
492{
493	int			i;
494
495	DELAY(1000);
496
497	for (i = 0; i < 100; i++) {
498		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
499			DELAY(1000);
500		else
501			break;
502	}
503
504	if (i == 100) {
505		printf("ste%d: eeprom failed to come ready\n", sc->ste_unit);
506		return(1);
507	}
508
509	return(0);
510}
511
512/*
513 * Read a sequence of words from the EEPROM. Note that ethernet address
514 * data is stored in the EEPROM in network byte order.
515 */
516static int ste_read_eeprom(sc, dest, off, cnt, swap)
517	struct ste_softc		*sc;
518	caddr_t			dest;
519	int			off;
520	int			cnt;
521	int			swap;
522{
523	int			err = 0, i;
524	u_int16_t		word = 0, *ptr;
525
526	if (ste_eeprom_wait(sc))
527		return(1);
528
529	for (i = 0; i < cnt; i++) {
530		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
531		err = ste_eeprom_wait(sc);
532		if (err)
533			break;
534		word = CSR_READ_2(sc, STE_EEPROM_DATA);
535		ptr = (u_int16_t *)(dest + (i * 2));
536		if (swap)
537			*ptr = ntohs(word);
538		else
539			*ptr = word;
540	}
541
542	return(err ? 1 : 0);
543}
544
545static u_int8_t ste_calchash(addr)
546	caddr_t			addr;
547{
548
549	u_int32_t		crc, carry;
550	int			i, j;
551	u_int8_t		c;
552
553	/* Compute CRC for the address value. */
554	crc = 0xFFFFFFFF; /* initial value */
555
556	for (i = 0; i < 6; i++) {
557		c = *(addr + i);
558		for (j = 0; j < 8; j++) {
559			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
560			crc <<= 1;
561			c >>= 1;
562			if (carry)
563				crc = (crc ^ 0x04c11db6) | carry;
564		}
565	}
566
567	/* return the filter bit position */
568	return(crc & 0x0000003F);
569}
570
571static void ste_setmulti(sc)
572	struct ste_softc	*sc;
573{
574	struct ifnet		*ifp;
575	int			h = 0;
576	u_int32_t		hashes[2] = { 0, 0 };
577	struct ifmultiaddr	*ifma;
578
579	ifp = &sc->arpcom.ac_if;
580	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
581		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
582		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
583		return;
584	}
585
586	/* first, zot all the existing hash bits */
587	CSR_WRITE_4(sc, STE_MAR0, 0);
588	CSR_WRITE_4(sc, STE_MAR1, 0);
589
590	/* now program new ones */
591	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
592	    ifma = ifma->ifma_link.le_next) {
593		if (ifma->ifma_addr->sa_family != AF_LINK)
594			continue;
595		h = ste_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
596		if (h < 32)
597			hashes[0] |= (1 << h);
598		else
599			hashes[1] |= (1 << (h - 32));
600	}
601
602	CSR_WRITE_4(sc, STE_MAR0, hashes[0]);
603	CSR_WRITE_4(sc, STE_MAR1, hashes[1]);
604	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
605	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
606
607	return;
608}
609
610static void ste_intr(xsc)
611	void			*xsc;
612{
613	struct ste_softc	*sc;
614	struct ifnet		*ifp;
615	u_int16_t		status;
616
617	sc = xsc;
618	STE_LOCK(sc);
619	ifp = &sc->arpcom.ac_if;
620
621	/* See if this is really our interrupt. */
622	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH)) {
623		STE_UNLOCK(sc);
624		return;
625	}
626
627	for (;;) {
628		status = CSR_READ_2(sc, STE_ISR_ACK);
629
630		if (!(status & STE_INTRS))
631			break;
632
633		if (status & STE_ISR_RX_DMADONE)
634			ste_rxeof(sc);
635
636		if (status & STE_ISR_TX_DMADONE)
637			ste_txeof(sc);
638
639		if (status & STE_ISR_TX_DONE)
640			ste_txeoc(sc);
641
642		if (status & STE_ISR_STATS_OFLOW) {
643			untimeout(ste_stats_update, sc, sc->ste_stat_ch);
644			ste_stats_update(sc);
645		}
646
647		if (status & STE_ISR_HOSTERR) {
648			ste_reset(sc);
649			ste_init(sc);
650		}
651	}
652
653	/* Re-enable interrupts */
654	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
655
656	if (ifp->if_snd.ifq_head != NULL)
657		ste_start(ifp);
658
659	STE_UNLOCK(sc);
660
661	return;
662}
663
664/*
665 * A frame has been uploaded: pass the resulting mbuf chain up to
666 * the higher level protocols.
667 */
668static void ste_rxeof(sc)
669	struct ste_softc		*sc;
670{
671        struct ether_header	*eh;
672        struct mbuf		*m;
673        struct ifnet		*ifp;
674	struct ste_chain_onefrag	*cur_rx;
675	int			total_len = 0;
676	u_int32_t		rxstat;
677
678	ifp = &sc->arpcom.ac_if;
679
680again:
681
682	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)) {
683		cur_rx = sc->ste_cdata.ste_rx_head;
684		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
685
686		/*
687		 * If an error occurs, update stats, clear the
688		 * status word and leave the mbuf cluster in place:
689		 * it should simply get re-used next time this descriptor
690	 	 * comes up in the ring.
691		 */
692		if (rxstat & STE_RXSTAT_FRAME_ERR) {
693			ifp->if_ierrors++;
694			cur_rx->ste_ptr->ste_status = 0;
695			continue;
696		}
697
698		/*
699		 * If there error bit was not set, the upload complete
700		 * bit should be set which means we have a valid packet.
701		 * If not, something truly strange has happened.
702		 */
703		if (!(rxstat & STE_RXSTAT_DMADONE)) {
704			printf("ste%d: bad receive status -- packet dropped",
705							sc->ste_unit);
706			ifp->if_ierrors++;
707			cur_rx->ste_ptr->ste_status = 0;
708			continue;
709		}
710
711		/* No errors; receive the packet. */
712		m = cur_rx->ste_mbuf;
713		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
714
715		/*
716		 * Try to conjure up a new mbuf cluster. If that
717		 * fails, it means we have an out of memory condition and
718		 * should leave the buffer in place and continue. This will
719		 * result in a lost packet, but there's little else we
720		 * can do in this situation.
721		 */
722		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
723			ifp->if_ierrors++;
724			cur_rx->ste_ptr->ste_status = 0;
725			continue;
726		}
727
728		ifp->if_ipackets++;
729		eh = mtod(m, struct ether_header *);
730		m->m_pkthdr.rcvif = ifp;
731		m->m_pkthdr.len = m->m_len = total_len;
732
733		/* Remove header from mbuf and pass it on. */
734		m_adj(m, sizeof(struct ether_header));
735		ether_input(ifp, eh, m);
736	}
737
738	/*
739	 * Handle the 'end of channel' condition. When the upload
740	 * engine hits the end of the RX ring, it will stall. This
741	 * is our cue to flush the RX ring, reload the uplist pointer
742	 * register and unstall the engine.
743	 * XXX This is actually a little goofy. With the ThunderLAN
744	 * chip, you get an interrupt when the receiver hits the end
745	 * of the receive ring, which tells you exactly when you
746	 * you need to reload the ring pointer. Here we have to
747	 * fake it. I'm mad at myself for not being clever enough
748	 * to avoid the use of a goto here.
749	 */
750	if (CSR_READ_4(sc, STE_RX_DMALIST_PTR) == 0 ||
751		CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_RXDMA_STOPPED) {
752		STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
753		ste_wait(sc);
754		CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
755			vtophys(&sc->ste_ldata->ste_rx_list[0]));
756		sc->ste_cdata.ste_rx_head = &sc->ste_cdata.ste_rx_chain[0];
757		STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
758		goto again;
759	}
760
761	return;
762}
763
764static void ste_txeoc(sc)
765	struct ste_softc	*sc;
766{
767	u_int8_t		txstat;
768	struct ifnet		*ifp;
769
770	ifp = &sc->arpcom.ac_if;
771
772	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
773	    STE_TXSTATUS_TXDONE) {
774		if (txstat & STE_TXSTATUS_UNDERRUN ||
775		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
776		    txstat & STE_TXSTATUS_RECLAIMERR) {
777			ifp->if_oerrors++;
778			printf("ste%d: transmission error: %x\n",
779			    sc->ste_unit, txstat);
780
781			ste_reset(sc);
782			ste_init(sc);
783
784			if (txstat & STE_TXSTATUS_UNDERRUN &&
785			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
786				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
787				printf("ste%d: tx underrun, increasing tx"
788				    " start threshold to %d bytes\n",
789				    sc->ste_unit, sc->ste_tx_thresh);
790			}
791			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
792			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
793			    (STE_PACKET_SIZE >> 4));
794		}
795		ste_init(sc);
796		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
797	}
798
799	return;
800}
801
802static void ste_txeof(sc)
803	struct ste_softc	*sc;
804{
805	struct ste_chain	*cur_tx = NULL;
806	struct ifnet		*ifp;
807	int			idx;
808
809	ifp = &sc->arpcom.ac_if;
810
811	idx = sc->ste_cdata.ste_tx_cons;
812	while(idx != sc->ste_cdata.ste_tx_prod) {
813		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
814
815		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
816			break;
817
818		if (cur_tx->ste_mbuf != NULL) {
819			m_freem(cur_tx->ste_mbuf);
820			cur_tx->ste_mbuf = NULL;
821		}
822
823		ifp->if_opackets++;
824
825		sc->ste_cdata.ste_tx_cnt--;
826		STE_INC(idx, STE_TX_LIST_CNT);
827		ifp->if_timer = 0;
828	}
829
830	sc->ste_cdata.ste_tx_cons = idx;
831
832	if (cur_tx != NULL)
833		ifp->if_flags &= ~IFF_OACTIVE;
834
835	return;
836}
837
838static void ste_stats_update(xsc)
839	void			*xsc;
840{
841	struct ste_softc	*sc;
842	struct ste_stats	stats;
843	struct ifnet		*ifp;
844	struct mii_data		*mii;
845	int			i;
846	u_int8_t		*p;
847
848	sc = xsc;
849	STE_LOCK(sc);
850
851	ifp = &sc->arpcom.ac_if;
852	mii = device_get_softc(sc->ste_miibus);
853
854	p = (u_int8_t *)&stats;
855
856	for (i = 0; i < sizeof(stats); i++) {
857		*p = CSR_READ_1(sc, STE_STATS + i);
858		p++;
859	}
860
861	ifp->if_collisions += stats.ste_single_colls +
862	    stats.ste_multi_colls + stats.ste_late_colls;
863
864	mii_tick(mii);
865	if (!sc->ste_link) {
866		mii_pollstat(mii);
867		if (mii->mii_media_status & IFM_ACTIVE &&
868		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
869			sc->ste_link++;
870			if (ifp->if_snd.ifq_head != NULL)
871				ste_start(ifp);
872	}
873
874	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
875	STE_UNLOCK(sc);
876
877	return;
878}
879
880
881/*
882 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
883 * IDs against our list and return a device name if we find a match.
884 */
885static int ste_probe(dev)
886	device_t		dev;
887{
888	struct ste_type		*t;
889
890	t = ste_devs;
891
892	while(t->ste_name != NULL) {
893		if ((pci_get_vendor(dev) == t->ste_vid) &&
894		    (pci_get_device(dev) == t->ste_did)) {
895			device_set_desc(dev, t->ste_name);
896			return(0);
897		}
898		t++;
899	}
900
901	return(ENXIO);
902}
903
904/*
905 * Attach the interface. Allocate softc structures, do ifmedia
906 * setup and ethernet/BPF attach.
907 */
908static int ste_attach(dev)
909	device_t		dev;
910{
911	u_int32_t		command;
912	struct ste_softc	*sc;
913	struct ifnet		*ifp;
914	int			unit, error = 0, rid;
915
916	sc = device_get_softc(dev);
917	unit = device_get_unit(dev);
918	bzero(sc, sizeof(struct ste_softc));
919
920	/*
921	 * Handle power management nonsense.
922	 */
923	command = pci_read_config(dev, STE_PCI_CAPID, 4) & 0x000000FF;
924	if (command == 0x01) {
925
926		command = pci_read_config(dev, STE_PCI_PWRMGMTCTRL, 4);
927		if (command & STE_PSTATE_MASK) {
928			u_int32_t		iobase, membase, irq;
929
930			/* Save important PCI config data. */
931			iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
932			membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
933			irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
934
935			/* Reset the power state. */
936			printf("ste%d: chip is in D%d power mode "
937			"-- setting to D0\n", unit, command & STE_PSTATE_MASK);
938			command &= 0xFFFFFFFC;
939			pci_write_config(dev, STE_PCI_PWRMGMTCTRL, command, 4);
940
941			/* Restore PCI config data. */
942			pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
943			pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
944			pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
945		}
946	}
947
948	/*
949	 * Map control/status registers.
950	 */
951	command = pci_read_config(dev, PCIR_COMMAND, 4);
952	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
953	pci_write_config(dev, PCIR_COMMAND, command, 4);
954	command = pci_read_config(dev, PCIR_COMMAND, 4);
955
956#ifdef STE_USEIOSPACE
957	if (!(command & PCIM_CMD_PORTEN)) {
958		printf("ste%d: failed to enable I/O ports!\n", unit);
959		error = ENXIO;
960		goto fail;
961	}
962#else
963	if (!(command & PCIM_CMD_MEMEN)) {
964		printf("ste%d: failed to enable memory mapping!\n", unit);
965		error = ENXIO;
966		goto fail;
967	}
968#endif
969
970	rid = STE_RID;
971	sc->ste_res = bus_alloc_resource(dev, STE_RES, &rid,
972	    0, ~0, 1, RF_ACTIVE);
973
974	if (sc->ste_res == NULL) {
975		printf ("ste%d: couldn't map ports/memory\n", unit);
976		error = ENXIO;
977		goto fail;
978	}
979
980	sc->ste_btag = rman_get_bustag(sc->ste_res);
981	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
982
983	rid = 0;
984	sc->ste_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
985	    RF_SHAREABLE | RF_ACTIVE);
986
987	if (sc->ste_irq == NULL) {
988		printf("ste%d: couldn't map interrupt\n", unit);
989		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
990		error = ENXIO;
991		goto fail;
992	}
993
994	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
995	    ste_intr, sc, &sc->ste_intrhand);
996
997	if (error) {
998		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
999		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1000		printf("ste%d: couldn't set up irq\n", unit);
1001		goto fail;
1002	}
1003
1004	callout_handle_init(&sc->ste_stat_ch);
1005	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_DEF);
1006	STE_LOCK(sc);
1007
1008	/* Reset the adapter. */
1009	ste_reset(sc);
1010
1011	/*
1012	 * Get station address from the EEPROM.
1013	 */
1014	if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1015	    STE_EEADDR_NODE0, 3, 0)) {
1016		printf("ste%d: failed to read station address\n", unit);
1017		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1018		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1019		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1020		error = ENXIO;;
1021		goto fail;
1022	}
1023
1024	/*
1025	 * A Sundance chip was detected. Inform the world.
1026	 */
1027	printf("ste%d: Ethernet address: %6D\n", unit,
1028	    sc->arpcom.ac_enaddr, ":");
1029
1030	sc->ste_unit = unit;
1031
1032	/* Allocate the descriptor queues. */
1033	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
1034	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1035
1036	if (sc->ste_ldata == NULL) {
1037		printf("ste%d: no memory for list buffers!\n", unit);
1038		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1039		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1040		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1041		error = ENXIO;
1042		goto fail;
1043	}
1044
1045	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1046
1047	/* Do MII setup. */
1048	if (mii_phy_probe(dev, &sc->ste_miibus,
1049		ste_ifmedia_upd, ste_ifmedia_sts)) {
1050		printf("ste%d: MII without any phy!\n", sc->ste_unit);
1051		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1052		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1053		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1054		contigfree(sc->ste_ldata,
1055		    sizeof(struct ste_list_data), M_DEVBUF);
1056		error = ENXIO;
1057		goto fail;
1058	}
1059
1060	ifp = &sc->arpcom.ac_if;
1061	ifp->if_softc = sc;
1062	ifp->if_unit = unit;
1063	ifp->if_name = "ste";
1064	ifp->if_mtu = ETHERMTU;
1065	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1066	ifp->if_ioctl = ste_ioctl;
1067	ifp->if_output = ether_output;
1068	ifp->if_start = ste_start;
1069	ifp->if_watchdog = ste_watchdog;
1070	ifp->if_init = ste_init;
1071	ifp->if_baudrate = 10000000;
1072	ifp->if_snd.ifq_maxlen = STE_TX_LIST_CNT - 1;
1073
1074	/*
1075	 * Call MI attach routine.
1076	 */
1077	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1078	STE_UNLOCK(sc);
1079	return(0);
1080
1081fail:
1082	STE_UNLOCK(sc);
1083	mtx_destroy(&sc->ste_mtx);
1084	return(error);
1085}
1086
1087static int ste_detach(dev)
1088	device_t		dev;
1089{
1090	struct ste_softc	*sc;
1091	struct ifnet		*ifp;
1092
1093	sc = device_get_softc(dev);
1094	STE_LOCK(sc);
1095	ifp = &sc->arpcom.ac_if;
1096
1097	ste_stop(sc);
1098	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1099
1100	bus_generic_detach(dev);
1101	device_delete_child(dev, sc->ste_miibus);
1102
1103	bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1104	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1105	bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1106
1107	contigfree(sc->ste_ldata, sizeof(struct ste_list_data), M_DEVBUF);
1108
1109	STE_UNLOCK(sc);
1110	mtx_destroy(&sc->ste_mtx);
1111
1112	return(0);
1113}
1114
1115static int ste_newbuf(sc, c, m)
1116	struct ste_softc	*sc;
1117	struct ste_chain_onefrag	*c;
1118	struct mbuf		*m;
1119{
1120	struct mbuf		*m_new = NULL;
1121
1122	if (m == NULL) {
1123		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1124		if (m_new == NULL) {
1125			printf("ste%d: no memory for rx list -- "
1126			    "packet dropped\n", sc->ste_unit);
1127			return(ENOBUFS);
1128		}
1129		MCLGET(m_new, M_DONTWAIT);
1130		if (!(m_new->m_flags & M_EXT)) {
1131			printf("ste%d: no memory for rx list -- "
1132			    "packet dropped\n", sc->ste_unit);
1133			m_freem(m_new);
1134			return(ENOBUFS);
1135		}
1136		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1137	} else {
1138		m_new = m;
1139		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1140		m_new->m_data = m_new->m_ext.ext_buf;
1141	}
1142
1143	m_adj(m_new, ETHER_ALIGN);
1144
1145	c->ste_mbuf = m_new;
1146	c->ste_ptr->ste_status = 0;
1147	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1148	c->ste_ptr->ste_frag.ste_len = 1536 | STE_FRAG_LAST;
1149
1150	return(0);
1151}
1152
1153static int ste_init_rx_list(sc)
1154	struct ste_softc	*sc;
1155{
1156	struct ste_chain_data	*cd;
1157	struct ste_list_data	*ld;
1158	int			i;
1159
1160	cd = &sc->ste_cdata;
1161	ld = sc->ste_ldata;
1162
1163	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1164		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1165		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1166			return(ENOBUFS);
1167		if (i == (STE_RX_LIST_CNT - 1)) {
1168			cd->ste_rx_chain[i].ste_next =
1169			    &cd->ste_rx_chain[0];
1170			ld->ste_rx_list[i].ste_next =
1171			    vtophys(&ld->ste_rx_list[0]);
1172		} else {
1173			cd->ste_rx_chain[i].ste_next =
1174			    &cd->ste_rx_chain[i + 1];
1175			ld->ste_rx_list[i].ste_next =
1176			    vtophys(&ld->ste_rx_list[i + 1]);
1177		}
1178
1179	}
1180
1181	cd->ste_rx_head = &cd->ste_rx_chain[0];
1182
1183	return(0);
1184}
1185
1186static void ste_init_tx_list(sc)
1187	struct ste_softc	*sc;
1188{
1189	struct ste_chain_data	*cd;
1190	struct ste_list_data	*ld;
1191	int			i;
1192
1193	cd = &sc->ste_cdata;
1194	ld = sc->ste_ldata;
1195	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1196		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1197		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1198		if (i == (STE_TX_LIST_CNT - 1))
1199			cd->ste_tx_chain[i].ste_next =
1200			    &cd->ste_tx_chain[0];
1201		else
1202			cd->ste_tx_chain[i].ste_next =
1203			    &cd->ste_tx_chain[i + 1];
1204		if (i == 0)
1205			cd->ste_tx_chain[i].ste_prev =
1206			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1207		else
1208			cd->ste_tx_chain[i].ste_prev =
1209			     &cd->ste_tx_chain[i - 1];
1210	}
1211
1212
1213	bzero((char *)ld->ste_tx_list,
1214	    sizeof(struct ste_desc) * STE_TX_LIST_CNT);
1215
1216	cd->ste_tx_prod = 0;
1217	cd->ste_tx_cons = 0;
1218	cd->ste_tx_cnt = 0;
1219
1220	return;
1221}
1222
1223static void ste_init(xsc)
1224	void			*xsc;
1225{
1226	struct ste_softc	*sc;
1227	int			i;
1228	struct ifnet		*ifp;
1229	struct mii_data		*mii;
1230
1231	sc = xsc;
1232	STE_LOCK(sc);
1233	ifp = &sc->arpcom.ac_if;
1234	mii = device_get_softc(sc->ste_miibus);
1235
1236	ste_stop(sc);
1237
1238	/* Init our MAC address */
1239	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1240		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1241	}
1242
1243	/* Init RX list */
1244	if (ste_init_rx_list(sc) == ENOBUFS) {
1245		printf("ste%d: initialization failed: no "
1246		    "memory for RX buffers\n", sc->ste_unit);
1247		ste_stop(sc);
1248		STE_UNLOCK(sc);
1249		return;
1250	}
1251
1252	/* Init TX descriptors */
1253	ste_init_tx_list(sc);
1254
1255	/* Set the TX freethresh value */
1256	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1257
1258	/* Set the TX start threshold for best performance. */
1259	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1260
1261	/* Set the TX reclaim threshold. */
1262	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1263
1264	/* Set up the RX filter. */
1265	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1266
1267	/* If we want promiscuous mode, set the allframes bit. */
1268	if (ifp->if_flags & IFF_PROMISC) {
1269		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1270	} else {
1271		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1272	}
1273
1274	/* Set capture broadcast bit to accept broadcast frames. */
1275	if (ifp->if_flags & IFF_BROADCAST) {
1276		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1277	} else {
1278		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1279	}
1280
1281	ste_setmulti(sc);
1282
1283	/* Load the address of the RX list. */
1284	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1285	ste_wait(sc);
1286	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1287	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1288	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1289	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1290
1291	/* Set TX polling interval */
1292	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1293
1294	/* Load address of the TX list */
1295	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1296	ste_wait(sc);
1297	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1298	    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1299	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1300	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1301	ste_wait(sc);
1302
1303	/* Enable receiver and transmitter */
1304	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1305	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1306	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1307
1308	/* Enable stats counters. */
1309	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1310
1311	/* Enable interrupts. */
1312	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1313	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1314
1315	ste_ifmedia_upd(ifp);
1316
1317	ifp->if_flags |= IFF_RUNNING;
1318	ifp->if_flags &= ~IFF_OACTIVE;
1319
1320	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
1321	STE_UNLOCK(sc);
1322
1323	return;
1324}
1325
1326static void ste_stop(sc)
1327	struct ste_softc	*sc;
1328{
1329	int			i;
1330	struct ifnet		*ifp;
1331
1332	STE_LOCK(sc);
1333	ifp = &sc->arpcom.ac_if;
1334
1335	untimeout(ste_stats_update, sc, sc->ste_stat_ch);
1336
1337	CSR_WRITE_2(sc, STE_IMR, 0);
1338	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1339	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1340	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1341	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1342	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1343	ste_wait(sc);
1344
1345	sc->ste_link = 0;
1346
1347	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1348		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1349			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1350			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1351		}
1352	}
1353
1354	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1355		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1356			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1357			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1358		}
1359	}
1360
1361	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1362	STE_UNLOCK(sc);
1363
1364	return;
1365}
1366
1367static void ste_reset(sc)
1368	struct ste_softc	*sc;
1369{
1370	int			i;
1371
1372	STE_SETBIT4(sc, STE_ASICCTL,
1373	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1374	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1375	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1376	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1377	    STE_ASICCTL_EXTRESET_RESET);
1378
1379	DELAY(100000);
1380
1381	for (i = 0; i < STE_TIMEOUT; i++) {
1382		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1383			break;
1384	}
1385
1386	if (i == STE_TIMEOUT)
1387		printf("ste%d: global reset never completed\n", sc->ste_unit);
1388
1389	return;
1390}
1391
1392static int ste_ioctl(ifp, command, data)
1393	struct ifnet		*ifp;
1394	u_long			command;
1395	caddr_t			data;
1396{
1397	struct ste_softc	*sc;
1398	struct ifreq		*ifr;
1399	struct mii_data		*mii;
1400	int			error = 0;
1401
1402	sc = ifp->if_softc;
1403	STE_LOCK(sc);
1404	ifr = (struct ifreq *)data;
1405
1406	switch(command) {
1407	case SIOCSIFADDR:
1408	case SIOCGIFADDR:
1409	case SIOCSIFMTU:
1410		error = ether_ioctl(ifp, command, data);
1411		break;
1412	case SIOCSIFFLAGS:
1413		if (ifp->if_flags & IFF_UP) {
1414			if (ifp->if_flags & IFF_RUNNING &&
1415			    ifp->if_flags & IFF_PROMISC &&
1416			    !(sc->ste_if_flags & IFF_PROMISC)) {
1417				STE_SETBIT1(sc, STE_RX_MODE,
1418				    STE_RXMODE_PROMISC);
1419			} else if (ifp->if_flags & IFF_RUNNING &&
1420			    !(ifp->if_flags & IFF_PROMISC) &&
1421			    sc->ste_if_flags & IFF_PROMISC) {
1422				STE_CLRBIT1(sc, STE_RX_MODE,
1423				    STE_RXMODE_PROMISC);
1424			} else if (!(ifp->if_flags & IFF_RUNNING)) {
1425				sc->ste_tx_thresh = STE_MIN_FRAMELEN;
1426				ste_init(sc);
1427			}
1428		} else {
1429			if (ifp->if_flags & IFF_RUNNING)
1430				ste_stop(sc);
1431		}
1432		sc->ste_if_flags = ifp->if_flags;
1433		error = 0;
1434		break;
1435	case SIOCADDMULTI:
1436	case SIOCDELMULTI:
1437		ste_setmulti(sc);
1438		error = 0;
1439		break;
1440	case SIOCGIFMEDIA:
1441	case SIOCSIFMEDIA:
1442		mii = device_get_softc(sc->ste_miibus);
1443		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1444		break;
1445	default:
1446		error = EINVAL;
1447		break;
1448	}
1449
1450	STE_UNLOCK(sc);
1451
1452	return(error);
1453}
1454
1455static int ste_encap(sc, c, m_head)
1456	struct ste_softc	*sc;
1457	struct ste_chain	*c;
1458	struct mbuf		*m_head;
1459{
1460	int			frag = 0;
1461	struct ste_frag		*f = NULL;
1462	struct mbuf		*m;
1463	struct ste_desc		*d;
1464	int			total_len = 0;
1465
1466	d = c->ste_ptr;
1467	d->ste_ctl = 0;
1468	d->ste_next = 0;
1469
1470	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1471		if (m->m_len != 0) {
1472			if (frag == STE_MAXFRAGS)
1473				break;
1474			total_len += m->m_len;
1475			f = &c->ste_ptr->ste_frags[frag];
1476			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1477			f->ste_len = m->m_len;
1478			frag++;
1479		}
1480	}
1481
1482	c->ste_mbuf = m_head;
1483	c->ste_ptr->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1484	c->ste_ptr->ste_ctl = total_len;
1485
1486	return(0);
1487}
1488
1489static void ste_start(ifp)
1490	struct ifnet		*ifp;
1491{
1492	struct ste_softc	*sc;
1493	struct mbuf		*m_head = NULL;
1494	struct ste_chain	*prev = NULL, *cur_tx = NULL, *start_tx;
1495	int			idx;
1496
1497	sc = ifp->if_softc;
1498	STE_LOCK(sc);
1499
1500	if (!sc->ste_link) {
1501		STE_UNLOCK(sc);
1502		return;
1503	}
1504
1505	if (ifp->if_flags & IFF_OACTIVE) {
1506		STE_UNLOCK(sc);
1507		return;
1508	}
1509
1510	idx = sc->ste_cdata.ste_tx_prod;
1511	start_tx = &sc->ste_cdata.ste_tx_chain[idx];
1512
1513	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1514
1515		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1516			ifp->if_flags |= IFF_OACTIVE;
1517			break;
1518		}
1519
1520		IF_DEQUEUE(&ifp->if_snd, m_head);
1521		if (m_head == NULL)
1522			break;
1523
1524		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1525
1526		ste_encap(sc, cur_tx, m_head);
1527
1528		if (prev != NULL)
1529			prev->ste_ptr->ste_next = cur_tx->ste_phys;
1530		prev = cur_tx;
1531
1532		/*
1533		 * If there's a BPF listener, bounce a copy of this frame
1534		 * to him.
1535	 	 */
1536		if (ifp->if_bpf)
1537			bpf_mtap(ifp, cur_tx->ste_mbuf);
1538
1539		STE_INC(idx, STE_TX_LIST_CNT);
1540		sc->ste_cdata.ste_tx_cnt++;
1541	}
1542
1543	if (cur_tx == NULL) {
1544		STE_UNLOCK(sc);
1545		return;
1546	}
1547
1548	cur_tx->ste_ptr->ste_ctl |= STE_TXCTL_DMAINTR;
1549
1550	/* Start transmission */
1551	sc->ste_cdata.ste_tx_prod = idx;
1552	start_tx->ste_prev->ste_ptr->ste_next = start_tx->ste_phys;
1553
1554	ifp->if_timer = 5;
1555	STE_UNLOCK(sc);
1556
1557	return;
1558}
1559
1560static void ste_watchdog(ifp)
1561	struct ifnet		*ifp;
1562{
1563	struct ste_softc	*sc;
1564
1565	sc = ifp->if_softc;
1566	STE_LOCK(sc);
1567
1568	ifp->if_oerrors++;
1569	printf("ste%d: watchdog timeout\n", sc->ste_unit);
1570
1571	ste_txeoc(sc);
1572	ste_txeof(sc);
1573	ste_rxeof(sc);
1574	ste_reset(sc);
1575	ste_init(sc);
1576
1577	if (ifp->if_snd.ifq_head != NULL)
1578		ste_start(ifp);
1579	STE_UNLOCK(sc);
1580
1581	return;
1582}
1583
1584static void ste_shutdown(dev)
1585	device_t		dev;
1586{
1587	struct ste_softc	*sc;
1588
1589	sc = device_get_softc(dev);
1590
1591	ste_stop(sc);
1592
1593	return;
1594}
1595