if_ste.c revision 217323
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/ste/if_ste.c 217323 2011-01-12 19:53:56Z mdf $");
35
36#ifdef HAVE_KERNEL_OPTION_HEADERS
37#include "opt_device_polling.h"
38#endif
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/endian.h>
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/module.h>
49#include <sys/rman.h>
50#include <sys/socket.h>
51#include <sys/sockio.h>
52#include <sys/sysctl.h>
53
54#include <net/bpf.h>
55#include <net/if.h>
56#include <net/if_arp.h>
57#include <net/ethernet.h>
58#include <net/if_dl.h>
59#include <net/if_media.h>
60#include <net/if_types.h>
61#include <net/if_vlan_var.h>
62
63#include <machine/bus.h>
64#include <machine/resource.h>
65
66#include <dev/mii/mii.h>
67#include <dev/mii/miivar.h>
68
69#include <dev/pci/pcireg.h>
70#include <dev/pci/pcivar.h>
71
72#include <dev/ste/if_stereg.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77MODULE_DEPEND(ste, pci, 1, 1, 1);
78MODULE_DEPEND(ste, ether, 1, 1, 1);
79MODULE_DEPEND(ste, miibus, 1, 1, 1);
80
81/* Define to show Tx error status. */
82#define	STE_SHOW_TXERRORS
83
84/*
85 * Various supported device vendors/types and their names.
86 */
87static struct ste_type ste_devs[] = {
88	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
89	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
90	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
91	{ 0, 0, NULL }
92};
93
94static int	ste_attach(device_t);
95static int	ste_detach(device_t);
96static int	ste_probe(device_t);
97static int	ste_resume(device_t);
98static int	ste_shutdown(device_t);
99static int	ste_suspend(device_t);
100
101static int	ste_dma_alloc(struct ste_softc *);
102static void	ste_dma_free(struct ste_softc *);
103static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
104static int 	ste_eeprom_wait(struct ste_softc *);
105static int	ste_encap(struct ste_softc *, struct mbuf **,
106		    struct ste_chain *);
107static int	ste_ifmedia_upd(struct ifnet *);
108static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109static void	ste_init(void *);
110static void	ste_init_locked(struct ste_softc *);
111static int	ste_init_rx_list(struct ste_softc *);
112static void	ste_init_tx_list(struct ste_softc *);
113static void	ste_intr(void *);
114static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
115static int	ste_mii_readreg(struct ste_softc *, struct ste_mii_frame *);
116static void	ste_mii_send(struct ste_softc *, uint32_t, int);
117static void	ste_mii_sync(struct ste_softc *);
118static int	ste_mii_writereg(struct ste_softc *, struct ste_mii_frame *);
119static int	ste_miibus_readreg(device_t, int, int);
120static void	ste_miibus_statchg(device_t);
121static int	ste_miibus_writereg(device_t, int, int, int);
122static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
123static int	ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
124static void	ste_reset(struct ste_softc *);
125static void	ste_restart_tx(struct ste_softc *);
126static int	ste_rxeof(struct ste_softc *, int);
127static void	ste_rxfilter(struct ste_softc *);
128static void	ste_setwol(struct ste_softc *);
129static void	ste_start(struct ifnet *);
130static void	ste_start_locked(struct ifnet *);
131static void	ste_stats_clear(struct ste_softc *);
132static void	ste_stats_update(struct ste_softc *);
133static void	ste_stop(struct ste_softc *);
134static void	ste_sysctl_node(struct ste_softc *);
135static void	ste_tick(void *);
136static void	ste_txeoc(struct ste_softc *);
137static void	ste_txeof(struct ste_softc *);
138static void	ste_wait(struct ste_softc *);
139static void	ste_watchdog(struct ste_softc *);
140
141static device_method_t ste_methods[] = {
142	/* Device interface */
143	DEVMETHOD(device_probe,		ste_probe),
144	DEVMETHOD(device_attach,	ste_attach),
145	DEVMETHOD(device_detach,	ste_detach),
146	DEVMETHOD(device_shutdown,	ste_shutdown),
147	DEVMETHOD(device_suspend,	ste_suspend),
148	DEVMETHOD(device_resume,	ste_resume),
149
150	/* bus interface */
151	DEVMETHOD(bus_print_child,	bus_generic_print_child),
152	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
153
154	/* MII interface */
155	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
156	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
157	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
158
159	{ 0, 0 }
160};
161
162static driver_t ste_driver = {
163	"ste",
164	ste_methods,
165	sizeof(struct ste_softc)
166};
167
168static devclass_t ste_devclass;
169
170DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
171DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
172
173#define STE_SETBIT4(sc, reg, x)				\
174	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
175
176#define STE_CLRBIT4(sc, reg, x)				\
177	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
178
179#define STE_SETBIT2(sc, reg, x)				\
180	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
181
182#define STE_CLRBIT2(sc, reg, x)				\
183	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
184
185#define STE_SETBIT1(sc, reg, x)				\
186	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
187
188#define STE_CLRBIT1(sc, reg, x)				\
189	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
190
191
192#define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
193#define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
194
195/*
196 * Sync the PHYs by setting data bit and strobing the clock 32 times.
197 */
198static void
199ste_mii_sync(struct ste_softc *sc)
200{
201	int i;
202
203	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
204
205	for (i = 0; i < 32; i++) {
206		MII_SET(STE_PHYCTL_MCLK);
207		DELAY(1);
208		MII_CLR(STE_PHYCTL_MCLK);
209		DELAY(1);
210	}
211}
212
213/*
214 * Clock a series of bits through the MII.
215 */
216static void
217ste_mii_send(struct ste_softc *sc, uint32_t bits, int cnt)
218{
219	int i;
220
221	MII_CLR(STE_PHYCTL_MCLK);
222
223	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
224		if (bits & i) {
225			MII_SET(STE_PHYCTL_MDATA);
226                } else {
227			MII_CLR(STE_PHYCTL_MDATA);
228                }
229		DELAY(1);
230		MII_CLR(STE_PHYCTL_MCLK);
231		DELAY(1);
232		MII_SET(STE_PHYCTL_MCLK);
233	}
234}
235
236/*
237 * Read an PHY register through the MII.
238 */
239static int
240ste_mii_readreg(struct ste_softc *sc, struct ste_mii_frame *frame)
241{
242	int i, ack;
243
244	/*
245	 * Set up frame for RX.
246	 */
247	frame->mii_stdelim = STE_MII_STARTDELIM;
248	frame->mii_opcode = STE_MII_READOP;
249	frame->mii_turnaround = 0;
250	frame->mii_data = 0;
251
252	CSR_WRITE_2(sc, STE_PHYCTL, 0);
253	/*
254 	 * Turn on data xmit.
255	 */
256	MII_SET(STE_PHYCTL_MDIR);
257
258	ste_mii_sync(sc);
259
260	/*
261	 * Send command/address info.
262	 */
263	ste_mii_send(sc, frame->mii_stdelim, 2);
264	ste_mii_send(sc, frame->mii_opcode, 2);
265	ste_mii_send(sc, frame->mii_phyaddr, 5);
266	ste_mii_send(sc, frame->mii_regaddr, 5);
267
268	/* Turn off xmit. */
269	MII_CLR(STE_PHYCTL_MDIR);
270
271	/* Idle bit */
272	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
273	DELAY(1);
274	MII_SET(STE_PHYCTL_MCLK);
275	DELAY(1);
276
277	/* Check for ack */
278	MII_CLR(STE_PHYCTL_MCLK);
279	DELAY(1);
280	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
281	MII_SET(STE_PHYCTL_MCLK);
282	DELAY(1);
283
284	/*
285	 * Now try reading data bits. If the ack failed, we still
286	 * need to clock through 16 cycles to keep the PHY(s) in sync.
287	 */
288	if (ack) {
289		for (i = 0; i < 16; i++) {
290			MII_CLR(STE_PHYCTL_MCLK);
291			DELAY(1);
292			MII_SET(STE_PHYCTL_MCLK);
293			DELAY(1);
294		}
295		goto fail;
296	}
297
298	for (i = 0x8000; i; i >>= 1) {
299		MII_CLR(STE_PHYCTL_MCLK);
300		DELAY(1);
301		if (!ack) {
302			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
303				frame->mii_data |= i;
304			DELAY(1);
305		}
306		MII_SET(STE_PHYCTL_MCLK);
307		DELAY(1);
308	}
309
310fail:
311
312	MII_CLR(STE_PHYCTL_MCLK);
313	DELAY(1);
314	MII_SET(STE_PHYCTL_MCLK);
315	DELAY(1);
316
317	if (ack)
318		return (1);
319	return (0);
320}
321
322/*
323 * Write to a PHY register through the MII.
324 */
325static int
326ste_mii_writereg(struct ste_softc *sc, struct ste_mii_frame *frame)
327{
328
329	/*
330	 * Set up frame for TX.
331	 */
332
333	frame->mii_stdelim = STE_MII_STARTDELIM;
334	frame->mii_opcode = STE_MII_WRITEOP;
335	frame->mii_turnaround = STE_MII_TURNAROUND;
336
337	/*
338 	 * Turn on data output.
339	 */
340	MII_SET(STE_PHYCTL_MDIR);
341
342	ste_mii_sync(sc);
343
344	ste_mii_send(sc, frame->mii_stdelim, 2);
345	ste_mii_send(sc, frame->mii_opcode, 2);
346	ste_mii_send(sc, frame->mii_phyaddr, 5);
347	ste_mii_send(sc, frame->mii_regaddr, 5);
348	ste_mii_send(sc, frame->mii_turnaround, 2);
349	ste_mii_send(sc, frame->mii_data, 16);
350
351	/* Idle bit. */
352	MII_SET(STE_PHYCTL_MCLK);
353	DELAY(1);
354	MII_CLR(STE_PHYCTL_MCLK);
355	DELAY(1);
356
357	/*
358	 * Turn off xmit.
359	 */
360	MII_CLR(STE_PHYCTL_MDIR);
361
362	return (0);
363}
364
365static int
366ste_miibus_readreg(device_t dev, int phy, int reg)
367{
368	struct ste_softc *sc;
369	struct ste_mii_frame frame;
370
371	sc = device_get_softc(dev);
372	bzero((char *)&frame, sizeof(frame));
373
374	frame.mii_phyaddr = phy;
375	frame.mii_regaddr = reg;
376	ste_mii_readreg(sc, &frame);
377
378	return (frame.mii_data);
379}
380
381static int
382ste_miibus_writereg(device_t dev, int phy, int reg, int data)
383{
384	struct ste_softc *sc;
385	struct ste_mii_frame frame;
386
387	sc = device_get_softc(dev);
388	bzero((char *)&frame, sizeof(frame));
389
390	frame.mii_phyaddr = phy;
391	frame.mii_regaddr = reg;
392	frame.mii_data = data;
393
394	ste_mii_writereg(sc, &frame);
395
396	return (0);
397}
398
399static void
400ste_miibus_statchg(device_t dev)
401{
402	struct ste_softc *sc;
403	struct mii_data *mii;
404	struct ifnet *ifp;
405	uint16_t cfg;
406
407	sc = device_get_softc(dev);
408
409	mii = device_get_softc(sc->ste_miibus);
410	ifp = sc->ste_ifp;
411	if (mii == NULL || ifp == NULL ||
412	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
413		return;
414
415	sc->ste_flags &= ~STE_FLAG_LINK;
416	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
417	    (IFM_ACTIVE | IFM_AVALID)) {
418		switch (IFM_SUBTYPE(mii->mii_media_active)) {
419		case IFM_10_T:
420		case IFM_100_TX:
421		case IFM_100_FX:
422		case IFM_100_T4:
423			sc->ste_flags |= STE_FLAG_LINK;
424		default:
425			break;
426		}
427	}
428
429	/* Program MACs with resolved speed/duplex/flow-control. */
430	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
431		cfg = CSR_READ_2(sc, STE_MACCTL0);
432		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
433		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
434			/*
435			 * ST201 data sheet says driver should enable receiving
436			 * MAC control frames bit of receive mode register to
437			 * receive flow-control frames but the register has no
438			 * such bits. In addition the controller has no ability
439			 * to send pause frames so it should be handled in
440			 * driver. Implementing pause timer handling in driver
441			 * layer is not trivial, so don't enable flow-control
442			 * here.
443			 */
444			cfg |= STE_MACCTL0_FULLDUPLEX;
445		}
446		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
447	}
448}
449
450static int
451ste_ifmedia_upd(struct ifnet *ifp)
452{
453	struct ste_softc *sc;
454	struct mii_data	*mii;
455	struct mii_softc *miisc;
456	int error;
457
458	sc = ifp->if_softc;
459	STE_LOCK(sc);
460	mii = device_get_softc(sc->ste_miibus);
461	if (mii->mii_instance) {
462		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
463			mii_phy_reset(miisc);
464	}
465	error = mii_mediachg(mii);
466	STE_UNLOCK(sc);
467
468	return (error);
469}
470
471static void
472ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
473{
474	struct ste_softc *sc;
475	struct mii_data *mii;
476
477	sc = ifp->if_softc;
478	mii = device_get_softc(sc->ste_miibus);
479
480	STE_LOCK(sc);
481	if ((ifp->if_flags & IFF_UP) == 0) {
482		STE_UNLOCK(sc);
483		return;
484	}
485	mii_pollstat(mii);
486	ifmr->ifm_active = mii->mii_media_active;
487	ifmr->ifm_status = mii->mii_media_status;
488	STE_UNLOCK(sc);
489}
490
491static void
492ste_wait(struct ste_softc *sc)
493{
494	int i;
495
496	for (i = 0; i < STE_TIMEOUT; i++) {
497		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
498			break;
499		DELAY(1);
500	}
501
502	if (i == STE_TIMEOUT)
503		device_printf(sc->ste_dev, "command never completed!\n");
504}
505
506/*
507 * The EEPROM is slow: give it time to come ready after issuing
508 * it a command.
509 */
510static int
511ste_eeprom_wait(struct ste_softc *sc)
512{
513	int i;
514
515	DELAY(1000);
516
517	for (i = 0; i < 100; i++) {
518		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
519			DELAY(1000);
520		else
521			break;
522	}
523
524	if (i == 100) {
525		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
526		return (1);
527	}
528
529	return (0);
530}
531
532/*
533 * Read a sequence of words from the EEPROM. Note that ethernet address
534 * data is stored in the EEPROM in network byte order.
535 */
536static int
537ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
538{
539	int err = 0, i;
540
541	if (ste_eeprom_wait(sc))
542		return (1);
543
544	for (i = 0; i < cnt; i++) {
545		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
546		err = ste_eeprom_wait(sc);
547		if (err)
548			break;
549		*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
550		dest++;
551	}
552
553	return (err ? 1 : 0);
554}
555
556static void
557ste_rxfilter(struct ste_softc *sc)
558{
559	struct ifnet *ifp;
560	struct ifmultiaddr *ifma;
561	uint32_t hashes[2] = { 0, 0 };
562	uint8_t rxcfg;
563	int h;
564
565	STE_LOCK_ASSERT(sc);
566
567	ifp = sc->ste_ifp;
568	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
569	rxcfg |= STE_RXMODE_UNICAST;
570	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
571	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
572	if (ifp->if_flags & IFF_BROADCAST)
573		rxcfg |= STE_RXMODE_BROADCAST;
574	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
575		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
576			rxcfg |= STE_RXMODE_ALLMULTI;
577		if ((ifp->if_flags & IFF_PROMISC) != 0)
578			rxcfg |= STE_RXMODE_PROMISC;
579		goto chipit;
580	}
581
582	rxcfg |= STE_RXMODE_MULTIHASH;
583	/* Now program new ones. */
584	if_maddr_rlock(ifp);
585	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
586		if (ifma->ifma_addr->sa_family != AF_LINK)
587			continue;
588		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
589		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
590		if (h < 32)
591			hashes[0] |= (1 << h);
592		else
593			hashes[1] |= (1 << (h - 32));
594	}
595	if_maddr_runlock(ifp);
596
597chipit:
598	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
599	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
600	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
601	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
602	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
603	CSR_READ_1(sc, STE_RX_MODE);
604}
605
606#ifdef DEVICE_POLLING
607static poll_handler_t ste_poll, ste_poll_locked;
608
609static int
610ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
611{
612	struct ste_softc *sc = ifp->if_softc;
613	int rx_npkts = 0;
614
615	STE_LOCK(sc);
616	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
617		rx_npkts = ste_poll_locked(ifp, cmd, count);
618	STE_UNLOCK(sc);
619	return (rx_npkts);
620}
621
622static int
623ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
624{
625	struct ste_softc *sc = ifp->if_softc;
626	int rx_npkts;
627
628	STE_LOCK_ASSERT(sc);
629
630	rx_npkts = ste_rxeof(sc, count);
631	ste_txeof(sc);
632	ste_txeoc(sc);
633	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
634		ste_start_locked(ifp);
635
636	if (cmd == POLL_AND_CHECK_STATUS) {
637		uint16_t status;
638
639		status = CSR_READ_2(sc, STE_ISR_ACK);
640
641		if (status & STE_ISR_STATS_OFLOW)
642			ste_stats_update(sc);
643
644		if (status & STE_ISR_HOSTERR) {
645			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
646			ste_init_locked(sc);
647		}
648	}
649	return (rx_npkts);
650}
651#endif /* DEVICE_POLLING */
652
653static void
654ste_intr(void *xsc)
655{
656	struct ste_softc *sc;
657	struct ifnet *ifp;
658	uint16_t intrs, status;
659
660	sc = xsc;
661	STE_LOCK(sc);
662	ifp = sc->ste_ifp;
663
664#ifdef DEVICE_POLLING
665	if (ifp->if_capenable & IFCAP_POLLING) {
666		STE_UNLOCK(sc);
667		return;
668	}
669#endif
670	/* Reading STE_ISR_ACK clears STE_IMR register. */
671	status = CSR_READ_2(sc, STE_ISR_ACK);
672	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
673		STE_UNLOCK(sc);
674		return;
675	}
676
677	intrs = STE_INTRS;
678	if (status == 0xFFFF || (status & intrs) == 0)
679		goto done;
680
681	if (sc->ste_int_rx_act > 0) {
682		status &= ~STE_ISR_RX_DMADONE;
683		intrs &= ~STE_IMR_RX_DMADONE;
684	}
685
686	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
687		ste_rxeof(sc, -1);
688		/*
689		 * The controller has no ability to Rx interrupt
690		 * moderation feature. Receiving 64 bytes frames
691		 * from wire generates too many interrupts which in
692		 * turn make system useless to process other useful
693		 * things. Fortunately ST201 supports single shot
694		 * timer so use the timer to implement Rx interrupt
695		 * moderation in driver. This adds more register
696		 * access but it greatly reduces number of Rx
697		 * interrupts under high network load.
698		 */
699		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
700		    (sc->ste_int_rx_mod != 0)) {
701			if ((status & STE_ISR_RX_DMADONE) != 0) {
702				CSR_WRITE_2(sc, STE_COUNTDOWN,
703				    STE_TIMER_USECS(sc->ste_int_rx_mod));
704				intrs &= ~STE_IMR_RX_DMADONE;
705				sc->ste_int_rx_act = 1;
706			} else {
707				intrs |= STE_IMR_RX_DMADONE;
708				sc->ste_int_rx_act = 0;
709			}
710		}
711	}
712	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
713		if ((status & STE_ISR_TX_DMADONE) != 0)
714			ste_txeof(sc);
715		if ((status & STE_ISR_TX_DONE) != 0)
716			ste_txeoc(sc);
717		if ((status & STE_ISR_STATS_OFLOW) != 0)
718			ste_stats_update(sc);
719		if ((status & STE_ISR_HOSTERR) != 0) {
720			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
721			ste_init_locked(sc);
722			STE_UNLOCK(sc);
723			return;
724		}
725		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
726			ste_start_locked(ifp);
727done:
728		/* Re-enable interrupts */
729		CSR_WRITE_2(sc, STE_IMR, intrs);
730	}
731	STE_UNLOCK(sc);
732}
733
734/*
735 * A frame has been uploaded: pass the resulting mbuf chain up to
736 * the higher level protocols.
737 */
738static int
739ste_rxeof(struct ste_softc *sc, int count)
740{
741        struct mbuf *m;
742        struct ifnet *ifp;
743	struct ste_chain_onefrag *cur_rx;
744	uint32_t rxstat;
745	int total_len, rx_npkts;
746
747	ifp = sc->ste_ifp;
748
749	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
750	    sc->ste_cdata.ste_rx_list_map,
751	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
752
753	cur_rx = sc->ste_cdata.ste_rx_head;
754	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
755	    cur_rx = cur_rx->ste_next) {
756		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
757		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
758			break;
759#ifdef DEVICE_POLLING
760		if (ifp->if_capenable & IFCAP_POLLING) {
761			if (count == 0)
762				break;
763			count--;
764		}
765#endif
766		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
767			break;
768		/*
769		 * If an error occurs, update stats, clear the
770		 * status word and leave the mbuf cluster in place:
771		 * it should simply get re-used next time this descriptor
772	 	 * comes up in the ring.
773		 */
774		if (rxstat & STE_RXSTAT_FRAME_ERR) {
775			ifp->if_ierrors++;
776			cur_rx->ste_ptr->ste_status = 0;
777			continue;
778		}
779
780		/* No errors; receive the packet. */
781		m = cur_rx->ste_mbuf;
782		total_len = STE_RX_BYTES(rxstat);
783
784		/*
785		 * Try to conjure up a new mbuf cluster. If that
786		 * fails, it means we have an out of memory condition and
787		 * should leave the buffer in place and continue. This will
788		 * result in a lost packet, but there's little else we
789		 * can do in this situation.
790		 */
791		if (ste_newbuf(sc, cur_rx) != 0) {
792			ifp->if_iqdrops++;
793			cur_rx->ste_ptr->ste_status = 0;
794			continue;
795		}
796
797		m->m_pkthdr.rcvif = ifp;
798		m->m_pkthdr.len = m->m_len = total_len;
799
800		ifp->if_ipackets++;
801		STE_UNLOCK(sc);
802		(*ifp->if_input)(ifp, m);
803		STE_LOCK(sc);
804	}
805
806	if (rx_npkts > 0) {
807		sc->ste_cdata.ste_rx_head = cur_rx;
808		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
809		    sc->ste_cdata.ste_rx_list_map,
810		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
811	}
812
813	return (rx_npkts);
814}
815
816static void
817ste_txeoc(struct ste_softc *sc)
818{
819	uint16_t txstat;
820	struct ifnet *ifp;
821
822	STE_LOCK_ASSERT(sc);
823
824	ifp = sc->ste_ifp;
825
826	/*
827	 * STE_TX_STATUS register implements a queue of up to 31
828	 * transmit status byte. Writing an arbitrary value to the
829	 * register will advance the queue to the next transmit
830	 * status byte. This means if driver does not read
831	 * STE_TX_STATUS register after completing sending more
832	 * than 31 frames the controller would be stalled so driver
833	 * should re-wake the Tx MAC. This is the most severe
834	 * limitation of ST201 based controller.
835	 */
836	for (;;) {
837		txstat = CSR_READ_2(sc, STE_TX_STATUS);
838		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
839			break;
840		if ((txstat & (STE_TXSTATUS_UNDERRUN |
841		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
842		    STE_TXSTATUS_STATSOFLOW)) != 0) {
843			ifp->if_oerrors++;
844#ifdef	STE_SHOW_TXERRORS
845			device_printf(sc->ste_dev, "TX error : 0x%b\n",
846			    txstat & 0xFF, STE_ERR_BITS);
847#endif
848			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
849			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
850				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
851				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
852					sc->ste_tx_thresh = STE_PACKET_SIZE;
853				device_printf(sc->ste_dev,
854				    "TX underrun, increasing TX"
855				    " start threshold to %d bytes\n",
856				    sc->ste_tx_thresh);
857				/* Make sure to disable active DMA cycles. */
858				STE_SETBIT4(sc, STE_DMACTL,
859				    STE_DMACTL_TXDMA_STALL);
860				ste_wait(sc);
861				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
862				ste_init_locked(sc);
863				break;
864			}
865			/* Restart Tx. */
866			ste_restart_tx(sc);
867		}
868		/*
869		 * Advance to next status and ACK TxComplete
870		 * interrupt. ST201 data sheet was wrong here, to
871		 * get next Tx status, we have to write both
872		 * STE_TX_STATUS and STE_TX_FRAMEID register.
873		 * Otherwise controller returns the same status
874		 * as well as not acknowledge Tx completion
875		 * interrupt.
876		 */
877		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
878	}
879}
880
881static void
882ste_tick(void *arg)
883{
884	struct ste_softc *sc;
885	struct mii_data *mii;
886
887	sc = (struct ste_softc *)arg;
888
889	STE_LOCK_ASSERT(sc);
890
891	mii = device_get_softc(sc->ste_miibus);
892	mii_tick(mii);
893	/*
894	 * ukphy(4) does not seem to generate CB that reports
895	 * resolved link state so if we know we lost a link,
896	 * explicitly check the link state.
897	 */
898	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
899		ste_miibus_statchg(sc->ste_dev);
900	/*
901	 * Because we are not generating Tx completion
902	 * interrupt for every frame, reclaim transmitted
903	 * buffers here.
904	 */
905	ste_txeof(sc);
906	ste_txeoc(sc);
907	ste_stats_update(sc);
908	ste_watchdog(sc);
909	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
910}
911
912static void
913ste_txeof(struct ste_softc *sc)
914{
915	struct ifnet *ifp;
916	struct ste_chain *cur_tx;
917	uint32_t txstat;
918	int idx;
919
920	STE_LOCK_ASSERT(sc);
921
922	ifp = sc->ste_ifp;
923	idx = sc->ste_cdata.ste_tx_cons;
924	if (idx == sc->ste_cdata.ste_tx_prod)
925		return;
926
927	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
928	    sc->ste_cdata.ste_tx_list_map,
929	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
930
931	while (idx != sc->ste_cdata.ste_tx_prod) {
932		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
933		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
934		if ((txstat & STE_TXCTL_DMADONE) == 0)
935			break;
936		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
937		    BUS_DMASYNC_POSTWRITE);
938		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
939		KASSERT(cur_tx->ste_mbuf != NULL,
940		    ("%s: freeing NULL mbuf!\n", __func__));
941		m_freem(cur_tx->ste_mbuf);
942		cur_tx->ste_mbuf = NULL;
943		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
944		ifp->if_opackets++;
945		sc->ste_cdata.ste_tx_cnt--;
946		STE_INC(idx, STE_TX_LIST_CNT);
947	}
948
949	sc->ste_cdata.ste_tx_cons = idx;
950	if (sc->ste_cdata.ste_tx_cnt == 0)
951		sc->ste_timer = 0;
952}
953
954static void
955ste_stats_clear(struct ste_softc *sc)
956{
957
958	STE_LOCK_ASSERT(sc);
959
960	/* Rx stats. */
961	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
962	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
963	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
964	CSR_READ_1(sc, STE_STAT_RX_BCAST);
965	CSR_READ_1(sc, STE_STAT_RX_MCAST);
966	CSR_READ_1(sc, STE_STAT_RX_LOST);
967	/* Tx stats. */
968	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
969	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
970	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
971	CSR_READ_1(sc, STE_STAT_TX_BCAST);
972	CSR_READ_1(sc, STE_STAT_TX_MCAST);
973	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
974	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
975	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
976	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
977	CSR_READ_1(sc, STE_STAT_TX_DEFER);
978	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
979	CSR_READ_1(sc, STE_STAT_TX_ABORT);
980}
981
982static void
983ste_stats_update(struct ste_softc *sc)
984{
985	struct ifnet *ifp;
986	struct ste_hw_stats *stats;
987	uint32_t val;
988
989	STE_LOCK_ASSERT(sc);
990
991	ifp = sc->ste_ifp;
992	stats = &sc->ste_stats;
993	/* Rx stats. */
994	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
995	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
996	val &= 0x000FFFFF;
997	stats->rx_bytes += val;
998	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
999	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
1000	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
1001	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
1002	/* Tx stats. */
1003	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
1004	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
1005	val &= 0x000FFFFF;
1006	stats->tx_bytes += val;
1007	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
1008	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
1009	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
1010	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
1011	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
1012	stats->tx_single_colls += val;
1013	ifp->if_collisions += val;
1014	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
1015	stats->tx_multi_colls += val;
1016	ifp->if_collisions += val;
1017	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
1018	stats->tx_late_colls += val;
1019	ifp->if_collisions += val;
1020	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
1021	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
1022	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
1023}
1024
1025/*
1026 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
1027 * IDs against our list and return a device name if we find a match.
1028 */
1029static int
1030ste_probe(device_t dev)
1031{
1032	struct ste_type *t;
1033
1034	t = ste_devs;
1035
1036	while (t->ste_name != NULL) {
1037		if ((pci_get_vendor(dev) == t->ste_vid) &&
1038		    (pci_get_device(dev) == t->ste_did)) {
1039			device_set_desc(dev, t->ste_name);
1040			return (BUS_PROBE_DEFAULT);
1041		}
1042		t++;
1043	}
1044
1045	return (ENXIO);
1046}
1047
1048/*
1049 * Attach the interface. Allocate softc structures, do ifmedia
1050 * setup and ethernet/BPF attach.
1051 */
1052static int
1053ste_attach(device_t dev)
1054{
1055	struct ste_softc *sc;
1056	struct ifnet *ifp;
1057	uint16_t eaddr[ETHER_ADDR_LEN / 2];
1058	int error = 0, phy, pmc, prefer_iomap, rid;
1059
1060	sc = device_get_softc(dev);
1061	sc->ste_dev = dev;
1062
1063	/*
1064	 * Only use one PHY since this chip reports multiple
1065	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
1066	 * it is at 0 & 1.  It is rev 0x12.
1067	 */
1068	if (pci_get_vendor(dev) == DL_VENDORID &&
1069	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
1070	    pci_get_revid(dev) == 0x12 )
1071		sc->ste_flags |= STE_FLAG_ONE_PHY;
1072
1073	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1074	    MTX_DEF);
1075	/*
1076	 * Map control/status registers.
1077	 */
1078	pci_enable_busmaster(dev);
1079
1080	/*
1081	 * Prefer memory space register mapping over IO space but use
1082	 * IO space for a device that is known to have issues on memory
1083	 * mapping.
1084	 */
1085	prefer_iomap = 0;
1086	if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
1087		prefer_iomap = 1;
1088	else
1089		resource_int_value(device_get_name(sc->ste_dev),
1090		    device_get_unit(sc->ste_dev), "prefer_iomap",
1091		    &prefer_iomap);
1092	if (prefer_iomap == 0) {
1093		sc->ste_res_id = PCIR_BAR(1);
1094		sc->ste_res_type = SYS_RES_MEMORY;
1095		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
1096		    &sc->ste_res_id, RF_ACTIVE);
1097	}
1098	if (prefer_iomap || sc->ste_res == NULL) {
1099		sc->ste_res_id = PCIR_BAR(0);
1100		sc->ste_res_type = SYS_RES_IOPORT;
1101		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
1102		    &sc->ste_res_id, RF_ACTIVE);
1103	}
1104	if (sc->ste_res == NULL) {
1105		device_printf(dev, "couldn't map ports/memory\n");
1106		error = ENXIO;
1107		goto fail;
1108	}
1109
1110	/* Allocate interrupt */
1111	rid = 0;
1112	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1113	    RF_SHAREABLE | RF_ACTIVE);
1114
1115	if (sc->ste_irq == NULL) {
1116		device_printf(dev, "couldn't map interrupt\n");
1117		error = ENXIO;
1118		goto fail;
1119	}
1120
1121	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
1122
1123	/* Reset the adapter. */
1124	ste_reset(sc);
1125
1126	/*
1127	 * Get station address from the EEPROM.
1128	 */
1129	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
1130		device_printf(dev, "failed to read station address\n");
1131		error = ENXIO;
1132		goto fail;
1133	}
1134	ste_sysctl_node(sc);
1135
1136	if ((error = ste_dma_alloc(sc)) != 0)
1137		goto fail;
1138
1139	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
1140	if (ifp == NULL) {
1141		device_printf(dev, "can not if_alloc()\n");
1142		error = ENOSPC;
1143		goto fail;
1144	}
1145
1146	/* Do MII setup. */
1147	phy = MII_PHY_ANY;
1148	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
1149		phy = 0;
1150	error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
1151		ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1152	if (error != 0) {
1153		device_printf(dev, "attaching PHYs failed\n");
1154		goto fail;
1155	}
1156
1157	ifp->if_softc = sc;
1158	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1159	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1160	ifp->if_ioctl = ste_ioctl;
1161	ifp->if_start = ste_start;
1162	ifp->if_init = ste_init;
1163	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1164	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1165	IFQ_SET_READY(&ifp->if_snd);
1166
1167	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1168
1169	/*
1170	 * Call MI attach routine.
1171	 */
1172	ether_ifattach(ifp, (uint8_t *)eaddr);
1173
1174	/*
1175	 * Tell the upper layer(s) we support long frames.
1176	 */
1177	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1178	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1179	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
1180		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1181	ifp->if_capenable = ifp->if_capabilities;
1182#ifdef DEVICE_POLLING
1183	ifp->if_capabilities |= IFCAP_POLLING;
1184#endif
1185
1186	/* Hook interrupt last to avoid having to lock softc */
1187	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1188	    NULL, ste_intr, sc, &sc->ste_intrhand);
1189
1190	if (error) {
1191		device_printf(dev, "couldn't set up irq\n");
1192		ether_ifdetach(ifp);
1193		goto fail;
1194	}
1195
1196fail:
1197	if (error)
1198		ste_detach(dev);
1199
1200	return (error);
1201}
1202
1203/*
1204 * Shutdown hardware and free up resources. This can be called any
1205 * time after the mutex has been initialized. It is called in both
1206 * the error case in attach and the normal detach case so it needs
1207 * to be careful about only freeing resources that have actually been
1208 * allocated.
1209 */
1210static int
1211ste_detach(device_t dev)
1212{
1213	struct ste_softc *sc;
1214	struct ifnet *ifp;
1215
1216	sc = device_get_softc(dev);
1217	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1218	ifp = sc->ste_ifp;
1219
1220#ifdef DEVICE_POLLING
1221	if (ifp->if_capenable & IFCAP_POLLING)
1222		ether_poll_deregister(ifp);
1223#endif
1224
1225	/* These should only be active if attach succeeded */
1226	if (device_is_attached(dev)) {
1227		ether_ifdetach(ifp);
1228		STE_LOCK(sc);
1229		ste_stop(sc);
1230		STE_UNLOCK(sc);
1231		callout_drain(&sc->ste_callout);
1232	}
1233	if (sc->ste_miibus)
1234		device_delete_child(dev, sc->ste_miibus);
1235	bus_generic_detach(dev);
1236
1237	if (sc->ste_intrhand)
1238		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1239	if (sc->ste_irq)
1240		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1241	if (sc->ste_res)
1242		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1243		    sc->ste_res);
1244
1245	if (ifp)
1246		if_free(ifp);
1247
1248	ste_dma_free(sc);
1249	mtx_destroy(&sc->ste_mtx);
1250
1251	return (0);
1252}
1253
1254struct ste_dmamap_arg {
1255	bus_addr_t	ste_busaddr;
1256};
1257
1258static void
1259ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1260{
1261	struct ste_dmamap_arg *ctx;
1262
1263	if (error != 0)
1264		return;
1265
1266	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1267
1268	ctx = (struct ste_dmamap_arg *)arg;
1269	ctx->ste_busaddr = segs[0].ds_addr;
1270}
1271
1272static int
1273ste_dma_alloc(struct ste_softc *sc)
1274{
1275	struct ste_chain *txc;
1276	struct ste_chain_onefrag *rxc;
1277	struct ste_dmamap_arg ctx;
1278	int error, i;
1279
1280	/* Create parent DMA tag. */
1281	error = bus_dma_tag_create(
1282	    bus_get_dma_tag(sc->ste_dev), /* parent */
1283	    1, 0,			/* alignment, boundary */
1284	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1285	    BUS_SPACE_MAXADDR,		/* highaddr */
1286	    NULL, NULL,			/* filter, filterarg */
1287	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1288	    0,				/* nsegments */
1289	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1290	    0,				/* flags */
1291	    NULL, NULL,			/* lockfunc, lockarg */
1292	    &sc->ste_cdata.ste_parent_tag);
1293	if (error != 0) {
1294		device_printf(sc->ste_dev,
1295		    "could not create parent DMA tag.\n");
1296		goto fail;
1297	}
1298
1299	/* Create DMA tag for Tx descriptor list. */
1300	error = bus_dma_tag_create(
1301	    sc->ste_cdata.ste_parent_tag, /* parent */
1302	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1303	    BUS_SPACE_MAXADDR,		/* lowaddr */
1304	    BUS_SPACE_MAXADDR,		/* highaddr */
1305	    NULL, NULL,			/* filter, filterarg */
1306	    STE_TX_LIST_SZ,		/* maxsize */
1307	    1,				/* nsegments */
1308	    STE_TX_LIST_SZ,		/* maxsegsize */
1309	    0,				/* flags */
1310	    NULL, NULL,			/* lockfunc, lockarg */
1311	    &sc->ste_cdata.ste_tx_list_tag);
1312	if (error != 0) {
1313		device_printf(sc->ste_dev,
1314		    "could not create Tx list DMA tag.\n");
1315		goto fail;
1316	}
1317
1318	/* Create DMA tag for Rx descriptor list. */
1319	error = bus_dma_tag_create(
1320	    sc->ste_cdata.ste_parent_tag, /* parent */
1321	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1322	    BUS_SPACE_MAXADDR,		/* lowaddr */
1323	    BUS_SPACE_MAXADDR,		/* highaddr */
1324	    NULL, NULL,			/* filter, filterarg */
1325	    STE_RX_LIST_SZ,		/* maxsize */
1326	    1,				/* nsegments */
1327	    STE_RX_LIST_SZ,		/* maxsegsize */
1328	    0,				/* flags */
1329	    NULL, NULL,			/* lockfunc, lockarg */
1330	    &sc->ste_cdata.ste_rx_list_tag);
1331	if (error != 0) {
1332		device_printf(sc->ste_dev,
1333		    "could not create Rx list DMA tag.\n");
1334		goto fail;
1335	}
1336
1337	/* Create DMA tag for Tx buffers. */
1338	error = bus_dma_tag_create(
1339	    sc->ste_cdata.ste_parent_tag, /* parent */
1340	    1, 0,			/* alignment, boundary */
1341	    BUS_SPACE_MAXADDR,		/* lowaddr */
1342	    BUS_SPACE_MAXADDR,		/* highaddr */
1343	    NULL, NULL,			/* filter, filterarg */
1344	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1345	    STE_MAXFRAGS,		/* nsegments */
1346	    MCLBYTES,			/* maxsegsize */
1347	    0,				/* flags */
1348	    NULL, NULL,			/* lockfunc, lockarg */
1349	    &sc->ste_cdata.ste_tx_tag);
1350	if (error != 0) {
1351		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1352		goto fail;
1353	}
1354
1355	/* Create DMA tag for Rx buffers. */
1356	error = bus_dma_tag_create(
1357	    sc->ste_cdata.ste_parent_tag, /* parent */
1358	    1, 0,			/* alignment, boundary */
1359	    BUS_SPACE_MAXADDR,		/* lowaddr */
1360	    BUS_SPACE_MAXADDR,		/* highaddr */
1361	    NULL, NULL,			/* filter, filterarg */
1362	    MCLBYTES,			/* maxsize */
1363	    1,				/* nsegments */
1364	    MCLBYTES,			/* maxsegsize */
1365	    0,				/* flags */
1366	    NULL, NULL,			/* lockfunc, lockarg */
1367	    &sc->ste_cdata.ste_rx_tag);
1368	if (error != 0) {
1369		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1370		goto fail;
1371	}
1372
1373	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1374	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1375	    (void **)&sc->ste_ldata.ste_tx_list,
1376	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1377	    &sc->ste_cdata.ste_tx_list_map);
1378	if (error != 0) {
1379		device_printf(sc->ste_dev,
1380		    "could not allocate DMA'able memory for Tx list.\n");
1381		goto fail;
1382	}
1383	ctx.ste_busaddr = 0;
1384	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1385	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1386	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1387	if (error != 0 || ctx.ste_busaddr == 0) {
1388		device_printf(sc->ste_dev,
1389		    "could not load DMA'able memory for Tx list.\n");
1390		goto fail;
1391	}
1392	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1393
1394	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1395	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1396	    (void **)&sc->ste_ldata.ste_rx_list,
1397	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1398	    &sc->ste_cdata.ste_rx_list_map);
1399	if (error != 0) {
1400		device_printf(sc->ste_dev,
1401		    "could not allocate DMA'able memory for Rx list.\n");
1402		goto fail;
1403	}
1404	ctx.ste_busaddr = 0;
1405	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1406	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1407	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1408	if (error != 0 || ctx.ste_busaddr == 0) {
1409		device_printf(sc->ste_dev,
1410		    "could not load DMA'able memory for Rx list.\n");
1411		goto fail;
1412	}
1413	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1414
1415	/* Create DMA maps for Tx buffers. */
1416	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1417		txc = &sc->ste_cdata.ste_tx_chain[i];
1418		txc->ste_ptr = NULL;
1419		txc->ste_mbuf = NULL;
1420		txc->ste_next = NULL;
1421		txc->ste_phys = 0;
1422		txc->ste_map = NULL;
1423		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1424		    &txc->ste_map);
1425		if (error != 0) {
1426			device_printf(sc->ste_dev,
1427			    "could not create Tx dmamap.\n");
1428			goto fail;
1429		}
1430	}
1431	/* Create DMA maps for Rx buffers. */
1432	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1433	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1434		device_printf(sc->ste_dev,
1435		    "could not create spare Rx dmamap.\n");
1436		goto fail;
1437	}
1438	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1439		rxc = &sc->ste_cdata.ste_rx_chain[i];
1440		rxc->ste_ptr = NULL;
1441		rxc->ste_mbuf = NULL;
1442		rxc->ste_next = NULL;
1443		rxc->ste_map = NULL;
1444		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1445		    &rxc->ste_map);
1446		if (error != 0) {
1447			device_printf(sc->ste_dev,
1448			    "could not create Rx dmamap.\n");
1449			goto fail;
1450		}
1451	}
1452
1453fail:
1454	return (error);
1455}
1456
1457static void
1458ste_dma_free(struct ste_softc *sc)
1459{
1460	struct ste_chain *txc;
1461	struct ste_chain_onefrag *rxc;
1462	int i;
1463
1464	/* Tx buffers. */
1465	if (sc->ste_cdata.ste_tx_tag != NULL) {
1466		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1467			txc = &sc->ste_cdata.ste_tx_chain[i];
1468			if (txc->ste_map != NULL) {
1469				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1470				    txc->ste_map);
1471				txc->ste_map = NULL;
1472			}
1473		}
1474		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1475		sc->ste_cdata.ste_tx_tag = NULL;
1476	}
1477	/* Rx buffers. */
1478	if (sc->ste_cdata.ste_rx_tag != NULL) {
1479		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1480			rxc = &sc->ste_cdata.ste_rx_chain[i];
1481			if (rxc->ste_map != NULL) {
1482				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1483				    rxc->ste_map);
1484				rxc->ste_map = NULL;
1485			}
1486		}
1487		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1488			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1489			    sc->ste_cdata.ste_rx_sparemap);
1490			sc->ste_cdata.ste_rx_sparemap = NULL;
1491		}
1492		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1493		sc->ste_cdata.ste_rx_tag = NULL;
1494	}
1495	/* Tx descriptor list. */
1496	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1497		if (sc->ste_cdata.ste_tx_list_map != NULL)
1498			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1499			    sc->ste_cdata.ste_tx_list_map);
1500		if (sc->ste_cdata.ste_tx_list_map != NULL &&
1501		    sc->ste_ldata.ste_tx_list != NULL)
1502			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1503			    sc->ste_ldata.ste_tx_list,
1504			    sc->ste_cdata.ste_tx_list_map);
1505		sc->ste_ldata.ste_tx_list = NULL;
1506		sc->ste_cdata.ste_tx_list_map = NULL;
1507		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1508		sc->ste_cdata.ste_tx_list_tag = NULL;
1509	}
1510	/* Rx descriptor list. */
1511	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1512		if (sc->ste_cdata.ste_rx_list_map != NULL)
1513			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1514			    sc->ste_cdata.ste_rx_list_map);
1515		if (sc->ste_cdata.ste_rx_list_map != NULL &&
1516		    sc->ste_ldata.ste_rx_list != NULL)
1517			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1518			    sc->ste_ldata.ste_rx_list,
1519			    sc->ste_cdata.ste_rx_list_map);
1520		sc->ste_ldata.ste_rx_list = NULL;
1521		sc->ste_cdata.ste_rx_list_map = NULL;
1522		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1523		sc->ste_cdata.ste_rx_list_tag = NULL;
1524	}
1525	if (sc->ste_cdata.ste_parent_tag != NULL) {
1526		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1527		sc->ste_cdata.ste_parent_tag = NULL;
1528	}
1529}
1530
1531static int
1532ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1533{
1534	struct mbuf *m;
1535	bus_dma_segment_t segs[1];
1536	bus_dmamap_t map;
1537	int error, nsegs;
1538
1539	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1540	if (m == NULL)
1541		return (ENOBUFS);
1542	m->m_len = m->m_pkthdr.len = MCLBYTES;
1543	m_adj(m, ETHER_ALIGN);
1544
1545	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1546	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1547		m_freem(m);
1548		return (error);
1549	}
1550	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1551
1552	if (rxc->ste_mbuf != NULL) {
1553		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1554		    BUS_DMASYNC_POSTREAD);
1555		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1556	}
1557	map = rxc->ste_map;
1558	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1559	sc->ste_cdata.ste_rx_sparemap = map;
1560	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1561	    BUS_DMASYNC_PREREAD);
1562	rxc->ste_mbuf = m;
1563	rxc->ste_ptr->ste_status = 0;
1564	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1565	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1566	    STE_FRAG_LAST);
1567	return (0);
1568}
1569
1570static int
1571ste_init_rx_list(struct ste_softc *sc)
1572{
1573	struct ste_chain_data *cd;
1574	struct ste_list_data *ld;
1575	int error, i;
1576
1577	sc->ste_int_rx_act = 0;
1578	cd = &sc->ste_cdata;
1579	ld = &sc->ste_ldata;
1580	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1581	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1582		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1583		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1584		if (error != 0)
1585			return (error);
1586		if (i == (STE_RX_LIST_CNT - 1)) {
1587			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1588			ld->ste_rx_list[i].ste_next =
1589			    htole32(ld->ste_rx_list_paddr +
1590			    (sizeof(struct ste_desc_onefrag) * 0));
1591		} else {
1592			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1593			ld->ste_rx_list[i].ste_next =
1594			    htole32(ld->ste_rx_list_paddr +
1595			    (sizeof(struct ste_desc_onefrag) * (i + 1)));
1596		}
1597	}
1598
1599	cd->ste_rx_head = &cd->ste_rx_chain[0];
1600	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1601	    sc->ste_cdata.ste_rx_list_map,
1602	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1603
1604	return (0);
1605}
1606
1607static void
1608ste_init_tx_list(struct ste_softc *sc)
1609{
1610	struct ste_chain_data *cd;
1611	struct ste_list_data *ld;
1612	int i;
1613
1614	cd = &sc->ste_cdata;
1615	ld = &sc->ste_ldata;
1616	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1617	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1618		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1619		cd->ste_tx_chain[i].ste_mbuf = NULL;
1620		if (i == (STE_TX_LIST_CNT - 1)) {
1621			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1622			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1623			    ld->ste_tx_list_paddr +
1624			    (sizeof(struct ste_desc) * 0)));
1625		} else {
1626			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1627			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1628			    ld->ste_tx_list_paddr +
1629			    (sizeof(struct ste_desc) * (i + 1))));
1630		}
1631	}
1632
1633	cd->ste_last_tx = NULL;
1634	cd->ste_tx_prod = 0;
1635	cd->ste_tx_cons = 0;
1636	cd->ste_tx_cnt = 0;
1637
1638	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1639	    sc->ste_cdata.ste_tx_list_map,
1640	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1641}
1642
1643static void
1644ste_init(void *xsc)
1645{
1646	struct ste_softc *sc;
1647
1648	sc = xsc;
1649	STE_LOCK(sc);
1650	ste_init_locked(sc);
1651	STE_UNLOCK(sc);
1652}
1653
1654static void
1655ste_init_locked(struct ste_softc *sc)
1656{
1657	struct ifnet *ifp;
1658	struct mii_data *mii;
1659	uint8_t val;
1660	int i;
1661
1662	STE_LOCK_ASSERT(sc);
1663	ifp = sc->ste_ifp;
1664	mii = device_get_softc(sc->ste_miibus);
1665
1666	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1667		return;
1668
1669	ste_stop(sc);
1670	/* Reset the chip to a known state. */
1671	ste_reset(sc);
1672
1673	/* Init our MAC address */
1674	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1675		CSR_WRITE_2(sc, STE_PAR0 + i,
1676		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1677		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1678	}
1679
1680	/* Init RX list */
1681	if (ste_init_rx_list(sc) != 0) {
1682		device_printf(sc->ste_dev,
1683		    "initialization failed: no memory for RX buffers\n");
1684		ste_stop(sc);
1685		return;
1686	}
1687
1688	/* Set RX polling interval */
1689	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1690
1691	/* Init TX descriptors */
1692	ste_init_tx_list(sc);
1693
1694	/* Clear and disable WOL. */
1695	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1696	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1697	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1698	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1699
1700	/* Set the TX freethresh value */
1701	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1702
1703	/* Set the TX start threshold for best performance. */
1704	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1705
1706	/* Set the TX reclaim threshold. */
1707	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1708
1709	/* Accept VLAN length packets */
1710	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1711
1712	/* Set up the RX filter. */
1713	ste_rxfilter(sc);
1714
1715	/* Load the address of the RX list. */
1716	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1717	ste_wait(sc);
1718	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1719	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1720	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1721	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1722
1723	/* Set TX polling interval(defer until we TX first packet). */
1724	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1725
1726	/* Load address of the TX list */
1727	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1728	ste_wait(sc);
1729	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1730	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1731	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1732	ste_wait(sc);
1733	/* Select 3.2us timer. */
1734	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1735	    STE_DMACTL_COUNTDOWN_MODE);
1736
1737	/* Enable receiver and transmitter */
1738	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1739	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1740	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1741	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1742
1743	/* Enable stats counters. */
1744	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1745	/* Clear stats counters. */
1746	ste_stats_clear(sc);
1747
1748	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1749	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1750#ifdef DEVICE_POLLING
1751	/* Disable interrupts if we are polling. */
1752	if (ifp->if_capenable & IFCAP_POLLING)
1753		CSR_WRITE_2(sc, STE_IMR, 0);
1754	else
1755#endif
1756	/* Enable interrupts. */
1757	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1758
1759	sc->ste_flags &= ~STE_FLAG_LINK;
1760	/* Switch to the current media. */
1761	mii_mediachg(mii);
1762
1763	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1764	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1765
1766	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1767}
1768
1769static void
1770ste_stop(struct ste_softc *sc)
1771{
1772	struct ifnet *ifp;
1773	struct ste_chain_onefrag *cur_rx;
1774	struct ste_chain *cur_tx;
1775	uint32_t val;
1776	int i;
1777
1778	STE_LOCK_ASSERT(sc);
1779	ifp = sc->ste_ifp;
1780
1781	callout_stop(&sc->ste_callout);
1782	sc->ste_timer = 0;
1783	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1784
1785	CSR_WRITE_2(sc, STE_IMR, 0);
1786	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1787	/* Stop pending DMA. */
1788	val = CSR_READ_4(sc, STE_DMACTL);
1789	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1790	CSR_WRITE_4(sc, STE_DMACTL, val);
1791	ste_wait(sc);
1792	/* Disable auto-polling. */
1793	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1794	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1795	/* Nullify DMA address to stop any further DMA. */
1796	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1797	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1798	/* Stop TX/RX MAC. */
1799	val = CSR_READ_2(sc, STE_MACCTL1);
1800	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1801	    STE_MACCTL1_STATS_DISABLE;
1802	CSR_WRITE_2(sc, STE_MACCTL1, val);
1803	for (i = 0; i < STE_TIMEOUT; i++) {
1804		DELAY(10);
1805		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1806		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1807			break;
1808	}
1809	if (i == STE_TIMEOUT)
1810		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1811	/* Acknowledge any pending interrupts. */
1812	CSR_READ_2(sc, STE_ISR_ACK);
1813	ste_stats_update(sc);
1814
1815	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1816		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1817		if (cur_rx->ste_mbuf != NULL) {
1818			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1819			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1820			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1821			    cur_rx->ste_map);
1822			m_freem(cur_rx->ste_mbuf);
1823			cur_rx->ste_mbuf = NULL;
1824		}
1825	}
1826
1827	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1828		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1829		if (cur_tx->ste_mbuf != NULL) {
1830			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1831			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1832			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1833			    cur_tx->ste_map);
1834			m_freem(cur_tx->ste_mbuf);
1835			cur_tx->ste_mbuf = NULL;
1836		}
1837	}
1838}
1839
1840static void
1841ste_reset(struct ste_softc *sc)
1842{
1843	uint32_t ctl;
1844	int i;
1845
1846	ctl = CSR_READ_4(sc, STE_ASICCTL);
1847	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1848	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1849	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1850	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1851	    STE_ASICCTL_EXTRESET_RESET;
1852	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1853	CSR_READ_4(sc, STE_ASICCTL);
1854	/*
1855	 * Due to the need of accessing EEPROM controller can take
1856	 * up to 1ms to complete the global reset.
1857	 */
1858	DELAY(1000);
1859
1860	for (i = 0; i < STE_TIMEOUT; i++) {
1861		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1862			break;
1863		DELAY(10);
1864	}
1865
1866	if (i == STE_TIMEOUT)
1867		device_printf(sc->ste_dev, "global reset never completed\n");
1868}
1869
1870static void
1871ste_restart_tx(struct ste_softc *sc)
1872{
1873	uint16_t mac;
1874	int i;
1875
1876	for (i = 0; i < STE_TIMEOUT; i++) {
1877		mac = CSR_READ_2(sc, STE_MACCTL1);
1878		mac |= STE_MACCTL1_TX_ENABLE;
1879		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1880		mac = CSR_READ_2(sc, STE_MACCTL1);
1881		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1882			break;
1883		DELAY(10);
1884	}
1885
1886	if (i == STE_TIMEOUT)
1887		device_printf(sc->ste_dev, "starting Tx failed");
1888}
1889
1890static int
1891ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1892{
1893	struct ste_softc *sc;
1894	struct ifreq *ifr;
1895	struct mii_data *mii;
1896	int error = 0, mask;
1897
1898	sc = ifp->if_softc;
1899	ifr = (struct ifreq *)data;
1900
1901	switch (command) {
1902	case SIOCSIFFLAGS:
1903		STE_LOCK(sc);
1904		if ((ifp->if_flags & IFF_UP) != 0) {
1905			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1906			    ((ifp->if_flags ^ sc->ste_if_flags) &
1907			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1908				ste_rxfilter(sc);
1909			else
1910				ste_init_locked(sc);
1911		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1912			ste_stop(sc);
1913		sc->ste_if_flags = ifp->if_flags;
1914		STE_UNLOCK(sc);
1915		break;
1916	case SIOCADDMULTI:
1917	case SIOCDELMULTI:
1918		STE_LOCK(sc);
1919		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1920			ste_rxfilter(sc);
1921		STE_UNLOCK(sc);
1922		break;
1923	case SIOCGIFMEDIA:
1924	case SIOCSIFMEDIA:
1925		mii = device_get_softc(sc->ste_miibus);
1926		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1927		break;
1928	case SIOCSIFCAP:
1929		STE_LOCK(sc);
1930		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1931#ifdef DEVICE_POLLING
1932		if ((mask & IFCAP_POLLING) != 0 &&
1933		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1934			ifp->if_capenable ^= IFCAP_POLLING;
1935			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1936				error = ether_poll_register(ste_poll, ifp);
1937				if (error != 0) {
1938					STE_UNLOCK(sc);
1939					break;
1940				}
1941				/* Disable interrupts. */
1942				CSR_WRITE_2(sc, STE_IMR, 0);
1943			} else {
1944				error = ether_poll_deregister(ifp);
1945				/* Enable interrupts. */
1946				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1947			}
1948		}
1949#endif /* DEVICE_POLLING */
1950		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1951		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1952			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1953		STE_UNLOCK(sc);
1954		break;
1955	default:
1956		error = ether_ioctl(ifp, command, data);
1957		break;
1958	}
1959
1960	return (error);
1961}
1962
1963static int
1964ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1965{
1966	struct ste_frag *frag;
1967	struct mbuf *m;
1968	struct ste_desc *desc;
1969	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1970	int error, i, nsegs;
1971
1972	STE_LOCK_ASSERT(sc);
1973	M_ASSERTPKTHDR((*m_head));
1974
1975	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1976	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1977	if (error == EFBIG) {
1978		m = m_collapse(*m_head, M_DONTWAIT, STE_MAXFRAGS);
1979		if (m == NULL) {
1980			m_freem(*m_head);
1981			*m_head = NULL;
1982			return (ENOMEM);
1983		}
1984		*m_head = m;
1985		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1986		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1987		if (error != 0) {
1988			m_freem(*m_head);
1989			*m_head = NULL;
1990			return (error);
1991		}
1992	} else if (error != 0)
1993		return (error);
1994	if (nsegs == 0) {
1995		m_freem(*m_head);
1996		*m_head = NULL;
1997		return (EIO);
1998	}
1999	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
2000	    BUS_DMASYNC_PREWRITE);
2001
2002	desc = txc->ste_ptr;
2003	for (i = 0; i < nsegs; i++) {
2004		frag = &desc->ste_frags[i];
2005		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
2006		frag->ste_len = htole32(txsegs[i].ds_len);
2007	}
2008	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
2009	/*
2010	 * Because we use Tx polling we can't chain multiple
2011	 * Tx descriptors here. Otherwise we race with controller.
2012	 */
2013	desc->ste_next = 0;
2014	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
2015		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
2016		    STE_TXCTL_DMAINTR);
2017	else
2018		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
2019	txc->ste_mbuf = *m_head;
2020	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
2021	sc->ste_cdata.ste_tx_cnt++;
2022
2023	return (0);
2024}
2025
2026static void
2027ste_start(struct ifnet *ifp)
2028{
2029	struct ste_softc *sc;
2030
2031	sc = ifp->if_softc;
2032	STE_LOCK(sc);
2033	ste_start_locked(ifp);
2034	STE_UNLOCK(sc);
2035}
2036
2037static void
2038ste_start_locked(struct ifnet *ifp)
2039{
2040	struct ste_softc *sc;
2041	struct ste_chain *cur_tx;
2042	struct mbuf *m_head = NULL;
2043	int enq;
2044
2045	sc = ifp->if_softc;
2046	STE_LOCK_ASSERT(sc);
2047
2048	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2049	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
2050		return;
2051
2052	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
2053		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
2054			/*
2055			 * Controller may have cached copy of the last used
2056			 * next ptr so we have to reserve one TFD to avoid
2057			 * TFD overruns.
2058			 */
2059			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2060			break;
2061		}
2062		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2063		if (m_head == NULL)
2064			break;
2065		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
2066		if (ste_encap(sc, &m_head, cur_tx) != 0) {
2067			if (m_head == NULL)
2068				break;
2069			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2070			break;
2071		}
2072		if (sc->ste_cdata.ste_last_tx == NULL) {
2073			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
2074			    sc->ste_cdata.ste_tx_list_map,
2075			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2076			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
2077			ste_wait(sc);
2078			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
2079	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
2080			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
2081			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
2082			ste_wait(sc);
2083		} else {
2084			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
2085			    sc->ste_cdata.ste_last_tx->ste_phys;
2086			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
2087			    sc->ste_cdata.ste_tx_list_map,
2088			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2089		}
2090		sc->ste_cdata.ste_last_tx = cur_tx;
2091
2092		enq++;
2093		/*
2094		 * If there's a BPF listener, bounce a copy of this frame
2095		 * to him.
2096	 	 */
2097		BPF_MTAP(ifp, m_head);
2098	}
2099
2100	if (enq > 0)
2101		sc->ste_timer = STE_TX_TIMEOUT;
2102}
2103
2104static void
2105ste_watchdog(struct ste_softc *sc)
2106{
2107	struct ifnet *ifp;
2108
2109	ifp = sc->ste_ifp;
2110	STE_LOCK_ASSERT(sc);
2111
2112	if (sc->ste_timer == 0 || --sc->ste_timer)
2113		return;
2114
2115	ifp->if_oerrors++;
2116	if_printf(ifp, "watchdog timeout\n");
2117
2118	ste_txeof(sc);
2119	ste_txeoc(sc);
2120	ste_rxeof(sc, -1);
2121	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2122	ste_init_locked(sc);
2123
2124	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2125		ste_start_locked(ifp);
2126}
2127
2128static int
2129ste_shutdown(device_t dev)
2130{
2131
2132	return (ste_suspend(dev));
2133}
2134
2135static int
2136ste_suspend(device_t dev)
2137{
2138	struct ste_softc *sc;
2139
2140	sc = device_get_softc(dev);
2141
2142	STE_LOCK(sc);
2143	ste_stop(sc);
2144	ste_setwol(sc);
2145	STE_UNLOCK(sc);
2146
2147	return (0);
2148}
2149
2150static int
2151ste_resume(device_t dev)
2152{
2153	struct ste_softc *sc;
2154	struct ifnet *ifp;
2155	int pmc;
2156	uint16_t pmstat;
2157
2158	sc = device_get_softc(dev);
2159	STE_LOCK(sc);
2160	if (pci_find_extcap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2161		/* Disable PME and clear PME status. */
2162		pmstat = pci_read_config(sc->ste_dev,
2163		    pmc + PCIR_POWER_STATUS, 2);
2164		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2165			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2166			pci_write_config(sc->ste_dev,
2167			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2168		}
2169	}
2170	ifp = sc->ste_ifp;
2171	if ((ifp->if_flags & IFF_UP) != 0) {
2172		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2173		ste_init_locked(sc);
2174	}
2175	STE_UNLOCK(sc);
2176
2177	return (0);
2178}
2179
2180#define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2181	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2182#define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2183	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2184
2185static void
2186ste_sysctl_node(struct ste_softc *sc)
2187{
2188	struct sysctl_ctx_list *ctx;
2189	struct sysctl_oid_list *child, *parent;
2190	struct sysctl_oid *tree;
2191	struct ste_hw_stats *stats;
2192
2193	stats = &sc->ste_stats;
2194	ctx = device_get_sysctl_ctx(sc->ste_dev);
2195	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2196
2197	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2198	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2199	/* Pull in device tunables. */
2200	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2201	resource_int_value(device_get_name(sc->ste_dev),
2202	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2203
2204	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2205	    NULL, "STE statistics");
2206	parent = SYSCTL_CHILDREN(tree);
2207
2208	/* Rx statistics. */
2209	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2210	    NULL, "Rx MAC statistics");
2211	child = SYSCTL_CHILDREN(tree);
2212	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2213	    &stats->rx_bytes, "Good octets");
2214	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2215	    &stats->rx_frames, "Good frames");
2216	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2217	    &stats->rx_bcast_frames, "Good broadcast frames");
2218	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2219	    &stats->rx_mcast_frames, "Good multicast frames");
2220	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2221	    &stats->rx_lost_frames, "Lost frames");
2222
2223	/* Tx statistics. */
2224	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2225	    NULL, "Tx MAC statistics");
2226	child = SYSCTL_CHILDREN(tree);
2227	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2228	    &stats->tx_bytes, "Good octets");
2229	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2230	    &stats->tx_frames, "Good frames");
2231	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2232	    &stats->tx_bcast_frames, "Good broadcast frames");
2233	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2234	    &stats->tx_mcast_frames, "Good multicast frames");
2235	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2236	    &stats->tx_carrsense_errs, "Carrier sense errors");
2237	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2238	    &stats->tx_single_colls, "Single collisions");
2239	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2240	    &stats->tx_multi_colls, "Multiple collisions");
2241	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2242	    &stats->tx_late_colls, "Late collisions");
2243	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2244	    &stats->tx_frames_defered, "Frames with deferrals");
2245	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2246	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2247	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2248	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2249}
2250
2251#undef STE_SYSCTL_STAT_ADD32
2252#undef STE_SYSCTL_STAT_ADD64
2253
2254static void
2255ste_setwol(struct ste_softc *sc)
2256{
2257	struct ifnet *ifp;
2258	uint16_t pmstat;
2259	uint8_t val;
2260	int pmc;
2261
2262	STE_LOCK_ASSERT(sc);
2263
2264	if (pci_find_extcap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2265		/* Disable WOL. */
2266		CSR_READ_1(sc, STE_WAKE_EVENT);
2267		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2268		return;
2269	}
2270
2271	ifp = sc->ste_ifp;
2272	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2273	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2274	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2275	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2276		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2277	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2278	/* Request PME. */
2279	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2280	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2281	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2282		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2283	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2284}
2285