if_ste.c revision 201768
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/ste/if_ste.c 201768 2010-01-08 02:43:20Z yongari $");
35
36#ifdef HAVE_KERNEL_OPTION_HEADERS
37#include "opt_device_polling.h"
38#endif
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/endian.h>
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/module.h>
49#include <sys/rman.h>
50#include <sys/socket.h>
51#include <sys/sockio.h>
52#include <sys/sysctl.h>
53
54#include <net/bpf.h>
55#include <net/if.h>
56#include <net/if_arp.h>
57#include <net/ethernet.h>
58#include <net/if_dl.h>
59#include <net/if_media.h>
60#include <net/if_types.h>
61#include <net/if_vlan_var.h>
62
63#include <machine/bus.h>
64#include <machine/resource.h>
65
66#include <dev/mii/mii.h>
67#include <dev/mii/miivar.h>
68
69#include <dev/pci/pcireg.h>
70#include <dev/pci/pcivar.h>
71
72#include <dev/ste/if_stereg.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77MODULE_DEPEND(ste, pci, 1, 1, 1);
78MODULE_DEPEND(ste, ether, 1, 1, 1);
79MODULE_DEPEND(ste, miibus, 1, 1, 1);
80
81/* Define to show Tx error status. */
82#define	STE_SHOW_TXERRORS
83
84/*
85 * Various supported device vendors/types and their names.
86 */
87static struct ste_type ste_devs[] = {
88	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
89	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
90	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
91	{ 0, 0, NULL }
92};
93
94static int	ste_attach(device_t);
95static int	ste_detach(device_t);
96static int	ste_probe(device_t);
97static int	ste_resume(device_t);
98static int	ste_shutdown(device_t);
99static int	ste_suspend(device_t);
100
101static int	ste_dma_alloc(struct ste_softc *);
102static void	ste_dma_free(struct ste_softc *);
103static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
104static int 	ste_eeprom_wait(struct ste_softc *);
105static int	ste_encap(struct ste_softc *, struct mbuf **,
106		    struct ste_chain *);
107static int	ste_ifmedia_upd(struct ifnet *);
108static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109static void	ste_init(void *);
110static void	ste_init_locked(struct ste_softc *);
111static int	ste_init_rx_list(struct ste_softc *);
112static void	ste_init_tx_list(struct ste_softc *);
113static void	ste_intr(void *);
114static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
115static int	ste_mii_readreg(struct ste_softc *, struct ste_mii_frame *);
116static void	ste_mii_send(struct ste_softc *, uint32_t, int);
117static void	ste_mii_sync(struct ste_softc *);
118static int	ste_mii_writereg(struct ste_softc *, struct ste_mii_frame *);
119static int	ste_miibus_readreg(device_t, int, int);
120static void	ste_miibus_statchg(device_t);
121static int	ste_miibus_writereg(device_t, int, int, int);
122static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
123static int	ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
124static void	ste_reset(struct ste_softc *);
125static void	ste_restart_tx(struct ste_softc *);
126static int	ste_rxeof(struct ste_softc *, int);
127static void	ste_rxfilter(struct ste_softc *);
128static void	ste_setwol(struct ste_softc *);
129static void	ste_start(struct ifnet *);
130static void	ste_start_locked(struct ifnet *);
131static void	ste_stats_clear(struct ste_softc *);
132static void	ste_stats_update(struct ste_softc *);
133static void	ste_stop(struct ste_softc *);
134static void	ste_sysctl_node(struct ste_softc *);
135static void	ste_tick(void *);
136static void	ste_txeoc(struct ste_softc *);
137static void	ste_txeof(struct ste_softc *);
138static void	ste_wait(struct ste_softc *);
139static void	ste_watchdog(struct ste_softc *);
140
141static device_method_t ste_methods[] = {
142	/* Device interface */
143	DEVMETHOD(device_probe,		ste_probe),
144	DEVMETHOD(device_attach,	ste_attach),
145	DEVMETHOD(device_detach,	ste_detach),
146	DEVMETHOD(device_shutdown,	ste_shutdown),
147	DEVMETHOD(device_suspend,	ste_suspend),
148	DEVMETHOD(device_resume,	ste_resume),
149
150	/* bus interface */
151	DEVMETHOD(bus_print_child,	bus_generic_print_child),
152	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
153
154	/* MII interface */
155	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
156	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
157	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
158
159	{ 0, 0 }
160};
161
162static driver_t ste_driver = {
163	"ste",
164	ste_methods,
165	sizeof(struct ste_softc)
166};
167
168static devclass_t ste_devclass;
169
170DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
171DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
172
173#define STE_SETBIT4(sc, reg, x)				\
174	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
175
176#define STE_CLRBIT4(sc, reg, x)				\
177	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
178
179#define STE_SETBIT2(sc, reg, x)				\
180	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
181
182#define STE_CLRBIT2(sc, reg, x)				\
183	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
184
185#define STE_SETBIT1(sc, reg, x)				\
186	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
187
188#define STE_CLRBIT1(sc, reg, x)				\
189	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
190
191
192#define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
193#define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
194
195/*
196 * Sync the PHYs by setting data bit and strobing the clock 32 times.
197 */
198static void
199ste_mii_sync(struct ste_softc *sc)
200{
201	int i;
202
203	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
204
205	for (i = 0; i < 32; i++) {
206		MII_SET(STE_PHYCTL_MCLK);
207		DELAY(1);
208		MII_CLR(STE_PHYCTL_MCLK);
209		DELAY(1);
210	}
211}
212
213/*
214 * Clock a series of bits through the MII.
215 */
216static void
217ste_mii_send(struct ste_softc *sc, uint32_t bits, int cnt)
218{
219	int i;
220
221	MII_CLR(STE_PHYCTL_MCLK);
222
223	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
224		if (bits & i) {
225			MII_SET(STE_PHYCTL_MDATA);
226                } else {
227			MII_CLR(STE_PHYCTL_MDATA);
228                }
229		DELAY(1);
230		MII_CLR(STE_PHYCTL_MCLK);
231		DELAY(1);
232		MII_SET(STE_PHYCTL_MCLK);
233	}
234}
235
236/*
237 * Read an PHY register through the MII.
238 */
239static int
240ste_mii_readreg(struct ste_softc *sc, struct ste_mii_frame *frame)
241{
242	int i, ack;
243
244	/*
245	 * Set up frame for RX.
246	 */
247	frame->mii_stdelim = STE_MII_STARTDELIM;
248	frame->mii_opcode = STE_MII_READOP;
249	frame->mii_turnaround = 0;
250	frame->mii_data = 0;
251
252	CSR_WRITE_2(sc, STE_PHYCTL, 0);
253	/*
254 	 * Turn on data xmit.
255	 */
256	MII_SET(STE_PHYCTL_MDIR);
257
258	ste_mii_sync(sc);
259
260	/*
261	 * Send command/address info.
262	 */
263	ste_mii_send(sc, frame->mii_stdelim, 2);
264	ste_mii_send(sc, frame->mii_opcode, 2);
265	ste_mii_send(sc, frame->mii_phyaddr, 5);
266	ste_mii_send(sc, frame->mii_regaddr, 5);
267
268	/* Turn off xmit. */
269	MII_CLR(STE_PHYCTL_MDIR);
270
271	/* Idle bit */
272	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
273	DELAY(1);
274	MII_SET(STE_PHYCTL_MCLK);
275	DELAY(1);
276
277	/* Check for ack */
278	MII_CLR(STE_PHYCTL_MCLK);
279	DELAY(1);
280	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
281	MII_SET(STE_PHYCTL_MCLK);
282	DELAY(1);
283
284	/*
285	 * Now try reading data bits. If the ack failed, we still
286	 * need to clock through 16 cycles to keep the PHY(s) in sync.
287	 */
288	if (ack) {
289		for (i = 0; i < 16; i++) {
290			MII_CLR(STE_PHYCTL_MCLK);
291			DELAY(1);
292			MII_SET(STE_PHYCTL_MCLK);
293			DELAY(1);
294		}
295		goto fail;
296	}
297
298	for (i = 0x8000; i; i >>= 1) {
299		MII_CLR(STE_PHYCTL_MCLK);
300		DELAY(1);
301		if (!ack) {
302			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
303				frame->mii_data |= i;
304			DELAY(1);
305		}
306		MII_SET(STE_PHYCTL_MCLK);
307		DELAY(1);
308	}
309
310fail:
311
312	MII_CLR(STE_PHYCTL_MCLK);
313	DELAY(1);
314	MII_SET(STE_PHYCTL_MCLK);
315	DELAY(1);
316
317	if (ack)
318		return (1);
319	return (0);
320}
321
322/*
323 * Write to a PHY register through the MII.
324 */
325static int
326ste_mii_writereg(struct ste_softc *sc, struct ste_mii_frame *frame)
327{
328
329	/*
330	 * Set up frame for TX.
331	 */
332
333	frame->mii_stdelim = STE_MII_STARTDELIM;
334	frame->mii_opcode = STE_MII_WRITEOP;
335	frame->mii_turnaround = STE_MII_TURNAROUND;
336
337	/*
338 	 * Turn on data output.
339	 */
340	MII_SET(STE_PHYCTL_MDIR);
341
342	ste_mii_sync(sc);
343
344	ste_mii_send(sc, frame->mii_stdelim, 2);
345	ste_mii_send(sc, frame->mii_opcode, 2);
346	ste_mii_send(sc, frame->mii_phyaddr, 5);
347	ste_mii_send(sc, frame->mii_regaddr, 5);
348	ste_mii_send(sc, frame->mii_turnaround, 2);
349	ste_mii_send(sc, frame->mii_data, 16);
350
351	/* Idle bit. */
352	MII_SET(STE_PHYCTL_MCLK);
353	DELAY(1);
354	MII_CLR(STE_PHYCTL_MCLK);
355	DELAY(1);
356
357	/*
358	 * Turn off xmit.
359	 */
360	MII_CLR(STE_PHYCTL_MDIR);
361
362	return (0);
363}
364
365static int
366ste_miibus_readreg(device_t dev, int phy, int reg)
367{
368	struct ste_softc *sc;
369	struct ste_mii_frame frame;
370
371	sc = device_get_softc(dev);
372
373	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0 && phy != 0)
374		return (0);
375
376	bzero((char *)&frame, sizeof(frame));
377
378	frame.mii_phyaddr = phy;
379	frame.mii_regaddr = reg;
380	ste_mii_readreg(sc, &frame);
381
382	return (frame.mii_data);
383}
384
385static int
386ste_miibus_writereg(device_t dev, int phy, int reg, int data)
387{
388	struct ste_softc *sc;
389	struct ste_mii_frame frame;
390
391	sc = device_get_softc(dev);
392	bzero((char *)&frame, sizeof(frame));
393
394	frame.mii_phyaddr = phy;
395	frame.mii_regaddr = reg;
396	frame.mii_data = data;
397
398	ste_mii_writereg(sc, &frame);
399
400	return (0);
401}
402
403static void
404ste_miibus_statchg(device_t dev)
405{
406	struct ste_softc *sc;
407	struct mii_data *mii;
408	struct ifnet *ifp;
409	uint16_t cfg;
410
411	sc = device_get_softc(dev);
412
413	mii = device_get_softc(sc->ste_miibus);
414	ifp = sc->ste_ifp;
415	if (mii == NULL || ifp == NULL ||
416	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
417		return;
418
419	sc->ste_flags &= ~STE_FLAG_LINK;
420	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
421	    (IFM_ACTIVE | IFM_AVALID)) {
422		switch (IFM_SUBTYPE(mii->mii_media_active)) {
423		case IFM_10_T:
424		case IFM_100_TX:
425		case IFM_100_FX:
426		case IFM_100_T4:
427			sc->ste_flags |= STE_FLAG_LINK;
428		default:
429			break;
430		}
431	}
432
433	/* Program MACs with resolved speed/duplex/flow-control. */
434	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
435		cfg = CSR_READ_2(sc, STE_MACCTL0);
436		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
437		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
438			/*
439			 * ST201 data sheet says driver should enable receiving
440			 * MAC control frames bit of receive mode register to
441			 * receive flow-control frames but the register has no
442			 * such bits. In addition the controller has no ability
443			 * to send pause frames so it should be handled in
444			 * driver. Implementing pause timer handling in driver
445			 * layer is not trivial, so don't enable flow-control
446			 * here.
447			 */
448			cfg |= STE_MACCTL0_FULLDUPLEX;
449		}
450		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
451	}
452}
453
454static int
455ste_ifmedia_upd(struct ifnet *ifp)
456{
457	struct ste_softc *sc;
458	struct mii_data	*mii;
459	struct mii_softc *miisc;
460	int error;
461
462	sc = ifp->if_softc;
463	STE_LOCK(sc);
464	mii = device_get_softc(sc->ste_miibus);
465	if (mii->mii_instance) {
466		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
467			mii_phy_reset(miisc);
468	}
469	error = mii_mediachg(mii);
470	STE_UNLOCK(sc);
471
472	return (error);
473}
474
475static void
476ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
477{
478	struct ste_softc *sc;
479	struct mii_data *mii;
480
481	sc = ifp->if_softc;
482	mii = device_get_softc(sc->ste_miibus);
483
484	STE_LOCK(sc);
485	if ((ifp->if_flags & IFF_UP) == 0) {
486		STE_UNLOCK(sc);
487		return;
488	}
489	mii_pollstat(mii);
490	ifmr->ifm_active = mii->mii_media_active;
491	ifmr->ifm_status = mii->mii_media_status;
492	STE_UNLOCK(sc);
493}
494
495static void
496ste_wait(struct ste_softc *sc)
497{
498	int i;
499
500	for (i = 0; i < STE_TIMEOUT; i++) {
501		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
502			break;
503		DELAY(1);
504	}
505
506	if (i == STE_TIMEOUT)
507		device_printf(sc->ste_dev, "command never completed!\n");
508}
509
510/*
511 * The EEPROM is slow: give it time to come ready after issuing
512 * it a command.
513 */
514static int
515ste_eeprom_wait(struct ste_softc *sc)
516{
517	int i;
518
519	DELAY(1000);
520
521	for (i = 0; i < 100; i++) {
522		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
523			DELAY(1000);
524		else
525			break;
526	}
527
528	if (i == 100) {
529		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
530		return (1);
531	}
532
533	return (0);
534}
535
536/*
537 * Read a sequence of words from the EEPROM. Note that ethernet address
538 * data is stored in the EEPROM in network byte order.
539 */
540static int
541ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
542{
543	int err = 0, i;
544
545	if (ste_eeprom_wait(sc))
546		return (1);
547
548	for (i = 0; i < cnt; i++) {
549		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
550		err = ste_eeprom_wait(sc);
551		if (err)
552			break;
553		*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
554		dest++;
555	}
556
557	return (err ? 1 : 0);
558}
559
560static void
561ste_rxfilter(struct ste_softc *sc)
562{
563	struct ifnet *ifp;
564	struct ifmultiaddr *ifma;
565	uint32_t hashes[2] = { 0, 0 };
566	uint8_t rxcfg;
567	int h;
568
569	STE_LOCK_ASSERT(sc);
570
571	ifp = sc->ste_ifp;
572	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
573	rxcfg |= STE_RXMODE_UNICAST;
574	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
575	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
576	if (ifp->if_flags & IFF_BROADCAST)
577		rxcfg |= STE_RXMODE_BROADCAST;
578	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
579		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
580			rxcfg |= STE_RXMODE_ALLMULTI;
581		if ((ifp->if_flags & IFF_PROMISC) != 0)
582			rxcfg |= STE_RXMODE_PROMISC;
583		goto chipit;
584	}
585
586	rxcfg |= STE_RXMODE_MULTIHASH;
587	/* Now program new ones. */
588	if_maddr_rlock(ifp);
589	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
590		if (ifma->ifma_addr->sa_family != AF_LINK)
591			continue;
592		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
593		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
594		if (h < 32)
595			hashes[0] |= (1 << h);
596		else
597			hashes[1] |= (1 << (h - 32));
598	}
599	if_maddr_runlock(ifp);
600
601chipit:
602	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
603	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
604	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
605	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
606	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
607	CSR_READ_1(sc, STE_RX_MODE);
608}
609
610#ifdef DEVICE_POLLING
611static poll_handler_t ste_poll, ste_poll_locked;
612
613static int
614ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
615{
616	struct ste_softc *sc = ifp->if_softc;
617	int rx_npkts = 0;
618
619	STE_LOCK(sc);
620	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
621		rx_npkts = ste_poll_locked(ifp, cmd, count);
622	STE_UNLOCK(sc);
623	return (rx_npkts);
624}
625
626static int
627ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
628{
629	struct ste_softc *sc = ifp->if_softc;
630	int rx_npkts;
631
632	STE_LOCK_ASSERT(sc);
633
634	rx_npkts = ste_rxeof(sc, count);
635	ste_txeof(sc);
636	ste_txeoc(sc);
637	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
638		ste_start_locked(ifp);
639
640	if (cmd == POLL_AND_CHECK_STATUS) {
641		uint16_t status;
642
643		status = CSR_READ_2(sc, STE_ISR_ACK);
644
645		if (status & STE_ISR_STATS_OFLOW)
646			ste_stats_update(sc);
647
648		if (status & STE_ISR_HOSTERR) {
649			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
650			ste_init_locked(sc);
651		}
652	}
653	return (rx_npkts);
654}
655#endif /* DEVICE_POLLING */
656
657static void
658ste_intr(void *xsc)
659{
660	struct ste_softc *sc;
661	struct ifnet *ifp;
662	uint16_t intrs, status;
663
664	sc = xsc;
665	STE_LOCK(sc);
666	ifp = sc->ste_ifp;
667
668#ifdef DEVICE_POLLING
669	if (ifp->if_capenable & IFCAP_POLLING) {
670		STE_UNLOCK(sc);
671		return;
672	}
673#endif
674	/* Reading STE_ISR_ACK clears STE_IMR register. */
675	status = CSR_READ_2(sc, STE_ISR_ACK);
676	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
677		STE_UNLOCK(sc);
678		return;
679	}
680
681	intrs = STE_INTRS;
682	if (status == 0xFFFF || (status & intrs) == 0)
683		goto done;
684
685	if (sc->ste_int_rx_act > 0) {
686		status &= ~STE_ISR_RX_DMADONE;
687		intrs &= ~STE_IMR_RX_DMADONE;
688	}
689
690	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
691		ste_rxeof(sc, -1);
692		/*
693		 * The controller has no ability to Rx interrupt
694		 * moderation feature. Receiving 64 bytes frames
695		 * from wire generates too many interrupts which in
696		 * turn make system useless to process other useful
697		 * things. Fortunately ST201 supports single shot
698		 * timer so use the timer to implement Rx interrupt
699		 * moderation in driver. This adds more register
700		 * access but it greatly reduces number of Rx
701		 * interrupts under high network load.
702		 */
703		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
704		    (sc->ste_int_rx_mod != 0)) {
705			if ((status & STE_ISR_RX_DMADONE) != 0) {
706				CSR_WRITE_2(sc, STE_COUNTDOWN,
707				    STE_TIMER_USECS(sc->ste_int_rx_mod));
708				intrs &= ~STE_IMR_RX_DMADONE;
709				sc->ste_int_rx_act = 1;
710			} else {
711				intrs |= STE_IMR_RX_DMADONE;
712				sc->ste_int_rx_act = 0;
713			}
714		}
715	}
716	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
717		if ((status & STE_ISR_TX_DMADONE) != 0)
718			ste_txeof(sc);
719		if ((status & STE_ISR_TX_DONE) != 0)
720			ste_txeoc(sc);
721		if ((status & STE_ISR_STATS_OFLOW) != 0)
722			ste_stats_update(sc);
723		if ((status & STE_ISR_HOSTERR) != 0) {
724			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
725			ste_init_locked(sc);
726			STE_UNLOCK(sc);
727			return;
728		}
729		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
730			ste_start_locked(ifp);
731done:
732		/* Re-enable interrupts */
733		CSR_WRITE_2(sc, STE_IMR, intrs);
734	}
735	STE_UNLOCK(sc);
736}
737
738/*
739 * A frame has been uploaded: pass the resulting mbuf chain up to
740 * the higher level protocols.
741 */
742static int
743ste_rxeof(struct ste_softc *sc, int count)
744{
745        struct mbuf *m;
746        struct ifnet *ifp;
747	struct ste_chain_onefrag *cur_rx;
748	uint32_t rxstat;
749	int total_len, rx_npkts;
750
751	ifp = sc->ste_ifp;
752
753	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
754	    sc->ste_cdata.ste_rx_list_map,
755	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
756
757	cur_rx = sc->ste_cdata.ste_rx_head;
758	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
759	    cur_rx = cur_rx->ste_next) {
760		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
761		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
762			break;
763#ifdef DEVICE_POLLING
764		if (ifp->if_capenable & IFCAP_POLLING) {
765			if (count == 0)
766				break;
767			count--;
768		}
769#endif
770		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
771			break;
772		/*
773		 * If an error occurs, update stats, clear the
774		 * status word and leave the mbuf cluster in place:
775		 * it should simply get re-used next time this descriptor
776	 	 * comes up in the ring.
777		 */
778		if (rxstat & STE_RXSTAT_FRAME_ERR) {
779			ifp->if_ierrors++;
780			cur_rx->ste_ptr->ste_status = 0;
781			continue;
782		}
783
784		/* No errors; receive the packet. */
785		m = cur_rx->ste_mbuf;
786		total_len = STE_RX_BYTES(rxstat);
787
788		/*
789		 * Try to conjure up a new mbuf cluster. If that
790		 * fails, it means we have an out of memory condition and
791		 * should leave the buffer in place and continue. This will
792		 * result in a lost packet, but there's little else we
793		 * can do in this situation.
794		 */
795		if (ste_newbuf(sc, cur_rx) != 0) {
796			ifp->if_iqdrops++;
797			cur_rx->ste_ptr->ste_status = 0;
798			continue;
799		}
800
801		m->m_pkthdr.rcvif = ifp;
802		m->m_pkthdr.len = m->m_len = total_len;
803
804		ifp->if_ipackets++;
805		STE_UNLOCK(sc);
806		(*ifp->if_input)(ifp, m);
807		STE_LOCK(sc);
808	}
809
810	if (rx_npkts > 0) {
811		sc->ste_cdata.ste_rx_head = cur_rx;
812		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
813		    sc->ste_cdata.ste_rx_list_map,
814		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
815	}
816
817	return (rx_npkts);
818}
819
820static void
821ste_txeoc(struct ste_softc *sc)
822{
823	uint16_t txstat;
824	struct ifnet *ifp;
825
826	STE_LOCK_ASSERT(sc);
827
828	ifp = sc->ste_ifp;
829
830	/*
831	 * STE_TX_STATUS register implements a queue of up to 31
832	 * transmit status byte. Writing an arbitrary value to the
833	 * register will advance the queue to the next transmit
834	 * status byte. This means if driver does not read
835	 * STE_TX_STATUS register after completing sending more
836	 * than 31 frames the controller would be stalled so driver
837	 * should re-wake the Tx MAC. This is the most severe
838	 * limitation of ST201 based controller.
839	 */
840	for (;;) {
841		txstat = CSR_READ_2(sc, STE_TX_STATUS);
842		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
843			break;
844		if ((txstat & (STE_TXSTATUS_UNDERRUN |
845		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
846		    STE_TXSTATUS_STATSOFLOW)) != 0) {
847			ifp->if_oerrors++;
848#ifdef	STE_SHOW_TXERRORS
849			device_printf(sc->ste_dev, "TX error : 0x%b\n",
850			    txstat & 0xFF, STE_ERR_BITS);
851#endif
852			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
853			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
854				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
855				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
856					sc->ste_tx_thresh = STE_PACKET_SIZE;
857				device_printf(sc->ste_dev,
858				    "TX underrun, increasing TX"
859				    " start threshold to %d bytes\n",
860				    sc->ste_tx_thresh);
861				/* Make sure to disable active DMA cycles. */
862				STE_SETBIT4(sc, STE_DMACTL,
863				    STE_DMACTL_TXDMA_STALL);
864				ste_wait(sc);
865				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
866				ste_init_locked(sc);
867				break;
868			}
869			/* Restart Tx. */
870			ste_restart_tx(sc);
871		}
872		/*
873		 * Advance to next status and ACK TxComplete
874		 * interrupt. ST201 data sheet was wrong here, to
875		 * get next Tx status, we have to write both
876		 * STE_TX_STATUS and STE_TX_FRAMEID register.
877		 * Otherwise controller returns the same status
878		 * as well as not acknowledge Tx completion
879		 * interrupt.
880		 */
881		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
882	}
883}
884
885static void
886ste_tick(void *arg)
887{
888	struct ste_softc *sc;
889	struct mii_data *mii;
890
891	sc = (struct ste_softc *)arg;
892
893	STE_LOCK_ASSERT(sc);
894
895	mii = device_get_softc(sc->ste_miibus);
896	mii_tick(mii);
897	/*
898	 * ukphy(4) does not seem to generate CB that reports
899	 * resolved link state so if we know we lost a link,
900	 * explicitly check the link state.
901	 */
902	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
903		ste_miibus_statchg(sc->ste_dev);
904	/*
905	 * Because we are not generating Tx completion
906	 * interrupt for every frame, reclaim transmitted
907	 * buffers here.
908	 */
909	ste_txeof(sc);
910	ste_txeoc(sc);
911	ste_stats_update(sc);
912	ste_watchdog(sc);
913	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
914}
915
916static void
917ste_txeof(struct ste_softc *sc)
918{
919	struct ifnet *ifp;
920	struct ste_chain *cur_tx;
921	uint32_t txstat;
922	int idx;
923
924	STE_LOCK_ASSERT(sc);
925
926	ifp = sc->ste_ifp;
927	idx = sc->ste_cdata.ste_tx_cons;
928	if (idx == sc->ste_cdata.ste_tx_prod)
929		return;
930
931	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
932	    sc->ste_cdata.ste_tx_list_map,
933	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
934
935	while (idx != sc->ste_cdata.ste_tx_prod) {
936		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
937		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
938		if ((txstat & STE_TXCTL_DMADONE) == 0)
939			break;
940		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
941		    BUS_DMASYNC_POSTWRITE);
942		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
943		KASSERT(cur_tx->ste_mbuf != NULL,
944		    ("%s: freeing NULL mbuf!\n", __func__));
945		m_freem(cur_tx->ste_mbuf);
946		cur_tx->ste_mbuf = NULL;
947		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
948		ifp->if_opackets++;
949		sc->ste_cdata.ste_tx_cnt--;
950		STE_INC(idx, STE_TX_LIST_CNT);
951	}
952
953	sc->ste_cdata.ste_tx_cons = idx;
954	if (sc->ste_cdata.ste_tx_cnt == 0)
955		sc->ste_timer = 0;
956}
957
958static void
959ste_stats_clear(struct ste_softc *sc)
960{
961
962	STE_LOCK_ASSERT(sc);
963
964	/* Rx stats. */
965	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
966	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
967	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
968	CSR_READ_1(sc, STE_STAT_RX_BCAST);
969	CSR_READ_1(sc, STE_STAT_RX_MCAST);
970	CSR_READ_1(sc, STE_STAT_RX_LOST);
971	/* Tx stats. */
972	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
973	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
974	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
975	CSR_READ_1(sc, STE_STAT_TX_BCAST);
976	CSR_READ_1(sc, STE_STAT_TX_MCAST);
977	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
978	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
979	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
980	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
981	CSR_READ_1(sc, STE_STAT_TX_DEFER);
982	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
983	CSR_READ_1(sc, STE_STAT_TX_ABORT);
984}
985
986static void
987ste_stats_update(struct ste_softc *sc)
988{
989	struct ifnet *ifp;
990	struct ste_hw_stats *stats;
991	uint32_t val;
992
993	STE_LOCK_ASSERT(sc);
994
995	ifp = sc->ste_ifp;
996	stats = &sc->ste_stats;
997	/* Rx stats. */
998	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
999	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
1000	val &= 0x000FFFFF;
1001	stats->rx_bytes += val;
1002	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
1003	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
1004	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
1005	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
1006	/* Tx stats. */
1007	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
1008	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
1009	val &= 0x000FFFFF;
1010	stats->tx_bytes += val;
1011	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
1012	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
1013	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
1014	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
1015	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
1016	stats->tx_single_colls += val;
1017	ifp->if_collisions += val;
1018	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
1019	stats->tx_multi_colls += val;
1020	ifp->if_collisions += val;
1021	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
1022	stats->tx_late_colls += val;
1023	ifp->if_collisions += val;
1024	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
1025	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
1026	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
1027}
1028
1029/*
1030 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
1031 * IDs against our list and return a device name if we find a match.
1032 */
1033static int
1034ste_probe(device_t dev)
1035{
1036	struct ste_type *t;
1037
1038	t = ste_devs;
1039
1040	while (t->ste_name != NULL) {
1041		if ((pci_get_vendor(dev) == t->ste_vid) &&
1042		    (pci_get_device(dev) == t->ste_did)) {
1043			device_set_desc(dev, t->ste_name);
1044			return (BUS_PROBE_DEFAULT);
1045		}
1046		t++;
1047	}
1048
1049	return (ENXIO);
1050}
1051
1052/*
1053 * Attach the interface. Allocate softc structures, do ifmedia
1054 * setup and ethernet/BPF attach.
1055 */
1056static int
1057ste_attach(device_t dev)
1058{
1059	struct ste_softc *sc;
1060	struct ifnet *ifp;
1061	uint16_t eaddr[ETHER_ADDR_LEN / 2];
1062	int error = 0, pmc, rid;
1063
1064	sc = device_get_softc(dev);
1065	sc->ste_dev = dev;
1066
1067	/*
1068	 * Only use one PHY since this chip reports multiple
1069	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
1070	 * it is at 0 & 1.  It is rev 0x12.
1071	 */
1072	if (pci_get_vendor(dev) == DL_VENDORID &&
1073	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
1074	    pci_get_revid(dev) == 0x12 )
1075		sc->ste_flags |= STE_FLAG_ONE_PHY;
1076
1077	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1078	    MTX_DEF);
1079	/*
1080	 * Map control/status registers.
1081	 */
1082	pci_enable_busmaster(dev);
1083
1084	/* Prefer memory space register mapping over IO space. */
1085	sc->ste_res_id = PCIR_BAR(1);
1086	sc->ste_res_type = SYS_RES_MEMORY;
1087	sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
1088	    &sc->ste_res_id, RF_ACTIVE);
1089	if (sc->ste_res == NULL) {
1090		sc->ste_res_id = PCIR_BAR(0);
1091		sc->ste_res_type = SYS_RES_IOPORT;
1092		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
1093		    &sc->ste_res_id, RF_ACTIVE);
1094	}
1095	if (sc->ste_res == NULL) {
1096		device_printf(dev, "couldn't map ports/memory\n");
1097		error = ENXIO;
1098		goto fail;
1099	}
1100
1101	/* Allocate interrupt */
1102	rid = 0;
1103	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1104	    RF_SHAREABLE | RF_ACTIVE);
1105
1106	if (sc->ste_irq == NULL) {
1107		device_printf(dev, "couldn't map interrupt\n");
1108		error = ENXIO;
1109		goto fail;
1110	}
1111
1112	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
1113
1114	/* Reset the adapter. */
1115	ste_reset(sc);
1116
1117	/*
1118	 * Get station address from the EEPROM.
1119	 */
1120	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
1121		device_printf(dev, "failed to read station address\n");
1122		error = ENXIO;
1123		goto fail;
1124	}
1125	ste_sysctl_node(sc);
1126
1127	if ((error = ste_dma_alloc(sc)) != 0)
1128		goto fail;
1129
1130	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
1131	if (ifp == NULL) {
1132		device_printf(dev, "can not if_alloc()\n");
1133		error = ENOSPC;
1134		goto fail;
1135	}
1136
1137	/* Do MII setup. */
1138	if (mii_phy_probe(dev, &sc->ste_miibus,
1139	    ste_ifmedia_upd, ste_ifmedia_sts)) {
1140		device_printf(dev, "MII without any phy!\n");
1141		error = ENXIO;
1142		goto fail;
1143	}
1144
1145	ifp->if_softc = sc;
1146	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1147	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1148	ifp->if_ioctl = ste_ioctl;
1149	ifp->if_start = ste_start;
1150	ifp->if_init = ste_init;
1151	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1152	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1153	IFQ_SET_READY(&ifp->if_snd);
1154
1155	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1156
1157	/*
1158	 * Call MI attach routine.
1159	 */
1160	ether_ifattach(ifp, (uint8_t *)eaddr);
1161
1162	/*
1163	 * Tell the upper layer(s) we support long frames.
1164	 */
1165	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1166	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1167	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
1168		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1169	ifp->if_capenable = ifp->if_capabilities;
1170#ifdef DEVICE_POLLING
1171	ifp->if_capabilities |= IFCAP_POLLING;
1172#endif
1173
1174	/* Hook interrupt last to avoid having to lock softc */
1175	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1176	    NULL, ste_intr, sc, &sc->ste_intrhand);
1177
1178	if (error) {
1179		device_printf(dev, "couldn't set up irq\n");
1180		ether_ifdetach(ifp);
1181		goto fail;
1182	}
1183
1184fail:
1185	if (error)
1186		ste_detach(dev);
1187
1188	return (error);
1189}
1190
1191/*
1192 * Shutdown hardware and free up resources. This can be called any
1193 * time after the mutex has been initialized. It is called in both
1194 * the error case in attach and the normal detach case so it needs
1195 * to be careful about only freeing resources that have actually been
1196 * allocated.
1197 */
1198static int
1199ste_detach(device_t dev)
1200{
1201	struct ste_softc *sc;
1202	struct ifnet *ifp;
1203
1204	sc = device_get_softc(dev);
1205	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1206	ifp = sc->ste_ifp;
1207
1208#ifdef DEVICE_POLLING
1209	if (ifp->if_capenable & IFCAP_POLLING)
1210		ether_poll_deregister(ifp);
1211#endif
1212
1213	/* These should only be active if attach succeeded */
1214	if (device_is_attached(dev)) {
1215		ether_ifdetach(ifp);
1216		STE_LOCK(sc);
1217		ste_stop(sc);
1218		STE_UNLOCK(sc);
1219		callout_drain(&sc->ste_callout);
1220	}
1221	if (sc->ste_miibus)
1222		device_delete_child(dev, sc->ste_miibus);
1223	bus_generic_detach(dev);
1224
1225	if (sc->ste_intrhand)
1226		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1227	if (sc->ste_irq)
1228		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1229	if (sc->ste_res)
1230		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1231		    sc->ste_res);
1232
1233	if (ifp)
1234		if_free(ifp);
1235
1236	ste_dma_free(sc);
1237	mtx_destroy(&sc->ste_mtx);
1238
1239	return (0);
1240}
1241
1242struct ste_dmamap_arg {
1243	bus_addr_t	ste_busaddr;
1244};
1245
1246static void
1247ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1248{
1249	struct ste_dmamap_arg *ctx;
1250
1251	if (error != 0)
1252		return;
1253
1254	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1255
1256	ctx = (struct ste_dmamap_arg *)arg;
1257	ctx->ste_busaddr = segs[0].ds_addr;
1258}
1259
1260static int
1261ste_dma_alloc(struct ste_softc *sc)
1262{
1263	struct ste_chain *txc;
1264	struct ste_chain_onefrag *rxc;
1265	struct ste_dmamap_arg ctx;
1266	int error, i;
1267
1268	/* Create parent DMA tag. */
1269	error = bus_dma_tag_create(
1270	    bus_get_dma_tag(sc->ste_dev), /* parent */
1271	    1, 0,			/* alignment, boundary */
1272	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1273	    BUS_SPACE_MAXADDR,		/* highaddr */
1274	    NULL, NULL,			/* filter, filterarg */
1275	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1276	    0,				/* nsegments */
1277	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1278	    0,				/* flags */
1279	    NULL, NULL,			/* lockfunc, lockarg */
1280	    &sc->ste_cdata.ste_parent_tag);
1281	if (error != 0) {
1282		device_printf(sc->ste_dev,
1283		    "could not create parent DMA tag.\n");
1284		goto fail;
1285	}
1286
1287	/* Create DMA tag for Tx descriptor list. */
1288	error = bus_dma_tag_create(
1289	    sc->ste_cdata.ste_parent_tag, /* parent */
1290	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1291	    BUS_SPACE_MAXADDR,		/* lowaddr */
1292	    BUS_SPACE_MAXADDR,		/* highaddr */
1293	    NULL, NULL,			/* filter, filterarg */
1294	    STE_TX_LIST_SZ,		/* maxsize */
1295	    1,				/* nsegments */
1296	    STE_TX_LIST_SZ,		/* maxsegsize */
1297	    0,				/* flags */
1298	    NULL, NULL,			/* lockfunc, lockarg */
1299	    &sc->ste_cdata.ste_tx_list_tag);
1300	if (error != 0) {
1301		device_printf(sc->ste_dev,
1302		    "could not create Tx list DMA tag.\n");
1303		goto fail;
1304	}
1305
1306	/* Create DMA tag for Rx descriptor list. */
1307	error = bus_dma_tag_create(
1308	    sc->ste_cdata.ste_parent_tag, /* parent */
1309	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1310	    BUS_SPACE_MAXADDR,		/* lowaddr */
1311	    BUS_SPACE_MAXADDR,		/* highaddr */
1312	    NULL, NULL,			/* filter, filterarg */
1313	    STE_RX_LIST_SZ,		/* maxsize */
1314	    1,				/* nsegments */
1315	    STE_RX_LIST_SZ,		/* maxsegsize */
1316	    0,				/* flags */
1317	    NULL, NULL,			/* lockfunc, lockarg */
1318	    &sc->ste_cdata.ste_rx_list_tag);
1319	if (error != 0) {
1320		device_printf(sc->ste_dev,
1321		    "could not create Rx list DMA tag.\n");
1322		goto fail;
1323	}
1324
1325	/* Create DMA tag for Tx buffers. */
1326	error = bus_dma_tag_create(
1327	    sc->ste_cdata.ste_parent_tag, /* parent */
1328	    1, 0,			/* alignment, boundary */
1329	    BUS_SPACE_MAXADDR,		/* lowaddr */
1330	    BUS_SPACE_MAXADDR,		/* highaddr */
1331	    NULL, NULL,			/* filter, filterarg */
1332	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1333	    STE_MAXFRAGS,		/* nsegments */
1334	    MCLBYTES,			/* maxsegsize */
1335	    0,				/* flags */
1336	    NULL, NULL,			/* lockfunc, lockarg */
1337	    &sc->ste_cdata.ste_tx_tag);
1338	if (error != 0) {
1339		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1340		goto fail;
1341	}
1342
1343	/* Create DMA tag for Rx buffers. */
1344	error = bus_dma_tag_create(
1345	    sc->ste_cdata.ste_parent_tag, /* parent */
1346	    1, 0,			/* alignment, boundary */
1347	    BUS_SPACE_MAXADDR,		/* lowaddr */
1348	    BUS_SPACE_MAXADDR,		/* highaddr */
1349	    NULL, NULL,			/* filter, filterarg */
1350	    MCLBYTES,			/* maxsize */
1351	    1,				/* nsegments */
1352	    MCLBYTES,			/* maxsegsize */
1353	    0,				/* flags */
1354	    NULL, NULL,			/* lockfunc, lockarg */
1355	    &sc->ste_cdata.ste_rx_tag);
1356	if (error != 0) {
1357		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1358		goto fail;
1359	}
1360
1361	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1362	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1363	    (void **)&sc->ste_ldata.ste_tx_list,
1364	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1365	    &sc->ste_cdata.ste_tx_list_map);
1366	if (error != 0) {
1367		device_printf(sc->ste_dev,
1368		    "could not allocate DMA'able memory for Tx list.\n");
1369		goto fail;
1370	}
1371	ctx.ste_busaddr = 0;
1372	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1373	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1374	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1375	if (error != 0 || ctx.ste_busaddr == 0) {
1376		device_printf(sc->ste_dev,
1377		    "could not load DMA'able memory for Tx list.\n");
1378		goto fail;
1379	}
1380	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1381
1382	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1383	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1384	    (void **)&sc->ste_ldata.ste_rx_list,
1385	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1386	    &sc->ste_cdata.ste_rx_list_map);
1387	if (error != 0) {
1388		device_printf(sc->ste_dev,
1389		    "could not allocate DMA'able memory for Rx list.\n");
1390		goto fail;
1391	}
1392	ctx.ste_busaddr = 0;
1393	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1394	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1395	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1396	if (error != 0 || ctx.ste_busaddr == 0) {
1397		device_printf(sc->ste_dev,
1398		    "could not load DMA'able memory for Rx list.\n");
1399		goto fail;
1400	}
1401	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1402
1403	/* Create DMA maps for Tx buffers. */
1404	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1405		txc = &sc->ste_cdata.ste_tx_chain[i];
1406		txc->ste_ptr = NULL;
1407		txc->ste_mbuf = NULL;
1408		txc->ste_next = NULL;
1409		txc->ste_phys = 0;
1410		txc->ste_map = NULL;
1411		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1412		    &txc->ste_map);
1413		if (error != 0) {
1414			device_printf(sc->ste_dev,
1415			    "could not create Tx dmamap.\n");
1416			goto fail;
1417		}
1418	}
1419	/* Create DMA maps for Rx buffers. */
1420	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1421	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1422		device_printf(sc->ste_dev,
1423		    "could not create spare Rx dmamap.\n");
1424		goto fail;
1425	}
1426	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1427		rxc = &sc->ste_cdata.ste_rx_chain[i];
1428		rxc->ste_ptr = NULL;
1429		rxc->ste_mbuf = NULL;
1430		rxc->ste_next = NULL;
1431		rxc->ste_map = NULL;
1432		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1433		    &rxc->ste_map);
1434		if (error != 0) {
1435			device_printf(sc->ste_dev,
1436			    "could not create Rx dmamap.\n");
1437			goto fail;
1438		}
1439	}
1440
1441fail:
1442	return (error);
1443}
1444
1445static void
1446ste_dma_free(struct ste_softc *sc)
1447{
1448	struct ste_chain *txc;
1449	struct ste_chain_onefrag *rxc;
1450	int i;
1451
1452	/* Tx buffers. */
1453	if (sc->ste_cdata.ste_tx_tag != NULL) {
1454		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1455			txc = &sc->ste_cdata.ste_tx_chain[i];
1456			if (txc->ste_map != NULL) {
1457				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1458				    txc->ste_map);
1459				txc->ste_map = NULL;
1460			}
1461		}
1462		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1463		sc->ste_cdata.ste_tx_tag = NULL;
1464	}
1465	/* Rx buffers. */
1466	if (sc->ste_cdata.ste_rx_tag != NULL) {
1467		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1468			rxc = &sc->ste_cdata.ste_rx_chain[i];
1469			if (rxc->ste_map != NULL) {
1470				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1471				    rxc->ste_map);
1472				rxc->ste_map = NULL;
1473			}
1474		}
1475		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1476			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1477			    sc->ste_cdata.ste_rx_sparemap);
1478			sc->ste_cdata.ste_rx_sparemap = NULL;
1479		}
1480		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1481		sc->ste_cdata.ste_rx_tag = NULL;
1482	}
1483	/* Tx descriptor list. */
1484	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1485		if (sc->ste_cdata.ste_tx_list_map != NULL)
1486			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1487			    sc->ste_cdata.ste_tx_list_map);
1488		if (sc->ste_cdata.ste_tx_list_map != NULL &&
1489		    sc->ste_ldata.ste_tx_list != NULL)
1490			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1491			    sc->ste_ldata.ste_tx_list,
1492			    sc->ste_cdata.ste_tx_list_map);
1493		sc->ste_ldata.ste_tx_list = NULL;
1494		sc->ste_cdata.ste_tx_list_map = NULL;
1495		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1496		sc->ste_cdata.ste_tx_list_tag = NULL;
1497	}
1498	/* Rx descriptor list. */
1499	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1500		if (sc->ste_cdata.ste_rx_list_map != NULL)
1501			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1502			    sc->ste_cdata.ste_rx_list_map);
1503		if (sc->ste_cdata.ste_rx_list_map != NULL &&
1504		    sc->ste_ldata.ste_rx_list != NULL)
1505			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1506			    sc->ste_ldata.ste_rx_list,
1507			    sc->ste_cdata.ste_rx_list_map);
1508		sc->ste_ldata.ste_rx_list = NULL;
1509		sc->ste_cdata.ste_rx_list_map = NULL;
1510		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1511		sc->ste_cdata.ste_rx_list_tag = NULL;
1512	}
1513	if (sc->ste_cdata.ste_parent_tag != NULL) {
1514		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1515		sc->ste_cdata.ste_parent_tag = NULL;
1516	}
1517}
1518
1519static int
1520ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1521{
1522	struct mbuf *m;
1523	bus_dma_segment_t segs[1];
1524	bus_dmamap_t map;
1525	int error, nsegs;
1526
1527	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1528	if (m == NULL)
1529		return (ENOBUFS);
1530	m->m_len = m->m_pkthdr.len = MCLBYTES;
1531	m_adj(m, ETHER_ALIGN);
1532
1533	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1534	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1535		m_freem(m);
1536		return (error);
1537	}
1538	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1539
1540	if (rxc->ste_mbuf != NULL) {
1541		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1542		    BUS_DMASYNC_POSTREAD);
1543		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1544	}
1545	map = rxc->ste_map;
1546	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1547	sc->ste_cdata.ste_rx_sparemap = map;
1548	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1549	    BUS_DMASYNC_PREREAD);
1550	rxc->ste_mbuf = m;
1551	rxc->ste_ptr->ste_status = 0;
1552	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1553	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1554	    STE_FRAG_LAST);
1555	return (0);
1556}
1557
1558static int
1559ste_init_rx_list(struct ste_softc *sc)
1560{
1561	struct ste_chain_data *cd;
1562	struct ste_list_data *ld;
1563	int error, i;
1564
1565	sc->ste_int_rx_act = 0;
1566	cd = &sc->ste_cdata;
1567	ld = &sc->ste_ldata;
1568	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1569	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1570		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1571		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1572		if (error != 0)
1573			return (error);
1574		if (i == (STE_RX_LIST_CNT - 1)) {
1575			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1576			ld->ste_rx_list[i].ste_next =
1577			    htole32(ld->ste_rx_list_paddr +
1578			    (sizeof(struct ste_desc_onefrag) * 0));
1579		} else {
1580			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1581			ld->ste_rx_list[i].ste_next =
1582			    htole32(ld->ste_rx_list_paddr +
1583			    (sizeof(struct ste_desc_onefrag) * (i + 1)));
1584		}
1585	}
1586
1587	cd->ste_rx_head = &cd->ste_rx_chain[0];
1588	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1589	    sc->ste_cdata.ste_rx_list_map,
1590	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1591
1592	return (0);
1593}
1594
1595static void
1596ste_init_tx_list(struct ste_softc *sc)
1597{
1598	struct ste_chain_data *cd;
1599	struct ste_list_data *ld;
1600	int i;
1601
1602	cd = &sc->ste_cdata;
1603	ld = &sc->ste_ldata;
1604	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1605	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1606		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1607		cd->ste_tx_chain[i].ste_mbuf = NULL;
1608		if (i == (STE_TX_LIST_CNT - 1)) {
1609			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1610			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1611			    ld->ste_tx_list_paddr +
1612			    (sizeof(struct ste_desc) * 0)));
1613		} else {
1614			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1615			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1616			    ld->ste_tx_list_paddr +
1617			    (sizeof(struct ste_desc) * (i + 1))));
1618		}
1619	}
1620
1621	cd->ste_last_tx = NULL;
1622	cd->ste_tx_prod = 0;
1623	cd->ste_tx_cons = 0;
1624	cd->ste_tx_cnt = 0;
1625
1626	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1627	    sc->ste_cdata.ste_tx_list_map,
1628	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1629}
1630
1631static void
1632ste_init(void *xsc)
1633{
1634	struct ste_softc *sc;
1635
1636	sc = xsc;
1637	STE_LOCK(sc);
1638	ste_init_locked(sc);
1639	STE_UNLOCK(sc);
1640}
1641
1642static void
1643ste_init_locked(struct ste_softc *sc)
1644{
1645	struct ifnet *ifp;
1646	struct mii_data *mii;
1647	uint8_t val;
1648	int i;
1649
1650	STE_LOCK_ASSERT(sc);
1651	ifp = sc->ste_ifp;
1652	mii = device_get_softc(sc->ste_miibus);
1653
1654	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1655		return;
1656
1657	ste_stop(sc);
1658	/* Reset the chip to a known state. */
1659	ste_reset(sc);
1660
1661	/* Init our MAC address */
1662	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1663		CSR_WRITE_2(sc, STE_PAR0 + i,
1664		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1665		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1666	}
1667
1668	/* Init RX list */
1669	if (ste_init_rx_list(sc) != 0) {
1670		device_printf(sc->ste_dev,
1671		    "initialization failed: no memory for RX buffers\n");
1672		ste_stop(sc);
1673		return;
1674	}
1675
1676	/* Set RX polling interval */
1677	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1678
1679	/* Init TX descriptors */
1680	ste_init_tx_list(sc);
1681
1682	/* Clear and disable WOL. */
1683	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1684	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1685	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1686	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1687
1688	/* Set the TX freethresh value */
1689	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1690
1691	/* Set the TX start threshold for best performance. */
1692	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1693
1694	/* Set the TX reclaim threshold. */
1695	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1696
1697	/* Accept VLAN length packets */
1698	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1699
1700	/* Set up the RX filter. */
1701	ste_rxfilter(sc);
1702
1703	/* Load the address of the RX list. */
1704	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1705	ste_wait(sc);
1706	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1707	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1708	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1709	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1710
1711	/* Set TX polling interval(defer until we TX first packet). */
1712	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1713
1714	/* Load address of the TX list */
1715	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1716	ste_wait(sc);
1717	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1718	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1719	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1720	ste_wait(sc);
1721	/* Select 3.2us timer. */
1722	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1723	    STE_DMACTL_COUNTDOWN_MODE);
1724
1725	/* Enable receiver and transmitter */
1726	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1727	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1728	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1729	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1730
1731	/* Enable stats counters. */
1732	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1733	/* Clear stats counters. */
1734	ste_stats_clear(sc);
1735
1736	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1737	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1738#ifdef DEVICE_POLLING
1739	/* Disable interrupts if we are polling. */
1740	if (ifp->if_capenable & IFCAP_POLLING)
1741		CSR_WRITE_2(sc, STE_IMR, 0);
1742	else
1743#endif
1744	/* Enable interrupts. */
1745	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1746
1747	sc->ste_flags &= ~STE_FLAG_LINK;
1748	/* Switch to the current media. */
1749	mii_mediachg(mii);
1750
1751	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1752	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1753
1754	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1755}
1756
1757static void
1758ste_stop(struct ste_softc *sc)
1759{
1760	struct ifnet *ifp;
1761	struct ste_chain_onefrag *cur_rx;
1762	struct ste_chain *cur_tx;
1763	uint32_t val;
1764	int i;
1765
1766	STE_LOCK_ASSERT(sc);
1767	ifp = sc->ste_ifp;
1768
1769	callout_stop(&sc->ste_callout);
1770	sc->ste_timer = 0;
1771	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1772
1773	CSR_WRITE_2(sc, STE_IMR, 0);
1774	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1775	/* Stop pending DMA. */
1776	val = CSR_READ_4(sc, STE_DMACTL);
1777	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1778	CSR_WRITE_4(sc, STE_DMACTL, val);
1779	ste_wait(sc);
1780	/* Disable auto-polling. */
1781	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1782	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1783	/* Nullify DMA address to stop any further DMA. */
1784	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1785	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1786	/* Stop TX/RX MAC. */
1787	val = CSR_READ_2(sc, STE_MACCTL1);
1788	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1789	    STE_MACCTL1_STATS_DISABLE;
1790	CSR_WRITE_2(sc, STE_MACCTL1, val);
1791	for (i = 0; i < STE_TIMEOUT; i++) {
1792		DELAY(10);
1793		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1794		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1795			break;
1796	}
1797	if (i == STE_TIMEOUT)
1798		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1799	/* Acknowledge any pending interrupts. */
1800	CSR_READ_2(sc, STE_ISR_ACK);
1801	ste_stats_update(sc);
1802
1803	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1804		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1805		if (cur_rx->ste_mbuf != NULL) {
1806			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1807			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1808			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1809			    cur_rx->ste_map);
1810			m_freem(cur_rx->ste_mbuf);
1811			cur_rx->ste_mbuf = NULL;
1812		}
1813	}
1814
1815	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1816		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1817		if (cur_tx->ste_mbuf != NULL) {
1818			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1819			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1820			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1821			    cur_tx->ste_map);
1822			m_freem(cur_tx->ste_mbuf);
1823			cur_tx->ste_mbuf = NULL;
1824		}
1825	}
1826}
1827
1828static void
1829ste_reset(struct ste_softc *sc)
1830{
1831	uint32_t ctl;
1832	int i;
1833
1834	ctl = CSR_READ_4(sc, STE_ASICCTL);
1835	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1836	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1837	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1838	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1839	    STE_ASICCTL_EXTRESET_RESET;
1840	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1841	CSR_READ_4(sc, STE_ASICCTL);
1842	/*
1843	 * Due to the need of accessing EEPROM controller can take
1844	 * up to 1ms to complete the global reset.
1845	 */
1846	DELAY(1000);
1847
1848	for (i = 0; i < STE_TIMEOUT; i++) {
1849		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1850			break;
1851		DELAY(10);
1852	}
1853
1854	if (i == STE_TIMEOUT)
1855		device_printf(sc->ste_dev, "global reset never completed\n");
1856}
1857
1858static void
1859ste_restart_tx(struct ste_softc *sc)
1860{
1861	uint16_t mac;
1862	int i;
1863
1864	for (i = 0; i < STE_TIMEOUT; i++) {
1865		mac = CSR_READ_2(sc, STE_MACCTL1);
1866		mac |= STE_MACCTL1_TX_ENABLE;
1867		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1868		mac = CSR_READ_2(sc, STE_MACCTL1);
1869		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1870			break;
1871		DELAY(10);
1872	}
1873
1874	if (i == STE_TIMEOUT)
1875		device_printf(sc->ste_dev, "starting Tx failed");
1876}
1877
1878static int
1879ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1880{
1881	struct ste_softc *sc;
1882	struct ifreq *ifr;
1883	struct mii_data *mii;
1884	int error = 0, mask;
1885
1886	sc = ifp->if_softc;
1887	ifr = (struct ifreq *)data;
1888
1889	switch (command) {
1890	case SIOCSIFFLAGS:
1891		STE_LOCK(sc);
1892		if ((ifp->if_flags & IFF_UP) != 0) {
1893			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1894			    ((ifp->if_flags ^ sc->ste_if_flags) &
1895			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1896				ste_rxfilter(sc);
1897			else
1898				ste_init_locked(sc);
1899		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1900			ste_stop(sc);
1901		sc->ste_if_flags = ifp->if_flags;
1902		STE_UNLOCK(sc);
1903		break;
1904	case SIOCADDMULTI:
1905	case SIOCDELMULTI:
1906		STE_LOCK(sc);
1907		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1908			ste_rxfilter(sc);
1909		STE_UNLOCK(sc);
1910		break;
1911	case SIOCGIFMEDIA:
1912	case SIOCSIFMEDIA:
1913		mii = device_get_softc(sc->ste_miibus);
1914		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1915		break;
1916	case SIOCSIFCAP:
1917		STE_LOCK(sc);
1918		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1919#ifdef DEVICE_POLLING
1920		if ((mask & IFCAP_POLLING) != 0 &&
1921		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1922			ifp->if_capenable ^= IFCAP_POLLING;
1923			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1924				error = ether_poll_register(ste_poll, ifp);
1925				if (error != 0) {
1926					STE_UNLOCK(sc);
1927					break;
1928				}
1929				/* Disable interrupts. */
1930				CSR_WRITE_2(sc, STE_IMR, 0);
1931			} else {
1932				error = ether_poll_deregister(ifp);
1933				/* Enable interrupts. */
1934				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1935			}
1936		}
1937#endif /* DEVICE_POLLING */
1938		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1939		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1940			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1941		STE_UNLOCK(sc);
1942		break;
1943	default:
1944		error = ether_ioctl(ifp, command, data);
1945		break;
1946	}
1947
1948	return (error);
1949}
1950
1951static int
1952ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1953{
1954	struct ste_frag *frag;
1955	struct mbuf *m;
1956	struct ste_desc *desc;
1957	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1958	int error, i, nsegs;
1959
1960	STE_LOCK_ASSERT(sc);
1961	M_ASSERTPKTHDR((*m_head));
1962
1963	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1964	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1965	if (error == EFBIG) {
1966		m = m_collapse(*m_head, M_DONTWAIT, STE_MAXFRAGS);
1967		if (m == NULL) {
1968			m_freem(*m_head);
1969			*m_head = NULL;
1970			return (ENOMEM);
1971		}
1972		*m_head = m;
1973		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1974		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1975		if (error != 0) {
1976			m_freem(*m_head);
1977			*m_head = NULL;
1978			return (error);
1979		}
1980	} else if (error != 0)
1981		return (error);
1982	if (nsegs == 0) {
1983		m_freem(*m_head);
1984		*m_head = NULL;
1985		return (EIO);
1986	}
1987	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1988	    BUS_DMASYNC_PREWRITE);
1989
1990	desc = txc->ste_ptr;
1991	for (i = 0; i < nsegs; i++) {
1992		frag = &desc->ste_frags[i];
1993		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1994		frag->ste_len = htole32(txsegs[i].ds_len);
1995	}
1996	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
1997	/*
1998	 * Because we use Tx polling we can't chain multiple
1999	 * Tx descriptors here. Otherwise we race with controller.
2000	 */
2001	desc->ste_next = 0;
2002	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
2003		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
2004		    STE_TXCTL_DMAINTR);
2005	else
2006		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
2007	txc->ste_mbuf = *m_head;
2008	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
2009	sc->ste_cdata.ste_tx_cnt++;
2010
2011	return (0);
2012}
2013
2014static void
2015ste_start(struct ifnet *ifp)
2016{
2017	struct ste_softc *sc;
2018
2019	sc = ifp->if_softc;
2020	STE_LOCK(sc);
2021	ste_start_locked(ifp);
2022	STE_UNLOCK(sc);
2023}
2024
2025static void
2026ste_start_locked(struct ifnet *ifp)
2027{
2028	struct ste_softc *sc;
2029	struct ste_chain *cur_tx;
2030	struct mbuf *m_head = NULL;
2031	int enq;
2032
2033	sc = ifp->if_softc;
2034	STE_LOCK_ASSERT(sc);
2035
2036	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2037	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
2038		return;
2039
2040	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
2041		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
2042			/*
2043			 * Controller may have cached copy of the last used
2044			 * next ptr so we have to reserve one TFD to avoid
2045			 * TFD overruns.
2046			 */
2047			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2048			break;
2049		}
2050		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2051		if (m_head == NULL)
2052			break;
2053		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
2054		if (ste_encap(sc, &m_head, cur_tx) != 0) {
2055			if (m_head == NULL)
2056				break;
2057			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2058			break;
2059		}
2060		if (sc->ste_cdata.ste_last_tx == NULL) {
2061			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
2062			    sc->ste_cdata.ste_tx_list_map,
2063			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2064			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
2065			ste_wait(sc);
2066			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
2067	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
2068			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
2069			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
2070			ste_wait(sc);
2071		} else {
2072			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
2073			    sc->ste_cdata.ste_last_tx->ste_phys;
2074			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
2075			    sc->ste_cdata.ste_tx_list_map,
2076			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2077		}
2078		sc->ste_cdata.ste_last_tx = cur_tx;
2079
2080		enq++;
2081		/*
2082		 * If there's a BPF listener, bounce a copy of this frame
2083		 * to him.
2084	 	 */
2085		BPF_MTAP(ifp, m_head);
2086	}
2087
2088	if (enq > 0)
2089		sc->ste_timer = STE_TX_TIMEOUT;
2090}
2091
2092static void
2093ste_watchdog(struct ste_softc *sc)
2094{
2095	struct ifnet *ifp;
2096
2097	ifp = sc->ste_ifp;
2098	STE_LOCK_ASSERT(sc);
2099
2100	if (sc->ste_timer == 0 || --sc->ste_timer)
2101		return;
2102
2103	ifp->if_oerrors++;
2104	if_printf(ifp, "watchdog timeout\n");
2105
2106	ste_txeof(sc);
2107	ste_txeoc(sc);
2108	ste_rxeof(sc, -1);
2109	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2110	ste_init_locked(sc);
2111
2112	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2113		ste_start_locked(ifp);
2114}
2115
2116static int
2117ste_shutdown(device_t dev)
2118{
2119
2120	return (ste_suspend(dev));
2121}
2122
2123static int
2124ste_suspend(device_t dev)
2125{
2126	struct ste_softc *sc;
2127
2128	sc = device_get_softc(dev);
2129
2130	STE_LOCK(sc);
2131	ste_stop(sc);
2132	ste_setwol(sc);
2133	STE_UNLOCK(sc);
2134
2135	return (0);
2136}
2137
2138static int
2139ste_resume(device_t dev)
2140{
2141	struct ste_softc *sc;
2142	struct ifnet *ifp;
2143	int pmc;
2144	uint16_t pmstat;
2145
2146	sc = device_get_softc(dev);
2147	STE_LOCK(sc);
2148	if (pci_find_extcap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2149		/* Disable PME and clear PME status. */
2150		pmstat = pci_read_config(sc->ste_dev,
2151		    pmc + PCIR_POWER_STATUS, 2);
2152		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2153			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2154			pci_write_config(sc->ste_dev,
2155			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2156		}
2157	}
2158	ifp = sc->ste_ifp;
2159	if ((ifp->if_flags & IFF_UP) != 0) {
2160		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2161		ste_init_locked(sc);
2162	}
2163	STE_UNLOCK(sc);
2164
2165	return (0);
2166}
2167
2168#define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2169	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2170#define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2171	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2172
2173static void
2174ste_sysctl_node(struct ste_softc *sc)
2175{
2176	struct sysctl_ctx_list *ctx;
2177	struct sysctl_oid_list *child, *parent;
2178	struct sysctl_oid *tree;
2179	struct ste_hw_stats *stats;
2180
2181	stats = &sc->ste_stats;
2182	ctx = device_get_sysctl_ctx(sc->ste_dev);
2183	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2184
2185	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2186	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2187	/* Pull in device tunables. */
2188	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2189	resource_int_value(device_get_name(sc->ste_dev),
2190	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2191
2192	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2193	    NULL, "STE statistics");
2194	parent = SYSCTL_CHILDREN(tree);
2195
2196	/* Rx statistics. */
2197	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2198	    NULL, "Rx MAC statistics");
2199	child = SYSCTL_CHILDREN(tree);
2200	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2201	    &stats->rx_bytes, "Good octets");
2202	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2203	    &stats->rx_frames, "Good frames");
2204	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2205	    &stats->rx_bcast_frames, "Good broadcast frames");
2206	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2207	    &stats->rx_mcast_frames, "Good multicast frames");
2208	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2209	    &stats->rx_lost_frames, "Lost frames");
2210
2211	/* Tx statistics. */
2212	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2213	    NULL, "Tx MAC statistics");
2214	child = SYSCTL_CHILDREN(tree);
2215	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2216	    &stats->tx_bytes, "Good octets");
2217	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2218	    &stats->tx_frames, "Good frames");
2219	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2220	    &stats->tx_bcast_frames, "Good broadcast frames");
2221	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2222	    &stats->tx_mcast_frames, "Good multicast frames");
2223	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2224	    &stats->tx_carrsense_errs, "Carrier sense errors");
2225	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2226	    &stats->tx_single_colls, "Single collisions");
2227	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2228	    &stats->tx_multi_colls, "Multiple collisions");
2229	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2230	    &stats->tx_late_colls, "Late collisions");
2231	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2232	    &stats->tx_frames_defered, "Frames with deferrals");
2233	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2234	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2235	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2236	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2237}
2238
2239#undef STE_SYSCTL_STAT_ADD32
2240#undef STE_SYSCTL_STAT_ADD64
2241
2242static void
2243ste_setwol(struct ste_softc *sc)
2244{
2245	struct ifnet *ifp;
2246	uint16_t pmstat;
2247	uint8_t val;
2248	int pmc;
2249
2250	STE_LOCK_ASSERT(sc);
2251
2252	if (pci_find_extcap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2253		/* Disable WOL. */
2254		CSR_READ_1(sc, STE_WAKE_EVENT);
2255		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2256		return;
2257	}
2258
2259	ifp = sc->ste_ifp;
2260	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2261	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2262	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2263	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2264		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2265	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2266	/* Request PME. */
2267	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2268	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2269	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2270		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2271	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2272}
2273