if_ste.c revision 200966
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/ste/if_ste.c 200966 2009-12-24 20:45:33Z yongari $");
35
36#ifdef HAVE_KERNEL_OPTION_HEADERS
37#include "opt_device_polling.h"
38#endif
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/endian.h>
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/module.h>
49#include <sys/rman.h>
50#include <sys/socket.h>
51#include <sys/sockio.h>
52#include <sys/sysctl.h>
53
54#include <net/bpf.h>
55#include <net/if.h>
56#include <net/if_arp.h>
57#include <net/ethernet.h>
58#include <net/if_dl.h>
59#include <net/if_media.h>
60#include <net/if_types.h>
61#include <net/if_vlan_var.h>
62
63#include <machine/bus.h>
64#include <machine/resource.h>
65
66#include <dev/mii/mii.h>
67#include <dev/mii/miivar.h>
68
69#include <dev/pci/pcireg.h>
70#include <dev/pci/pcivar.h>
71
72#include <dev/ste/if_stereg.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77MODULE_DEPEND(ste, pci, 1, 1, 1);
78MODULE_DEPEND(ste, ether, 1, 1, 1);
79MODULE_DEPEND(ste, miibus, 1, 1, 1);
80
81/* Define to show Tx error status. */
82#define	STE_SHOW_TXERRORS
83
84/*
85 * Various supported device vendors/types and their names.
86 */
87static struct ste_type ste_devs[] = {
88	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
89	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
90	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
91	{ 0, 0, NULL }
92};
93
94static int	ste_attach(device_t);
95static int	ste_detach(device_t);
96static int	ste_probe(device_t);
97static int	ste_resume(device_t);
98static int	ste_shutdown(device_t);
99static int	ste_suspend(device_t);
100
101static int	ste_dma_alloc(struct ste_softc *);
102static void	ste_dma_free(struct ste_softc *);
103static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
104static int 	ste_eeprom_wait(struct ste_softc *);
105static int	ste_encap(struct ste_softc *, struct mbuf **,
106		    struct ste_chain *);
107static int	ste_ifmedia_upd(struct ifnet *);
108static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109static void	ste_init(void *);
110static void	ste_init_locked(struct ste_softc *);
111static int	ste_init_rx_list(struct ste_softc *);
112static void	ste_init_tx_list(struct ste_softc *);
113static void	ste_intr(void *);
114static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
115static int	ste_mii_readreg(struct ste_softc *, struct ste_mii_frame *);
116static void	ste_mii_send(struct ste_softc *, uint32_t, int);
117static void	ste_mii_sync(struct ste_softc *);
118static int	ste_mii_writereg(struct ste_softc *, struct ste_mii_frame *);
119static int	ste_miibus_readreg(device_t, int, int);
120static void	ste_miibus_statchg(device_t);
121static int	ste_miibus_writereg(device_t, int, int, int);
122static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
123static int	ste_read_eeprom(struct ste_softc *, caddr_t, int, int, int);
124static void	ste_reset(struct ste_softc *);
125static void	ste_restart_tx(struct ste_softc *);
126static int	ste_rxeof(struct ste_softc *, int);
127static void	ste_rxfilter(struct ste_softc *);
128static void	ste_setwol(struct ste_softc *);
129static void	ste_start(struct ifnet *);
130static void	ste_start_locked(struct ifnet *);
131static void	ste_stats_clear(struct ste_softc *);
132static void	ste_stats_update(struct ste_softc *);
133static void	ste_stop(struct ste_softc *);
134static void	ste_sysctl_node(struct ste_softc *);
135static void	ste_tick(void *);
136static void	ste_txeoc(struct ste_softc *);
137static void	ste_txeof(struct ste_softc *);
138static void	ste_wait(struct ste_softc *);
139static void	ste_watchdog(struct ste_softc *);
140
141static device_method_t ste_methods[] = {
142	/* Device interface */
143	DEVMETHOD(device_probe,		ste_probe),
144	DEVMETHOD(device_attach,	ste_attach),
145	DEVMETHOD(device_detach,	ste_detach),
146	DEVMETHOD(device_shutdown,	ste_shutdown),
147	DEVMETHOD(device_suspend,	ste_suspend),
148	DEVMETHOD(device_resume,	ste_resume),
149
150	/* bus interface */
151	DEVMETHOD(bus_print_child,	bus_generic_print_child),
152	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
153
154	/* MII interface */
155	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
156	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
157	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
158
159	{ 0, 0 }
160};
161
162static driver_t ste_driver = {
163	"ste",
164	ste_methods,
165	sizeof(struct ste_softc)
166};
167
168static devclass_t ste_devclass;
169
170DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
171DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
172
173#define STE_SETBIT4(sc, reg, x)				\
174	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
175
176#define STE_CLRBIT4(sc, reg, x)				\
177	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
178
179#define STE_SETBIT2(sc, reg, x)				\
180	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
181
182#define STE_CLRBIT2(sc, reg, x)				\
183	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
184
185#define STE_SETBIT1(sc, reg, x)				\
186	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
187
188#define STE_CLRBIT1(sc, reg, x)				\
189	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
190
191
192#define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
193#define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
194
195/*
196 * Sync the PHYs by setting data bit and strobing the clock 32 times.
197 */
198static void
199ste_mii_sync(struct ste_softc *sc)
200{
201	int i;
202
203	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
204
205	for (i = 0; i < 32; i++) {
206		MII_SET(STE_PHYCTL_MCLK);
207		DELAY(1);
208		MII_CLR(STE_PHYCTL_MCLK);
209		DELAY(1);
210	}
211}
212
213/*
214 * Clock a series of bits through the MII.
215 */
216static void
217ste_mii_send(struct ste_softc *sc, uint32_t bits, int cnt)
218{
219	int i;
220
221	MII_CLR(STE_PHYCTL_MCLK);
222
223	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
224		if (bits & i) {
225			MII_SET(STE_PHYCTL_MDATA);
226                } else {
227			MII_CLR(STE_PHYCTL_MDATA);
228                }
229		DELAY(1);
230		MII_CLR(STE_PHYCTL_MCLK);
231		DELAY(1);
232		MII_SET(STE_PHYCTL_MCLK);
233	}
234}
235
236/*
237 * Read an PHY register through the MII.
238 */
239static int
240ste_mii_readreg(struct ste_softc *sc, struct ste_mii_frame *frame)
241{
242	int i, ack;
243
244	/*
245	 * Set up frame for RX.
246	 */
247	frame->mii_stdelim = STE_MII_STARTDELIM;
248	frame->mii_opcode = STE_MII_READOP;
249	frame->mii_turnaround = 0;
250	frame->mii_data = 0;
251
252	CSR_WRITE_2(sc, STE_PHYCTL, 0);
253	/*
254 	 * Turn on data xmit.
255	 */
256	MII_SET(STE_PHYCTL_MDIR);
257
258	ste_mii_sync(sc);
259
260	/*
261	 * Send command/address info.
262	 */
263	ste_mii_send(sc, frame->mii_stdelim, 2);
264	ste_mii_send(sc, frame->mii_opcode, 2);
265	ste_mii_send(sc, frame->mii_phyaddr, 5);
266	ste_mii_send(sc, frame->mii_regaddr, 5);
267
268	/* Turn off xmit. */
269	MII_CLR(STE_PHYCTL_MDIR);
270
271	/* Idle bit */
272	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
273	DELAY(1);
274	MII_SET(STE_PHYCTL_MCLK);
275	DELAY(1);
276
277	/* Check for ack */
278	MII_CLR(STE_PHYCTL_MCLK);
279	DELAY(1);
280	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
281	MII_SET(STE_PHYCTL_MCLK);
282	DELAY(1);
283
284	/*
285	 * Now try reading data bits. If the ack failed, we still
286	 * need to clock through 16 cycles to keep the PHY(s) in sync.
287	 */
288	if (ack) {
289		for (i = 0; i < 16; i++) {
290			MII_CLR(STE_PHYCTL_MCLK);
291			DELAY(1);
292			MII_SET(STE_PHYCTL_MCLK);
293			DELAY(1);
294		}
295		goto fail;
296	}
297
298	for (i = 0x8000; i; i >>= 1) {
299		MII_CLR(STE_PHYCTL_MCLK);
300		DELAY(1);
301		if (!ack) {
302			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
303				frame->mii_data |= i;
304			DELAY(1);
305		}
306		MII_SET(STE_PHYCTL_MCLK);
307		DELAY(1);
308	}
309
310fail:
311
312	MII_CLR(STE_PHYCTL_MCLK);
313	DELAY(1);
314	MII_SET(STE_PHYCTL_MCLK);
315	DELAY(1);
316
317	if (ack)
318		return (1);
319	return (0);
320}
321
322/*
323 * Write to a PHY register through the MII.
324 */
325static int
326ste_mii_writereg(struct ste_softc *sc, struct ste_mii_frame *frame)
327{
328
329	/*
330	 * Set up frame for TX.
331	 */
332
333	frame->mii_stdelim = STE_MII_STARTDELIM;
334	frame->mii_opcode = STE_MII_WRITEOP;
335	frame->mii_turnaround = STE_MII_TURNAROUND;
336
337	/*
338 	 * Turn on data output.
339	 */
340	MII_SET(STE_PHYCTL_MDIR);
341
342	ste_mii_sync(sc);
343
344	ste_mii_send(sc, frame->mii_stdelim, 2);
345	ste_mii_send(sc, frame->mii_opcode, 2);
346	ste_mii_send(sc, frame->mii_phyaddr, 5);
347	ste_mii_send(sc, frame->mii_regaddr, 5);
348	ste_mii_send(sc, frame->mii_turnaround, 2);
349	ste_mii_send(sc, frame->mii_data, 16);
350
351	/* Idle bit. */
352	MII_SET(STE_PHYCTL_MCLK);
353	DELAY(1);
354	MII_CLR(STE_PHYCTL_MCLK);
355	DELAY(1);
356
357	/*
358	 * Turn off xmit.
359	 */
360	MII_CLR(STE_PHYCTL_MDIR);
361
362	return (0);
363}
364
365static int
366ste_miibus_readreg(device_t dev, int phy, int reg)
367{
368	struct ste_softc *sc;
369	struct ste_mii_frame frame;
370
371	sc = device_get_softc(dev);
372
373	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0 && phy != 0)
374		return (0);
375
376	bzero((char *)&frame, sizeof(frame));
377
378	frame.mii_phyaddr = phy;
379	frame.mii_regaddr = reg;
380	ste_mii_readreg(sc, &frame);
381
382	return (frame.mii_data);
383}
384
385static int
386ste_miibus_writereg(device_t dev, int phy, int reg, int data)
387{
388	struct ste_softc *sc;
389	struct ste_mii_frame frame;
390
391	sc = device_get_softc(dev);
392	bzero((char *)&frame, sizeof(frame));
393
394	frame.mii_phyaddr = phy;
395	frame.mii_regaddr = reg;
396	frame.mii_data = data;
397
398	ste_mii_writereg(sc, &frame);
399
400	return (0);
401}
402
403static void
404ste_miibus_statchg(device_t dev)
405{
406	struct ste_softc *sc;
407	struct mii_data *mii;
408	struct ifnet *ifp;
409	uint16_t cfg;
410
411	sc = device_get_softc(dev);
412
413	mii = device_get_softc(sc->ste_miibus);
414	ifp = sc->ste_ifp;
415	if (mii == NULL || ifp == NULL ||
416	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
417		return;
418
419	sc->ste_flags &= ~STE_FLAG_LINK;
420	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
421	    (IFM_ACTIVE | IFM_AVALID)) {
422		switch (IFM_SUBTYPE(mii->mii_media_active)) {
423		case IFM_10_T:
424		case IFM_100_TX:
425		case IFM_100_FX:
426		case IFM_100_T4:
427			sc->ste_flags |= STE_FLAG_LINK;
428		default:
429			break;
430		}
431	}
432
433	/* Program MACs with resolved speed/duplex/flow-control. */
434	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
435		cfg = CSR_READ_2(sc, STE_MACCTL0);
436		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
437		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
438			/*
439			 * ST201 data sheet says driver should enable receiving
440			 * MAC control frames bit of receive mode register to
441			 * receive flow-control frames but the register has no
442			 * such bits. In addition the controller has no ability
443			 * to send pause frames so it should be handled in
444			 * driver. Implementing pause timer handling in driver
445			 * layer is not trivial, so don't enable flow-control
446			 * here.
447			 */
448			cfg |= STE_MACCTL0_FULLDUPLEX;
449		}
450		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
451	}
452}
453
454static int
455ste_ifmedia_upd(struct ifnet *ifp)
456{
457	struct ste_softc *sc;
458	struct mii_data	*mii;
459	struct mii_softc *miisc;
460	int error;
461
462	sc = ifp->if_softc;
463	STE_LOCK(sc);
464	mii = device_get_softc(sc->ste_miibus);
465	if (mii->mii_instance) {
466		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
467			mii_phy_reset(miisc);
468	}
469	error = mii_mediachg(mii);
470	STE_UNLOCK(sc);
471
472	return (error);
473}
474
475static void
476ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
477{
478	struct ste_softc *sc;
479	struct mii_data *mii;
480
481	sc = ifp->if_softc;
482	mii = device_get_softc(sc->ste_miibus);
483
484	STE_LOCK(sc);
485	if ((ifp->if_flags & IFF_UP) == 0) {
486		STE_UNLOCK(sc);
487		return;
488	}
489	mii_pollstat(mii);
490	ifmr->ifm_active = mii->mii_media_active;
491	ifmr->ifm_status = mii->mii_media_status;
492	STE_UNLOCK(sc);
493}
494
495static void
496ste_wait(struct ste_softc *sc)
497{
498	int i;
499
500	for (i = 0; i < STE_TIMEOUT; i++) {
501		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
502			break;
503		DELAY(1);
504	}
505
506	if (i == STE_TIMEOUT)
507		device_printf(sc->ste_dev, "command never completed!\n");
508}
509
510/*
511 * The EEPROM is slow: give it time to come ready after issuing
512 * it a command.
513 */
514static int
515ste_eeprom_wait(struct ste_softc *sc)
516{
517	int i;
518
519	DELAY(1000);
520
521	for (i = 0; i < 100; i++) {
522		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
523			DELAY(1000);
524		else
525			break;
526	}
527
528	if (i == 100) {
529		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
530		return (1);
531	}
532
533	return (0);
534}
535
536/*
537 * Read a sequence of words from the EEPROM. Note that ethernet address
538 * data is stored in the EEPROM in network byte order.
539 */
540static int
541ste_read_eeprom(struct ste_softc *sc, caddr_t dest, int off, int cnt, int swap)
542{
543	uint16_t word, *ptr;
544	int err = 0, i;
545
546	if (ste_eeprom_wait(sc))
547		return (1);
548
549	for (i = 0; i < cnt; i++) {
550		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
551		err = ste_eeprom_wait(sc);
552		if (err)
553			break;
554		word = CSR_READ_2(sc, STE_EEPROM_DATA);
555		ptr = (uint16_t *)(dest + (i * 2));
556		if (swap)
557			*ptr = ntohs(word);
558		else
559			*ptr = word;
560	}
561
562	return (err ? 1 : 0);
563}
564
565static void
566ste_rxfilter(struct ste_softc *sc)
567{
568	struct ifnet *ifp;
569	struct ifmultiaddr *ifma;
570	uint32_t hashes[2] = { 0, 0 };
571	uint8_t rxcfg;
572	int h;
573
574	STE_LOCK_ASSERT(sc);
575
576	ifp = sc->ste_ifp;
577	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
578	rxcfg |= STE_RXMODE_UNICAST;
579	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
580	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
581	if (ifp->if_flags & IFF_BROADCAST)
582		rxcfg |= STE_RXMODE_BROADCAST;
583	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
584		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
585			rxcfg |= STE_RXMODE_ALLMULTI;
586		if ((ifp->if_flags & IFF_PROMISC) != 0)
587			rxcfg |= STE_RXMODE_PROMISC;
588		goto chipit;
589	}
590
591	rxcfg |= STE_RXMODE_MULTIHASH;
592	/* Now program new ones. */
593	if_maddr_rlock(ifp);
594	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
595		if (ifma->ifma_addr->sa_family != AF_LINK)
596			continue;
597		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
598		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
599		if (h < 32)
600			hashes[0] |= (1 << h);
601		else
602			hashes[1] |= (1 << (h - 32));
603	}
604	if_maddr_runlock(ifp);
605
606chipit:
607	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
608	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
609	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
610	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
611	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
612	CSR_READ_1(sc, STE_RX_MODE);
613}
614
615#ifdef DEVICE_POLLING
616static poll_handler_t ste_poll, ste_poll_locked;
617
618static int
619ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
620{
621	struct ste_softc *sc = ifp->if_softc;
622	int rx_npkts = 0;
623
624	STE_LOCK(sc);
625	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
626		rx_npkts = ste_poll_locked(ifp, cmd, count);
627	STE_UNLOCK(sc);
628	return (rx_npkts);
629}
630
631static int
632ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
633{
634	struct ste_softc *sc = ifp->if_softc;
635	int rx_npkts;
636
637	STE_LOCK_ASSERT(sc);
638
639	rx_npkts = ste_rxeof(sc, count);
640	ste_txeof(sc);
641	ste_txeoc(sc);
642	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
643		ste_start_locked(ifp);
644
645	if (cmd == POLL_AND_CHECK_STATUS) {
646		uint16_t status;
647
648		status = CSR_READ_2(sc, STE_ISR_ACK);
649
650		if (status & STE_ISR_STATS_OFLOW)
651			ste_stats_update(sc);
652
653		if (status & STE_ISR_HOSTERR) {
654			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
655			ste_init_locked(sc);
656		}
657	}
658	return (rx_npkts);
659}
660#endif /* DEVICE_POLLING */
661
662static void
663ste_intr(void *xsc)
664{
665	struct ste_softc *sc;
666	struct ifnet *ifp;
667	uint16_t intrs, status;
668
669	sc = xsc;
670	STE_LOCK(sc);
671	ifp = sc->ste_ifp;
672
673#ifdef DEVICE_POLLING
674	if (ifp->if_capenable & IFCAP_POLLING) {
675		STE_UNLOCK(sc);
676		return;
677	}
678#endif
679	/* Reading STE_ISR_ACK clears STE_IMR register. */
680	status = CSR_READ_2(sc, STE_ISR_ACK);
681	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
682		STE_UNLOCK(sc);
683		return;
684	}
685
686	intrs = STE_INTRS;
687	if (status == 0xFFFF || (status & intrs) == 0)
688		goto done;
689
690	if (sc->ste_int_rx_act > 0) {
691		status &= ~STE_ISR_RX_DMADONE;
692		intrs &= ~STE_IMR_RX_DMADONE;
693	}
694
695	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
696		ste_rxeof(sc, -1);
697		/*
698		 * The controller has no ability to Rx interrupt
699		 * moderation feature. Receiving 64 bytes frames
700		 * from wire generates too many interrupts which in
701		 * turn make system useless to process other useful
702		 * things. Fortunately ST201 supports single shot
703		 * timer so use the timer to implement Rx interrupt
704		 * moderation in driver. This adds more register
705		 * access but it greatly reduces number of Rx
706		 * interrupts under high network load.
707		 */
708		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
709		    (sc->ste_int_rx_mod != 0)) {
710			if ((status & STE_ISR_RX_DMADONE) != 0) {
711				CSR_WRITE_2(sc, STE_COUNTDOWN,
712				    STE_TIMER_USECS(sc->ste_int_rx_mod));
713				intrs &= ~STE_IMR_RX_DMADONE;
714				sc->ste_int_rx_act = 1;
715			} else {
716				intrs |= STE_IMR_RX_DMADONE;
717				sc->ste_int_rx_act = 0;
718			}
719		}
720	}
721	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
722		if ((status & STE_ISR_TX_DMADONE) != 0)
723			ste_txeof(sc);
724		if ((status & STE_ISR_TX_DONE) != 0)
725			ste_txeoc(sc);
726		if ((status & STE_ISR_STATS_OFLOW) != 0)
727			ste_stats_update(sc);
728		if ((status & STE_ISR_HOSTERR) != 0) {
729			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
730			ste_init_locked(sc);
731			STE_UNLOCK(sc);
732			return;
733		}
734		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
735			ste_start_locked(ifp);
736done:
737		/* Re-enable interrupts */
738		CSR_WRITE_2(sc, STE_IMR, intrs);
739	}
740	STE_UNLOCK(sc);
741}
742
743/*
744 * A frame has been uploaded: pass the resulting mbuf chain up to
745 * the higher level protocols.
746 */
747static int
748ste_rxeof(struct ste_softc *sc, int count)
749{
750        struct mbuf *m;
751        struct ifnet *ifp;
752	struct ste_chain_onefrag *cur_rx;
753	uint32_t rxstat;
754	int total_len, rx_npkts;
755
756	ifp = sc->ste_ifp;
757
758	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
759	    sc->ste_cdata.ste_rx_list_map,
760	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
761
762	cur_rx = sc->ste_cdata.ste_rx_head;
763	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
764	    cur_rx = cur_rx->ste_next) {
765		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
766		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
767			break;
768#ifdef DEVICE_POLLING
769		if (ifp->if_capenable & IFCAP_POLLING) {
770			if (count == 0)
771				break;
772			count--;
773		}
774#endif
775		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
776			break;
777		/*
778		 * If an error occurs, update stats, clear the
779		 * status word and leave the mbuf cluster in place:
780		 * it should simply get re-used next time this descriptor
781	 	 * comes up in the ring.
782		 */
783		if (rxstat & STE_RXSTAT_FRAME_ERR) {
784			ifp->if_ierrors++;
785			cur_rx->ste_ptr->ste_status = 0;
786			continue;
787		}
788
789		/* No errors; receive the packet. */
790		m = cur_rx->ste_mbuf;
791		total_len = STE_RX_BYTES(rxstat);
792
793		/*
794		 * Try to conjure up a new mbuf cluster. If that
795		 * fails, it means we have an out of memory condition and
796		 * should leave the buffer in place and continue. This will
797		 * result in a lost packet, but there's little else we
798		 * can do in this situation.
799		 */
800		if (ste_newbuf(sc, cur_rx) != 0) {
801			ifp->if_iqdrops++;
802			cur_rx->ste_ptr->ste_status = 0;
803			continue;
804		}
805
806		m->m_pkthdr.rcvif = ifp;
807		m->m_pkthdr.len = m->m_len = total_len;
808
809		ifp->if_ipackets++;
810		STE_UNLOCK(sc);
811		(*ifp->if_input)(ifp, m);
812		STE_LOCK(sc);
813	}
814
815	if (rx_npkts > 0) {
816		sc->ste_cdata.ste_rx_head = cur_rx;
817		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
818		    sc->ste_cdata.ste_rx_list_map,
819		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
820	}
821
822	return (rx_npkts);
823}
824
825static void
826ste_txeoc(struct ste_softc *sc)
827{
828	uint16_t txstat;
829	struct ifnet *ifp;
830
831	STE_LOCK_ASSERT(sc);
832
833	ifp = sc->ste_ifp;
834
835	/*
836	 * STE_TX_STATUS register implements a queue of up to 31
837	 * transmit status byte. Writing an arbitrary value to the
838	 * register will advance the queue to the next transmit
839	 * status byte. This means if driver does not read
840	 * STE_TX_STATUS register after completing sending more
841	 * than 31 frames the controller would be stalled so driver
842	 * should re-wake the Tx MAC. This is the most severe
843	 * limitation of ST201 based controller.
844	 */
845	for (;;) {
846		txstat = CSR_READ_2(sc, STE_TX_STATUS);
847		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
848			break;
849		if ((txstat & (STE_TXSTATUS_UNDERRUN |
850		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
851		    STE_TXSTATUS_STATSOFLOW)) != 0) {
852			ifp->if_oerrors++;
853#ifdef	STE_SHOW_TXERRORS
854			device_printf(sc->ste_dev, "TX error : 0x%b\n",
855			    txstat & 0xFF, STE_ERR_BITS);
856#endif
857			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
858			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
859				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
860				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
861					sc->ste_tx_thresh = STE_PACKET_SIZE;
862				device_printf(sc->ste_dev,
863				    "TX underrun, increasing TX"
864				    " start threshold to %d bytes\n",
865				    sc->ste_tx_thresh);
866				/* Make sure to disable active DMA cycles. */
867				STE_SETBIT4(sc, STE_DMACTL,
868				    STE_DMACTL_TXDMA_STALL);
869				ste_wait(sc);
870				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
871				ste_init_locked(sc);
872				break;
873			}
874			/* Restart Tx. */
875			ste_restart_tx(sc);
876		}
877		/*
878		 * Advance to next status and ACK TxComplete
879		 * interrupt. ST201 data sheet was wrong here, to
880		 * get next Tx status, we have to write both
881		 * STE_TX_STATUS and STE_TX_FRAMEID register.
882		 * Otherwise controller returns the same status
883		 * as well as not acknowledge Tx completion
884		 * interrupt.
885		 */
886		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
887	}
888}
889
890static void
891ste_tick(void *arg)
892{
893	struct ste_softc *sc;
894	struct mii_data *mii;
895
896	sc = (struct ste_softc *)arg;
897
898	STE_LOCK_ASSERT(sc);
899
900	mii = device_get_softc(sc->ste_miibus);
901	mii_tick(mii);
902	/*
903	 * ukphy(4) does not seem to generate CB that reports
904	 * resolved link state so if we know we lost a link,
905	 * explicitly check the link state.
906	 */
907	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
908		ste_miibus_statchg(sc->ste_dev);
909	/*
910	 * Because we are not generating Tx completion
911	 * interrupt for every frame, reclaim transmitted
912	 * buffers here.
913	 */
914	ste_txeof(sc);
915	ste_txeoc(sc);
916	ste_stats_update(sc);
917	ste_watchdog(sc);
918	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
919}
920
921static void
922ste_txeof(struct ste_softc *sc)
923{
924	struct ifnet *ifp;
925	struct ste_chain *cur_tx;
926	uint32_t txstat;
927	int idx;
928
929	STE_LOCK_ASSERT(sc);
930
931	ifp = sc->ste_ifp;
932	idx = sc->ste_cdata.ste_tx_cons;
933	if (idx == sc->ste_cdata.ste_tx_prod)
934		return;
935
936	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
937	    sc->ste_cdata.ste_tx_list_map,
938	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
939
940	while (idx != sc->ste_cdata.ste_tx_prod) {
941		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
942		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
943		if ((txstat & STE_TXCTL_DMADONE) == 0)
944			break;
945		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
946		    BUS_DMASYNC_POSTWRITE);
947		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
948		KASSERT(cur_tx->ste_mbuf != NULL,
949		    ("%s: freeing NULL mbuf!\n", __func__));
950		m_freem(cur_tx->ste_mbuf);
951		cur_tx->ste_mbuf = NULL;
952		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
953		ifp->if_opackets++;
954		sc->ste_cdata.ste_tx_cnt--;
955		STE_INC(idx, STE_TX_LIST_CNT);
956	}
957
958	sc->ste_cdata.ste_tx_cons = idx;
959	if (sc->ste_cdata.ste_tx_cnt == 0)
960		sc->ste_timer = 0;
961}
962
963static void
964ste_stats_clear(struct ste_softc *sc)
965{
966
967	STE_LOCK_ASSERT(sc);
968
969	/* Rx stats. */
970	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
971	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
972	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
973	CSR_READ_1(sc, STE_STAT_RX_BCAST);
974	CSR_READ_1(sc, STE_STAT_RX_MCAST);
975	CSR_READ_1(sc, STE_STAT_RX_LOST);
976	/* Tx stats. */
977	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
978	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
979	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
980	CSR_READ_1(sc, STE_STAT_TX_BCAST);
981	CSR_READ_1(sc, STE_STAT_TX_MCAST);
982	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
983	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
984	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
985	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
986	CSR_READ_1(sc, STE_STAT_TX_DEFER);
987	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
988	CSR_READ_1(sc, STE_STAT_TX_ABORT);
989}
990
991static void
992ste_stats_update(struct ste_softc *sc)
993{
994	struct ifnet *ifp;
995	struct ste_hw_stats *stats;
996	uint32_t val;
997
998	STE_LOCK_ASSERT(sc);
999
1000	ifp = sc->ste_ifp;
1001	stats = &sc->ste_stats;
1002	/* Rx stats. */
1003	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
1004	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
1005	val &= 0x000FFFFF;
1006	stats->rx_bytes += val;
1007	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
1008	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
1009	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
1010	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
1011	/* Tx stats. */
1012	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
1013	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
1014	val &= 0x000FFFFF;
1015	stats->tx_bytes += val;
1016	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
1017	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
1018	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
1019	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
1020	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
1021	stats->tx_single_colls += val;
1022	ifp->if_collisions += val;
1023	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
1024	stats->tx_multi_colls += val;
1025	ifp->if_collisions += val;
1026	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
1027	stats->tx_late_colls += val;
1028	ifp->if_collisions += val;
1029	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
1030	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
1031	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
1032}
1033
1034/*
1035 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
1036 * IDs against our list and return a device name if we find a match.
1037 */
1038static int
1039ste_probe(device_t dev)
1040{
1041	struct ste_type *t;
1042
1043	t = ste_devs;
1044
1045	while (t->ste_name != NULL) {
1046		if ((pci_get_vendor(dev) == t->ste_vid) &&
1047		    (pci_get_device(dev) == t->ste_did)) {
1048			device_set_desc(dev, t->ste_name);
1049			return (BUS_PROBE_DEFAULT);
1050		}
1051		t++;
1052	}
1053
1054	return (ENXIO);
1055}
1056
1057/*
1058 * Attach the interface. Allocate softc structures, do ifmedia
1059 * setup and ethernet/BPF attach.
1060 */
1061static int
1062ste_attach(device_t dev)
1063{
1064	struct ste_softc *sc;
1065	struct ifnet *ifp;
1066	u_char eaddr[6];
1067	int error = 0, pmc, rid;
1068
1069	sc = device_get_softc(dev);
1070	sc->ste_dev = dev;
1071
1072	/*
1073	 * Only use one PHY since this chip reports multiple
1074	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
1075	 * it is at 0 & 1.  It is rev 0x12.
1076	 */
1077	if (pci_get_vendor(dev) == DL_VENDORID &&
1078	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
1079	    pci_get_revid(dev) == 0x12 )
1080		sc->ste_flags |= STE_FLAG_ONE_PHY;
1081
1082	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1083	    MTX_DEF);
1084	/*
1085	 * Map control/status registers.
1086	 */
1087	pci_enable_busmaster(dev);
1088
1089	/* Prefer memory space register mapping over IO space. */
1090	sc->ste_res_id = PCIR_BAR(1);
1091	sc->ste_res_type = SYS_RES_MEMORY;
1092	sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
1093	    &sc->ste_res_id, RF_ACTIVE);
1094	if (sc->ste_res == NULL) {
1095		sc->ste_res_id = PCIR_BAR(0);
1096		sc->ste_res_type = SYS_RES_IOPORT;
1097		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
1098		    &sc->ste_res_id, RF_ACTIVE);
1099	}
1100	if (sc->ste_res == NULL) {
1101		device_printf(dev, "couldn't map ports/memory\n");
1102		error = ENXIO;
1103		goto fail;
1104	}
1105
1106	/* Allocate interrupt */
1107	rid = 0;
1108	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1109	    RF_SHAREABLE | RF_ACTIVE);
1110
1111	if (sc->ste_irq == NULL) {
1112		device_printf(dev, "couldn't map interrupt\n");
1113		error = ENXIO;
1114		goto fail;
1115	}
1116
1117	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
1118
1119	/* Reset the adapter. */
1120	ste_reset(sc);
1121
1122	/*
1123	 * Get station address from the EEPROM.
1124	 */
1125	if (ste_read_eeprom(sc, eaddr,
1126	    STE_EEADDR_NODE0, 3, 0)) {
1127		device_printf(dev, "failed to read station address\n");
1128		error = ENXIO;;
1129		goto fail;
1130	}
1131	ste_sysctl_node(sc);
1132
1133	if ((error = ste_dma_alloc(sc)) != 0)
1134		goto fail;
1135
1136	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
1137	if (ifp == NULL) {
1138		device_printf(dev, "can not if_alloc()\n");
1139		error = ENOSPC;
1140		goto fail;
1141	}
1142
1143	/* Do MII setup. */
1144	if (mii_phy_probe(dev, &sc->ste_miibus,
1145	    ste_ifmedia_upd, ste_ifmedia_sts)) {
1146		device_printf(dev, "MII without any phy!\n");
1147		error = ENXIO;
1148		goto fail;
1149	}
1150
1151	ifp->if_softc = sc;
1152	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1153	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1154	ifp->if_ioctl = ste_ioctl;
1155	ifp->if_start = ste_start;
1156	ifp->if_init = ste_init;
1157	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1158	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1159	IFQ_SET_READY(&ifp->if_snd);
1160
1161	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1162
1163	/*
1164	 * Call MI attach routine.
1165	 */
1166	ether_ifattach(ifp, eaddr);
1167
1168	/*
1169	 * Tell the upper layer(s) we support long frames.
1170	 */
1171	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1172	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1173	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
1174		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1175	ifp->if_capenable = ifp->if_capabilities;
1176#ifdef DEVICE_POLLING
1177	ifp->if_capabilities |= IFCAP_POLLING;
1178#endif
1179
1180	/* Hook interrupt last to avoid having to lock softc */
1181	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1182	    NULL, ste_intr, sc, &sc->ste_intrhand);
1183
1184	if (error) {
1185		device_printf(dev, "couldn't set up irq\n");
1186		ether_ifdetach(ifp);
1187		goto fail;
1188	}
1189
1190fail:
1191	if (error)
1192		ste_detach(dev);
1193
1194	return (error);
1195}
1196
1197/*
1198 * Shutdown hardware and free up resources. This can be called any
1199 * time after the mutex has been initialized. It is called in both
1200 * the error case in attach and the normal detach case so it needs
1201 * to be careful about only freeing resources that have actually been
1202 * allocated.
1203 */
1204static int
1205ste_detach(device_t dev)
1206{
1207	struct ste_softc *sc;
1208	struct ifnet *ifp;
1209
1210	sc = device_get_softc(dev);
1211	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1212	ifp = sc->ste_ifp;
1213
1214#ifdef DEVICE_POLLING
1215	if (ifp->if_capenable & IFCAP_POLLING)
1216		ether_poll_deregister(ifp);
1217#endif
1218
1219	/* These should only be active if attach succeeded */
1220	if (device_is_attached(dev)) {
1221		ether_ifdetach(ifp);
1222		STE_LOCK(sc);
1223		ste_stop(sc);
1224		STE_UNLOCK(sc);
1225		callout_drain(&sc->ste_callout);
1226	}
1227	if (sc->ste_miibus)
1228		device_delete_child(dev, sc->ste_miibus);
1229	bus_generic_detach(dev);
1230
1231	if (sc->ste_intrhand)
1232		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1233	if (sc->ste_irq)
1234		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1235	if (sc->ste_res)
1236		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1237		    sc->ste_res);
1238
1239	if (ifp)
1240		if_free(ifp);
1241
1242	ste_dma_free(sc);
1243	mtx_destroy(&sc->ste_mtx);
1244
1245	return (0);
1246}
1247
1248struct ste_dmamap_arg {
1249	bus_addr_t	ste_busaddr;
1250};
1251
1252static void
1253ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1254{
1255	struct ste_dmamap_arg *ctx;
1256
1257	if (error != 0)
1258		return;
1259
1260	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1261
1262	ctx = (struct ste_dmamap_arg *)arg;
1263	ctx->ste_busaddr = segs[0].ds_addr;
1264}
1265
1266static int
1267ste_dma_alloc(struct ste_softc *sc)
1268{
1269	struct ste_chain *txc;
1270	struct ste_chain_onefrag *rxc;
1271	struct ste_dmamap_arg ctx;
1272	int error, i;
1273
1274	/* Create parent DMA tag. */
1275	error = bus_dma_tag_create(
1276	    bus_get_dma_tag(sc->ste_dev), /* parent */
1277	    1, 0,			/* alignment, boundary */
1278	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1279	    BUS_SPACE_MAXADDR,		/* highaddr */
1280	    NULL, NULL,			/* filter, filterarg */
1281	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1282	    0,				/* nsegments */
1283	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1284	    0,				/* flags */
1285	    NULL, NULL,			/* lockfunc, lockarg */
1286	    &sc->ste_cdata.ste_parent_tag);
1287	if (error != 0) {
1288		device_printf(sc->ste_dev,
1289		    "could not create parent DMA tag.\n");
1290		goto fail;
1291	}
1292
1293	/* Create DMA tag for Tx descriptor list. */
1294	error = bus_dma_tag_create(
1295	    sc->ste_cdata.ste_parent_tag, /* parent */
1296	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1297	    BUS_SPACE_MAXADDR,		/* lowaddr */
1298	    BUS_SPACE_MAXADDR,		/* highaddr */
1299	    NULL, NULL,			/* filter, filterarg */
1300	    STE_TX_LIST_SZ,		/* maxsize */
1301	    1,				/* nsegments */
1302	    STE_TX_LIST_SZ,		/* maxsegsize */
1303	    0,				/* flags */
1304	    NULL, NULL,			/* lockfunc, lockarg */
1305	    &sc->ste_cdata.ste_tx_list_tag);
1306	if (error != 0) {
1307		device_printf(sc->ste_dev,
1308		    "could not create Tx list DMA tag.\n");
1309		goto fail;
1310	}
1311
1312	/* Create DMA tag for Rx descriptor list. */
1313	error = bus_dma_tag_create(
1314	    sc->ste_cdata.ste_parent_tag, /* parent */
1315	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1316	    BUS_SPACE_MAXADDR,		/* lowaddr */
1317	    BUS_SPACE_MAXADDR,		/* highaddr */
1318	    NULL, NULL,			/* filter, filterarg */
1319	    STE_RX_LIST_SZ,		/* maxsize */
1320	    1,				/* nsegments */
1321	    STE_RX_LIST_SZ,		/* maxsegsize */
1322	    0,				/* flags */
1323	    NULL, NULL,			/* lockfunc, lockarg */
1324	    &sc->ste_cdata.ste_rx_list_tag);
1325	if (error != 0) {
1326		device_printf(sc->ste_dev,
1327		    "could not create Rx list DMA tag.\n");
1328		goto fail;
1329	}
1330
1331	/* Create DMA tag for Tx buffers. */
1332	error = bus_dma_tag_create(
1333	    sc->ste_cdata.ste_parent_tag, /* parent */
1334	    1, 0,			/* alignment, boundary */
1335	    BUS_SPACE_MAXADDR,		/* lowaddr */
1336	    BUS_SPACE_MAXADDR,		/* highaddr */
1337	    NULL, NULL,			/* filter, filterarg */
1338	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1339	    STE_MAXFRAGS,		/* nsegments */
1340	    MCLBYTES,			/* maxsegsize */
1341	    0,				/* flags */
1342	    NULL, NULL,			/* lockfunc, lockarg */
1343	    &sc->ste_cdata.ste_tx_tag);
1344	if (error != 0) {
1345		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1346		goto fail;
1347	}
1348
1349	/* Create DMA tag for Rx buffers. */
1350	error = bus_dma_tag_create(
1351	    sc->ste_cdata.ste_parent_tag, /* parent */
1352	    1, 0,			/* alignment, boundary */
1353	    BUS_SPACE_MAXADDR,		/* lowaddr */
1354	    BUS_SPACE_MAXADDR,		/* highaddr */
1355	    NULL, NULL,			/* filter, filterarg */
1356	    MCLBYTES,			/* maxsize */
1357	    1,				/* nsegments */
1358	    MCLBYTES,			/* maxsegsize */
1359	    0,				/* flags */
1360	    NULL, NULL,			/* lockfunc, lockarg */
1361	    &sc->ste_cdata.ste_rx_tag);
1362	if (error != 0) {
1363		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1364		goto fail;
1365	}
1366
1367	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1368	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1369	    (void **)&sc->ste_ldata.ste_tx_list,
1370	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1371	    &sc->ste_cdata.ste_tx_list_map);
1372	if (error != 0) {
1373		device_printf(sc->ste_dev,
1374		    "could not allocate DMA'able memory for Tx list.\n");
1375		goto fail;
1376	}
1377	ctx.ste_busaddr = 0;
1378	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1379	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1380	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1381	if (error != 0 || ctx.ste_busaddr == 0) {
1382		device_printf(sc->ste_dev,
1383		    "could not load DMA'able memory for Tx list.\n");
1384		goto fail;
1385	}
1386	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1387
1388	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1389	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1390	    (void **)&sc->ste_ldata.ste_rx_list,
1391	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1392	    &sc->ste_cdata.ste_rx_list_map);
1393	if (error != 0) {
1394		device_printf(sc->ste_dev,
1395		    "could not allocate DMA'able memory for Rx list.\n");
1396		goto fail;
1397	}
1398	ctx.ste_busaddr = 0;
1399	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1400	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1401	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1402	if (error != 0 || ctx.ste_busaddr == 0) {
1403		device_printf(sc->ste_dev,
1404		    "could not load DMA'able memory for Rx list.\n");
1405		goto fail;
1406	}
1407	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1408
1409	/* Create DMA maps for Tx buffers. */
1410	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1411		txc = &sc->ste_cdata.ste_tx_chain[i];
1412		txc->ste_ptr = NULL;
1413		txc->ste_mbuf = NULL;
1414		txc->ste_next = NULL;
1415		txc->ste_phys = 0;
1416		txc->ste_map = NULL;
1417		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1418		    &txc->ste_map);
1419		if (error != 0) {
1420			device_printf(sc->ste_dev,
1421			    "could not create Tx dmamap.\n");
1422			goto fail;
1423		}
1424	}
1425	/* Create DMA maps for Rx buffers. */
1426	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1427	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1428		device_printf(sc->ste_dev,
1429		    "could not create spare Rx dmamap.\n");
1430		goto fail;
1431	}
1432	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1433		rxc = &sc->ste_cdata.ste_rx_chain[i];
1434		rxc->ste_ptr = NULL;
1435		rxc->ste_mbuf = NULL;
1436		rxc->ste_next = NULL;
1437		rxc->ste_map = NULL;
1438		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1439		    &rxc->ste_map);
1440		if (error != 0) {
1441			device_printf(sc->ste_dev,
1442			    "could not create Rx dmamap.\n");
1443			goto fail;
1444		}
1445	}
1446
1447fail:
1448	return (error);
1449}
1450
1451static void
1452ste_dma_free(struct ste_softc *sc)
1453{
1454	struct ste_chain *txc;
1455	struct ste_chain_onefrag *rxc;
1456	int i;
1457
1458	/* Tx buffers. */
1459	if (sc->ste_cdata.ste_tx_tag != NULL) {
1460		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1461			txc = &sc->ste_cdata.ste_tx_chain[i];
1462			if (txc->ste_map != NULL) {
1463				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1464				    txc->ste_map);
1465				txc->ste_map = NULL;
1466			}
1467		}
1468		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1469		sc->ste_cdata.ste_tx_tag = NULL;
1470	}
1471	/* Rx buffers. */
1472	if (sc->ste_cdata.ste_rx_tag != NULL) {
1473		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1474			rxc = &sc->ste_cdata.ste_rx_chain[i];
1475			if (rxc->ste_map != NULL) {
1476				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1477				    rxc->ste_map);
1478				rxc->ste_map = NULL;
1479			}
1480		}
1481		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1482			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1483			    sc->ste_cdata.ste_rx_sparemap);
1484			sc->ste_cdata.ste_rx_sparemap = NULL;
1485		}
1486		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1487		sc->ste_cdata.ste_rx_tag = NULL;
1488	}
1489	/* Tx descriptor list. */
1490	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1491		if (sc->ste_cdata.ste_tx_list_map != NULL)
1492			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1493			    sc->ste_cdata.ste_tx_list_map);
1494		if (sc->ste_cdata.ste_tx_list_map != NULL &&
1495		    sc->ste_ldata.ste_tx_list != NULL)
1496			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1497			    sc->ste_ldata.ste_tx_list,
1498			    sc->ste_cdata.ste_tx_list_map);
1499		sc->ste_ldata.ste_tx_list = NULL;
1500		sc->ste_cdata.ste_tx_list_map = NULL;
1501		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1502		sc->ste_cdata.ste_tx_list_tag = NULL;
1503	}
1504	/* Rx descriptor list. */
1505	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1506		if (sc->ste_cdata.ste_rx_list_map != NULL)
1507			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1508			    sc->ste_cdata.ste_rx_list_map);
1509		if (sc->ste_cdata.ste_rx_list_map != NULL &&
1510		    sc->ste_ldata.ste_rx_list != NULL)
1511			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1512			    sc->ste_ldata.ste_rx_list,
1513			    sc->ste_cdata.ste_rx_list_map);
1514		sc->ste_ldata.ste_rx_list = NULL;
1515		sc->ste_cdata.ste_rx_list_map = NULL;
1516		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1517		sc->ste_cdata.ste_rx_list_tag = NULL;
1518	}
1519	if (sc->ste_cdata.ste_parent_tag != NULL) {
1520		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1521		sc->ste_cdata.ste_parent_tag = NULL;
1522	}
1523}
1524
1525static int
1526ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1527{
1528	struct mbuf *m;
1529	bus_dma_segment_t segs[1];
1530	bus_dmamap_t map;
1531	int error, nsegs;
1532
1533	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1534	if (m == NULL)
1535		return (ENOBUFS);
1536	m->m_len = m->m_pkthdr.len = MCLBYTES;
1537	m_adj(m, ETHER_ALIGN);
1538
1539	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1540	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1541		m_freem(m);
1542		return (error);
1543	}
1544	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1545
1546	if (rxc->ste_mbuf != NULL) {
1547		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1548		    BUS_DMASYNC_POSTREAD);
1549		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1550	}
1551	map = rxc->ste_map;
1552	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1553	sc->ste_cdata.ste_rx_sparemap = map;
1554	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1555	    BUS_DMASYNC_PREREAD);
1556	rxc->ste_mbuf = m;
1557	rxc->ste_ptr->ste_status = 0;
1558	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1559	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1560	    STE_FRAG_LAST);
1561	return (0);
1562}
1563
1564static int
1565ste_init_rx_list(struct ste_softc *sc)
1566{
1567	struct ste_chain_data *cd;
1568	struct ste_list_data *ld;
1569	int error, i;
1570
1571	sc->ste_int_rx_act = 0;
1572	cd = &sc->ste_cdata;
1573	ld = &sc->ste_ldata;
1574	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1575	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1576		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1577		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1578		if (error != 0)
1579			return (error);
1580		if (i == (STE_RX_LIST_CNT - 1)) {
1581			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1582			ld->ste_rx_list[i].ste_next = ld->ste_rx_list_paddr +
1583			    (sizeof(struct ste_desc_onefrag) * 0);
1584		} else {
1585			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1586			ld->ste_rx_list[i].ste_next = ld->ste_rx_list_paddr +
1587			    (sizeof(struct ste_desc_onefrag) * (i + 1));
1588		}
1589	}
1590
1591	cd->ste_rx_head = &cd->ste_rx_chain[0];
1592	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1593	    sc->ste_cdata.ste_rx_list_map,
1594	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1595
1596	return (0);
1597}
1598
1599static void
1600ste_init_tx_list(struct ste_softc *sc)
1601{
1602	struct ste_chain_data *cd;
1603	struct ste_list_data *ld;
1604	int i;
1605
1606	cd = &sc->ste_cdata;
1607	ld = &sc->ste_ldata;
1608	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1609	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1610		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1611		cd->ste_tx_chain[i].ste_mbuf = NULL;
1612		if (i == (STE_TX_LIST_CNT - 1)) {
1613			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1614			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1615			    ld->ste_tx_list_paddr +
1616			    (sizeof(struct ste_desc) * 0)));
1617		} else {
1618			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1619			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1620			    ld->ste_tx_list_paddr +
1621			    (sizeof(struct ste_desc) * (i + 1))));
1622		}
1623	}
1624
1625	cd->ste_last_tx = NULL;
1626	cd->ste_tx_prod = 0;
1627	cd->ste_tx_cons = 0;
1628	cd->ste_tx_cnt = 0;
1629
1630	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1631	    sc->ste_cdata.ste_tx_list_map,
1632	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1633}
1634
1635static void
1636ste_init(void *xsc)
1637{
1638	struct ste_softc *sc;
1639
1640	sc = xsc;
1641	STE_LOCK(sc);
1642	ste_init_locked(sc);
1643	STE_UNLOCK(sc);
1644}
1645
1646static void
1647ste_init_locked(struct ste_softc *sc)
1648{
1649	struct ifnet *ifp;
1650	struct mii_data *mii;
1651	uint8_t val;
1652	int i;
1653
1654	STE_LOCK_ASSERT(sc);
1655	ifp = sc->ste_ifp;
1656	mii = device_get_softc(sc->ste_miibus);
1657
1658	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1659		return;
1660
1661	ste_stop(sc);
1662	/* Reset the chip to a known state. */
1663	ste_reset(sc);
1664
1665	/* Init our MAC address */
1666	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1667		CSR_WRITE_2(sc, STE_PAR0 + i,
1668		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1669		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1670	}
1671
1672	/* Init RX list */
1673	if (ste_init_rx_list(sc) != 0) {
1674		device_printf(sc->ste_dev,
1675		    "initialization failed: no memory for RX buffers\n");
1676		ste_stop(sc);
1677		return;
1678	}
1679
1680	/* Set RX polling interval */
1681	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1682
1683	/* Init TX descriptors */
1684	ste_init_tx_list(sc);
1685
1686	/* Clear and disable WOL. */
1687	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1688	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1689	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1690	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1691
1692	/* Set the TX freethresh value */
1693	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1694
1695	/* Set the TX start threshold for best performance. */
1696	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1697
1698	/* Set the TX reclaim threshold. */
1699	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1700
1701	/* Accept VLAN length packets */
1702	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1703
1704	/* Set up the RX filter. */
1705	ste_rxfilter(sc);
1706
1707	/* Load the address of the RX list. */
1708	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1709	ste_wait(sc);
1710	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1711	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1712	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1713	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1714
1715	/* Set TX polling interval(defer until we TX first packet). */
1716	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1717
1718	/* Load address of the TX list */
1719	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1720	ste_wait(sc);
1721	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1722	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1723	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1724	ste_wait(sc);
1725	/* Select 3.2us timer. */
1726	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1727	    STE_DMACTL_COUNTDOWN_MODE);
1728
1729	/* Enable receiver and transmitter */
1730	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1731	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1732	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1733	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1734
1735	/* Enable stats counters. */
1736	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1737	/* Clear stats counters. */
1738	ste_stats_clear(sc);
1739
1740	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1741	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1742#ifdef DEVICE_POLLING
1743	/* Disable interrupts if we are polling. */
1744	if (ifp->if_capenable & IFCAP_POLLING)
1745		CSR_WRITE_2(sc, STE_IMR, 0);
1746	else
1747#endif
1748	/* Enable interrupts. */
1749	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1750
1751	sc->ste_flags &= ~STE_FLAG_LINK;
1752	/* Switch to the current media. */
1753	mii_mediachg(mii);
1754
1755	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1756	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1757
1758	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1759}
1760
1761static void
1762ste_stop(struct ste_softc *sc)
1763{
1764	struct ifnet *ifp;
1765	struct ste_chain_onefrag *cur_rx;
1766	struct ste_chain *cur_tx;
1767	uint32_t val;
1768	int i;
1769
1770	STE_LOCK_ASSERT(sc);
1771	ifp = sc->ste_ifp;
1772
1773	callout_stop(&sc->ste_callout);
1774	sc->ste_timer = 0;
1775	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1776
1777	CSR_WRITE_2(sc, STE_IMR, 0);
1778	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1779	/* Stop pending DMA. */
1780	val = CSR_READ_4(sc, STE_DMACTL);
1781	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1782	CSR_WRITE_4(sc, STE_DMACTL, val);
1783	ste_wait(sc);
1784	/* Disable auto-polling. */
1785	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1786	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1787	/* Nullify DMA address to stop any further DMA. */
1788	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1789	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1790	/* Stop TX/RX MAC. */
1791	val = CSR_READ_2(sc, STE_MACCTL1);
1792	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1793	    STE_MACCTL1_STATS_DISABLE;
1794	CSR_WRITE_2(sc, STE_MACCTL1, val);
1795	for (i = 0; i < STE_TIMEOUT; i++) {
1796		DELAY(10);
1797		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1798		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1799			break;
1800	}
1801	if (i == STE_TIMEOUT)
1802		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1803	/* Acknowledge any pending interrupts. */
1804	CSR_READ_2(sc, STE_ISR_ACK);
1805	ste_stats_update(sc);
1806
1807	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1808		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1809		if (cur_rx->ste_mbuf != NULL) {
1810			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1811			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1812			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1813			    cur_rx->ste_map);
1814			m_freem(cur_rx->ste_mbuf);
1815			cur_rx->ste_mbuf = NULL;
1816		}
1817	}
1818
1819	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1820		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1821		if (cur_tx->ste_mbuf != NULL) {
1822			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1823			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1824			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1825			    cur_tx->ste_map);
1826			m_freem(cur_tx->ste_mbuf);
1827			cur_tx->ste_mbuf = NULL;
1828		}
1829	}
1830}
1831
1832static void
1833ste_reset(struct ste_softc *sc)
1834{
1835	uint32_t ctl;
1836	int i;
1837
1838	ctl = CSR_READ_4(sc, STE_ASICCTL);
1839	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1840	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1841	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1842	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1843	    STE_ASICCTL_EXTRESET_RESET;
1844	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1845	CSR_READ_4(sc, STE_ASICCTL);
1846	/*
1847	 * Due to the need of accessing EEPROM controller can take
1848	 * up to 1ms to complete the global reset.
1849	 */
1850	DELAY(1000);
1851
1852	for (i = 0; i < STE_TIMEOUT; i++) {
1853		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1854			break;
1855		DELAY(10);
1856	}
1857
1858	if (i == STE_TIMEOUT)
1859		device_printf(sc->ste_dev, "global reset never completed\n");
1860}
1861
1862static void
1863ste_restart_tx(struct ste_softc *sc)
1864{
1865	uint16_t mac;
1866	int i;
1867
1868	for (i = 0; i < STE_TIMEOUT; i++) {
1869		mac = CSR_READ_2(sc, STE_MACCTL1);
1870		mac |= STE_MACCTL1_TX_ENABLE;
1871		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1872		mac = CSR_READ_2(sc, STE_MACCTL1);
1873		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1874			break;
1875		DELAY(10);
1876	}
1877
1878	if (i == STE_TIMEOUT)
1879		device_printf(sc->ste_dev, "starting Tx failed");
1880}
1881
1882static int
1883ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1884{
1885	struct ste_softc *sc;
1886	struct ifreq *ifr;
1887	struct mii_data *mii;
1888	int error = 0, mask;
1889
1890	sc = ifp->if_softc;
1891	ifr = (struct ifreq *)data;
1892
1893	switch (command) {
1894	case SIOCSIFFLAGS:
1895		STE_LOCK(sc);
1896		if ((ifp->if_flags & IFF_UP) != 0) {
1897			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1898			    ((ifp->if_flags ^ sc->ste_if_flags) &
1899			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1900				ste_rxfilter(sc);
1901			else
1902				ste_init_locked(sc);
1903		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1904			ste_stop(sc);
1905		sc->ste_if_flags = ifp->if_flags;
1906		STE_UNLOCK(sc);
1907		break;
1908	case SIOCADDMULTI:
1909	case SIOCDELMULTI:
1910		STE_LOCK(sc);
1911		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1912			ste_rxfilter(sc);
1913		STE_UNLOCK(sc);
1914		break;
1915	case SIOCGIFMEDIA:
1916	case SIOCSIFMEDIA:
1917		mii = device_get_softc(sc->ste_miibus);
1918		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1919		break;
1920	case SIOCSIFCAP:
1921		STE_LOCK(sc);
1922		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1923#ifdef DEVICE_POLLING
1924		if ((mask & IFCAP_POLLING) != 0 &&
1925		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1926			ifp->if_capenable ^= IFCAP_POLLING;
1927			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1928				error = ether_poll_register(ste_poll, ifp);
1929				if (error != 0) {
1930					STE_UNLOCK(sc);
1931					break;
1932				}
1933				/* Disable interrupts. */
1934				CSR_WRITE_2(sc, STE_IMR, 0);
1935			} else {
1936				error = ether_poll_deregister(ifp);
1937				/* Enable interrupts. */
1938				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1939			}
1940		}
1941#endif /* DEVICE_POLLING */
1942		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1943		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1944			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1945		STE_UNLOCK(sc);
1946		break;
1947	default:
1948		error = ether_ioctl(ifp, command, data);
1949		break;
1950	}
1951
1952	return (error);
1953}
1954
1955static int
1956ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1957{
1958	struct ste_frag *frag;
1959	struct mbuf *m;
1960	struct ste_desc *desc;
1961	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1962	int error, i, nsegs;
1963
1964	STE_LOCK_ASSERT(sc);
1965	M_ASSERTPKTHDR((*m_head));
1966
1967	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1968	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1969	if (error == EFBIG) {
1970		m = m_collapse(*m_head, M_DONTWAIT, STE_MAXFRAGS);
1971		if (m == NULL) {
1972			m_freem(*m_head);
1973			*m_head = NULL;
1974			return (ENOMEM);
1975		}
1976		*m_head = m;
1977		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1978		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1979		if (error != 0) {
1980			m_freem(*m_head);
1981			*m_head = NULL;
1982			return (error);
1983		}
1984	} else if (error != 0)
1985		return (error);
1986	if (nsegs == 0) {
1987		m_freem(*m_head);
1988		*m_head = NULL;
1989		return (EIO);
1990	}
1991	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1992	    BUS_DMASYNC_PREWRITE);
1993
1994	desc = txc->ste_ptr;
1995	for (i = 0; i < nsegs; i++) {
1996		frag = &desc->ste_frags[i];
1997		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1998		frag->ste_len = htole32(txsegs[i].ds_len);
1999	}
2000	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
2001	/*
2002	 * Because we use Tx polling we can't chain multiple
2003	 * Tx descriptors here. Otherwise we race with controller.
2004	 */
2005	desc->ste_next = 0;
2006	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
2007		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
2008		    STE_TXCTL_DMAINTR);
2009	else
2010		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
2011	txc->ste_mbuf = *m_head;
2012	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
2013	sc->ste_cdata.ste_tx_cnt++;
2014
2015	return (0);
2016}
2017
2018static void
2019ste_start(struct ifnet *ifp)
2020{
2021	struct ste_softc *sc;
2022
2023	sc = ifp->if_softc;
2024	STE_LOCK(sc);
2025	ste_start_locked(ifp);
2026	STE_UNLOCK(sc);
2027}
2028
2029static void
2030ste_start_locked(struct ifnet *ifp)
2031{
2032	struct ste_softc *sc;
2033	struct ste_chain *cur_tx;
2034	struct mbuf *m_head = NULL;
2035	int enq;
2036
2037	sc = ifp->if_softc;
2038	STE_LOCK_ASSERT(sc);
2039
2040	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2041	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
2042		return;
2043
2044	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
2045		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
2046			/*
2047			 * Controller may have cached copy of the last used
2048			 * next ptr so we have to reserve one TFD to avoid
2049			 * TFD overruns.
2050			 */
2051			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2052			break;
2053		}
2054		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2055		if (m_head == NULL)
2056			break;
2057		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
2058		if (ste_encap(sc, &m_head, cur_tx) != 0) {
2059			if (m_head == NULL)
2060				break;
2061			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2062			break;
2063		}
2064		if (sc->ste_cdata.ste_last_tx == NULL) {
2065			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
2066			    sc->ste_cdata.ste_tx_list_map,
2067			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2068			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
2069			ste_wait(sc);
2070			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
2071	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
2072			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
2073			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
2074			ste_wait(sc);
2075		} else {
2076			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
2077			    sc->ste_cdata.ste_last_tx->ste_phys;
2078			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
2079			    sc->ste_cdata.ste_tx_list_map,
2080			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2081		}
2082		sc->ste_cdata.ste_last_tx = cur_tx;
2083
2084		enq++;
2085		/*
2086		 * If there's a BPF listener, bounce a copy of this frame
2087		 * to him.
2088	 	 */
2089		BPF_MTAP(ifp, m_head);
2090	}
2091
2092	if (enq > 0)
2093		sc->ste_timer = STE_TX_TIMEOUT;
2094}
2095
2096static void
2097ste_watchdog(struct ste_softc *sc)
2098{
2099	struct ifnet *ifp;
2100
2101	ifp = sc->ste_ifp;
2102	STE_LOCK_ASSERT(sc);
2103
2104	if (sc->ste_timer == 0 || --sc->ste_timer)
2105		return;
2106
2107	ifp->if_oerrors++;
2108	if_printf(ifp, "watchdog timeout\n");
2109
2110	ste_txeof(sc);
2111	ste_txeoc(sc);
2112	ste_rxeof(sc, -1);
2113	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2114	ste_init_locked(sc);
2115
2116	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2117		ste_start_locked(ifp);
2118}
2119
2120static int
2121ste_shutdown(device_t dev)
2122{
2123
2124	return (ste_suspend(dev));
2125}
2126
2127static int
2128ste_suspend(device_t dev)
2129{
2130	struct ste_softc *sc;
2131
2132	sc = device_get_softc(dev);
2133
2134	STE_LOCK(sc);
2135	ste_stop(sc);
2136	ste_setwol(sc);
2137	STE_UNLOCK(sc);
2138
2139	return (0);
2140}
2141
2142static int
2143ste_resume(device_t dev)
2144{
2145	struct ste_softc *sc;
2146	struct ifnet *ifp;
2147	int pmc;
2148	uint16_t pmstat;
2149
2150	sc = device_get_softc(dev);
2151	STE_LOCK(sc);
2152	if (pci_find_extcap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2153		/* Disable PME and clear PME status. */
2154		pmstat = pci_read_config(sc->ste_dev,
2155		    pmc + PCIR_POWER_STATUS, 2);
2156		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2157			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2158			pci_write_config(sc->ste_dev,
2159			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2160		}
2161	}
2162	ifp = sc->ste_ifp;
2163	if ((ifp->if_flags & IFF_UP) != 0) {
2164		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2165		ste_init_locked(sc);
2166	}
2167	STE_UNLOCK(sc);
2168
2169	return (0);
2170}
2171
2172#define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2173	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2174#define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2175	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2176
2177static void
2178ste_sysctl_node(struct ste_softc *sc)
2179{
2180	struct sysctl_ctx_list *ctx;
2181	struct sysctl_oid_list *child, *parent;
2182	struct sysctl_oid *tree;
2183	struct ste_hw_stats *stats;
2184
2185	stats = &sc->ste_stats;
2186	ctx = device_get_sysctl_ctx(sc->ste_dev);
2187	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2188
2189	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2190	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2191	/* Pull in device tunables. */
2192	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2193	resource_int_value(device_get_name(sc->ste_dev),
2194	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2195
2196	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2197	    NULL, "STE statistics");
2198	parent = SYSCTL_CHILDREN(tree);
2199
2200	/* Rx statistics. */
2201	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2202	    NULL, "Rx MAC statistics");
2203	child = SYSCTL_CHILDREN(tree);
2204	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2205	    &stats->rx_bytes, "Good octets");
2206	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2207	    &stats->rx_frames, "Good frames");
2208	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2209	    &stats->rx_bcast_frames, "Good broadcast frames");
2210	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2211	    &stats->rx_mcast_frames, "Good multicast frames");
2212	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2213	    &stats->rx_lost_frames, "Lost frames");
2214
2215	/* Tx statistics. */
2216	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2217	    NULL, "Tx MAC statistics");
2218	child = SYSCTL_CHILDREN(tree);
2219	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2220	    &stats->tx_bytes, "Good octets");
2221	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2222	    &stats->tx_frames, "Good frames");
2223	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2224	    &stats->tx_bcast_frames, "Good broadcast frames");
2225	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2226	    &stats->tx_mcast_frames, "Good multicast frames");
2227	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2228	    &stats->tx_carrsense_errs, "Carrier sense errors");
2229	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2230	    &stats->tx_single_colls, "Single collisions");
2231	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2232	    &stats->tx_multi_colls, "Multiple collisions");
2233	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2234	    &stats->tx_late_colls, "Late collisions");
2235	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2236	    &stats->tx_frames_defered, "Frames with deferrals");
2237	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2238	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2239	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2240	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2241}
2242
2243#undef STE_SYSCTL_STAT_ADD32
2244#undef STE_SYSCTL_STAT_ADD64
2245
2246static void
2247ste_setwol(struct ste_softc *sc)
2248{
2249	struct ifnet *ifp;
2250	uint16_t pmstat;
2251	uint8_t val;
2252	int pmc;
2253
2254	STE_LOCK_ASSERT(sc);
2255
2256	if (pci_find_extcap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2257		/* Disable WOL. */
2258		CSR_READ_1(sc, STE_WAKE_EVENT);
2259		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2260		return;
2261	}
2262
2263	ifp = sc->ste_ifp;
2264	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2265	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2266	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2267	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2268		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2269	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2270	/* Request PME. */
2271	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2272	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2273	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2274		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2275	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2276}
2277