if_ste.c revision 200884
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/ste/if_ste.c 200884 2009-12-22 23:57:10Z yongari $");
35
36#ifdef HAVE_KERNEL_OPTION_HEADERS
37#include "opt_device_polling.h"
38#endif
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/endian.h>
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/module.h>
49#include <sys/rman.h>
50#include <sys/socket.h>
51#include <sys/sockio.h>
52#include <sys/sysctl.h>
53
54#include <net/bpf.h>
55#include <net/if.h>
56#include <net/if_arp.h>
57#include <net/ethernet.h>
58#include <net/if_dl.h>
59#include <net/if_media.h>
60#include <net/if_types.h>
61#include <net/if_vlan_var.h>
62
63#include <machine/bus.h>
64#include <machine/resource.h>
65
66#include <dev/mii/mii.h>
67#include <dev/mii/miivar.h>
68
69#include <dev/pci/pcireg.h>
70#include <dev/pci/pcivar.h>
71
72#include <dev/ste/if_stereg.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77MODULE_DEPEND(ste, pci, 1, 1, 1);
78MODULE_DEPEND(ste, ether, 1, 1, 1);
79MODULE_DEPEND(ste, miibus, 1, 1, 1);
80
81/* Define to show Tx error status. */
82#define	STE_SHOW_TXERRORS
83
84/*
85 * Various supported device vendors/types and their names.
86 */
87static struct ste_type ste_devs[] = {
88	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
89	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
90	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
91	{ 0, 0, NULL }
92};
93
94static int	ste_attach(device_t);
95static int	ste_detach(device_t);
96static int	ste_probe(device_t);
97static int	ste_shutdown(device_t);
98
99static int	ste_dma_alloc(struct ste_softc *);
100static void	ste_dma_free(struct ste_softc *);
101static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
102static int 	ste_eeprom_wait(struct ste_softc *);
103static int	ste_encap(struct ste_softc *, struct mbuf **,
104		    struct ste_chain *);
105static int	ste_ifmedia_upd(struct ifnet *);
106static void	ste_ifmedia_upd_locked(struct ifnet *);
107static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
108static void	ste_init(void *);
109static void	ste_init_locked(struct ste_softc *);
110static int	ste_init_rx_list(struct ste_softc *);
111static void	ste_init_tx_list(struct ste_softc *);
112static void	ste_intr(void *);
113static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
114static int	ste_mii_readreg(struct ste_softc *, struct ste_mii_frame *);
115static void	ste_mii_send(struct ste_softc *, uint32_t, int);
116static void	ste_mii_sync(struct ste_softc *);
117static int	ste_mii_writereg(struct ste_softc *, struct ste_mii_frame *);
118static int	ste_miibus_readreg(device_t, int, int);
119static void	ste_miibus_statchg(device_t);
120static int	ste_miibus_writereg(device_t, int, int, int);
121static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
122static int	ste_read_eeprom(struct ste_softc *, caddr_t, int, int, int);
123static void	ste_reset(struct ste_softc *);
124static void	ste_restart_tx(struct ste_softc *);
125static int	ste_rxeof(struct ste_softc *, int);
126static void	ste_setmulti(struct ste_softc *);
127static void	ste_start(struct ifnet *);
128static void	ste_start_locked(struct ifnet *);
129static void	ste_stats_update(struct ste_softc *);
130static void	ste_stop(struct ste_softc *);
131static void	ste_tick(void *);
132static void	ste_txeoc(struct ste_softc *);
133static void	ste_txeof(struct ste_softc *);
134static void	ste_wait(struct ste_softc *);
135static void	ste_watchdog(struct ste_softc *);
136
137static device_method_t ste_methods[] = {
138	/* Device interface */
139	DEVMETHOD(device_probe,		ste_probe),
140	DEVMETHOD(device_attach,	ste_attach),
141	DEVMETHOD(device_detach,	ste_detach),
142	DEVMETHOD(device_shutdown,	ste_shutdown),
143
144	/* bus interface */
145	DEVMETHOD(bus_print_child,	bus_generic_print_child),
146	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
147
148	/* MII interface */
149	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
150	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
151	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
152
153	{ 0, 0 }
154};
155
156static driver_t ste_driver = {
157	"ste",
158	ste_methods,
159	sizeof(struct ste_softc)
160};
161
162static devclass_t ste_devclass;
163
164DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
165DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
166
167#define STE_SETBIT4(sc, reg, x)				\
168	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
169
170#define STE_CLRBIT4(sc, reg, x)				\
171	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
172
173#define STE_SETBIT2(sc, reg, x)				\
174	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
175
176#define STE_CLRBIT2(sc, reg, x)				\
177	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
178
179#define STE_SETBIT1(sc, reg, x)				\
180	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
181
182#define STE_CLRBIT1(sc, reg, x)				\
183	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
184
185
186#define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
187#define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
188
189/*
190 * Sync the PHYs by setting data bit and strobing the clock 32 times.
191 */
192static void
193ste_mii_sync(struct ste_softc *sc)
194{
195	int i;
196
197	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
198
199	for (i = 0; i < 32; i++) {
200		MII_SET(STE_PHYCTL_MCLK);
201		DELAY(1);
202		MII_CLR(STE_PHYCTL_MCLK);
203		DELAY(1);
204	}
205}
206
207/*
208 * Clock a series of bits through the MII.
209 */
210static void
211ste_mii_send(struct ste_softc *sc, uint32_t bits, int cnt)
212{
213	int i;
214
215	MII_CLR(STE_PHYCTL_MCLK);
216
217	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
218		if (bits & i) {
219			MII_SET(STE_PHYCTL_MDATA);
220                } else {
221			MII_CLR(STE_PHYCTL_MDATA);
222                }
223		DELAY(1);
224		MII_CLR(STE_PHYCTL_MCLK);
225		DELAY(1);
226		MII_SET(STE_PHYCTL_MCLK);
227	}
228}
229
230/*
231 * Read an PHY register through the MII.
232 */
233static int
234ste_mii_readreg(struct ste_softc *sc, struct ste_mii_frame *frame)
235{
236	int i, ack;
237
238	/*
239	 * Set up frame for RX.
240	 */
241	frame->mii_stdelim = STE_MII_STARTDELIM;
242	frame->mii_opcode = STE_MII_READOP;
243	frame->mii_turnaround = 0;
244	frame->mii_data = 0;
245
246	CSR_WRITE_2(sc, STE_PHYCTL, 0);
247	/*
248 	 * Turn on data xmit.
249	 */
250	MII_SET(STE_PHYCTL_MDIR);
251
252	ste_mii_sync(sc);
253
254	/*
255	 * Send command/address info.
256	 */
257	ste_mii_send(sc, frame->mii_stdelim, 2);
258	ste_mii_send(sc, frame->mii_opcode, 2);
259	ste_mii_send(sc, frame->mii_phyaddr, 5);
260	ste_mii_send(sc, frame->mii_regaddr, 5);
261
262	/* Turn off xmit. */
263	MII_CLR(STE_PHYCTL_MDIR);
264
265	/* Idle bit */
266	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
267	DELAY(1);
268	MII_SET(STE_PHYCTL_MCLK);
269	DELAY(1);
270
271	/* Check for ack */
272	MII_CLR(STE_PHYCTL_MCLK);
273	DELAY(1);
274	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
275	MII_SET(STE_PHYCTL_MCLK);
276	DELAY(1);
277
278	/*
279	 * Now try reading data bits. If the ack failed, we still
280	 * need to clock through 16 cycles to keep the PHY(s) in sync.
281	 */
282	if (ack) {
283		for (i = 0; i < 16; i++) {
284			MII_CLR(STE_PHYCTL_MCLK);
285			DELAY(1);
286			MII_SET(STE_PHYCTL_MCLK);
287			DELAY(1);
288		}
289		goto fail;
290	}
291
292	for (i = 0x8000; i; i >>= 1) {
293		MII_CLR(STE_PHYCTL_MCLK);
294		DELAY(1);
295		if (!ack) {
296			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
297				frame->mii_data |= i;
298			DELAY(1);
299		}
300		MII_SET(STE_PHYCTL_MCLK);
301		DELAY(1);
302	}
303
304fail:
305
306	MII_CLR(STE_PHYCTL_MCLK);
307	DELAY(1);
308	MII_SET(STE_PHYCTL_MCLK);
309	DELAY(1);
310
311	if (ack)
312		return (1);
313	return (0);
314}
315
316/*
317 * Write to a PHY register through the MII.
318 */
319static int
320ste_mii_writereg(struct ste_softc *sc, struct ste_mii_frame *frame)
321{
322
323	/*
324	 * Set up frame for TX.
325	 */
326
327	frame->mii_stdelim = STE_MII_STARTDELIM;
328	frame->mii_opcode = STE_MII_WRITEOP;
329	frame->mii_turnaround = STE_MII_TURNAROUND;
330
331	/*
332 	 * Turn on data output.
333	 */
334	MII_SET(STE_PHYCTL_MDIR);
335
336	ste_mii_sync(sc);
337
338	ste_mii_send(sc, frame->mii_stdelim, 2);
339	ste_mii_send(sc, frame->mii_opcode, 2);
340	ste_mii_send(sc, frame->mii_phyaddr, 5);
341	ste_mii_send(sc, frame->mii_regaddr, 5);
342	ste_mii_send(sc, frame->mii_turnaround, 2);
343	ste_mii_send(sc, frame->mii_data, 16);
344
345	/* Idle bit. */
346	MII_SET(STE_PHYCTL_MCLK);
347	DELAY(1);
348	MII_CLR(STE_PHYCTL_MCLK);
349	DELAY(1);
350
351	/*
352	 * Turn off xmit.
353	 */
354	MII_CLR(STE_PHYCTL_MDIR);
355
356	return (0);
357}
358
359static int
360ste_miibus_readreg(device_t dev, int phy, int reg)
361{
362	struct ste_softc *sc;
363	struct ste_mii_frame frame;
364
365	sc = device_get_softc(dev);
366
367	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0 && phy != 0)
368		return (0);
369
370	bzero((char *)&frame, sizeof(frame));
371
372	frame.mii_phyaddr = phy;
373	frame.mii_regaddr = reg;
374	ste_mii_readreg(sc, &frame);
375
376	return (frame.mii_data);
377}
378
379static int
380ste_miibus_writereg(device_t dev, int phy, int reg, int data)
381{
382	struct ste_softc *sc;
383	struct ste_mii_frame frame;
384
385	sc = device_get_softc(dev);
386	bzero((char *)&frame, sizeof(frame));
387
388	frame.mii_phyaddr = phy;
389	frame.mii_regaddr = reg;
390	frame.mii_data = data;
391
392	ste_mii_writereg(sc, &frame);
393
394	return (0);
395}
396
397static void
398ste_miibus_statchg(device_t dev)
399{
400	struct ste_softc *sc;
401	struct mii_data *mii;
402	struct ifnet *ifp;
403	uint16_t cfg;
404
405	sc = device_get_softc(dev);
406
407	mii = device_get_softc(sc->ste_miibus);
408	ifp = sc->ste_ifp;
409	if (mii == NULL || ifp == NULL ||
410	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
411		return;
412
413	sc->ste_flags &= ~STE_FLAG_LINK;
414	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
415	    (IFM_ACTIVE | IFM_AVALID)) {
416		switch (IFM_SUBTYPE(mii->mii_media_active)) {
417		case IFM_10_T:
418		case IFM_100_TX:
419		case IFM_100_FX:
420		case IFM_100_T4:
421			sc->ste_flags |= STE_FLAG_LINK;
422		default:
423			break;
424		}
425	}
426
427	/* Program MACs with resolved speed/duplex/flow-control. */
428	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
429		cfg = CSR_READ_2(sc, STE_MACCTL0);
430		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
431		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
432			/*
433			 * ST201 data sheet says driver should enable receiving
434			 * MAC control frames bit of receive mode register to
435			 * receive flow-control frames but the register has no
436			 * such bits. In addition the controller has no ability
437			 * to send pause frames so it should be handled in
438			 * driver. Implementing pause timer handling in driver
439			 * layer is not trivial, so don't enable flow-control
440			 * here.
441			 */
442			cfg |= STE_MACCTL0_FULLDUPLEX;
443		}
444		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
445	}
446}
447
448static int
449ste_ifmedia_upd(struct ifnet *ifp)
450{
451	struct ste_softc *sc;
452
453	sc = ifp->if_softc;
454	STE_LOCK(sc);
455	ste_ifmedia_upd_locked(ifp);
456	STE_UNLOCK(sc);
457
458	return (0);
459}
460
461static void
462ste_ifmedia_upd_locked(struct ifnet *ifp)
463{
464	struct ste_softc *sc;
465	struct mii_data *mii;
466
467	sc = ifp->if_softc;
468	STE_LOCK_ASSERT(sc);
469	mii = device_get_softc(sc->ste_miibus);
470	sc->ste_flags &= ~STE_FLAG_LINK;
471	if (mii->mii_instance) {
472		struct mii_softc	*miisc;
473		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
474			mii_phy_reset(miisc);
475	}
476	mii_mediachg(mii);
477}
478
479static void
480ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
481{
482	struct ste_softc *sc;
483	struct mii_data *mii;
484
485	sc = ifp->if_softc;
486	mii = device_get_softc(sc->ste_miibus);
487
488	STE_LOCK(sc);
489	mii_pollstat(mii);
490	ifmr->ifm_active = mii->mii_media_active;
491	ifmr->ifm_status = mii->mii_media_status;
492	STE_UNLOCK(sc);
493}
494
495static void
496ste_wait(struct ste_softc *sc)
497{
498	int i;
499
500	for (i = 0; i < STE_TIMEOUT; i++) {
501		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
502			break;
503		DELAY(1);
504	}
505
506	if (i == STE_TIMEOUT)
507		device_printf(sc->ste_dev, "command never completed!\n");
508}
509
510/*
511 * The EEPROM is slow: give it time to come ready after issuing
512 * it a command.
513 */
514static int
515ste_eeprom_wait(struct ste_softc *sc)
516{
517	int i;
518
519	DELAY(1000);
520
521	for (i = 0; i < 100; i++) {
522		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
523			DELAY(1000);
524		else
525			break;
526	}
527
528	if (i == 100) {
529		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
530		return (1);
531	}
532
533	return (0);
534}
535
536/*
537 * Read a sequence of words from the EEPROM. Note that ethernet address
538 * data is stored in the EEPROM in network byte order.
539 */
540static int
541ste_read_eeprom(struct ste_softc *sc, caddr_t dest, int off, int cnt, int swap)
542{
543	uint16_t word, *ptr;
544	int err = 0, i;
545
546	if (ste_eeprom_wait(sc))
547		return (1);
548
549	for (i = 0; i < cnt; i++) {
550		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
551		err = ste_eeprom_wait(sc);
552		if (err)
553			break;
554		word = CSR_READ_2(sc, STE_EEPROM_DATA);
555		ptr = (uint16_t *)(dest + (i * 2));
556		if (swap)
557			*ptr = ntohs(word);
558		else
559			*ptr = word;
560	}
561
562	return (err ? 1 : 0);
563}
564
565static void
566ste_setmulti(struct ste_softc *sc)
567{
568	struct ifnet *ifp;
569	struct ifmultiaddr *ifma;
570	uint32_t hashes[2] = { 0, 0 };
571	int h;
572
573	ifp = sc->ste_ifp;
574	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
575		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
576		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
577		return;
578	}
579
580	/* first, zot all the existing hash bits */
581	CSR_WRITE_2(sc, STE_MAR0, 0);
582	CSR_WRITE_2(sc, STE_MAR1, 0);
583	CSR_WRITE_2(sc, STE_MAR2, 0);
584	CSR_WRITE_2(sc, STE_MAR3, 0);
585
586	/* now program new ones */
587	if_maddr_rlock(ifp);
588	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
589		if (ifma->ifma_addr->sa_family != AF_LINK)
590			continue;
591		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
592		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
593		if (h < 32)
594			hashes[0] |= (1 << h);
595		else
596			hashes[1] |= (1 << (h - 32));
597	}
598	if_maddr_runlock(ifp);
599
600	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
601	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
602	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
603	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
604	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
605	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
606}
607
608#ifdef DEVICE_POLLING
609static poll_handler_t ste_poll, ste_poll_locked;
610
611static int
612ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
613{
614	struct ste_softc *sc = ifp->if_softc;
615	int rx_npkts = 0;
616
617	STE_LOCK(sc);
618	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
619		rx_npkts = ste_poll_locked(ifp, cmd, count);
620	STE_UNLOCK(sc);
621	return (rx_npkts);
622}
623
624static int
625ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
626{
627	struct ste_softc *sc = ifp->if_softc;
628	int rx_npkts;
629
630	STE_LOCK_ASSERT(sc);
631
632	rx_npkts = ste_rxeof(sc, count);
633	ste_txeof(sc);
634	ste_txeoc(sc);
635	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
636		ste_start_locked(ifp);
637
638	if (cmd == POLL_AND_CHECK_STATUS) {
639		uint16_t status;
640
641		status = CSR_READ_2(sc, STE_ISR_ACK);
642
643		if (status & STE_ISR_STATS_OFLOW)
644			ste_stats_update(sc);
645
646		if (status & STE_ISR_HOSTERR)
647			ste_init_locked(sc);
648	}
649	return (rx_npkts);
650}
651#endif /* DEVICE_POLLING */
652
653static void
654ste_intr(void *xsc)
655{
656	struct ste_softc *sc;
657	struct ifnet *ifp;
658	uint16_t status;
659
660	sc = xsc;
661	STE_LOCK(sc);
662	ifp = sc->ste_ifp;
663
664#ifdef DEVICE_POLLING
665	if (ifp->if_capenable & IFCAP_POLLING) {
666		STE_UNLOCK(sc);
667		return;
668	}
669#endif
670
671	/* See if this is really our interrupt. */
672	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH)) {
673		STE_UNLOCK(sc);
674		return;
675	}
676
677	for (;;) {
678		status = CSR_READ_2(sc, STE_ISR_ACK);
679
680		if (!(status & STE_INTRS))
681			break;
682
683		if (status & STE_ISR_RX_DMADONE)
684			ste_rxeof(sc, -1);
685
686		if (status & STE_ISR_TX_DMADONE)
687			ste_txeof(sc);
688
689		if (status & STE_ISR_TX_DONE)
690			ste_txeoc(sc);
691
692		if (status & STE_ISR_STATS_OFLOW)
693			ste_stats_update(sc);
694
695		if (status & STE_ISR_HOSTERR)
696			ste_init_locked(sc);
697	}
698
699	/* Re-enable interrupts */
700	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
701
702	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
703		ste_start_locked(ifp);
704
705	STE_UNLOCK(sc);
706}
707
708/*
709 * A frame has been uploaded: pass the resulting mbuf chain up to
710 * the higher level protocols.
711 */
712static int
713ste_rxeof(struct ste_softc *sc, int count)
714{
715        struct mbuf *m;
716        struct ifnet *ifp;
717	struct ste_chain_onefrag *cur_rx;
718	uint32_t rxstat;
719	int total_len, rx_npkts;
720
721	ifp = sc->ste_ifp;
722
723	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
724	    sc->ste_cdata.ste_rx_list_map,
725	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
726
727	cur_rx = sc->ste_cdata.ste_rx_head;
728	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
729	    cur_rx = cur_rx->ste_next) {
730		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
731		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
732			break;
733#ifdef DEVICE_POLLING
734		if (ifp->if_capenable & IFCAP_POLLING) {
735			if (count == 0)
736				break;
737			count--;
738		}
739#endif
740		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
741			break;
742		/*
743		 * If an error occurs, update stats, clear the
744		 * status word and leave the mbuf cluster in place:
745		 * it should simply get re-used next time this descriptor
746	 	 * comes up in the ring.
747		 */
748		if (rxstat & STE_RXSTAT_FRAME_ERR) {
749			ifp->if_ierrors++;
750			cur_rx->ste_ptr->ste_status = 0;
751			continue;
752		}
753
754		/* No errors; receive the packet. */
755		m = cur_rx->ste_mbuf;
756		total_len = STE_RX_BYTES(rxstat);
757
758		/*
759		 * Try to conjure up a new mbuf cluster. If that
760		 * fails, it means we have an out of memory condition and
761		 * should leave the buffer in place and continue. This will
762		 * result in a lost packet, but there's little else we
763		 * can do in this situation.
764		 */
765		if (ste_newbuf(sc, cur_rx) != 0) {
766			ifp->if_ierrors++;
767			cur_rx->ste_ptr->ste_status = 0;
768			continue;
769		}
770
771		m->m_pkthdr.rcvif = ifp;
772		m->m_pkthdr.len = m->m_len = total_len;
773
774		ifp->if_ipackets++;
775		STE_UNLOCK(sc);
776		(*ifp->if_input)(ifp, m);
777		STE_LOCK(sc);
778	}
779
780	if (rx_npkts > 0) {
781		sc->ste_cdata.ste_rx_head = cur_rx;
782		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
783		    sc->ste_cdata.ste_rx_list_map,
784		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
785	}
786
787	return (rx_npkts);
788}
789
790static void
791ste_txeoc(struct ste_softc *sc)
792{
793	uint16_t txstat;
794	struct ifnet *ifp;
795
796	STE_LOCK_ASSERT(sc);
797
798	ifp = sc->ste_ifp;
799
800	/*
801	 * STE_TX_STATUS register implements a queue of up to 31
802	 * transmit status byte. Writing an arbitrary value to the
803	 * register will advance the queue to the next transmit
804	 * status byte. This means if driver does not read
805	 * STE_TX_STATUS register after completing sending more
806	 * than 31 frames the controller would be stalled so driver
807	 * should re-wake the Tx MAC. This is the most severe
808	 * limitation of ST201 based controller.
809	 */
810	for (;;) {
811		txstat = CSR_READ_2(sc, STE_TX_STATUS);
812		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
813			break;
814		if ((txstat & (STE_TXSTATUS_UNDERRUN |
815		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
816		    STE_TXSTATUS_STATSOFLOW)) != 0) {
817			ifp->if_oerrors++;
818#ifdef	STE_SHOW_TXERRORS
819			device_printf(sc->ste_dev, "TX error : 0x%b\n",
820			    txstat & 0xFF, STE_ERR_BITS);
821#endif
822			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
823			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
824				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
825				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
826					sc->ste_tx_thresh = STE_PACKET_SIZE;
827				device_printf(sc->ste_dev,
828				    "TX underrun, increasing TX"
829				    " start threshold to %d bytes\n",
830				    sc->ste_tx_thresh);
831				/* Make sure to disable active DMA cycles. */
832				STE_SETBIT4(sc, STE_DMACTL,
833				    STE_DMACTL_TXDMA_STALL);
834				ste_wait(sc);
835				ste_init_locked(sc);
836				break;
837			}
838			/* Restart Tx. */
839			ste_restart_tx(sc);
840		}
841		/*
842		 * Advance to next status and ACK TxComplete
843		 * interrupt. ST201 data sheet was wrong here, to
844		 * get next Tx status, we have to write both
845		 * STE_TX_STATUS and STE_TX_FRAMEID register.
846		 * Otherwise controller returns the same status
847		 * as well as not acknowledge Tx completion
848		 * interrupt.
849		 */
850		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
851	}
852}
853
854static void
855ste_tick(void *arg)
856{
857	struct ste_softc *sc;
858	struct mii_data *mii;
859
860	sc = (struct ste_softc *)arg;
861
862	STE_LOCK_ASSERT(sc);
863
864	mii = device_get_softc(sc->ste_miibus);
865	mii_tick(mii);
866	/*
867	 * ukphy(4) does not seem to generate CB that reports
868	 * resolved link state so if we know we lost a link,
869	 * explicitly check the link state.
870	 */
871	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
872		ste_miibus_statchg(sc->ste_dev);
873	ste_stats_update(sc);
874	ste_watchdog(sc);
875	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
876}
877
878static void
879ste_txeof(struct ste_softc *sc)
880{
881	struct ifnet *ifp;
882	struct ste_chain *cur_tx;
883	uint32_t txstat;
884	int idx;
885
886	STE_LOCK_ASSERT(sc);
887
888	ifp = sc->ste_ifp;
889	idx = sc->ste_cdata.ste_tx_cons;
890	if (idx == sc->ste_cdata.ste_tx_prod)
891		return;
892
893	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
894	    sc->ste_cdata.ste_tx_list_map,
895	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
896
897	while (idx != sc->ste_cdata.ste_tx_prod) {
898		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
899		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
900		if ((txstat & STE_TXCTL_DMADONE) == 0)
901			break;
902		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
903		    BUS_DMASYNC_POSTWRITE);
904		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
905		KASSERT(cur_tx->ste_mbuf != NULL,
906		    ("%s: freeing NULL mbuf!\n", __func__));
907		m_freem(cur_tx->ste_mbuf);
908		cur_tx->ste_mbuf = NULL;
909		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
910		ifp->if_opackets++;
911		sc->ste_cdata.ste_tx_cnt--;
912		STE_INC(idx, STE_TX_LIST_CNT);
913	}
914
915	sc->ste_cdata.ste_tx_cons = idx;
916	if (sc->ste_cdata.ste_tx_cnt == 0)
917		sc->ste_timer = 0;
918}
919
920static void
921ste_stats_update(struct ste_softc *sc)
922{
923	struct ifnet *ifp;
924
925	STE_LOCK_ASSERT(sc);
926
927	ifp = sc->ste_ifp;
928	ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
929	    + CSR_READ_1(sc, STE_MULTI_COLLS)
930	    + CSR_READ_1(sc, STE_SINGLE_COLLS);
931}
932
933/*
934 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
935 * IDs against our list and return a device name if we find a match.
936 */
937static int
938ste_probe(device_t dev)
939{
940	struct ste_type *t;
941
942	t = ste_devs;
943
944	while (t->ste_name != NULL) {
945		if ((pci_get_vendor(dev) == t->ste_vid) &&
946		    (pci_get_device(dev) == t->ste_did)) {
947			device_set_desc(dev, t->ste_name);
948			return (BUS_PROBE_DEFAULT);
949		}
950		t++;
951	}
952
953	return (ENXIO);
954}
955
956/*
957 * Attach the interface. Allocate softc structures, do ifmedia
958 * setup and ethernet/BPF attach.
959 */
960static int
961ste_attach(device_t dev)
962{
963	struct ste_softc *sc;
964	struct ifnet *ifp;
965	u_char eaddr[6];
966	int error = 0, rid;
967
968	sc = device_get_softc(dev);
969	sc->ste_dev = dev;
970
971	/*
972	 * Only use one PHY since this chip reports multiple
973	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
974	 * it is at 0 & 1.  It is rev 0x12.
975	 */
976	if (pci_get_vendor(dev) == DL_VENDORID &&
977	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
978	    pci_get_revid(dev) == 0x12 )
979		sc->ste_flags |= STE_FLAG_ONE_PHY;
980
981	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
982	    MTX_DEF);
983	/*
984	 * Map control/status registers.
985	 */
986	pci_enable_busmaster(dev);
987
988	/* Prefer memory space register mapping over IO space. */
989	sc->ste_res_id = PCIR_BAR(1);
990	sc->ste_res_type = SYS_RES_MEMORY;
991	sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
992	    &sc->ste_res_id, RF_ACTIVE);
993	if (sc->ste_res == NULL) {
994		sc->ste_res_id = PCIR_BAR(0);
995		sc->ste_res_type = SYS_RES_IOPORT;
996		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
997		    &sc->ste_res_id, RF_ACTIVE);
998	}
999	if (sc->ste_res == NULL) {
1000		device_printf(dev, "couldn't map ports/memory\n");
1001		error = ENXIO;
1002		goto fail;
1003	}
1004
1005	/* Allocate interrupt */
1006	rid = 0;
1007	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1008	    RF_SHAREABLE | RF_ACTIVE);
1009
1010	if (sc->ste_irq == NULL) {
1011		device_printf(dev, "couldn't map interrupt\n");
1012		error = ENXIO;
1013		goto fail;
1014	}
1015
1016	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
1017
1018	/* Reset the adapter. */
1019	ste_reset(sc);
1020
1021	/*
1022	 * Get station address from the EEPROM.
1023	 */
1024	if (ste_read_eeprom(sc, eaddr,
1025	    STE_EEADDR_NODE0, 3, 0)) {
1026		device_printf(dev, "failed to read station address\n");
1027		error = ENXIO;;
1028		goto fail;
1029	}
1030
1031	if ((error = ste_dma_alloc(sc)) != 0)
1032		goto fail;
1033
1034	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
1035	if (ifp == NULL) {
1036		device_printf(dev, "can not if_alloc()\n");
1037		error = ENOSPC;
1038		goto fail;
1039	}
1040
1041	/* Do MII setup. */
1042	if (mii_phy_probe(dev, &sc->ste_miibus,
1043	    ste_ifmedia_upd, ste_ifmedia_sts)) {
1044		device_printf(dev, "MII without any phy!\n");
1045		error = ENXIO;
1046		goto fail;
1047	}
1048
1049	ifp->if_softc = sc;
1050	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1051	ifp->if_mtu = ETHERMTU;
1052	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1053	ifp->if_ioctl = ste_ioctl;
1054	ifp->if_start = ste_start;
1055	ifp->if_init = ste_init;
1056	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1057	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1058	IFQ_SET_READY(&ifp->if_snd);
1059
1060	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1061
1062	/*
1063	 * Call MI attach routine.
1064	 */
1065	ether_ifattach(ifp, eaddr);
1066
1067	/*
1068	 * Tell the upper layer(s) we support long frames.
1069	 */
1070	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1071	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1072	ifp->if_capenable = ifp->if_capabilities;
1073#ifdef DEVICE_POLLING
1074	ifp->if_capabilities |= IFCAP_POLLING;
1075#endif
1076
1077	/* Hook interrupt last to avoid having to lock softc */
1078	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1079	    NULL, ste_intr, sc, &sc->ste_intrhand);
1080
1081	if (error) {
1082		device_printf(dev, "couldn't set up irq\n");
1083		ether_ifdetach(ifp);
1084		goto fail;
1085	}
1086
1087fail:
1088	if (error)
1089		ste_detach(dev);
1090
1091	return (error);
1092}
1093
1094/*
1095 * Shutdown hardware and free up resources. This can be called any
1096 * time after the mutex has been initialized. It is called in both
1097 * the error case in attach and the normal detach case so it needs
1098 * to be careful about only freeing resources that have actually been
1099 * allocated.
1100 */
1101static int
1102ste_detach(device_t dev)
1103{
1104	struct ste_softc *sc;
1105	struct ifnet *ifp;
1106
1107	sc = device_get_softc(dev);
1108	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1109	ifp = sc->ste_ifp;
1110
1111#ifdef DEVICE_POLLING
1112	if (ifp->if_capenable & IFCAP_POLLING)
1113		ether_poll_deregister(ifp);
1114#endif
1115
1116	/* These should only be active if attach succeeded */
1117	if (device_is_attached(dev)) {
1118		ether_ifdetach(ifp);
1119		STE_LOCK(sc);
1120		ste_stop(sc);
1121		STE_UNLOCK(sc);
1122		callout_drain(&sc->ste_callout);
1123	}
1124	if (sc->ste_miibus)
1125		device_delete_child(dev, sc->ste_miibus);
1126	bus_generic_detach(dev);
1127
1128	if (sc->ste_intrhand)
1129		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1130	if (sc->ste_irq)
1131		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1132	if (sc->ste_res)
1133		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1134		    sc->ste_res);
1135
1136	if (ifp)
1137		if_free(ifp);
1138
1139	ste_dma_free(sc);
1140	mtx_destroy(&sc->ste_mtx);
1141
1142	return (0);
1143}
1144
1145struct ste_dmamap_arg {
1146	bus_addr_t	ste_busaddr;
1147};
1148
1149static void
1150ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1151{
1152	struct ste_dmamap_arg *ctx;
1153
1154	if (error != 0)
1155		return;
1156
1157	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1158
1159	ctx = (struct ste_dmamap_arg *)arg;
1160	ctx->ste_busaddr = segs[0].ds_addr;
1161}
1162
1163static int
1164ste_dma_alloc(struct ste_softc *sc)
1165{
1166	struct ste_chain *txc;
1167	struct ste_chain_onefrag *rxc;
1168	struct ste_dmamap_arg ctx;
1169	int error, i;
1170
1171	/* Create parent DMA tag. */
1172	error = bus_dma_tag_create(
1173	    bus_get_dma_tag(sc->ste_dev), /* parent */
1174	    1, 0,			/* alignment, boundary */
1175	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1176	    BUS_SPACE_MAXADDR,		/* highaddr */
1177	    NULL, NULL,			/* filter, filterarg */
1178	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1179	    0,				/* nsegments */
1180	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1181	    0,				/* flags */
1182	    NULL, NULL,			/* lockfunc, lockarg */
1183	    &sc->ste_cdata.ste_parent_tag);
1184	if (error != 0) {
1185		device_printf(sc->ste_dev,
1186		    "could not create parent DMA tag.\n");
1187		goto fail;
1188	}
1189
1190	/* Create DMA tag for Tx descriptor list. */
1191	error = bus_dma_tag_create(
1192	    sc->ste_cdata.ste_parent_tag, /* parent */
1193	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1194	    BUS_SPACE_MAXADDR,		/* lowaddr */
1195	    BUS_SPACE_MAXADDR,		/* highaddr */
1196	    NULL, NULL,			/* filter, filterarg */
1197	    STE_TX_LIST_SZ,		/* maxsize */
1198	    1,				/* nsegments */
1199	    STE_TX_LIST_SZ,		/* maxsegsize */
1200	    0,				/* flags */
1201	    NULL, NULL,			/* lockfunc, lockarg */
1202	    &sc->ste_cdata.ste_tx_list_tag);
1203	if (error != 0) {
1204		device_printf(sc->ste_dev,
1205		    "could not create Tx list DMA tag.\n");
1206		goto fail;
1207	}
1208
1209	/* Create DMA tag for Rx descriptor list. */
1210	error = bus_dma_tag_create(
1211	    sc->ste_cdata.ste_parent_tag, /* parent */
1212	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1213	    BUS_SPACE_MAXADDR,		/* lowaddr */
1214	    BUS_SPACE_MAXADDR,		/* highaddr */
1215	    NULL, NULL,			/* filter, filterarg */
1216	    STE_RX_LIST_SZ,		/* maxsize */
1217	    1,				/* nsegments */
1218	    STE_RX_LIST_SZ,		/* maxsegsize */
1219	    0,				/* flags */
1220	    NULL, NULL,			/* lockfunc, lockarg */
1221	    &sc->ste_cdata.ste_rx_list_tag);
1222	if (error != 0) {
1223		device_printf(sc->ste_dev,
1224		    "could not create Rx list DMA tag.\n");
1225		goto fail;
1226	}
1227
1228	/* Create DMA tag for Tx buffers. */
1229	error = bus_dma_tag_create(
1230	    sc->ste_cdata.ste_parent_tag, /* parent */
1231	    1, 0,			/* alignment, boundary */
1232	    BUS_SPACE_MAXADDR,		/* lowaddr */
1233	    BUS_SPACE_MAXADDR,		/* highaddr */
1234	    NULL, NULL,			/* filter, filterarg */
1235	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1236	    STE_MAXFRAGS,		/* nsegments */
1237	    MCLBYTES,			/* maxsegsize */
1238	    0,				/* flags */
1239	    NULL, NULL,			/* lockfunc, lockarg */
1240	    &sc->ste_cdata.ste_tx_tag);
1241	if (error != 0) {
1242		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1243		goto fail;
1244	}
1245
1246	/* Create DMA tag for Rx buffers. */
1247	error = bus_dma_tag_create(
1248	    sc->ste_cdata.ste_parent_tag, /* parent */
1249	    1, 0,			/* alignment, boundary */
1250	    BUS_SPACE_MAXADDR,		/* lowaddr */
1251	    BUS_SPACE_MAXADDR,		/* highaddr */
1252	    NULL, NULL,			/* filter, filterarg */
1253	    MCLBYTES,			/* maxsize */
1254	    1,				/* nsegments */
1255	    MCLBYTES,			/* maxsegsize */
1256	    0,				/* flags */
1257	    NULL, NULL,			/* lockfunc, lockarg */
1258	    &sc->ste_cdata.ste_rx_tag);
1259	if (error != 0) {
1260		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1261		goto fail;
1262	}
1263
1264	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1265	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1266	    (void **)&sc->ste_ldata.ste_tx_list,
1267	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1268	    &sc->ste_cdata.ste_tx_list_map);
1269	if (error != 0) {
1270		device_printf(sc->ste_dev,
1271		    "could not allocate DMA'able memory for Tx list.\n");
1272		goto fail;
1273	}
1274	ctx.ste_busaddr = 0;
1275	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1276	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1277	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1278	if (error != 0 || ctx.ste_busaddr == 0) {
1279		device_printf(sc->ste_dev,
1280		    "could not load DMA'able memory for Tx list.\n");
1281		goto fail;
1282	}
1283	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1284
1285	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1286	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1287	    (void **)&sc->ste_ldata.ste_rx_list,
1288	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1289	    &sc->ste_cdata.ste_rx_list_map);
1290	if (error != 0) {
1291		device_printf(sc->ste_dev,
1292		    "could not allocate DMA'able memory for Rx list.\n");
1293		goto fail;
1294	}
1295	ctx.ste_busaddr = 0;
1296	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1297	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1298	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1299	if (error != 0 || ctx.ste_busaddr == 0) {
1300		device_printf(sc->ste_dev,
1301		    "could not load DMA'able memory for Rx list.\n");
1302		goto fail;
1303	}
1304	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1305
1306	/* Create DMA maps for Tx buffers. */
1307	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1308		txc = &sc->ste_cdata.ste_tx_chain[i];
1309		txc->ste_ptr = NULL;
1310		txc->ste_mbuf = NULL;
1311		txc->ste_next = NULL;
1312		txc->ste_phys = 0;
1313		txc->ste_map = NULL;
1314		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1315		    &txc->ste_map);
1316		if (error != 0) {
1317			device_printf(sc->ste_dev,
1318			    "could not create Tx dmamap.\n");
1319			goto fail;
1320		}
1321	}
1322	/* Create DMA maps for Rx buffers. */
1323	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1324	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1325		device_printf(sc->ste_dev,
1326		    "could not create spare Rx dmamap.\n");
1327		goto fail;
1328	}
1329	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1330		rxc = &sc->ste_cdata.ste_rx_chain[i];
1331		rxc->ste_ptr = NULL;
1332		rxc->ste_mbuf = NULL;
1333		rxc->ste_next = NULL;
1334		rxc->ste_map = NULL;
1335		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1336		    &rxc->ste_map);
1337		if (error != 0) {
1338			device_printf(sc->ste_dev,
1339			    "could not create Rx dmamap.\n");
1340			goto fail;
1341		}
1342	}
1343
1344fail:
1345	return (error);
1346}
1347
1348static void
1349ste_dma_free(struct ste_softc *sc)
1350{
1351	struct ste_chain *txc;
1352	struct ste_chain_onefrag *rxc;
1353	int i;
1354
1355	/* Tx buffers. */
1356	if (sc->ste_cdata.ste_tx_tag != NULL) {
1357		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1358			txc = &sc->ste_cdata.ste_tx_chain[i];
1359			if (txc->ste_map != NULL) {
1360				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1361				    txc->ste_map);
1362				txc->ste_map = NULL;
1363			}
1364		}
1365		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1366		sc->ste_cdata.ste_tx_tag = NULL;
1367	}
1368	/* Rx buffers. */
1369	if (sc->ste_cdata.ste_rx_tag != NULL) {
1370		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1371			rxc = &sc->ste_cdata.ste_rx_chain[i];
1372			if (rxc->ste_map != NULL) {
1373				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1374				    rxc->ste_map);
1375				rxc->ste_map = NULL;
1376			}
1377		}
1378		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1379			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1380			    sc->ste_cdata.ste_rx_sparemap);
1381			sc->ste_cdata.ste_rx_sparemap = NULL;
1382		}
1383		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1384		sc->ste_cdata.ste_rx_tag = NULL;
1385	}
1386	/* Tx descriptor list. */
1387	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1388		if (sc->ste_cdata.ste_tx_list_map != NULL)
1389			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1390			    sc->ste_cdata.ste_tx_list_map);
1391		if (sc->ste_cdata.ste_tx_list_map != NULL &&
1392		    sc->ste_ldata.ste_tx_list != NULL)
1393			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1394			    sc->ste_ldata.ste_tx_list,
1395			    sc->ste_cdata.ste_tx_list_map);
1396		sc->ste_ldata.ste_tx_list = NULL;
1397		sc->ste_cdata.ste_tx_list_map = NULL;
1398		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1399		sc->ste_cdata.ste_tx_list_tag = NULL;
1400	}
1401	/* Rx descriptor list. */
1402	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1403		if (sc->ste_cdata.ste_rx_list_map != NULL)
1404			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1405			    sc->ste_cdata.ste_rx_list_map);
1406		if (sc->ste_cdata.ste_rx_list_map != NULL &&
1407		    sc->ste_ldata.ste_rx_list != NULL)
1408			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1409			    sc->ste_ldata.ste_rx_list,
1410			    sc->ste_cdata.ste_rx_list_map);
1411		sc->ste_ldata.ste_rx_list = NULL;
1412		sc->ste_cdata.ste_rx_list_map = NULL;
1413		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1414		sc->ste_cdata.ste_rx_list_tag = NULL;
1415	}
1416	if (sc->ste_cdata.ste_parent_tag != NULL) {
1417		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1418		sc->ste_cdata.ste_parent_tag = NULL;
1419	}
1420}
1421
1422static int
1423ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1424{
1425	struct mbuf *m;
1426	bus_dma_segment_t segs[1];
1427	bus_dmamap_t map;
1428	int error, nsegs;
1429
1430	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1431	if (m == NULL)
1432		return (ENOBUFS);
1433	m->m_len = m->m_pkthdr.len = MCLBYTES;
1434	m_adj(m, ETHER_ALIGN);
1435
1436	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1437	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1438		m_freem(m);
1439		return (error);
1440	}
1441	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1442
1443	if (rxc->ste_mbuf != NULL) {
1444		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1445		    BUS_DMASYNC_POSTREAD);
1446		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1447	}
1448	map = rxc->ste_map;
1449	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1450	sc->ste_cdata.ste_rx_sparemap = map;
1451	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1452	    BUS_DMASYNC_PREREAD);
1453	rxc->ste_mbuf = m;
1454	rxc->ste_ptr->ste_status = 0;
1455	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1456	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1457	    STE_FRAG_LAST);
1458	return (0);
1459}
1460
1461static int
1462ste_init_rx_list(struct ste_softc *sc)
1463{
1464	struct ste_chain_data *cd;
1465	struct ste_list_data *ld;
1466	int error, i;
1467
1468	cd = &sc->ste_cdata;
1469	ld = &sc->ste_ldata;
1470	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1471	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1472		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1473		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1474		if (error != 0)
1475			return (error);
1476		if (i == (STE_RX_LIST_CNT - 1)) {
1477			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1478			ld->ste_rx_list[i].ste_next = ld->ste_rx_list_paddr +
1479			    (sizeof(struct ste_desc_onefrag) * 0);
1480		} else {
1481			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1482			ld->ste_rx_list[i].ste_next = ld->ste_rx_list_paddr +
1483			    (sizeof(struct ste_desc_onefrag) * (i + 1));
1484		}
1485	}
1486
1487	cd->ste_rx_head = &cd->ste_rx_chain[0];
1488	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1489	    sc->ste_cdata.ste_rx_list_map,
1490	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1491
1492	return (0);
1493}
1494
1495static void
1496ste_init_tx_list(struct ste_softc *sc)
1497{
1498	struct ste_chain_data *cd;
1499	struct ste_list_data *ld;
1500	int i;
1501
1502	cd = &sc->ste_cdata;
1503	ld = &sc->ste_ldata;
1504	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1505	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1506		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1507		cd->ste_tx_chain[i].ste_mbuf = NULL;
1508		if (i == (STE_TX_LIST_CNT - 1)) {
1509			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1510			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1511			    ld->ste_tx_list_paddr +
1512			    (sizeof(struct ste_desc) * 0)));
1513		} else {
1514			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1515			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1516			    ld->ste_tx_list_paddr +
1517			    (sizeof(struct ste_desc) * (i + 1))));
1518		}
1519	}
1520
1521	cd->ste_last_tx = NULL;
1522	cd->ste_tx_prod = 0;
1523	cd->ste_tx_cons = 0;
1524	cd->ste_tx_cnt = 0;
1525
1526	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1527	    sc->ste_cdata.ste_tx_list_map,
1528	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1529}
1530
1531static void
1532ste_init(void *xsc)
1533{
1534	struct ste_softc *sc;
1535
1536	sc = xsc;
1537	STE_LOCK(sc);
1538	ste_init_locked(sc);
1539	STE_UNLOCK(sc);
1540}
1541
1542static void
1543ste_init_locked(struct ste_softc *sc)
1544{
1545	struct ifnet *ifp;
1546	int i;
1547
1548	STE_LOCK_ASSERT(sc);
1549	ifp = sc->ste_ifp;
1550
1551	ste_stop(sc);
1552	/* Reset the chip to a known state. */
1553	ste_reset(sc);
1554
1555	/* Init our MAC address */
1556	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1557		CSR_WRITE_2(sc, STE_PAR0 + i,
1558		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1559		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1560	}
1561
1562	/* Init RX list */
1563	if (ste_init_rx_list(sc) != 0) {
1564		device_printf(sc->ste_dev,
1565		    "initialization failed: no memory for RX buffers\n");
1566		ste_stop(sc);
1567		return;
1568	}
1569
1570	/* Set RX polling interval */
1571	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1572
1573	/* Init TX descriptors */
1574	ste_init_tx_list(sc);
1575
1576	/* Set the TX freethresh value */
1577	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1578
1579	/* Set the TX start threshold for best performance. */
1580	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1581
1582	/* Set the TX reclaim threshold. */
1583	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1584
1585	/* Set up the RX filter. */
1586	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1587
1588	/* If we want promiscuous mode, set the allframes bit. */
1589	if (ifp->if_flags & IFF_PROMISC) {
1590		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1591	} else {
1592		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1593	}
1594
1595	/* Set capture broadcast bit to accept broadcast frames. */
1596	if (ifp->if_flags & IFF_BROADCAST) {
1597		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1598	} else {
1599		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1600	}
1601
1602	ste_setmulti(sc);
1603
1604	/* Load the address of the RX list. */
1605	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1606	ste_wait(sc);
1607	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1608	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1609	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1610	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1611
1612	/* Set TX polling interval(defer until we TX first packet). */
1613	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1614
1615	/* Load address of the TX list */
1616	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1617	ste_wait(sc);
1618	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1619	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1620	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1621	ste_wait(sc);
1622
1623	/* Enable receiver and transmitter */
1624	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1625	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1626	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1627	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1628
1629	/* Enable stats counters. */
1630	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1631
1632	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1633#ifdef DEVICE_POLLING
1634	/* Disable interrupts if we are polling. */
1635	if (ifp->if_capenable & IFCAP_POLLING)
1636		CSR_WRITE_2(sc, STE_IMR, 0);
1637	else
1638#endif
1639	/* Enable interrupts. */
1640	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1641
1642	/* Accept VLAN length packets */
1643	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1644
1645	ste_ifmedia_upd_locked(ifp);
1646
1647	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1648	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1649
1650	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1651}
1652
1653static void
1654ste_stop(struct ste_softc *sc)
1655{
1656	struct ifnet *ifp;
1657	struct ste_chain_onefrag *cur_rx;
1658	struct ste_chain *cur_tx;
1659	uint32_t val;
1660	int i;
1661
1662	STE_LOCK_ASSERT(sc);
1663	ifp = sc->ste_ifp;
1664
1665	callout_stop(&sc->ste_callout);
1666	sc->ste_timer = 0;
1667	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1668
1669	CSR_WRITE_2(sc, STE_IMR, 0);
1670	/* Stop pending DMA. */
1671	val = CSR_READ_4(sc, STE_DMACTL);
1672	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1673	CSR_WRITE_4(sc, STE_DMACTL, val);
1674	ste_wait(sc);
1675	/* Disable auto-polling. */
1676	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1677	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1678	/* Nullify DMA address to stop any further DMA. */
1679	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1680	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1681	/* Stop TX/RX MAC. */
1682	val = CSR_READ_2(sc, STE_MACCTL1);
1683	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1684	    STE_MACCTL1_STATS_DISABLE;
1685	CSR_WRITE_2(sc, STE_MACCTL1, val);
1686	for (i = 0; i < STE_TIMEOUT; i++) {
1687		DELAY(10);
1688		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1689		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1690			break;
1691	}
1692	if (i == STE_TIMEOUT)
1693		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1694	/* Acknowledge any pending interrupts. */
1695	CSR_READ_2(sc, STE_ISR_ACK);
1696	ste_stats_update(sc);
1697
1698	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1699		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1700		if (cur_rx->ste_mbuf != NULL) {
1701			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1702			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1703			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1704			    cur_rx->ste_map);
1705			m_freem(cur_rx->ste_mbuf);
1706			cur_rx->ste_mbuf = NULL;
1707		}
1708	}
1709
1710	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1711		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1712		if (cur_tx->ste_mbuf != NULL) {
1713			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1714			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1715			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1716			    cur_tx->ste_map);
1717			m_freem(cur_tx->ste_mbuf);
1718			cur_tx->ste_mbuf = NULL;
1719		}
1720	}
1721}
1722
1723static void
1724ste_reset(struct ste_softc *sc)
1725{
1726	int i;
1727
1728	STE_SETBIT4(sc, STE_ASICCTL,
1729	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1730	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1731	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1732	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1733	    STE_ASICCTL_EXTRESET_RESET);
1734
1735	DELAY(100000);
1736
1737	for (i = 0; i < STE_TIMEOUT; i++) {
1738		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1739			break;
1740	}
1741
1742	if (i == STE_TIMEOUT)
1743		device_printf(sc->ste_dev, "global reset never completed\n");
1744}
1745
1746static void
1747ste_restart_tx(struct ste_softc *sc)
1748{
1749	uint16_t mac;
1750	int i;
1751
1752	for (i = 0; i < STE_TIMEOUT; i++) {
1753		mac = CSR_READ_2(sc, STE_MACCTL1);
1754		mac |= STE_MACCTL1_TX_ENABLE;
1755		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1756		mac = CSR_READ_2(sc, STE_MACCTL1);
1757		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1758			break;
1759		DELAY(10);
1760	}
1761
1762	if (i == STE_TIMEOUT)
1763		device_printf(sc->ste_dev, "starting Tx failed");
1764}
1765
1766static int
1767ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1768{
1769	struct ste_softc *sc;
1770	struct ifreq *ifr;
1771	struct mii_data *mii;
1772	int error = 0;
1773
1774	sc = ifp->if_softc;
1775	ifr = (struct ifreq *)data;
1776
1777	switch (command) {
1778	case SIOCSIFFLAGS:
1779		STE_LOCK(sc);
1780		if (ifp->if_flags & IFF_UP) {
1781			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1782			    ifp->if_flags & IFF_PROMISC &&
1783			    !(sc->ste_if_flags & IFF_PROMISC)) {
1784				STE_SETBIT1(sc, STE_RX_MODE,
1785				    STE_RXMODE_PROMISC);
1786			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1787			    !(ifp->if_flags & IFF_PROMISC) &&
1788			    sc->ste_if_flags & IFF_PROMISC) {
1789				STE_CLRBIT1(sc, STE_RX_MODE,
1790				    STE_RXMODE_PROMISC);
1791			}
1792			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1793			    (ifp->if_flags ^ sc->ste_if_flags) & IFF_ALLMULTI)
1794				ste_setmulti(sc);
1795			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1796				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1797				ste_init_locked(sc);
1798			}
1799		} else {
1800			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1801				ste_stop(sc);
1802		}
1803		sc->ste_if_flags = ifp->if_flags;
1804		STE_UNLOCK(sc);
1805		error = 0;
1806		break;
1807	case SIOCADDMULTI:
1808	case SIOCDELMULTI:
1809		STE_LOCK(sc);
1810		ste_setmulti(sc);
1811		STE_UNLOCK(sc);
1812		error = 0;
1813		break;
1814	case SIOCGIFMEDIA:
1815	case SIOCSIFMEDIA:
1816		mii = device_get_softc(sc->ste_miibus);
1817		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1818		break;
1819	case SIOCSIFCAP:
1820#ifdef DEVICE_POLLING
1821		if (ifr->ifr_reqcap & IFCAP_POLLING &&
1822		    !(ifp->if_capenable & IFCAP_POLLING)) {
1823			error = ether_poll_register(ste_poll, ifp);
1824			if (error)
1825				return (error);
1826			STE_LOCK(sc);
1827			/* Disable interrupts */
1828			CSR_WRITE_2(sc, STE_IMR, 0);
1829			ifp->if_capenable |= IFCAP_POLLING;
1830			STE_UNLOCK(sc);
1831			return (error);
1832
1833		}
1834		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1835		    ifp->if_capenable & IFCAP_POLLING) {
1836			error = ether_poll_deregister(ifp);
1837			/* Enable interrupts. */
1838			STE_LOCK(sc);
1839			CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1840			ifp->if_capenable &= ~IFCAP_POLLING;
1841			STE_UNLOCK(sc);
1842			return (error);
1843		}
1844#endif /* DEVICE_POLLING */
1845		break;
1846	default:
1847		error = ether_ioctl(ifp, command, data);
1848		break;
1849	}
1850
1851	return (error);
1852}
1853
1854static int
1855ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1856{
1857	struct ste_frag *frag;
1858	struct mbuf *m;
1859	struct ste_desc *desc;
1860	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1861	int error, i, nsegs;
1862
1863	STE_LOCK_ASSERT(sc);
1864	M_ASSERTPKTHDR((*m_head));
1865
1866	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1867	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1868	if (error == EFBIG) {
1869		m = m_collapse(*m_head, M_DONTWAIT, STE_MAXFRAGS);
1870		if (m == NULL) {
1871			m_freem(*m_head);
1872			*m_head = NULL;
1873			return (ENOMEM);
1874		}
1875		*m_head = m;
1876		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1877		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1878		if (error != 0) {
1879			m_freem(*m_head);
1880			*m_head = NULL;
1881			return (error);
1882		}
1883	} else if (error != 0)
1884		return (error);
1885	if (nsegs == 0) {
1886		m_freem(*m_head);
1887		*m_head = NULL;
1888		return (EIO);
1889	}
1890	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1891	    BUS_DMASYNC_PREWRITE);
1892
1893	desc = txc->ste_ptr;
1894	for (i = 0; i < nsegs; i++) {
1895		frag = &desc->ste_frags[i];
1896		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1897		frag->ste_len = htole32(txsegs[i].ds_len);
1898	}
1899	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
1900	/*
1901	 * Because we use Tx polling we can't chain multiple
1902	 * Tx descriptors here. Otherwise we race with controller.
1903	 */
1904	desc->ste_next = 0;
1905	desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS | STE_TXCTL_DMAINTR);
1906	txc->ste_mbuf = *m_head;
1907	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
1908	sc->ste_cdata.ste_tx_cnt++;
1909
1910	return (0);
1911}
1912
1913static void
1914ste_start(struct ifnet *ifp)
1915{
1916	struct ste_softc *sc;
1917
1918	sc = ifp->if_softc;
1919	STE_LOCK(sc);
1920	ste_start_locked(ifp);
1921	STE_UNLOCK(sc);
1922}
1923
1924static void
1925ste_start_locked(struct ifnet *ifp)
1926{
1927	struct ste_softc *sc;
1928	struct ste_chain *cur_tx;
1929	struct mbuf *m_head = NULL;
1930	int enq;
1931
1932	sc = ifp->if_softc;
1933	STE_LOCK_ASSERT(sc);
1934
1935	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1936	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
1937		return;
1938
1939	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
1940		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
1941			/*
1942			 * Controller may have cached copy of the last used
1943			 * next ptr so we have to reserve one TFD to avoid
1944			 * TFD overruns.
1945			 */
1946			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1947			break;
1948		}
1949		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1950		if (m_head == NULL)
1951			break;
1952		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
1953		if (ste_encap(sc, &m_head, cur_tx) != 0) {
1954			if (m_head == NULL)
1955				break;
1956			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1957			break;
1958		}
1959		if (sc->ste_cdata.ste_last_tx == NULL) {
1960			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1961			    sc->ste_cdata.ste_tx_list_map,
1962			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1963			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1964			ste_wait(sc);
1965			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1966	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
1967			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1968			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1969			ste_wait(sc);
1970		} else {
1971			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
1972			    sc->ste_cdata.ste_last_tx->ste_phys;
1973			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1974			    sc->ste_cdata.ste_tx_list_map,
1975			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1976		}
1977		sc->ste_cdata.ste_last_tx = cur_tx;
1978
1979		enq++;
1980		/*
1981		 * If there's a BPF listener, bounce a copy of this frame
1982		 * to him.
1983	 	 */
1984		BPF_MTAP(ifp, m_head);
1985	}
1986
1987	if (enq > 0)
1988		sc->ste_timer = STE_TX_TIMEOUT;
1989}
1990
1991static void
1992ste_watchdog(struct ste_softc *sc)
1993{
1994	struct ifnet *ifp;
1995
1996	ifp = sc->ste_ifp;
1997	STE_LOCK_ASSERT(sc);
1998
1999	if (sc->ste_timer == 0 || --sc->ste_timer)
2000		return;
2001
2002	ifp->if_oerrors++;
2003	if_printf(ifp, "watchdog timeout\n");
2004
2005	ste_txeof(sc);
2006	ste_txeoc(sc);
2007	ste_rxeof(sc, -1);
2008	ste_init_locked(sc);
2009
2010	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2011		ste_start_locked(ifp);
2012}
2013
2014static int
2015ste_shutdown(device_t dev)
2016{
2017	struct ste_softc *sc;
2018
2019	sc = device_get_softc(dev);
2020
2021	STE_LOCK(sc);
2022	ste_stop(sc);
2023	STE_UNLOCK(sc);
2024
2025	return (0);
2026}
2027