if_ste.c revision 127937
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/pci/if_ste.c 127937 2004-04-06 11:04:54Z ru $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/sockio.h>
39#include <sys/mbuf.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/socket.h>
43#include <sys/sysctl.h>
44
45#include <net/if.h>
46#include <net/if_arp.h>
47#include <net/ethernet.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50#include <net/if_vlan_var.h>
51
52#include <net/bpf.h>
53
54#include <vm/vm.h>              /* for vtophys */
55#include <vm/pmap.h>            /* for vtophys */
56#include <machine/bus_memio.h>
57#include <machine/bus_pio.h>
58#include <machine/bus.h>
59#include <machine/resource.h>
60#include <sys/bus.h>
61#include <sys/rman.h>
62
63#include <dev/mii/mii.h>
64#include <dev/mii/miivar.h>
65
66#include <dev/pci/pcireg.h>
67#include <dev/pci/pcivar.h>
68
69/* "controller miibus0" required.  See GENERIC if you get errors here. */
70#include "miibus_if.h"
71
72#define STE_USEIOSPACE
73
74#include <pci/if_stereg.h>
75
76MODULE_DEPEND(ste, pci, 1, 1, 1);
77MODULE_DEPEND(ste, ether, 1, 1, 1);
78MODULE_DEPEND(ste, miibus, 1, 1, 1);
79
80/*
81 * Various supported device vendors/types and their names.
82 */
83static struct ste_type ste_devs[] = {
84	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
85	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
86	{ 0, 0, NULL }
87};
88
89static int ste_probe		(device_t);
90static int ste_attach		(device_t);
91static int ste_detach		(device_t);
92static void ste_init		(void *);
93static void ste_intr		(void *);
94static void ste_rxeoc		(struct ste_softc *);
95static void ste_rxeof		(struct ste_softc *);
96static void ste_txeoc		(struct ste_softc *);
97static void ste_txeof		(struct ste_softc *);
98static void ste_stats_update	(void *);
99static void ste_stop		(struct ste_softc *);
100static void ste_reset		(struct ste_softc *);
101static int ste_ioctl		(struct ifnet *, u_long, caddr_t);
102static int ste_encap		(struct ste_softc *, struct ste_chain *,
103					struct mbuf *);
104static void ste_start		(struct ifnet *);
105static void ste_watchdog	(struct ifnet *);
106static void ste_shutdown	(device_t);
107static int ste_newbuf		(struct ste_softc *,
108					struct ste_chain_onefrag *,
109					struct mbuf *);
110static int ste_ifmedia_upd	(struct ifnet *);
111static void ste_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
112
113static void ste_mii_sync	(struct ste_softc *);
114static void ste_mii_send	(struct ste_softc *, u_int32_t, int);
115static int ste_mii_readreg	(struct ste_softc *, struct ste_mii_frame *);
116static int ste_mii_writereg	(struct ste_softc *, struct ste_mii_frame *);
117static int ste_miibus_readreg	(device_t, int, int);
118static int ste_miibus_writereg	(device_t, int, int, int);
119static void ste_miibus_statchg	(device_t);
120
121static int ste_eeprom_wait	(struct ste_softc *);
122static int ste_read_eeprom	(struct ste_softc *, caddr_t, int, int, int);
123static void ste_wait		(struct ste_softc *);
124static u_int8_t ste_calchash	(caddr_t);
125static void ste_setmulti	(struct ste_softc *);
126static int ste_init_rx_list	(struct ste_softc *);
127static void ste_init_tx_list	(struct ste_softc *);
128
129#ifdef STE_USEIOSPACE
130#define STE_RES			SYS_RES_IOPORT
131#define STE_RID			STE_PCI_LOIO
132#else
133#define STE_RES			SYS_RES_MEMORY
134#define STE_RID			STE_PCI_LOMEM
135#endif
136
137static device_method_t ste_methods[] = {
138	/* Device interface */
139	DEVMETHOD(device_probe,		ste_probe),
140	DEVMETHOD(device_attach,	ste_attach),
141	DEVMETHOD(device_detach,	ste_detach),
142	DEVMETHOD(device_shutdown,	ste_shutdown),
143
144	/* bus interface */
145	DEVMETHOD(bus_print_child,	bus_generic_print_child),
146	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
147
148	/* MII interface */
149	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
150	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
151	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
152
153	{ 0, 0 }
154};
155
156static driver_t ste_driver = {
157	"ste",
158	ste_methods,
159	sizeof(struct ste_softc)
160};
161
162static devclass_t ste_devclass;
163
164DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
165DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
166
167SYSCTL_NODE(_hw, OID_AUTO, ste, CTLFLAG_RD, 0, "if_ste parameters");
168
169static int ste_rxsyncs;
170SYSCTL_INT(_hw_ste, OID_AUTO, rxsyncs, CTLFLAG_RW, &ste_rxsyncs, 0, "");
171
172#define STE_SETBIT4(sc, reg, x)				\
173	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
174
175#define STE_CLRBIT4(sc, reg, x)				\
176	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
177
178#define STE_SETBIT2(sc, reg, x)				\
179	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
180
181#define STE_CLRBIT2(sc, reg, x)				\
182	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
183
184#define STE_SETBIT1(sc, reg, x)				\
185	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
186
187#define STE_CLRBIT1(sc, reg, x)				\
188	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
189
190
191#define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
192#define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
193
194/*
195 * Sync the PHYs by setting data bit and strobing the clock 32 times.
196 */
197static void
198ste_mii_sync(sc)
199	struct ste_softc		*sc;
200{
201	register int		i;
202
203	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
204
205	for (i = 0; i < 32; i++) {
206		MII_SET(STE_PHYCTL_MCLK);
207		DELAY(1);
208		MII_CLR(STE_PHYCTL_MCLK);
209		DELAY(1);
210	}
211
212	return;
213}
214
215/*
216 * Clock a series of bits through the MII.
217 */
218static void
219ste_mii_send(sc, bits, cnt)
220	struct ste_softc		*sc;
221	u_int32_t		bits;
222	int			cnt;
223{
224	int			i;
225
226	MII_CLR(STE_PHYCTL_MCLK);
227
228	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
229		if (bits & i) {
230			MII_SET(STE_PHYCTL_MDATA);
231                } else {
232			MII_CLR(STE_PHYCTL_MDATA);
233                }
234		DELAY(1);
235		MII_CLR(STE_PHYCTL_MCLK);
236		DELAY(1);
237		MII_SET(STE_PHYCTL_MCLK);
238	}
239}
240
241/*
242 * Read an PHY register through the MII.
243 */
244static int
245ste_mii_readreg(sc, frame)
246	struct ste_softc		*sc;
247	struct ste_mii_frame	*frame;
248
249{
250	int			i, ack;
251
252	STE_LOCK(sc);
253
254	/*
255	 * Set up frame for RX.
256	 */
257	frame->mii_stdelim = STE_MII_STARTDELIM;
258	frame->mii_opcode = STE_MII_READOP;
259	frame->mii_turnaround = 0;
260	frame->mii_data = 0;
261
262	CSR_WRITE_2(sc, STE_PHYCTL, 0);
263	/*
264 	 * Turn on data xmit.
265	 */
266	MII_SET(STE_PHYCTL_MDIR);
267
268	ste_mii_sync(sc);
269
270	/*
271	 * Send command/address info.
272	 */
273	ste_mii_send(sc, frame->mii_stdelim, 2);
274	ste_mii_send(sc, frame->mii_opcode, 2);
275	ste_mii_send(sc, frame->mii_phyaddr, 5);
276	ste_mii_send(sc, frame->mii_regaddr, 5);
277
278	/* Turn off xmit. */
279	MII_CLR(STE_PHYCTL_MDIR);
280
281	/* Idle bit */
282	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
283	DELAY(1);
284	MII_SET(STE_PHYCTL_MCLK);
285	DELAY(1);
286
287	/* Check for ack */
288	MII_CLR(STE_PHYCTL_MCLK);
289	DELAY(1);
290	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
291	MII_SET(STE_PHYCTL_MCLK);
292	DELAY(1);
293
294	/*
295	 * Now try reading data bits. If the ack failed, we still
296	 * need to clock through 16 cycles to keep the PHY(s) in sync.
297	 */
298	if (ack) {
299		for(i = 0; i < 16; i++) {
300			MII_CLR(STE_PHYCTL_MCLK);
301			DELAY(1);
302			MII_SET(STE_PHYCTL_MCLK);
303			DELAY(1);
304		}
305		goto fail;
306	}
307
308	for (i = 0x8000; i; i >>= 1) {
309		MII_CLR(STE_PHYCTL_MCLK);
310		DELAY(1);
311		if (!ack) {
312			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
313				frame->mii_data |= i;
314			DELAY(1);
315		}
316		MII_SET(STE_PHYCTL_MCLK);
317		DELAY(1);
318	}
319
320fail:
321
322	MII_CLR(STE_PHYCTL_MCLK);
323	DELAY(1);
324	MII_SET(STE_PHYCTL_MCLK);
325	DELAY(1);
326
327	STE_UNLOCK(sc);
328
329	if (ack)
330		return(1);
331	return(0);
332}
333
334/*
335 * Write to a PHY register through the MII.
336 */
337static int
338ste_mii_writereg(sc, frame)
339	struct ste_softc		*sc;
340	struct ste_mii_frame	*frame;
341
342{
343	STE_LOCK(sc);
344
345	/*
346	 * Set up frame for TX.
347	 */
348
349	frame->mii_stdelim = STE_MII_STARTDELIM;
350	frame->mii_opcode = STE_MII_WRITEOP;
351	frame->mii_turnaround = STE_MII_TURNAROUND;
352
353	/*
354 	 * Turn on data output.
355	 */
356	MII_SET(STE_PHYCTL_MDIR);
357
358	ste_mii_sync(sc);
359
360	ste_mii_send(sc, frame->mii_stdelim, 2);
361	ste_mii_send(sc, frame->mii_opcode, 2);
362	ste_mii_send(sc, frame->mii_phyaddr, 5);
363	ste_mii_send(sc, frame->mii_regaddr, 5);
364	ste_mii_send(sc, frame->mii_turnaround, 2);
365	ste_mii_send(sc, frame->mii_data, 16);
366
367	/* Idle bit. */
368	MII_SET(STE_PHYCTL_MCLK);
369	DELAY(1);
370	MII_CLR(STE_PHYCTL_MCLK);
371	DELAY(1);
372
373	/*
374	 * Turn off xmit.
375	 */
376	MII_CLR(STE_PHYCTL_MDIR);
377
378	STE_UNLOCK(sc);
379
380	return(0);
381}
382
383static int
384ste_miibus_readreg(dev, phy, reg)
385	device_t		dev;
386	int			phy, reg;
387{
388	struct ste_softc	*sc;
389	struct ste_mii_frame	frame;
390
391	sc = device_get_softc(dev);
392
393	if ( sc->ste_one_phy && phy != 0 )
394		return (0);
395
396	bzero((char *)&frame, sizeof(frame));
397
398	frame.mii_phyaddr = phy;
399	frame.mii_regaddr = reg;
400	ste_mii_readreg(sc, &frame);
401
402	return(frame.mii_data);
403}
404
405static int
406ste_miibus_writereg(dev, phy, reg, data)
407	device_t		dev;
408	int			phy, reg, data;
409{
410	struct ste_softc	*sc;
411	struct ste_mii_frame	frame;
412
413	sc = device_get_softc(dev);
414	bzero((char *)&frame, sizeof(frame));
415
416	frame.mii_phyaddr = phy;
417	frame.mii_regaddr = reg;
418	frame.mii_data = data;
419
420	ste_mii_writereg(sc, &frame);
421
422	return(0);
423}
424
425static void
426ste_miibus_statchg(dev)
427	device_t		dev;
428{
429	struct ste_softc	*sc;
430	struct mii_data		*mii;
431
432	sc = device_get_softc(dev);
433	STE_LOCK(sc);
434	mii = device_get_softc(sc->ste_miibus);
435
436	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
437		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
438	} else {
439		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
440	}
441	STE_UNLOCK(sc);
442
443	return;
444}
445
446static int
447ste_ifmedia_upd(ifp)
448	struct ifnet		*ifp;
449{
450	struct ste_softc	*sc;
451	struct mii_data		*mii;
452
453	sc = ifp->if_softc;
454	mii = device_get_softc(sc->ste_miibus);
455	sc->ste_link = 0;
456	if (mii->mii_instance) {
457		struct mii_softc	*miisc;
458		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
459			mii_phy_reset(miisc);
460	}
461	mii_mediachg(mii);
462
463	return(0);
464}
465
466static void
467ste_ifmedia_sts(ifp, ifmr)
468	struct ifnet		*ifp;
469	struct ifmediareq	*ifmr;
470{
471	struct ste_softc	*sc;
472	struct mii_data		*mii;
473
474	sc = ifp->if_softc;
475	mii = device_get_softc(sc->ste_miibus);
476
477	mii_pollstat(mii);
478	ifmr->ifm_active = mii->mii_media_active;
479	ifmr->ifm_status = mii->mii_media_status;
480
481	return;
482}
483
484static void
485ste_wait(sc)
486	struct ste_softc		*sc;
487{
488	register int		i;
489
490	for (i = 0; i < STE_TIMEOUT; i++) {
491		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
492			break;
493	}
494
495	if (i == STE_TIMEOUT)
496		printf("ste%d: command never completed!\n", sc->ste_unit);
497
498	return;
499}
500
501/*
502 * The EEPROM is slow: give it time to come ready after issuing
503 * it a command.
504 */
505static int
506ste_eeprom_wait(sc)
507	struct ste_softc		*sc;
508{
509	int			i;
510
511	DELAY(1000);
512
513	for (i = 0; i < 100; i++) {
514		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
515			DELAY(1000);
516		else
517			break;
518	}
519
520	if (i == 100) {
521		printf("ste%d: eeprom failed to come ready\n", sc->ste_unit);
522		return(1);
523	}
524
525	return(0);
526}
527
528/*
529 * Read a sequence of words from the EEPROM. Note that ethernet address
530 * data is stored in the EEPROM in network byte order.
531 */
532static int
533ste_read_eeprom(sc, dest, off, cnt, swap)
534	struct ste_softc		*sc;
535	caddr_t			dest;
536	int			off;
537	int			cnt;
538	int			swap;
539{
540	int			err = 0, i;
541	u_int16_t		word = 0, *ptr;
542
543	if (ste_eeprom_wait(sc))
544		return(1);
545
546	for (i = 0; i < cnt; i++) {
547		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
548		err = ste_eeprom_wait(sc);
549		if (err)
550			break;
551		word = CSR_READ_2(sc, STE_EEPROM_DATA);
552		ptr = (u_int16_t *)(dest + (i * 2));
553		if (swap)
554			*ptr = ntohs(word);
555		else
556			*ptr = word;
557	}
558
559	return(err ? 1 : 0);
560}
561
562static u_int8_t
563ste_calchash(addr)
564	caddr_t			addr;
565{
566
567	u_int32_t		crc, carry;
568	int			i, j;
569	u_int8_t		c;
570
571	/* Compute CRC for the address value. */
572	crc = 0xFFFFFFFF; /* initial value */
573
574	for (i = 0; i < 6; i++) {
575		c = *(addr + i);
576		for (j = 0; j < 8; j++) {
577			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
578			crc <<= 1;
579			c >>= 1;
580			if (carry)
581				crc = (crc ^ 0x04c11db6) | carry;
582		}
583	}
584
585	/* return the filter bit position */
586	return(crc & 0x0000003F);
587}
588
589static void
590ste_setmulti(sc)
591	struct ste_softc	*sc;
592{
593	struct ifnet		*ifp;
594	int			h = 0;
595	u_int32_t		hashes[2] = { 0, 0 };
596	struct ifmultiaddr	*ifma;
597
598	ifp = &sc->arpcom.ac_if;
599	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
600		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
601		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
602		return;
603	}
604
605	/* first, zot all the existing hash bits */
606	CSR_WRITE_2(sc, STE_MAR0, 0);
607	CSR_WRITE_2(sc, STE_MAR1, 0);
608	CSR_WRITE_2(sc, STE_MAR2, 0);
609	CSR_WRITE_2(sc, STE_MAR3, 0);
610
611	/* now program new ones */
612	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
613		if (ifma->ifma_addr->sa_family != AF_LINK)
614			continue;
615		h = ste_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
616		if (h < 32)
617			hashes[0] |= (1 << h);
618		else
619			hashes[1] |= (1 << (h - 32));
620	}
621
622	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
623	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
624	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
625	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
626	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
627	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
628
629	return;
630}
631
632#ifdef DEVICE_POLLING
633static poll_handler_t ste_poll;
634
635static void
636ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
637{
638	struct ste_softc *sc = ifp->if_softc;
639
640	STE_LOCK(sc);
641	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
642		CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
643		goto done;
644	}
645
646	sc->rxcycles = count;
647	if (cmd == POLL_AND_CHECK_STATUS)
648		ste_rxeoc(sc);
649	ste_rxeof(sc);
650	ste_txeof(sc);
651	if (ifp->if_snd.ifq_head != NULL)
652		ste_start(ifp);
653
654	if (cmd == POLL_AND_CHECK_STATUS) {
655		u_int16_t status;
656
657		status = CSR_READ_2(sc, STE_ISR_ACK);
658
659		if (status & STE_ISR_TX_DONE)
660			ste_txeoc(sc);
661
662		if (status & STE_ISR_STATS_OFLOW) {
663			untimeout(ste_stats_update, sc, sc->ste_stat_ch);
664			ste_stats_update(sc);
665		}
666
667		if (status & STE_ISR_LINKEVENT)
668			mii_pollstat(device_get_softc(sc->ste_miibus));
669
670		if (status & STE_ISR_HOSTERR) {
671			ste_reset(sc);
672			ste_init(sc);
673		}
674	}
675done:
676	STE_UNLOCK(sc);
677}
678#endif /* DEVICE_POLLING */
679
680static void
681ste_intr(xsc)
682	void			*xsc;
683{
684	struct ste_softc	*sc;
685	struct ifnet		*ifp;
686	u_int16_t		status;
687
688	sc = xsc;
689	STE_LOCK(sc);
690	ifp = &sc->arpcom.ac_if;
691
692#ifdef DEVICE_POLLING
693	if (ifp->if_flags & IFF_POLLING)
694		goto done;
695	if (ether_poll_register(ste_poll, ifp)) { /* ok, disable interrupts */
696		CSR_WRITE_2(sc, STE_IMR, 0);
697		ste_poll(ifp, 0, 1);
698		goto done;
699	}
700#endif /* DEVICE_POLLING */
701
702	/* See if this is really our interrupt. */
703	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH)) {
704		STE_UNLOCK(sc);
705		return;
706	}
707
708	for (;;) {
709		status = CSR_READ_2(sc, STE_ISR_ACK);
710
711		if (!(status & STE_INTRS))
712			break;
713
714		if (status & STE_ISR_RX_DMADONE) {
715			ste_rxeoc(sc);
716			ste_rxeof(sc);
717		}
718
719		if (status & STE_ISR_TX_DMADONE)
720			ste_txeof(sc);
721
722		if (status & STE_ISR_TX_DONE)
723			ste_txeoc(sc);
724
725		if (status & STE_ISR_STATS_OFLOW) {
726			untimeout(ste_stats_update, sc, sc->ste_stat_ch);
727			ste_stats_update(sc);
728		}
729
730		if (status & STE_ISR_LINKEVENT)
731			mii_pollstat(device_get_softc(sc->ste_miibus));
732
733
734		if (status & STE_ISR_HOSTERR) {
735			ste_reset(sc);
736			ste_init(sc);
737		}
738	}
739
740	/* Re-enable interrupts */
741	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
742
743	if (ifp->if_snd.ifq_head != NULL)
744		ste_start(ifp);
745
746#ifdef DEVICE_POLLING
747done:
748#endif /* DEVICE_POLLING */
749	STE_UNLOCK(sc);
750
751	return;
752}
753
754static void
755ste_rxeoc(struct ste_softc *sc)
756{
757	struct ste_chain_onefrag *cur_rx;
758
759	STE_LOCK_ASSERT(sc);
760
761	if (sc->ste_cdata.ste_rx_head->ste_ptr->ste_status == 0) {
762		cur_rx = sc->ste_cdata.ste_rx_head;
763		do {
764			cur_rx = cur_rx->ste_next;
765			/* If the ring is empty, just return. */
766			if (cur_rx == sc->ste_cdata.ste_rx_head)
767				return;
768		} while (cur_rx->ste_ptr->ste_status == 0);
769		if (sc->ste_cdata.ste_rx_head->ste_ptr->ste_status == 0) {
770			/* We've fallen behind the chip: catch it. */
771			sc->ste_cdata.ste_rx_head = cur_rx;
772			++ste_rxsyncs;
773		}
774	}
775}
776
777/*
778 * A frame has been uploaded: pass the resulting mbuf chain up to
779 * the higher level protocols.
780 */
781static void
782ste_rxeof(sc)
783	struct ste_softc		*sc;
784{
785        struct mbuf		*m;
786        struct ifnet		*ifp;
787	struct ste_chain_onefrag	*cur_rx;
788	int			total_len = 0, count=0;
789	u_int32_t		rxstat;
790
791	STE_LOCK_ASSERT(sc);
792
793	ifp = &sc->arpcom.ac_if;
794
795	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
796	      & STE_RXSTAT_DMADONE) {
797#ifdef DEVICE_POLLING
798		if (ifp->if_flags & IFF_POLLING) {
799			if (sc->rxcycles <= 0)
800				break;
801			sc->rxcycles--;
802		}
803#endif /* DEVICE_POLLING */
804		if ((STE_RX_LIST_CNT - count) < 3) {
805			break;
806		}
807
808		cur_rx = sc->ste_cdata.ste_rx_head;
809		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
810
811		/*
812		 * If an error occurs, update stats, clear the
813		 * status word and leave the mbuf cluster in place:
814		 * it should simply get re-used next time this descriptor
815	 	 * comes up in the ring.
816		 */
817		if (rxstat & STE_RXSTAT_FRAME_ERR) {
818			ifp->if_ierrors++;
819			cur_rx->ste_ptr->ste_status = 0;
820			continue;
821		}
822
823		/*
824		 * If there error bit was not set, the upload complete
825		 * bit should be set which means we have a valid packet.
826		 * If not, something truly strange has happened.
827		 */
828		if (!(rxstat & STE_RXSTAT_DMADONE)) {
829			printf("ste%d: bad receive status -- packet dropped\n",
830							sc->ste_unit);
831			ifp->if_ierrors++;
832			cur_rx->ste_ptr->ste_status = 0;
833			continue;
834		}
835
836		/* No errors; receive the packet. */
837		m = cur_rx->ste_mbuf;
838		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
839
840		/*
841		 * Try to conjure up a new mbuf cluster. If that
842		 * fails, it means we have an out of memory condition and
843		 * should leave the buffer in place and continue. This will
844		 * result in a lost packet, but there's little else we
845		 * can do in this situation.
846		 */
847		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
848			ifp->if_ierrors++;
849			cur_rx->ste_ptr->ste_status = 0;
850			continue;
851		}
852
853		m->m_pkthdr.rcvif = ifp;
854		m->m_pkthdr.len = m->m_len = total_len;
855
856		ifp->if_ipackets++;
857		STE_UNLOCK(sc);
858		(*ifp->if_input)(ifp, m);
859		STE_LOCK(sc);
860
861		cur_rx->ste_ptr->ste_status = 0;
862		count++;
863	}
864
865	return;
866}
867
868static void
869ste_txeoc(sc)
870	struct ste_softc	*sc;
871{
872	u_int8_t		txstat;
873	struct ifnet		*ifp;
874
875	ifp = &sc->arpcom.ac_if;
876
877	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
878	    STE_TXSTATUS_TXDONE) {
879		if (txstat & STE_TXSTATUS_UNDERRUN ||
880		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
881		    txstat & STE_TXSTATUS_RECLAIMERR) {
882			ifp->if_oerrors++;
883			printf("ste%d: transmission error: %x\n",
884			    sc->ste_unit, txstat);
885
886			ste_reset(sc);
887			ste_init(sc);
888
889			if (txstat & STE_TXSTATUS_UNDERRUN &&
890			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
891				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
892				printf("ste%d: tx underrun, increasing tx"
893				    " start threshold to %d bytes\n",
894				    sc->ste_unit, sc->ste_tx_thresh);
895			}
896			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
897			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
898			    (STE_PACKET_SIZE >> 4));
899		}
900		ste_init(sc);
901		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
902	}
903
904	return;
905}
906
907static void
908ste_txeof(sc)
909	struct ste_softc	*sc;
910{
911	struct ste_chain	*cur_tx;
912	struct ifnet		*ifp;
913	int			idx;
914
915	ifp = &sc->arpcom.ac_if;
916
917	idx = sc->ste_cdata.ste_tx_cons;
918	while(idx != sc->ste_cdata.ste_tx_prod) {
919		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
920
921		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
922			break;
923
924		m_freem(cur_tx->ste_mbuf);
925		cur_tx->ste_mbuf = NULL;
926		ifp->if_flags &= ~IFF_OACTIVE;
927		ifp->if_opackets++;
928
929		STE_INC(idx, STE_TX_LIST_CNT);
930	}
931
932	sc->ste_cdata.ste_tx_cons = idx;
933	if (idx == sc->ste_cdata.ste_tx_prod)
934		ifp->if_timer = 0;
935}
936
937static void
938ste_stats_update(xsc)
939	void			*xsc;
940{
941	struct ste_softc	*sc;
942	struct ifnet		*ifp;
943	struct mii_data		*mii;
944
945	sc = xsc;
946	STE_LOCK(sc);
947
948	ifp = &sc->arpcom.ac_if;
949	mii = device_get_softc(sc->ste_miibus);
950
951	ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
952	    + CSR_READ_1(sc, STE_MULTI_COLLS)
953	    + CSR_READ_1(sc, STE_SINGLE_COLLS);
954
955	if (!sc->ste_link) {
956		mii_pollstat(mii);
957		if (mii->mii_media_status & IFM_ACTIVE &&
958		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
959			sc->ste_link++;
960			/*
961			* we don't get a call-back on re-init so do it
962			* otherwise we get stuck in the wrong link state
963			*/
964			ste_miibus_statchg(sc->ste_dev);
965			if (ifp->if_snd.ifq_head != NULL)
966				ste_start(ifp);
967		}
968	}
969
970	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
971	STE_UNLOCK(sc);
972
973	return;
974}
975
976
977/*
978 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
979 * IDs against our list and return a device name if we find a match.
980 */
981static int
982ste_probe(dev)
983	device_t		dev;
984{
985	struct ste_type		*t;
986
987	t = ste_devs;
988
989	while(t->ste_name != NULL) {
990		if ((pci_get_vendor(dev) == t->ste_vid) &&
991		    (pci_get_device(dev) == t->ste_did)) {
992			device_set_desc(dev, t->ste_name);
993			return(0);
994		}
995		t++;
996	}
997
998	return(ENXIO);
999}
1000
1001/*
1002 * Attach the interface. Allocate softc structures, do ifmedia
1003 * setup and ethernet/BPF attach.
1004 */
1005static int
1006ste_attach(dev)
1007	device_t		dev;
1008{
1009	struct ste_softc	*sc;
1010	struct ifnet		*ifp;
1011	int			unit, error = 0, rid;
1012
1013	sc = device_get_softc(dev);
1014	unit = device_get_unit(dev);
1015	sc->ste_dev = dev;
1016
1017	/*
1018	 * Only use one PHY since this chip reports multiple
1019	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
1020	 * it is at 0 & 1.  It is rev 0x12.
1021	 */
1022	if (pci_get_vendor(dev) == DL_VENDORID &&
1023	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
1024	    pci_get_revid(dev) == 0x12 )
1025		sc->ste_one_phy = 1;
1026
1027	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1028	    MTX_DEF | MTX_RECURSE);
1029#ifndef BURN_BRIDGES
1030	/*
1031	 * Handle power management nonsense.
1032	 */
1033	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1034		u_int32_t		iobase, membase, irq;
1035
1036		/* Save important PCI config data. */
1037		iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
1038		membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
1039		irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
1040
1041		/* Reset the power state. */
1042		printf("ste%d: chip is in D%d power mode "
1043		    "-- setting to D0\n", unit,
1044		    pci_get_powerstate(dev));
1045		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1046
1047		/* Restore PCI config data. */
1048		pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
1049		pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
1050		pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
1051	}
1052#endif
1053	/*
1054	 * Map control/status registers.
1055	 */
1056	pci_enable_busmaster(dev);
1057
1058	rid = STE_RID;
1059	sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
1060
1061	if (sc->ste_res == NULL) {
1062		printf ("ste%d: couldn't map ports/memory\n", unit);
1063		error = ENXIO;
1064		goto fail;
1065	}
1066
1067	sc->ste_btag = rman_get_bustag(sc->ste_res);
1068	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
1069
1070	/* Allocate interrupt */
1071	rid = 0;
1072	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1073	    RF_SHAREABLE | RF_ACTIVE);
1074
1075	if (sc->ste_irq == NULL) {
1076		printf("ste%d: couldn't map interrupt\n", unit);
1077		error = ENXIO;
1078		goto fail;
1079	}
1080
1081	callout_handle_init(&sc->ste_stat_ch);
1082
1083	/* Reset the adapter. */
1084	ste_reset(sc);
1085
1086	/*
1087	 * Get station address from the EEPROM.
1088	 */
1089	if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1090	    STE_EEADDR_NODE0, 3, 0)) {
1091		printf("ste%d: failed to read station address\n", unit);
1092		error = ENXIO;;
1093		goto fail;
1094	}
1095
1096	sc->ste_unit = unit;
1097
1098	/* Allocate the descriptor queues. */
1099	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
1100	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1101
1102	if (sc->ste_ldata == NULL) {
1103		printf("ste%d: no memory for list buffers!\n", unit);
1104		error = ENXIO;
1105		goto fail;
1106	}
1107
1108	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1109
1110	/* Do MII setup. */
1111	if (mii_phy_probe(dev, &sc->ste_miibus,
1112	    ste_ifmedia_upd, ste_ifmedia_sts)) {
1113		printf("ste%d: MII without any phy!\n", sc->ste_unit);
1114		error = ENXIO;
1115		goto fail;
1116	}
1117
1118	ifp = &sc->arpcom.ac_if;
1119	ifp->if_softc = sc;
1120	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1121	ifp->if_mtu = ETHERMTU;
1122	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1123	ifp->if_ioctl = ste_ioctl;
1124	ifp->if_start = ste_start;
1125	ifp->if_watchdog = ste_watchdog;
1126	ifp->if_init = ste_init;
1127	ifp->if_baudrate = 10000000;
1128	ifp->if_snd.ifq_maxlen = STE_TX_LIST_CNT - 1;
1129
1130	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1131
1132	/*
1133	 * Call MI attach routine.
1134	 */
1135	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1136
1137	/*
1138	 * Tell the upper layer(s) we support long frames.
1139	 */
1140	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1141	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1142
1143	/* Hook interrupt last to avoid having to lock softc */
1144	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
1145	    ste_intr, sc, &sc->ste_intrhand);
1146
1147	if (error) {
1148		printf("ste%d: couldn't set up irq\n", unit);
1149		ether_ifdetach(ifp);
1150		goto fail;
1151	}
1152
1153fail:
1154	if (error)
1155		ste_detach(dev);
1156
1157	return(error);
1158}
1159
1160/*
1161 * Shutdown hardware and free up resources. This can be called any
1162 * time after the mutex has been initialized. It is called in both
1163 * the error case in attach and the normal detach case so it needs
1164 * to be careful about only freeing resources that have actually been
1165 * allocated.
1166 */
1167static int
1168ste_detach(dev)
1169	device_t		dev;
1170{
1171	struct ste_softc	*sc;
1172	struct ifnet		*ifp;
1173
1174	sc = device_get_softc(dev);
1175	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1176	STE_LOCK(sc);
1177	ifp = &sc->arpcom.ac_if;
1178
1179	/* These should only be active if attach succeeded */
1180	if (device_is_attached(dev)) {
1181		ste_stop(sc);
1182		ether_ifdetach(ifp);
1183	}
1184	if (sc->ste_miibus)
1185		device_delete_child(dev, sc->ste_miibus);
1186	bus_generic_detach(dev);
1187
1188	if (sc->ste_intrhand)
1189		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1190	if (sc->ste_irq)
1191		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1192	if (sc->ste_res)
1193		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1194
1195	if (sc->ste_ldata) {
1196		contigfree(sc->ste_ldata, sizeof(struct ste_list_data),
1197		    M_DEVBUF);
1198	}
1199
1200	STE_UNLOCK(sc);
1201	mtx_destroy(&sc->ste_mtx);
1202
1203	return(0);
1204}
1205
1206static int
1207ste_newbuf(sc, c, m)
1208	struct ste_softc	*sc;
1209	struct ste_chain_onefrag	*c;
1210	struct mbuf		*m;
1211{
1212	struct mbuf		*m_new = NULL;
1213
1214	if (m == NULL) {
1215		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1216		if (m_new == NULL)
1217			return(ENOBUFS);
1218		MCLGET(m_new, M_DONTWAIT);
1219		if (!(m_new->m_flags & M_EXT)) {
1220			m_freem(m_new);
1221			return(ENOBUFS);
1222		}
1223		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1224	} else {
1225		m_new = m;
1226		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1227		m_new->m_data = m_new->m_ext.ext_buf;
1228	}
1229
1230	m_adj(m_new, ETHER_ALIGN);
1231
1232	c->ste_mbuf = m_new;
1233	c->ste_ptr->ste_status = 0;
1234	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1235	c->ste_ptr->ste_frag.ste_len = (1536 + ETHER_VLAN_ENCAP_LEN) | STE_FRAG_LAST;
1236
1237	return(0);
1238}
1239
1240static int
1241ste_init_rx_list(sc)
1242	struct ste_softc	*sc;
1243{
1244	struct ste_chain_data	*cd;
1245	struct ste_list_data	*ld;
1246	int			i;
1247
1248	cd = &sc->ste_cdata;
1249	ld = sc->ste_ldata;
1250
1251	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1252		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1253		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1254			return(ENOBUFS);
1255		if (i == (STE_RX_LIST_CNT - 1)) {
1256			cd->ste_rx_chain[i].ste_next =
1257			    &cd->ste_rx_chain[0];
1258			ld->ste_rx_list[i].ste_next =
1259			    vtophys(&ld->ste_rx_list[0]);
1260		} else {
1261			cd->ste_rx_chain[i].ste_next =
1262			    &cd->ste_rx_chain[i + 1];
1263			ld->ste_rx_list[i].ste_next =
1264			    vtophys(&ld->ste_rx_list[i + 1]);
1265		}
1266		ld->ste_rx_list[i].ste_status = 0;
1267	}
1268
1269	cd->ste_rx_head = &cd->ste_rx_chain[0];
1270
1271	return(0);
1272}
1273
1274static void
1275ste_init_tx_list(sc)
1276	struct ste_softc	*sc;
1277{
1278	struct ste_chain_data	*cd;
1279	struct ste_list_data	*ld;
1280	int			i;
1281
1282	cd = &sc->ste_cdata;
1283	ld = sc->ste_ldata;
1284	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1285		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1286		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1287		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1288		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1289		if (i == (STE_TX_LIST_CNT - 1))
1290			cd->ste_tx_chain[i].ste_next =
1291			    &cd->ste_tx_chain[0];
1292		else
1293			cd->ste_tx_chain[i].ste_next =
1294			    &cd->ste_tx_chain[i + 1];
1295	}
1296
1297	cd->ste_tx_prod = 0;
1298	cd->ste_tx_cons = 0;
1299
1300	return;
1301}
1302
1303static void
1304ste_init(xsc)
1305	void			*xsc;
1306{
1307	struct ste_softc	*sc;
1308	int			i;
1309	struct ifnet		*ifp;
1310
1311	sc = xsc;
1312	STE_LOCK(sc);
1313	ifp = &sc->arpcom.ac_if;
1314
1315	ste_stop(sc);
1316
1317	/* Init our MAC address */
1318	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1319		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1320	}
1321
1322	/* Init RX list */
1323	if (ste_init_rx_list(sc) == ENOBUFS) {
1324		printf("ste%d: initialization failed: no "
1325		    "memory for RX buffers\n", sc->ste_unit);
1326		ste_stop(sc);
1327		STE_UNLOCK(sc);
1328		return;
1329	}
1330
1331	/* Set RX polling interval */
1332	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1333
1334	/* Init TX descriptors */
1335	ste_init_tx_list(sc);
1336
1337	/* Set the TX freethresh value */
1338	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1339
1340	/* Set the TX start threshold for best performance. */
1341	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1342
1343	/* Set the TX reclaim threshold. */
1344	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1345
1346	/* Set up the RX filter. */
1347	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1348
1349	/* If we want promiscuous mode, set the allframes bit. */
1350	if (ifp->if_flags & IFF_PROMISC) {
1351		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1352	} else {
1353		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1354	}
1355
1356	/* Set capture broadcast bit to accept broadcast frames. */
1357	if (ifp->if_flags & IFF_BROADCAST) {
1358		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1359	} else {
1360		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1361	}
1362
1363	ste_setmulti(sc);
1364
1365	/* Load the address of the RX list. */
1366	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1367	ste_wait(sc);
1368	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1369	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1370	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1371	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1372
1373	/* Set TX polling interval (defer until we TX first packet */
1374	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1375
1376	/* Load address of the TX list */
1377	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1378	ste_wait(sc);
1379	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1380	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1381	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1382	ste_wait(sc);
1383	sc->ste_tx_prev = NULL;
1384
1385	/* Enable receiver and transmitter */
1386	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1387	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1388	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1389	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1390
1391	/* Enable stats counters. */
1392	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1393
1394	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1395#ifdef DEVICE_POLLING
1396	/* Disable interrupts if we are polling. */
1397	if (ifp->if_flags & IFF_POLLING)
1398		CSR_WRITE_2(sc, STE_IMR, 0);
1399	else
1400#endif /* DEVICE_POLLING */
1401	/* Enable interrupts. */
1402	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1403
1404	/* Accept VLAN length packets */
1405	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1406
1407	ste_ifmedia_upd(ifp);
1408
1409	ifp->if_flags |= IFF_RUNNING;
1410	ifp->if_flags &= ~IFF_OACTIVE;
1411
1412	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
1413	STE_UNLOCK(sc);
1414
1415	return;
1416}
1417
1418static void
1419ste_stop(sc)
1420	struct ste_softc	*sc;
1421{
1422	int			i;
1423	struct ifnet		*ifp;
1424
1425	STE_LOCK(sc);
1426	ifp = &sc->arpcom.ac_if;
1427
1428	untimeout(ste_stats_update, sc, sc->ste_stat_ch);
1429	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1430#ifdef DEVICE_POLLING
1431	ether_poll_deregister(ifp);
1432#endif /* DEVICE_POLLING */
1433
1434	CSR_WRITE_2(sc, STE_IMR, 0);
1435	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1436	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1437	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1438	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1439	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1440	ste_wait(sc);
1441	/*
1442	 * Try really hard to stop the RX engine or under heavy RX
1443	 * data chip will write into de-allocated memory.
1444	 */
1445	ste_reset(sc);
1446
1447	sc->ste_link = 0;
1448
1449	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1450		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1451			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1452			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1453		}
1454	}
1455
1456	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1457		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1458			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1459			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1460		}
1461	}
1462
1463	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1464	STE_UNLOCK(sc);
1465
1466	return;
1467}
1468
1469static void
1470ste_reset(sc)
1471	struct ste_softc	*sc;
1472{
1473	int			i;
1474
1475	STE_SETBIT4(sc, STE_ASICCTL,
1476	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1477	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1478	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1479	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1480	    STE_ASICCTL_EXTRESET_RESET);
1481
1482	DELAY(100000);
1483
1484	for (i = 0; i < STE_TIMEOUT; i++) {
1485		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1486			break;
1487	}
1488
1489	if (i == STE_TIMEOUT)
1490		printf("ste%d: global reset never completed\n", sc->ste_unit);
1491
1492	return;
1493}
1494
1495static int
1496ste_ioctl(ifp, command, data)
1497	struct ifnet		*ifp;
1498	u_long			command;
1499	caddr_t			data;
1500{
1501	struct ste_softc	*sc;
1502	struct ifreq		*ifr;
1503	struct mii_data		*mii;
1504	int			error = 0;
1505
1506	sc = ifp->if_softc;
1507	STE_LOCK(sc);
1508	ifr = (struct ifreq *)data;
1509
1510	switch(command) {
1511	case SIOCSIFFLAGS:
1512		if (ifp->if_flags & IFF_UP) {
1513			if (ifp->if_flags & IFF_RUNNING &&
1514			    ifp->if_flags & IFF_PROMISC &&
1515			    !(sc->ste_if_flags & IFF_PROMISC)) {
1516				STE_SETBIT1(sc, STE_RX_MODE,
1517				    STE_RXMODE_PROMISC);
1518			} else if (ifp->if_flags & IFF_RUNNING &&
1519			    !(ifp->if_flags & IFF_PROMISC) &&
1520			    sc->ste_if_flags & IFF_PROMISC) {
1521				STE_CLRBIT1(sc, STE_RX_MODE,
1522				    STE_RXMODE_PROMISC);
1523			}
1524			if (ifp->if_flags & IFF_RUNNING &&
1525			    (ifp->if_flags ^ sc->ste_if_flags) & IFF_ALLMULTI)
1526				ste_setmulti(sc);
1527			if (!(ifp->if_flags & IFF_RUNNING)) {
1528				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1529				ste_init(sc);
1530			}
1531		} else {
1532			if (ifp->if_flags & IFF_RUNNING)
1533				ste_stop(sc);
1534		}
1535		sc->ste_if_flags = ifp->if_flags;
1536		error = 0;
1537		break;
1538	case SIOCADDMULTI:
1539	case SIOCDELMULTI:
1540		ste_setmulti(sc);
1541		error = 0;
1542		break;
1543	case SIOCGIFMEDIA:
1544	case SIOCSIFMEDIA:
1545		mii = device_get_softc(sc->ste_miibus);
1546		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1547		break;
1548	default:
1549		error = ether_ioctl(ifp, command, data);
1550		break;
1551	}
1552
1553	STE_UNLOCK(sc);
1554
1555	return(error);
1556}
1557
1558static int
1559ste_encap(sc, c, m_head)
1560	struct ste_softc	*sc;
1561	struct ste_chain	*c;
1562	struct mbuf		*m_head;
1563{
1564	int			frag = 0;
1565	struct ste_frag		*f = NULL;
1566	struct mbuf		*m;
1567	struct ste_desc		*d;
1568
1569	d = c->ste_ptr;
1570	d->ste_ctl = 0;
1571
1572encap_retry:
1573	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1574		if (m->m_len != 0) {
1575			if (frag == STE_MAXFRAGS)
1576				break;
1577			f = &d->ste_frags[frag];
1578			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1579			f->ste_len = m->m_len;
1580			frag++;
1581		}
1582	}
1583
1584	if (m != NULL) {
1585		struct mbuf *mn;
1586
1587		/*
1588		 * We ran out of segments. We have to recopy this
1589		 * mbuf chain first. Bail out if we can't get the
1590		 * new buffers.
1591		 */
1592		mn = m_defrag(m_head, M_DONTWAIT);
1593		if (mn == NULL) {
1594			m_freem(m_head);
1595			return ENOMEM;
1596		}
1597		m_head = mn;
1598		goto encap_retry;
1599	}
1600
1601	c->ste_mbuf = m_head;
1602	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1603	d->ste_ctl = 1;
1604
1605	return(0);
1606}
1607
1608static void
1609ste_start(ifp)
1610	struct ifnet		*ifp;
1611{
1612	struct ste_softc	*sc;
1613	struct mbuf		*m_head = NULL;
1614	struct ste_chain	*cur_tx;
1615	int			idx;
1616
1617	sc = ifp->if_softc;
1618	STE_LOCK(sc);
1619
1620	if (!sc->ste_link) {
1621		STE_UNLOCK(sc);
1622		return;
1623	}
1624
1625	if (ifp->if_flags & IFF_OACTIVE) {
1626		STE_UNLOCK(sc);
1627		return;
1628	}
1629
1630	idx = sc->ste_cdata.ste_tx_prod;
1631
1632	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1633		/*
1634		 * We cannot re-use the last (free) descriptor;
1635		 * the chip may not have read its ste_next yet.
1636		 */
1637		if (STE_NEXT(idx, STE_TX_LIST_CNT) ==
1638		    sc->ste_cdata.ste_tx_cons) {
1639			ifp->if_flags |= IFF_OACTIVE;
1640			break;
1641		}
1642
1643		IF_DEQUEUE(&ifp->if_snd, m_head);
1644		if (m_head == NULL)
1645			break;
1646
1647		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1648
1649		if (ste_encap(sc, cur_tx, m_head) != 0)
1650			break;
1651
1652		cur_tx->ste_ptr->ste_next = 0;
1653
1654		if (sc->ste_tx_prev == NULL) {
1655			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1656			/* Load address of the TX list */
1657			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1658			ste_wait(sc);
1659
1660			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1661			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1662
1663			/* Set TX polling interval to start TX engine */
1664			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1665
1666			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1667			ste_wait(sc);
1668		}else{
1669			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1670			sc->ste_tx_prev->ste_ptr->ste_next
1671				= cur_tx->ste_phys;
1672		}
1673
1674		sc->ste_tx_prev = cur_tx;
1675
1676		/*
1677		 * If there's a BPF listener, bounce a copy of this frame
1678		 * to him.
1679	 	 */
1680		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1681
1682		STE_INC(idx, STE_TX_LIST_CNT);
1683		ifp->if_timer = 5;
1684	}
1685	sc->ste_cdata.ste_tx_prod = idx;
1686
1687	STE_UNLOCK(sc);
1688
1689	return;
1690}
1691
1692static void
1693ste_watchdog(ifp)
1694	struct ifnet		*ifp;
1695{
1696	struct ste_softc	*sc;
1697
1698	sc = ifp->if_softc;
1699	STE_LOCK(sc);
1700
1701	ifp->if_oerrors++;
1702	printf("ste%d: watchdog timeout\n", sc->ste_unit);
1703
1704	ste_txeoc(sc);
1705	ste_txeof(sc);
1706	ste_rxeoc(sc);
1707	ste_rxeof(sc);
1708	ste_reset(sc);
1709	ste_init(sc);
1710
1711	if (ifp->if_snd.ifq_head != NULL)
1712		ste_start(ifp);
1713	STE_UNLOCK(sc);
1714
1715	return;
1716}
1717
1718static void
1719ste_shutdown(dev)
1720	device_t		dev;
1721{
1722	struct ste_softc	*sc;
1723
1724	sc = device_get_softc(dev);
1725
1726	ste_stop(sc);
1727
1728	return;
1729}
1730