if_ste.c revision 127709
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/pci/if_ste.c 127709 2004-04-01 12:55:38Z ru $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/sockio.h>
39#include <sys/mbuf.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/socket.h>
43#include <sys/sysctl.h>
44
45#include <net/if.h>
46#include <net/if_arp.h>
47#include <net/ethernet.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50#include <net/if_vlan_var.h>
51
52#include <net/bpf.h>
53
54#include <vm/vm.h>              /* for vtophys */
55#include <vm/pmap.h>            /* for vtophys */
56#include <machine/bus_memio.h>
57#include <machine/bus_pio.h>
58#include <machine/bus.h>
59#include <machine/resource.h>
60#include <sys/bus.h>
61#include <sys/rman.h>
62
63#include <dev/mii/mii.h>
64#include <dev/mii/miivar.h>
65
66#include <dev/pci/pcireg.h>
67#include <dev/pci/pcivar.h>
68
69/* "controller miibus0" required.  See GENERIC if you get errors here. */
70#include "miibus_if.h"
71
72#define STE_USEIOSPACE
73
74#include <pci/if_stereg.h>
75
76MODULE_DEPEND(ste, pci, 1, 1, 1);
77MODULE_DEPEND(ste, ether, 1, 1, 1);
78MODULE_DEPEND(ste, miibus, 1, 1, 1);
79
80/*
81 * Various supported device vendors/types and their names.
82 */
83static struct ste_type ste_devs[] = {
84	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
85	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
86	{ 0, 0, NULL }
87};
88
89static int ste_probe		(device_t);
90static int ste_attach		(device_t);
91static int ste_detach		(device_t);
92static void ste_init		(void *);
93static void ste_intr		(void *);
94static void ste_rxeof		(struct ste_softc *);
95static void ste_txeoc		(struct ste_softc *);
96static void ste_txeof		(struct ste_softc *);
97static void ste_stats_update	(void *);
98static void ste_stop		(struct ste_softc *);
99static void ste_reset		(struct ste_softc *);
100static int ste_ioctl		(struct ifnet *, u_long, caddr_t);
101static int ste_encap		(struct ste_softc *, struct ste_chain *,
102					struct mbuf *);
103static void ste_start		(struct ifnet *);
104static void ste_watchdog	(struct ifnet *);
105static void ste_shutdown	(device_t);
106static int ste_newbuf		(struct ste_softc *,
107					struct ste_chain_onefrag *,
108					struct mbuf *);
109static int ste_ifmedia_upd	(struct ifnet *);
110static void ste_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
111
112static void ste_mii_sync	(struct ste_softc *);
113static void ste_mii_send	(struct ste_softc *, u_int32_t, int);
114static int ste_mii_readreg	(struct ste_softc *, struct ste_mii_frame *);
115static int ste_mii_writereg	(struct ste_softc *, struct ste_mii_frame *);
116static int ste_miibus_readreg	(device_t, int, int);
117static int ste_miibus_writereg	(device_t, int, int, int);
118static void ste_miibus_statchg	(device_t);
119
120static int ste_eeprom_wait	(struct ste_softc *);
121static int ste_read_eeprom	(struct ste_softc *, caddr_t, int, int, int);
122static void ste_wait		(struct ste_softc *);
123static u_int8_t ste_calchash	(caddr_t);
124static void ste_setmulti	(struct ste_softc *);
125static int ste_init_rx_list	(struct ste_softc *);
126static void ste_init_tx_list	(struct ste_softc *);
127
128#ifdef STE_USEIOSPACE
129#define STE_RES			SYS_RES_IOPORT
130#define STE_RID			STE_PCI_LOIO
131#else
132#define STE_RES			SYS_RES_MEMORY
133#define STE_RID			STE_PCI_LOMEM
134#endif
135
136static device_method_t ste_methods[] = {
137	/* Device interface */
138	DEVMETHOD(device_probe,		ste_probe),
139	DEVMETHOD(device_attach,	ste_attach),
140	DEVMETHOD(device_detach,	ste_detach),
141	DEVMETHOD(device_shutdown,	ste_shutdown),
142
143	/* bus interface */
144	DEVMETHOD(bus_print_child,	bus_generic_print_child),
145	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
146
147	/* MII interface */
148	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
149	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
150	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
151
152	{ 0, 0 }
153};
154
155static driver_t ste_driver = {
156	"ste",
157	ste_methods,
158	sizeof(struct ste_softc)
159};
160
161static devclass_t ste_devclass;
162
163DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
164DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
165
166SYSCTL_NODE(_hw, OID_AUTO, ste, CTLFLAG_RD, 0, "if_ste parameters");
167
168static int ste_rxsyncs;
169SYSCTL_INT(_hw_ste, OID_AUTO, rxsyncs, CTLFLAG_RW, &ste_rxsyncs, 0, "");
170
171#define STE_SETBIT4(sc, reg, x)				\
172	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
173
174#define STE_CLRBIT4(sc, reg, x)				\
175	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
176
177#define STE_SETBIT2(sc, reg, x)				\
178	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
179
180#define STE_CLRBIT2(sc, reg, x)				\
181	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
182
183#define STE_SETBIT1(sc, reg, x)				\
184	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
185
186#define STE_CLRBIT1(sc, reg, x)				\
187	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
188
189
190#define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
191#define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
192
193/*
194 * Sync the PHYs by setting data bit and strobing the clock 32 times.
195 */
196static void
197ste_mii_sync(sc)
198	struct ste_softc		*sc;
199{
200	register int		i;
201
202	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
203
204	for (i = 0; i < 32; i++) {
205		MII_SET(STE_PHYCTL_MCLK);
206		DELAY(1);
207		MII_CLR(STE_PHYCTL_MCLK);
208		DELAY(1);
209	}
210
211	return;
212}
213
214/*
215 * Clock a series of bits through the MII.
216 */
217static void
218ste_mii_send(sc, bits, cnt)
219	struct ste_softc		*sc;
220	u_int32_t		bits;
221	int			cnt;
222{
223	int			i;
224
225	MII_CLR(STE_PHYCTL_MCLK);
226
227	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
228		if (bits & i) {
229			MII_SET(STE_PHYCTL_MDATA);
230                } else {
231			MII_CLR(STE_PHYCTL_MDATA);
232                }
233		DELAY(1);
234		MII_CLR(STE_PHYCTL_MCLK);
235		DELAY(1);
236		MII_SET(STE_PHYCTL_MCLK);
237	}
238}
239
240/*
241 * Read an PHY register through the MII.
242 */
243static int
244ste_mii_readreg(sc, frame)
245	struct ste_softc		*sc;
246	struct ste_mii_frame	*frame;
247
248{
249	int			i, ack;
250
251	STE_LOCK(sc);
252
253	/*
254	 * Set up frame for RX.
255	 */
256	frame->mii_stdelim = STE_MII_STARTDELIM;
257	frame->mii_opcode = STE_MII_READOP;
258	frame->mii_turnaround = 0;
259	frame->mii_data = 0;
260
261	CSR_WRITE_2(sc, STE_PHYCTL, 0);
262	/*
263 	 * Turn on data xmit.
264	 */
265	MII_SET(STE_PHYCTL_MDIR);
266
267	ste_mii_sync(sc);
268
269	/*
270	 * Send command/address info.
271	 */
272	ste_mii_send(sc, frame->mii_stdelim, 2);
273	ste_mii_send(sc, frame->mii_opcode, 2);
274	ste_mii_send(sc, frame->mii_phyaddr, 5);
275	ste_mii_send(sc, frame->mii_regaddr, 5);
276
277	/* Turn off xmit. */
278	MII_CLR(STE_PHYCTL_MDIR);
279
280	/* Idle bit */
281	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
282	DELAY(1);
283	MII_SET(STE_PHYCTL_MCLK);
284	DELAY(1);
285
286	/* Check for ack */
287	MII_CLR(STE_PHYCTL_MCLK);
288	DELAY(1);
289	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
290	MII_SET(STE_PHYCTL_MCLK);
291	DELAY(1);
292
293	/*
294	 * Now try reading data bits. If the ack failed, we still
295	 * need to clock through 16 cycles to keep the PHY(s) in sync.
296	 */
297	if (ack) {
298		for(i = 0; i < 16; i++) {
299			MII_CLR(STE_PHYCTL_MCLK);
300			DELAY(1);
301			MII_SET(STE_PHYCTL_MCLK);
302			DELAY(1);
303		}
304		goto fail;
305	}
306
307	for (i = 0x8000; i; i >>= 1) {
308		MII_CLR(STE_PHYCTL_MCLK);
309		DELAY(1);
310		if (!ack) {
311			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
312				frame->mii_data |= i;
313			DELAY(1);
314		}
315		MII_SET(STE_PHYCTL_MCLK);
316		DELAY(1);
317	}
318
319fail:
320
321	MII_CLR(STE_PHYCTL_MCLK);
322	DELAY(1);
323	MII_SET(STE_PHYCTL_MCLK);
324	DELAY(1);
325
326	STE_UNLOCK(sc);
327
328	if (ack)
329		return(1);
330	return(0);
331}
332
333/*
334 * Write to a PHY register through the MII.
335 */
336static int
337ste_mii_writereg(sc, frame)
338	struct ste_softc		*sc;
339	struct ste_mii_frame	*frame;
340
341{
342	STE_LOCK(sc);
343
344	/*
345	 * Set up frame for TX.
346	 */
347
348	frame->mii_stdelim = STE_MII_STARTDELIM;
349	frame->mii_opcode = STE_MII_WRITEOP;
350	frame->mii_turnaround = STE_MII_TURNAROUND;
351
352	/*
353 	 * Turn on data output.
354	 */
355	MII_SET(STE_PHYCTL_MDIR);
356
357	ste_mii_sync(sc);
358
359	ste_mii_send(sc, frame->mii_stdelim, 2);
360	ste_mii_send(sc, frame->mii_opcode, 2);
361	ste_mii_send(sc, frame->mii_phyaddr, 5);
362	ste_mii_send(sc, frame->mii_regaddr, 5);
363	ste_mii_send(sc, frame->mii_turnaround, 2);
364	ste_mii_send(sc, frame->mii_data, 16);
365
366	/* Idle bit. */
367	MII_SET(STE_PHYCTL_MCLK);
368	DELAY(1);
369	MII_CLR(STE_PHYCTL_MCLK);
370	DELAY(1);
371
372	/*
373	 * Turn off xmit.
374	 */
375	MII_CLR(STE_PHYCTL_MDIR);
376
377	STE_UNLOCK(sc);
378
379	return(0);
380}
381
382static int
383ste_miibus_readreg(dev, phy, reg)
384	device_t		dev;
385	int			phy, reg;
386{
387	struct ste_softc	*sc;
388	struct ste_mii_frame	frame;
389
390	sc = device_get_softc(dev);
391
392	if ( sc->ste_one_phy && phy != 0 )
393		return (0);
394
395	bzero((char *)&frame, sizeof(frame));
396
397	frame.mii_phyaddr = phy;
398	frame.mii_regaddr = reg;
399	ste_mii_readreg(sc, &frame);
400
401	return(frame.mii_data);
402}
403
404static int
405ste_miibus_writereg(dev, phy, reg, data)
406	device_t		dev;
407	int			phy, reg, data;
408{
409	struct ste_softc	*sc;
410	struct ste_mii_frame	frame;
411
412	sc = device_get_softc(dev);
413	bzero((char *)&frame, sizeof(frame));
414
415	frame.mii_phyaddr = phy;
416	frame.mii_regaddr = reg;
417	frame.mii_data = data;
418
419	ste_mii_writereg(sc, &frame);
420
421	return(0);
422}
423
424static void
425ste_miibus_statchg(dev)
426	device_t		dev;
427{
428	struct ste_softc	*sc;
429	struct mii_data		*mii;
430
431	sc = device_get_softc(dev);
432	STE_LOCK(sc);
433	mii = device_get_softc(sc->ste_miibus);
434
435	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
436		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
437	} else {
438		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
439	}
440	STE_UNLOCK(sc);
441
442	return;
443}
444
445static int
446ste_ifmedia_upd(ifp)
447	struct ifnet		*ifp;
448{
449	struct ste_softc	*sc;
450	struct mii_data		*mii;
451
452	sc = ifp->if_softc;
453	mii = device_get_softc(sc->ste_miibus);
454	sc->ste_link = 0;
455	if (mii->mii_instance) {
456		struct mii_softc	*miisc;
457		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
458			mii_phy_reset(miisc);
459	}
460	mii_mediachg(mii);
461
462	return(0);
463}
464
465static void
466ste_ifmedia_sts(ifp, ifmr)
467	struct ifnet		*ifp;
468	struct ifmediareq	*ifmr;
469{
470	struct ste_softc	*sc;
471	struct mii_data		*mii;
472
473	sc = ifp->if_softc;
474	mii = device_get_softc(sc->ste_miibus);
475
476	mii_pollstat(mii);
477	ifmr->ifm_active = mii->mii_media_active;
478	ifmr->ifm_status = mii->mii_media_status;
479
480	return;
481}
482
483static void
484ste_wait(sc)
485	struct ste_softc		*sc;
486{
487	register int		i;
488
489	for (i = 0; i < STE_TIMEOUT; i++) {
490		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
491			break;
492	}
493
494	if (i == STE_TIMEOUT)
495		printf("ste%d: command never completed!\n", sc->ste_unit);
496
497	return;
498}
499
500/*
501 * The EEPROM is slow: give it time to come ready after issuing
502 * it a command.
503 */
504static int
505ste_eeprom_wait(sc)
506	struct ste_softc		*sc;
507{
508	int			i;
509
510	DELAY(1000);
511
512	for (i = 0; i < 100; i++) {
513		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
514			DELAY(1000);
515		else
516			break;
517	}
518
519	if (i == 100) {
520		printf("ste%d: eeprom failed to come ready\n", sc->ste_unit);
521		return(1);
522	}
523
524	return(0);
525}
526
527/*
528 * Read a sequence of words from the EEPROM. Note that ethernet address
529 * data is stored in the EEPROM in network byte order.
530 */
531static int
532ste_read_eeprom(sc, dest, off, cnt, swap)
533	struct ste_softc		*sc;
534	caddr_t			dest;
535	int			off;
536	int			cnt;
537	int			swap;
538{
539	int			err = 0, i;
540	u_int16_t		word = 0, *ptr;
541
542	if (ste_eeprom_wait(sc))
543		return(1);
544
545	for (i = 0; i < cnt; i++) {
546		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
547		err = ste_eeprom_wait(sc);
548		if (err)
549			break;
550		word = CSR_READ_2(sc, STE_EEPROM_DATA);
551		ptr = (u_int16_t *)(dest + (i * 2));
552		if (swap)
553			*ptr = ntohs(word);
554		else
555			*ptr = word;
556	}
557
558	return(err ? 1 : 0);
559}
560
561static u_int8_t
562ste_calchash(addr)
563	caddr_t			addr;
564{
565
566	u_int32_t		crc, carry;
567	int			i, j;
568	u_int8_t		c;
569
570	/* Compute CRC for the address value. */
571	crc = 0xFFFFFFFF; /* initial value */
572
573	for (i = 0; i < 6; i++) {
574		c = *(addr + i);
575		for (j = 0; j < 8; j++) {
576			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
577			crc <<= 1;
578			c >>= 1;
579			if (carry)
580				crc = (crc ^ 0x04c11db6) | carry;
581		}
582	}
583
584	/* return the filter bit position */
585	return(crc & 0x0000003F);
586}
587
588static void
589ste_setmulti(sc)
590	struct ste_softc	*sc;
591{
592	struct ifnet		*ifp;
593	int			h = 0;
594	u_int32_t		hashes[2] = { 0, 0 };
595	struct ifmultiaddr	*ifma;
596
597	ifp = &sc->arpcom.ac_if;
598	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
599		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
600		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
601		return;
602	}
603
604	/* first, zot all the existing hash bits */
605	CSR_WRITE_2(sc, STE_MAR0, 0);
606	CSR_WRITE_2(sc, STE_MAR1, 0);
607	CSR_WRITE_2(sc, STE_MAR2, 0);
608	CSR_WRITE_2(sc, STE_MAR3, 0);
609
610	/* now program new ones */
611	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
612		if (ifma->ifma_addr->sa_family != AF_LINK)
613			continue;
614		h = ste_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
615		if (h < 32)
616			hashes[0] |= (1 << h);
617		else
618			hashes[1] |= (1 << (h - 32));
619	}
620
621	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
622	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
623	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
624	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
625	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
626	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
627
628	return;
629}
630
631#ifdef DEVICE_POLLING
632static poll_handler_t ste_poll;
633
634static void
635ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
636{
637	struct ste_softc *sc = ifp->if_softc;
638
639	STE_LOCK(sc);
640	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
641		CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
642		goto done;
643	}
644
645	sc->rxcycles = count;
646	ste_rxeof(sc);
647	ste_txeof(sc);
648	if (ifp->if_snd.ifq_head != NULL)
649		ste_start(ifp);
650
651	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
652		u_int16_t status;
653
654		status = CSR_READ_2(sc, STE_ISR_ACK);
655
656		if (status & STE_ISR_TX_DONE)
657			ste_txeoc(sc);
658
659		if (status & STE_ISR_STATS_OFLOW) {
660			untimeout(ste_stats_update, sc, sc->ste_stat_ch);
661			ste_stats_update(sc);
662		}
663
664		if (status & STE_ISR_LINKEVENT)
665			mii_pollstat(device_get_softc(sc->ste_miibus));
666
667		if (status & STE_ISR_HOSTERR) {
668			ste_reset(sc);
669			ste_init(sc);
670		}
671	}
672done:
673	STE_UNLOCK(sc);
674}
675#endif /* DEVICE_POLLING */
676
677static void
678ste_intr(xsc)
679	void			*xsc;
680{
681	struct ste_softc	*sc;
682	struct ifnet		*ifp;
683	u_int16_t		status;
684
685	sc = xsc;
686	STE_LOCK(sc);
687	ifp = &sc->arpcom.ac_if;
688
689#ifdef DEVICE_POLLING
690	if (ifp->if_flags & IFF_POLLING)
691		goto done;
692	if (ether_poll_register(ste_poll, ifp)) { /* ok, disable interrupts */
693		CSR_WRITE_2(sc, STE_IMR, 0);
694		ste_poll(ifp, 0, 1);
695		goto done;
696	}
697#endif /* DEVICE_POLLING */
698
699	/* See if this is really our interrupt. */
700	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH)) {
701		STE_UNLOCK(sc);
702		return;
703	}
704
705	for (;;) {
706		status = CSR_READ_2(sc, STE_ISR_ACK);
707
708		if (!(status & STE_INTRS))
709			break;
710
711		if (status & STE_ISR_RX_DMADONE)
712			ste_rxeof(sc);
713
714		if (status & STE_ISR_TX_DMADONE)
715			ste_txeof(sc);
716
717		if (status & STE_ISR_TX_DONE)
718			ste_txeoc(sc);
719
720		if (status & STE_ISR_STATS_OFLOW) {
721			untimeout(ste_stats_update, sc, sc->ste_stat_ch);
722			ste_stats_update(sc);
723		}
724
725		if (status & STE_ISR_LINKEVENT)
726			mii_pollstat(device_get_softc(sc->ste_miibus));
727
728
729		if (status & STE_ISR_HOSTERR) {
730			ste_reset(sc);
731			ste_init(sc);
732		}
733	}
734
735	/* Re-enable interrupts */
736	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
737
738	if (ifp->if_snd.ifq_head != NULL)
739		ste_start(ifp);
740
741#ifdef DEVICE_POLLING
742done:
743#endif /* DEVICE_POLLING */
744	STE_UNLOCK(sc);
745
746	return;
747}
748
749/*
750 * A frame has been uploaded: pass the resulting mbuf chain up to
751 * the higher level protocols.
752 */
753static void
754ste_rxeof(sc)
755	struct ste_softc		*sc;
756{
757        struct mbuf		*m;
758        struct ifnet		*ifp;
759	struct ste_chain_onefrag	*cur_rx;
760	int			total_len = 0, count=0;
761	u_int32_t		rxstat;
762
763	STE_LOCK_ASSERT(sc);
764
765	ifp = &sc->arpcom.ac_if;
766
767	if (sc->ste_cdata.ste_rx_head->ste_ptr->ste_status == 0) {
768		cur_rx = sc->ste_cdata.ste_rx_head;
769		do {
770			cur_rx = cur_rx->ste_next;
771			/* If the ring is empty, just return. */
772			if (cur_rx == sc->ste_cdata.ste_rx_head)
773				return;
774		} while (cur_rx->ste_ptr->ste_status == 0);
775		/* We've fallen behind the chip: catch it. */
776		sc->ste_cdata.ste_rx_head = cur_rx;
777		++ste_rxsyncs;
778	};
779
780	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
781	      & STE_RXSTAT_DMADONE) {
782#ifdef DEVICE_POLLING
783		if (ifp->if_flags & IFF_POLLING) {
784			if (sc->rxcycles <= 0)
785				break;
786			sc->rxcycles--;
787		}
788#endif /* DEVICE_POLLING */
789		if ((STE_RX_LIST_CNT - count) < 3) {
790			break;
791		}
792
793		cur_rx = sc->ste_cdata.ste_rx_head;
794		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
795
796		/*
797		 * If an error occurs, update stats, clear the
798		 * status word and leave the mbuf cluster in place:
799		 * it should simply get re-used next time this descriptor
800	 	 * comes up in the ring.
801		 */
802		if (rxstat & STE_RXSTAT_FRAME_ERR) {
803			ifp->if_ierrors++;
804			cur_rx->ste_ptr->ste_status = 0;
805			continue;
806		}
807
808		/*
809		 * If there error bit was not set, the upload complete
810		 * bit should be set which means we have a valid packet.
811		 * If not, something truly strange has happened.
812		 */
813		if (!(rxstat & STE_RXSTAT_DMADONE)) {
814			printf("ste%d: bad receive status -- packet dropped\n",
815							sc->ste_unit);
816			ifp->if_ierrors++;
817			cur_rx->ste_ptr->ste_status = 0;
818			continue;
819		}
820
821		/* No errors; receive the packet. */
822		m = cur_rx->ste_mbuf;
823		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
824
825		/*
826		 * Try to conjure up a new mbuf cluster. If that
827		 * fails, it means we have an out of memory condition and
828		 * should leave the buffer in place and continue. This will
829		 * result in a lost packet, but there's little else we
830		 * can do in this situation.
831		 */
832		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
833			ifp->if_ierrors++;
834			cur_rx->ste_ptr->ste_status = 0;
835			continue;
836		}
837
838		m->m_pkthdr.rcvif = ifp;
839		m->m_pkthdr.len = m->m_len = total_len;
840
841		ifp->if_ipackets++;
842		STE_UNLOCK(sc);
843		(*ifp->if_input)(ifp, m);
844		STE_LOCK(sc);
845
846		cur_rx->ste_ptr->ste_status = 0;
847		count++;
848	}
849
850	return;
851}
852
853static void
854ste_txeoc(sc)
855	struct ste_softc	*sc;
856{
857	u_int8_t		txstat;
858	struct ifnet		*ifp;
859
860	ifp = &sc->arpcom.ac_if;
861
862	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
863	    STE_TXSTATUS_TXDONE) {
864		if (txstat & STE_TXSTATUS_UNDERRUN ||
865		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
866		    txstat & STE_TXSTATUS_RECLAIMERR) {
867			ifp->if_oerrors++;
868			printf("ste%d: transmission error: %x\n",
869			    sc->ste_unit, txstat);
870
871			ste_reset(sc);
872			ste_init(sc);
873
874			if (txstat & STE_TXSTATUS_UNDERRUN &&
875			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
876				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
877				printf("ste%d: tx underrun, increasing tx"
878				    " start threshold to %d bytes\n",
879				    sc->ste_unit, sc->ste_tx_thresh);
880			}
881			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
882			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
883			    (STE_PACKET_SIZE >> 4));
884		}
885		ste_init(sc);
886		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
887	}
888
889	return;
890}
891
892static void
893ste_txeof(sc)
894	struct ste_softc	*sc;
895{
896	struct ste_chain	*cur_tx = NULL;
897	struct ifnet		*ifp;
898	int			idx;
899
900	ifp = &sc->arpcom.ac_if;
901
902	idx = sc->ste_cdata.ste_tx_cons;
903	while(idx != sc->ste_cdata.ste_tx_prod) {
904		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
905
906		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
907			break;
908
909		if (cur_tx->ste_mbuf != NULL) {
910			m_freem(cur_tx->ste_mbuf);
911			cur_tx->ste_mbuf = NULL;
912		}
913
914		ifp->if_opackets++;
915
916		sc->ste_cdata.ste_tx_cnt--;
917		STE_INC(idx, STE_TX_LIST_CNT);
918		ifp->if_timer = 0;
919	}
920
921	sc->ste_cdata.ste_tx_cons = idx;
922
923	if (cur_tx != NULL)
924		ifp->if_flags &= ~IFF_OACTIVE;
925
926	return;
927}
928
929static void
930ste_stats_update(xsc)
931	void			*xsc;
932{
933	struct ste_softc	*sc;
934	struct ifnet		*ifp;
935	struct mii_data		*mii;
936
937	sc = xsc;
938	STE_LOCK(sc);
939
940	ifp = &sc->arpcom.ac_if;
941	mii = device_get_softc(sc->ste_miibus);
942
943	ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
944	    + CSR_READ_1(sc, STE_MULTI_COLLS)
945	    + CSR_READ_1(sc, STE_SINGLE_COLLS);
946
947	if (!sc->ste_link) {
948		mii_pollstat(mii);
949		if (mii->mii_media_status & IFM_ACTIVE &&
950		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
951			sc->ste_link++;
952			/*
953			* we don't get a call-back on re-init so do it
954			* otherwise we get stuck in the wrong link state
955			*/
956			ste_miibus_statchg(sc->ste_dev);
957			if (ifp->if_snd.ifq_head != NULL)
958				ste_start(ifp);
959		}
960	}
961
962	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
963	STE_UNLOCK(sc);
964
965	return;
966}
967
968
969/*
970 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
971 * IDs against our list and return a device name if we find a match.
972 */
973static int
974ste_probe(dev)
975	device_t		dev;
976{
977	struct ste_type		*t;
978
979	t = ste_devs;
980
981	while(t->ste_name != NULL) {
982		if ((pci_get_vendor(dev) == t->ste_vid) &&
983		    (pci_get_device(dev) == t->ste_did)) {
984			device_set_desc(dev, t->ste_name);
985			return(0);
986		}
987		t++;
988	}
989
990	return(ENXIO);
991}
992
993/*
994 * Attach the interface. Allocate softc structures, do ifmedia
995 * setup and ethernet/BPF attach.
996 */
997static int
998ste_attach(dev)
999	device_t		dev;
1000{
1001	struct ste_softc	*sc;
1002	struct ifnet		*ifp;
1003	int			unit, error = 0, rid;
1004
1005	sc = device_get_softc(dev);
1006	unit = device_get_unit(dev);
1007	sc->ste_dev = dev;
1008
1009	/*
1010	 * Only use one PHY since this chip reports multiple
1011	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
1012	 * it is at 0 & 1.  It is rev 0x12.
1013	 */
1014	if (pci_get_vendor(dev) == DL_VENDORID &&
1015	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
1016	    pci_get_revid(dev) == 0x12 )
1017		sc->ste_one_phy = 1;
1018
1019	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1020	    MTX_DEF | MTX_RECURSE);
1021#ifndef BURN_BRIDGES
1022	/*
1023	 * Handle power management nonsense.
1024	 */
1025	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1026		u_int32_t		iobase, membase, irq;
1027
1028		/* Save important PCI config data. */
1029		iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
1030		membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
1031		irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
1032
1033		/* Reset the power state. */
1034		printf("ste%d: chip is in D%d power mode "
1035		    "-- setting to D0\n", unit,
1036		    pci_get_powerstate(dev));
1037		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1038
1039		/* Restore PCI config data. */
1040		pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
1041		pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
1042		pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
1043	}
1044#endif
1045	/*
1046	 * Map control/status registers.
1047	 */
1048	pci_enable_busmaster(dev);
1049
1050	rid = STE_RID;
1051	sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
1052
1053	if (sc->ste_res == NULL) {
1054		printf ("ste%d: couldn't map ports/memory\n", unit);
1055		error = ENXIO;
1056		goto fail;
1057	}
1058
1059	sc->ste_btag = rman_get_bustag(sc->ste_res);
1060	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
1061
1062	/* Allocate interrupt */
1063	rid = 0;
1064	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1065	    RF_SHAREABLE | RF_ACTIVE);
1066
1067	if (sc->ste_irq == NULL) {
1068		printf("ste%d: couldn't map interrupt\n", unit);
1069		error = ENXIO;
1070		goto fail;
1071	}
1072
1073	callout_handle_init(&sc->ste_stat_ch);
1074
1075	/* Reset the adapter. */
1076	ste_reset(sc);
1077
1078	/*
1079	 * Get station address from the EEPROM.
1080	 */
1081	if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1082	    STE_EEADDR_NODE0, 3, 0)) {
1083		printf("ste%d: failed to read station address\n", unit);
1084		error = ENXIO;;
1085		goto fail;
1086	}
1087
1088	sc->ste_unit = unit;
1089
1090	/* Allocate the descriptor queues. */
1091	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
1092	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1093
1094	if (sc->ste_ldata == NULL) {
1095		printf("ste%d: no memory for list buffers!\n", unit);
1096		error = ENXIO;
1097		goto fail;
1098	}
1099
1100	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1101
1102	/* Do MII setup. */
1103	if (mii_phy_probe(dev, &sc->ste_miibus,
1104	    ste_ifmedia_upd, ste_ifmedia_sts)) {
1105		printf("ste%d: MII without any phy!\n", sc->ste_unit);
1106		error = ENXIO;
1107		goto fail;
1108	}
1109
1110	ifp = &sc->arpcom.ac_if;
1111	ifp->if_softc = sc;
1112	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1113	ifp->if_mtu = ETHERMTU;
1114	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1115	ifp->if_ioctl = ste_ioctl;
1116	ifp->if_start = ste_start;
1117	ifp->if_watchdog = ste_watchdog;
1118	ifp->if_init = ste_init;
1119	ifp->if_baudrate = 10000000;
1120	ifp->if_snd.ifq_maxlen = STE_TX_LIST_CNT - 1;
1121
1122	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1123
1124	/*
1125	 * Call MI attach routine.
1126	 */
1127	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1128
1129	/*
1130	 * Tell the upper layer(s) we support long frames.
1131	 */
1132	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1133	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1134
1135	/* Hook interrupt last to avoid having to lock softc */
1136	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
1137	    ste_intr, sc, &sc->ste_intrhand);
1138
1139	if (error) {
1140		printf("ste%d: couldn't set up irq\n", unit);
1141		ether_ifdetach(ifp);
1142		goto fail;
1143	}
1144
1145fail:
1146	if (error)
1147		ste_detach(dev);
1148
1149	return(error);
1150}
1151
1152/*
1153 * Shutdown hardware and free up resources. This can be called any
1154 * time after the mutex has been initialized. It is called in both
1155 * the error case in attach and the normal detach case so it needs
1156 * to be careful about only freeing resources that have actually been
1157 * allocated.
1158 */
1159static int
1160ste_detach(dev)
1161	device_t		dev;
1162{
1163	struct ste_softc	*sc;
1164	struct ifnet		*ifp;
1165
1166	sc = device_get_softc(dev);
1167	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1168	STE_LOCK(sc);
1169	ifp = &sc->arpcom.ac_if;
1170
1171	/* These should only be active if attach succeeded */
1172	if (device_is_attached(dev)) {
1173		ste_stop(sc);
1174		ether_ifdetach(ifp);
1175	}
1176	if (sc->ste_miibus)
1177		device_delete_child(dev, sc->ste_miibus);
1178	bus_generic_detach(dev);
1179
1180	if (sc->ste_intrhand)
1181		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1182	if (sc->ste_irq)
1183		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1184	if (sc->ste_res)
1185		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1186
1187	if (sc->ste_ldata) {
1188		contigfree(sc->ste_ldata, sizeof(struct ste_list_data),
1189		    M_DEVBUF);
1190	}
1191
1192	STE_UNLOCK(sc);
1193	mtx_destroy(&sc->ste_mtx);
1194
1195	return(0);
1196}
1197
1198static int
1199ste_newbuf(sc, c, m)
1200	struct ste_softc	*sc;
1201	struct ste_chain_onefrag	*c;
1202	struct mbuf		*m;
1203{
1204	struct mbuf		*m_new = NULL;
1205
1206	if (m == NULL) {
1207		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1208		if (m_new == NULL)
1209			return(ENOBUFS);
1210		MCLGET(m_new, M_DONTWAIT);
1211		if (!(m_new->m_flags & M_EXT)) {
1212			m_freem(m_new);
1213			return(ENOBUFS);
1214		}
1215		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1216	} else {
1217		m_new = m;
1218		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1219		m_new->m_data = m_new->m_ext.ext_buf;
1220	}
1221
1222	m_adj(m_new, ETHER_ALIGN);
1223
1224	c->ste_mbuf = m_new;
1225	c->ste_ptr->ste_status = 0;
1226	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1227	c->ste_ptr->ste_frag.ste_len = (1536 + ETHER_VLAN_ENCAP_LEN) | STE_FRAG_LAST;
1228
1229	return(0);
1230}
1231
1232static int
1233ste_init_rx_list(sc)
1234	struct ste_softc	*sc;
1235{
1236	struct ste_chain_data	*cd;
1237	struct ste_list_data	*ld;
1238	int			i;
1239
1240	cd = &sc->ste_cdata;
1241	ld = sc->ste_ldata;
1242
1243	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1244		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1245		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1246			return(ENOBUFS);
1247		if (i == (STE_RX_LIST_CNT - 1)) {
1248			cd->ste_rx_chain[i].ste_next =
1249			    &cd->ste_rx_chain[0];
1250			ld->ste_rx_list[i].ste_next =
1251			    vtophys(&ld->ste_rx_list[0]);
1252		} else {
1253			cd->ste_rx_chain[i].ste_next =
1254			    &cd->ste_rx_chain[i + 1];
1255			ld->ste_rx_list[i].ste_next =
1256			    vtophys(&ld->ste_rx_list[i + 1]);
1257		}
1258		ld->ste_rx_list[i].ste_status = 0;
1259	}
1260
1261	cd->ste_rx_head = &cd->ste_rx_chain[0];
1262
1263	return(0);
1264}
1265
1266static void
1267ste_init_tx_list(sc)
1268	struct ste_softc	*sc;
1269{
1270	struct ste_chain_data	*cd;
1271	struct ste_list_data	*ld;
1272	int			i;
1273
1274	cd = &sc->ste_cdata;
1275	ld = sc->ste_ldata;
1276	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1277		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1278		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1279		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1280		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1281		if (i == (STE_TX_LIST_CNT - 1))
1282			cd->ste_tx_chain[i].ste_next =
1283			    &cd->ste_tx_chain[0];
1284		else
1285			cd->ste_tx_chain[i].ste_next =
1286			    &cd->ste_tx_chain[i + 1];
1287		if (i == 0)
1288			cd->ste_tx_chain[i].ste_prev =
1289			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1290		else
1291			cd->ste_tx_chain[i].ste_prev =
1292			     &cd->ste_tx_chain[i - 1];
1293	}
1294
1295	cd->ste_tx_prod = 0;
1296	cd->ste_tx_cons = 0;
1297	cd->ste_tx_cnt = 0;
1298
1299	return;
1300}
1301
1302static void
1303ste_init(xsc)
1304	void			*xsc;
1305{
1306	struct ste_softc	*sc;
1307	int			i;
1308	struct ifnet		*ifp;
1309
1310	sc = xsc;
1311	STE_LOCK(sc);
1312	ifp = &sc->arpcom.ac_if;
1313
1314	ste_stop(sc);
1315
1316	/* Init our MAC address */
1317	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1318		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1319	}
1320
1321	/* Init RX list */
1322	if (ste_init_rx_list(sc) == ENOBUFS) {
1323		printf("ste%d: initialization failed: no "
1324		    "memory for RX buffers\n", sc->ste_unit);
1325		ste_stop(sc);
1326		STE_UNLOCK(sc);
1327		return;
1328	}
1329
1330	/* Set RX polling interval */
1331	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1332
1333	/* Init TX descriptors */
1334	ste_init_tx_list(sc);
1335
1336	/* Set the TX freethresh value */
1337	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1338
1339	/* Set the TX start threshold for best performance. */
1340	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1341
1342	/* Set the TX reclaim threshold. */
1343	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1344
1345	/* Set up the RX filter. */
1346	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1347
1348	/* If we want promiscuous mode, set the allframes bit. */
1349	if (ifp->if_flags & IFF_PROMISC) {
1350		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1351	} else {
1352		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1353	}
1354
1355	/* Set capture broadcast bit to accept broadcast frames. */
1356	if (ifp->if_flags & IFF_BROADCAST) {
1357		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1358	} else {
1359		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1360	}
1361
1362	ste_setmulti(sc);
1363
1364	/* Load the address of the RX list. */
1365	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1366	ste_wait(sc);
1367	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1368	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1369	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1370	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1371
1372	/* Set TX polling interval (defer until we TX first packet */
1373	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1374
1375	/* Load address of the TX list */
1376	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1377	ste_wait(sc);
1378	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1379	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1380	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1381	ste_wait(sc);
1382	sc->ste_tx_prev_idx=-1;
1383
1384	/* Enable receiver and transmitter */
1385	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1386	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1387	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1388	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1389
1390	/* Enable stats counters. */
1391	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1392
1393	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1394#ifdef DEVICE_POLLING
1395	/* Disable interrupts if we are polling. */
1396	if (ifp->if_flags & IFF_POLLING)
1397		CSR_WRITE_2(sc, STE_IMR, 0);
1398	else
1399#endif /* DEVICE_POLLING */
1400	/* Enable interrupts. */
1401	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1402
1403	/* Accept VLAN length packets */
1404	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1405
1406	ste_ifmedia_upd(ifp);
1407
1408	ifp->if_flags |= IFF_RUNNING;
1409	ifp->if_flags &= ~IFF_OACTIVE;
1410
1411	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
1412	STE_UNLOCK(sc);
1413
1414	return;
1415}
1416
1417static void
1418ste_stop(sc)
1419	struct ste_softc	*sc;
1420{
1421	int			i;
1422	struct ifnet		*ifp;
1423
1424	STE_LOCK(sc);
1425	ifp = &sc->arpcom.ac_if;
1426
1427	untimeout(ste_stats_update, sc, sc->ste_stat_ch);
1428	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1429#ifdef DEVICE_POLLING
1430	ether_poll_deregister(ifp);
1431#endif /* DEVICE_POLLING */
1432
1433	CSR_WRITE_2(sc, STE_IMR, 0);
1434	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1435	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1436	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1437	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1438	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1439	ste_wait(sc);
1440	/*
1441	 * Try really hard to stop the RX engine or under heavy RX
1442	 * data chip will write into de-allocated memory.
1443	 */
1444	ste_reset(sc);
1445
1446	sc->ste_link = 0;
1447
1448	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1449		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1450			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1451			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1452		}
1453	}
1454
1455	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1456		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1457			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1458			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1459		}
1460	}
1461
1462	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1463	STE_UNLOCK(sc);
1464
1465	return;
1466}
1467
1468static void
1469ste_reset(sc)
1470	struct ste_softc	*sc;
1471{
1472	int			i;
1473
1474	STE_SETBIT4(sc, STE_ASICCTL,
1475	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1476	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1477	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1478	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1479	    STE_ASICCTL_EXTRESET_RESET);
1480
1481	DELAY(100000);
1482
1483	for (i = 0; i < STE_TIMEOUT; i++) {
1484		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1485			break;
1486	}
1487
1488	if (i == STE_TIMEOUT)
1489		printf("ste%d: global reset never completed\n", sc->ste_unit);
1490
1491	return;
1492}
1493
1494static int
1495ste_ioctl(ifp, command, data)
1496	struct ifnet		*ifp;
1497	u_long			command;
1498	caddr_t			data;
1499{
1500	struct ste_softc	*sc;
1501	struct ifreq		*ifr;
1502	struct mii_data		*mii;
1503	int			error = 0;
1504
1505	sc = ifp->if_softc;
1506	STE_LOCK(sc);
1507	ifr = (struct ifreq *)data;
1508
1509	switch(command) {
1510	case SIOCSIFFLAGS:
1511		if (ifp->if_flags & IFF_UP) {
1512			if (ifp->if_flags & IFF_RUNNING &&
1513			    ifp->if_flags & IFF_PROMISC &&
1514			    !(sc->ste_if_flags & IFF_PROMISC)) {
1515				STE_SETBIT1(sc, STE_RX_MODE,
1516				    STE_RXMODE_PROMISC);
1517			} else if (ifp->if_flags & IFF_RUNNING &&
1518			    !(ifp->if_flags & IFF_PROMISC) &&
1519			    sc->ste_if_flags & IFF_PROMISC) {
1520				STE_CLRBIT1(sc, STE_RX_MODE,
1521				    STE_RXMODE_PROMISC);
1522			}
1523			if (ifp->if_flags & IFF_RUNNING &&
1524			    (ifp->if_flags ^ sc->ste_if_flags) & IFF_ALLMULTI)
1525				ste_setmulti(sc);
1526			if (!(ifp->if_flags & IFF_RUNNING)) {
1527				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1528				ste_init(sc);
1529			}
1530		} else {
1531			if (ifp->if_flags & IFF_RUNNING)
1532				ste_stop(sc);
1533		}
1534		sc->ste_if_flags = ifp->if_flags;
1535		error = 0;
1536		break;
1537	case SIOCADDMULTI:
1538	case SIOCDELMULTI:
1539		ste_setmulti(sc);
1540		error = 0;
1541		break;
1542	case SIOCGIFMEDIA:
1543	case SIOCSIFMEDIA:
1544		mii = device_get_softc(sc->ste_miibus);
1545		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1546		break;
1547	default:
1548		error = ether_ioctl(ifp, command, data);
1549		break;
1550	}
1551
1552	STE_UNLOCK(sc);
1553
1554	return(error);
1555}
1556
1557static int
1558ste_encap(sc, c, m_head)
1559	struct ste_softc	*sc;
1560	struct ste_chain	*c;
1561	struct mbuf		*m_head;
1562{
1563	int			frag = 0;
1564	struct ste_frag		*f = NULL;
1565	struct mbuf		*m;
1566	struct ste_desc		*d;
1567
1568	d = c->ste_ptr;
1569	d->ste_ctl = 0;
1570
1571encap_retry:
1572	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1573		if (m->m_len != 0) {
1574			if (frag == STE_MAXFRAGS)
1575				break;
1576			f = &d->ste_frags[frag];
1577			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1578			f->ste_len = m->m_len;
1579			frag++;
1580		}
1581	}
1582
1583	if (m != NULL) {
1584		struct mbuf *mn;
1585
1586		/*
1587		 * We ran out of segments. We have to recopy this
1588		 * mbuf chain first. Bail out if we can't get the
1589		 * new buffers.
1590		 */
1591		mn = m_defrag(m_head, M_DONTWAIT);
1592		if (mn == NULL) {
1593			m_freem(m_head);
1594			return ENOMEM;
1595		}
1596		m_head = mn;
1597		goto encap_retry;
1598	}
1599
1600	c->ste_mbuf = m_head;
1601	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1602	d->ste_ctl = 1;
1603
1604	return(0);
1605}
1606
1607static void
1608ste_start(ifp)
1609	struct ifnet		*ifp;
1610{
1611	struct ste_softc	*sc;
1612	struct mbuf		*m_head = NULL;
1613	struct ste_chain	*cur_tx = NULL;
1614	int			idx;
1615
1616	sc = ifp->if_softc;
1617	STE_LOCK(sc);
1618
1619	if (!sc->ste_link) {
1620		STE_UNLOCK(sc);
1621		return;
1622	}
1623
1624	if (ifp->if_flags & IFF_OACTIVE) {
1625		STE_UNLOCK(sc);
1626		return;
1627	}
1628
1629	idx = sc->ste_cdata.ste_tx_prod;
1630
1631	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1632
1633		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1634			ifp->if_flags |= IFF_OACTIVE;
1635			break;
1636		}
1637
1638		IF_DEQUEUE(&ifp->if_snd, m_head);
1639		if (m_head == NULL)
1640			break;
1641
1642		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1643
1644		if (ste_encap(sc, cur_tx, m_head) != 0)
1645			break;
1646
1647		cur_tx->ste_ptr->ste_next = 0;
1648
1649		if(sc->ste_tx_prev_idx < 0){
1650			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1651			/* Load address of the TX list */
1652			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1653			ste_wait(sc);
1654
1655			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1656			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1657
1658			/* Set TX polling interval to start TX engine */
1659			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1660
1661			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1662			ste_wait(sc);
1663		}else{
1664			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1665			sc->ste_cdata.ste_tx_chain[
1666			    sc->ste_tx_prev_idx].ste_ptr->ste_next
1667				= cur_tx->ste_phys;
1668		}
1669
1670		sc->ste_tx_prev_idx=idx;
1671
1672		/*
1673		 * If there's a BPF listener, bounce a copy of this frame
1674		 * to him.
1675	 	 */
1676		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1677
1678		STE_INC(idx, STE_TX_LIST_CNT);
1679		sc->ste_cdata.ste_tx_cnt++;
1680		ifp->if_timer = 5;
1681		sc->ste_cdata.ste_tx_prod = idx;
1682	}
1683
1684	STE_UNLOCK(sc);
1685
1686	return;
1687}
1688
1689static void
1690ste_watchdog(ifp)
1691	struct ifnet		*ifp;
1692{
1693	struct ste_softc	*sc;
1694
1695	sc = ifp->if_softc;
1696	STE_LOCK(sc);
1697
1698	ifp->if_oerrors++;
1699	printf("ste%d: watchdog timeout\n", sc->ste_unit);
1700
1701	ste_txeoc(sc);
1702	ste_txeof(sc);
1703	ste_rxeof(sc);
1704	ste_reset(sc);
1705	ste_init(sc);
1706
1707	if (ifp->if_snd.ifq_head != NULL)
1708		ste_start(ifp);
1709	STE_UNLOCK(sc);
1710
1711	return;
1712}
1713
1714static void
1715ste_shutdown(dev)
1716	device_t		dev;
1717{
1718	struct ste_softc	*sc;
1719
1720	sc = device_get_softc(dev);
1721
1722	ste_stop(sc);
1723
1724	return;
1725}
1726