if_ste.c revision 121816
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/pci/if_ste.c 121816 2003-10-31 18:32:15Z brooks $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/sockio.h>
39#include <sys/mbuf.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/socket.h>
43
44#include <net/if.h>
45#include <net/if_arp.h>
46#include <net/ethernet.h>
47#include <net/if_dl.h>
48#include <net/if_media.h>
49#include <net/if_vlan_var.h>
50
51#include <net/bpf.h>
52
53#include <vm/vm.h>              /* for vtophys */
54#include <vm/pmap.h>            /* for vtophys */
55#include <machine/bus_memio.h>
56#include <machine/bus_pio.h>
57#include <machine/bus.h>
58#include <machine/resource.h>
59#include <sys/bus.h>
60#include <sys/rman.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68/* "controller miibus0" required.  See GENERIC if you get errors here. */
69#include "miibus_if.h"
70
71#define STE_USEIOSPACE
72
73#include <pci/if_stereg.h>
74
75MODULE_DEPEND(ste, pci, 1, 1, 1);
76MODULE_DEPEND(ste, ether, 1, 1, 1);
77MODULE_DEPEND(ste, miibus, 1, 1, 1);
78
79/*
80 * Various supported device vendors/types and their names.
81 */
82static struct ste_type ste_devs[] = {
83	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
84	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
85	{ 0, 0, NULL }
86};
87
88static int ste_probe		(device_t);
89static int ste_attach		(device_t);
90static int ste_detach		(device_t);
91static void ste_init		(void *);
92static void ste_intr		(void *);
93static void ste_rxeof		(struct ste_softc *);
94static void ste_txeoc		(struct ste_softc *);
95static void ste_txeof		(struct ste_softc *);
96static void ste_stats_update	(void *);
97static void ste_stop		(struct ste_softc *);
98static void ste_reset		(struct ste_softc *);
99static int ste_ioctl		(struct ifnet *, u_long, caddr_t);
100static int ste_encap		(struct ste_softc *, struct ste_chain *,
101					struct mbuf *);
102static void ste_start		(struct ifnet *);
103static void ste_watchdog	(struct ifnet *);
104static void ste_shutdown	(device_t);
105static int ste_newbuf		(struct ste_softc *,
106					struct ste_chain_onefrag *,
107					struct mbuf *);
108static int ste_ifmedia_upd	(struct ifnet *);
109static void ste_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
110
111static void ste_mii_sync	(struct ste_softc *);
112static void ste_mii_send	(struct ste_softc *, u_int32_t, int);
113static int ste_mii_readreg	(struct ste_softc *, struct ste_mii_frame *);
114static int ste_mii_writereg	(struct ste_softc *, struct ste_mii_frame *);
115static int ste_miibus_readreg	(device_t, int, int);
116static int ste_miibus_writereg	(device_t, int, int, int);
117static void ste_miibus_statchg	(device_t);
118
119static int ste_eeprom_wait	(struct ste_softc *);
120static int ste_read_eeprom	(struct ste_softc *, caddr_t, int, int, int);
121static void ste_wait		(struct ste_softc *);
122static u_int8_t ste_calchash	(caddr_t);
123static void ste_setmulti	(struct ste_softc *);
124static int ste_init_rx_list	(struct ste_softc *);
125static void ste_init_tx_list	(struct ste_softc *);
126
127#ifdef STE_USEIOSPACE
128#define STE_RES			SYS_RES_IOPORT
129#define STE_RID			STE_PCI_LOIO
130#else
131#define STE_RES			SYS_RES_MEMORY
132#define STE_RID			STE_PCI_LOMEM
133#endif
134
135static device_method_t ste_methods[] = {
136	/* Device interface */
137	DEVMETHOD(device_probe,		ste_probe),
138	DEVMETHOD(device_attach,	ste_attach),
139	DEVMETHOD(device_detach,	ste_detach),
140	DEVMETHOD(device_shutdown,	ste_shutdown),
141
142	/* bus interface */
143	DEVMETHOD(bus_print_child,	bus_generic_print_child),
144	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
145
146	/* MII interface */
147	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
148	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
149	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
150
151	{ 0, 0 }
152};
153
154static driver_t ste_driver = {
155	"ste",
156	ste_methods,
157	sizeof(struct ste_softc)
158};
159
160static devclass_t ste_devclass;
161
162DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
163DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
164
165#define STE_SETBIT4(sc, reg, x)				\
166	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
167
168#define STE_CLRBIT4(sc, reg, x)				\
169	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
170
171#define STE_SETBIT2(sc, reg, x)				\
172	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
173
174#define STE_CLRBIT2(sc, reg, x)				\
175	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
176
177#define STE_SETBIT1(sc, reg, x)				\
178	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
179
180#define STE_CLRBIT1(sc, reg, x)				\
181	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
182
183
184#define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
185#define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
186
187/*
188 * Sync the PHYs by setting data bit and strobing the clock 32 times.
189 */
190static void
191ste_mii_sync(sc)
192	struct ste_softc		*sc;
193{
194	register int		i;
195
196	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
197
198	for (i = 0; i < 32; i++) {
199		MII_SET(STE_PHYCTL_MCLK);
200		DELAY(1);
201		MII_CLR(STE_PHYCTL_MCLK);
202		DELAY(1);
203	}
204
205	return;
206}
207
208/*
209 * Clock a series of bits through the MII.
210 */
211static void
212ste_mii_send(sc, bits, cnt)
213	struct ste_softc		*sc;
214	u_int32_t		bits;
215	int			cnt;
216{
217	int			i;
218
219	MII_CLR(STE_PHYCTL_MCLK);
220
221	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
222		if (bits & i) {
223			MII_SET(STE_PHYCTL_MDATA);
224                } else {
225			MII_CLR(STE_PHYCTL_MDATA);
226                }
227		DELAY(1);
228		MII_CLR(STE_PHYCTL_MCLK);
229		DELAY(1);
230		MII_SET(STE_PHYCTL_MCLK);
231	}
232}
233
234/*
235 * Read an PHY register through the MII.
236 */
237static int
238ste_mii_readreg(sc, frame)
239	struct ste_softc		*sc;
240	struct ste_mii_frame	*frame;
241
242{
243	int			i, ack;
244
245	STE_LOCK(sc);
246
247	/*
248	 * Set up frame for RX.
249	 */
250	frame->mii_stdelim = STE_MII_STARTDELIM;
251	frame->mii_opcode = STE_MII_READOP;
252	frame->mii_turnaround = 0;
253	frame->mii_data = 0;
254
255	CSR_WRITE_2(sc, STE_PHYCTL, 0);
256	/*
257 	 * Turn on data xmit.
258	 */
259	MII_SET(STE_PHYCTL_MDIR);
260
261	ste_mii_sync(sc);
262
263	/*
264	 * Send command/address info.
265	 */
266	ste_mii_send(sc, frame->mii_stdelim, 2);
267	ste_mii_send(sc, frame->mii_opcode, 2);
268	ste_mii_send(sc, frame->mii_phyaddr, 5);
269	ste_mii_send(sc, frame->mii_regaddr, 5);
270
271	/* Turn off xmit. */
272	MII_CLR(STE_PHYCTL_MDIR);
273
274	/* Idle bit */
275	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
276	DELAY(1);
277	MII_SET(STE_PHYCTL_MCLK);
278	DELAY(1);
279
280	/* Check for ack */
281	MII_CLR(STE_PHYCTL_MCLK);
282	DELAY(1);
283	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
284	MII_SET(STE_PHYCTL_MCLK);
285	DELAY(1);
286
287	/*
288	 * Now try reading data bits. If the ack failed, we still
289	 * need to clock through 16 cycles to keep the PHY(s) in sync.
290	 */
291	if (ack) {
292		for(i = 0; i < 16; i++) {
293			MII_CLR(STE_PHYCTL_MCLK);
294			DELAY(1);
295			MII_SET(STE_PHYCTL_MCLK);
296			DELAY(1);
297		}
298		goto fail;
299	}
300
301	for (i = 0x8000; i; i >>= 1) {
302		MII_CLR(STE_PHYCTL_MCLK);
303		DELAY(1);
304		if (!ack) {
305			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
306				frame->mii_data |= i;
307			DELAY(1);
308		}
309		MII_SET(STE_PHYCTL_MCLK);
310		DELAY(1);
311	}
312
313fail:
314
315	MII_CLR(STE_PHYCTL_MCLK);
316	DELAY(1);
317	MII_SET(STE_PHYCTL_MCLK);
318	DELAY(1);
319
320	STE_UNLOCK(sc);
321
322	if (ack)
323		return(1);
324	return(0);
325}
326
327/*
328 * Write to a PHY register through the MII.
329 */
330static int
331ste_mii_writereg(sc, frame)
332	struct ste_softc		*sc;
333	struct ste_mii_frame	*frame;
334
335{
336	STE_LOCK(sc);
337
338	/*
339	 * Set up frame for TX.
340	 */
341
342	frame->mii_stdelim = STE_MII_STARTDELIM;
343	frame->mii_opcode = STE_MII_WRITEOP;
344	frame->mii_turnaround = STE_MII_TURNAROUND;
345
346	/*
347 	 * Turn on data output.
348	 */
349	MII_SET(STE_PHYCTL_MDIR);
350
351	ste_mii_sync(sc);
352
353	ste_mii_send(sc, frame->mii_stdelim, 2);
354	ste_mii_send(sc, frame->mii_opcode, 2);
355	ste_mii_send(sc, frame->mii_phyaddr, 5);
356	ste_mii_send(sc, frame->mii_regaddr, 5);
357	ste_mii_send(sc, frame->mii_turnaround, 2);
358	ste_mii_send(sc, frame->mii_data, 16);
359
360	/* Idle bit. */
361	MII_SET(STE_PHYCTL_MCLK);
362	DELAY(1);
363	MII_CLR(STE_PHYCTL_MCLK);
364	DELAY(1);
365
366	/*
367	 * Turn off xmit.
368	 */
369	MII_CLR(STE_PHYCTL_MDIR);
370
371	STE_UNLOCK(sc);
372
373	return(0);
374}
375
376static int
377ste_miibus_readreg(dev, phy, reg)
378	device_t		dev;
379	int			phy, reg;
380{
381	struct ste_softc	*sc;
382	struct ste_mii_frame	frame;
383
384	sc = device_get_softc(dev);
385
386	if ( sc->ste_one_phy && phy != 0 )
387		return (0);
388
389	bzero((char *)&frame, sizeof(frame));
390
391	frame.mii_phyaddr = phy;
392	frame.mii_regaddr = reg;
393	ste_mii_readreg(sc, &frame);
394
395	return(frame.mii_data);
396}
397
398static int
399ste_miibus_writereg(dev, phy, reg, data)
400	device_t		dev;
401	int			phy, reg, data;
402{
403	struct ste_softc	*sc;
404	struct ste_mii_frame	frame;
405
406	sc = device_get_softc(dev);
407	bzero((char *)&frame, sizeof(frame));
408
409	frame.mii_phyaddr = phy;
410	frame.mii_regaddr = reg;
411	frame.mii_data = data;
412
413	ste_mii_writereg(sc, &frame);
414
415	return(0);
416}
417
418static void
419ste_miibus_statchg(dev)
420	device_t		dev;
421{
422	struct ste_softc	*sc;
423	struct mii_data		*mii;
424
425	sc = device_get_softc(dev);
426	STE_LOCK(sc);
427	mii = device_get_softc(sc->ste_miibus);
428
429	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
430		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
431	} else {
432		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
433	}
434	STE_UNLOCK(sc);
435
436	return;
437}
438
439static int
440ste_ifmedia_upd(ifp)
441	struct ifnet		*ifp;
442{
443	struct ste_softc	*sc;
444	struct mii_data		*mii;
445
446	sc = ifp->if_softc;
447	mii = device_get_softc(sc->ste_miibus);
448	sc->ste_link = 0;
449	if (mii->mii_instance) {
450		struct mii_softc	*miisc;
451		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
452			mii_phy_reset(miisc);
453	}
454	mii_mediachg(mii);
455
456	return(0);
457}
458
459static void
460ste_ifmedia_sts(ifp, ifmr)
461	struct ifnet		*ifp;
462	struct ifmediareq	*ifmr;
463{
464	struct ste_softc	*sc;
465	struct mii_data		*mii;
466
467	sc = ifp->if_softc;
468	mii = device_get_softc(sc->ste_miibus);
469
470	mii_pollstat(mii);
471	ifmr->ifm_active = mii->mii_media_active;
472	ifmr->ifm_status = mii->mii_media_status;
473
474	return;
475}
476
477static void
478ste_wait(sc)
479	struct ste_softc		*sc;
480{
481	register int		i;
482
483	for (i = 0; i < STE_TIMEOUT; i++) {
484		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
485			break;
486	}
487
488	if (i == STE_TIMEOUT)
489		printf("ste%d: command never completed!\n", sc->ste_unit);
490
491	return;
492}
493
494/*
495 * The EEPROM is slow: give it time to come ready after issuing
496 * it a command.
497 */
498static int
499ste_eeprom_wait(sc)
500	struct ste_softc		*sc;
501{
502	int			i;
503
504	DELAY(1000);
505
506	for (i = 0; i < 100; i++) {
507		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
508			DELAY(1000);
509		else
510			break;
511	}
512
513	if (i == 100) {
514		printf("ste%d: eeprom failed to come ready\n", sc->ste_unit);
515		return(1);
516	}
517
518	return(0);
519}
520
521/*
522 * Read a sequence of words from the EEPROM. Note that ethernet address
523 * data is stored in the EEPROM in network byte order.
524 */
525static int
526ste_read_eeprom(sc, dest, off, cnt, swap)
527	struct ste_softc		*sc;
528	caddr_t			dest;
529	int			off;
530	int			cnt;
531	int			swap;
532{
533	int			err = 0, i;
534	u_int16_t		word = 0, *ptr;
535
536	if (ste_eeprom_wait(sc))
537		return(1);
538
539	for (i = 0; i < cnt; i++) {
540		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
541		err = ste_eeprom_wait(sc);
542		if (err)
543			break;
544		word = CSR_READ_2(sc, STE_EEPROM_DATA);
545		ptr = (u_int16_t *)(dest + (i * 2));
546		if (swap)
547			*ptr = ntohs(word);
548		else
549			*ptr = word;
550	}
551
552	return(err ? 1 : 0);
553}
554
555static u_int8_t
556ste_calchash(addr)
557	caddr_t			addr;
558{
559
560	u_int32_t		crc, carry;
561	int			i, j;
562	u_int8_t		c;
563
564	/* Compute CRC for the address value. */
565	crc = 0xFFFFFFFF; /* initial value */
566
567	for (i = 0; i < 6; i++) {
568		c = *(addr + i);
569		for (j = 0; j < 8; j++) {
570			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
571			crc <<= 1;
572			c >>= 1;
573			if (carry)
574				crc = (crc ^ 0x04c11db6) | carry;
575		}
576	}
577
578	/* return the filter bit position */
579	return(crc & 0x0000003F);
580}
581
582static void
583ste_setmulti(sc)
584	struct ste_softc	*sc;
585{
586	struct ifnet		*ifp;
587	int			h = 0;
588	u_int32_t		hashes[2] = { 0, 0 };
589	struct ifmultiaddr	*ifma;
590
591	ifp = &sc->arpcom.ac_if;
592	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
593		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
594		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
595		return;
596	}
597
598	/* first, zot all the existing hash bits */
599	CSR_WRITE_2(sc, STE_MAR0, 0);
600	CSR_WRITE_2(sc, STE_MAR1, 0);
601	CSR_WRITE_2(sc, STE_MAR2, 0);
602	CSR_WRITE_2(sc, STE_MAR3, 0);
603
604	/* now program new ones */
605	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
606		if (ifma->ifma_addr->sa_family != AF_LINK)
607			continue;
608		h = ste_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
609		if (h < 32)
610			hashes[0] |= (1 << h);
611		else
612			hashes[1] |= (1 << (h - 32));
613	}
614
615	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
616	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
617	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
618	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
619	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
620	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
621
622	return;
623}
624
625static void
626ste_intr(xsc)
627	void			*xsc;
628{
629	struct ste_softc	*sc;
630	struct ifnet		*ifp;
631	u_int16_t		status;
632
633	sc = xsc;
634	STE_LOCK(sc);
635	ifp = &sc->arpcom.ac_if;
636
637	/* See if this is really our interrupt. */
638	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH)) {
639		STE_UNLOCK(sc);
640		return;
641	}
642
643	for (;;) {
644		status = CSR_READ_2(sc, STE_ISR_ACK);
645
646		if (!(status & STE_INTRS))
647			break;
648
649		if (status & STE_ISR_RX_DMADONE)
650			ste_rxeof(sc);
651
652		if (status & STE_ISR_TX_DMADONE)
653			ste_txeof(sc);
654
655		if (status & STE_ISR_TX_DONE)
656			ste_txeoc(sc);
657
658		if (status & STE_ISR_STATS_OFLOW) {
659			untimeout(ste_stats_update, sc, sc->ste_stat_ch);
660			ste_stats_update(sc);
661		}
662
663		if (status & STE_ISR_LINKEVENT)
664			mii_pollstat(device_get_softc(sc->ste_miibus));
665
666
667		if (status & STE_ISR_HOSTERR) {
668			ste_reset(sc);
669			ste_init(sc);
670		}
671	}
672
673	/* Re-enable interrupts */
674	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
675
676	if (ifp->if_snd.ifq_head != NULL)
677		ste_start(ifp);
678
679	STE_UNLOCK(sc);
680
681	return;
682}
683
684/*
685 * A frame has been uploaded: pass the resulting mbuf chain up to
686 * the higher level protocols.
687 */
688static void
689ste_rxeof(sc)
690	struct ste_softc		*sc;
691{
692        struct mbuf		*m;
693        struct ifnet		*ifp;
694	struct ste_chain_onefrag	*cur_rx;
695	int			total_len = 0, count=0;
696	u_int32_t		rxstat;
697
698	ifp = &sc->arpcom.ac_if;
699
700	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
701	      & STE_RXSTAT_DMADONE) {
702		if ((STE_RX_LIST_CNT - count) < 3) {
703			break;
704		}
705
706		cur_rx = sc->ste_cdata.ste_rx_head;
707		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
708
709		/*
710		 * If an error occurs, update stats, clear the
711		 * status word and leave the mbuf cluster in place:
712		 * it should simply get re-used next time this descriptor
713	 	 * comes up in the ring.
714		 */
715		if (rxstat & STE_RXSTAT_FRAME_ERR) {
716			ifp->if_ierrors++;
717			cur_rx->ste_ptr->ste_status = 0;
718			continue;
719		}
720
721		/*
722		 * If there error bit was not set, the upload complete
723		 * bit should be set which means we have a valid packet.
724		 * If not, something truly strange has happened.
725		 */
726		if (!(rxstat & STE_RXSTAT_DMADONE)) {
727			printf("ste%d: bad receive status -- packet dropped\n",
728							sc->ste_unit);
729			ifp->if_ierrors++;
730			cur_rx->ste_ptr->ste_status = 0;
731			continue;
732		}
733
734		/* No errors; receive the packet. */
735		m = cur_rx->ste_mbuf;
736		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
737
738		/*
739		 * Try to conjure up a new mbuf cluster. If that
740		 * fails, it means we have an out of memory condition and
741		 * should leave the buffer in place and continue. This will
742		 * result in a lost packet, but there's little else we
743		 * can do in this situation.
744		 */
745		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
746			ifp->if_ierrors++;
747			cur_rx->ste_ptr->ste_status = 0;
748			continue;
749		}
750
751		m->m_pkthdr.rcvif = ifp;
752		m->m_pkthdr.len = m->m_len = total_len;
753
754		ifp->if_ipackets++;
755		(*ifp->if_input)(ifp, m);
756
757		cur_rx->ste_ptr->ste_status = 0;
758		count++;
759	}
760
761	return;
762}
763
764static void
765ste_txeoc(sc)
766	struct ste_softc	*sc;
767{
768	u_int8_t		txstat;
769	struct ifnet		*ifp;
770
771	ifp = &sc->arpcom.ac_if;
772
773	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
774	    STE_TXSTATUS_TXDONE) {
775		if (txstat & STE_TXSTATUS_UNDERRUN ||
776		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
777		    txstat & STE_TXSTATUS_RECLAIMERR) {
778			ifp->if_oerrors++;
779			printf("ste%d: transmission error: %x\n",
780			    sc->ste_unit, txstat);
781
782			ste_reset(sc);
783			ste_init(sc);
784
785			if (txstat & STE_TXSTATUS_UNDERRUN &&
786			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
787				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
788				printf("ste%d: tx underrun, increasing tx"
789				    " start threshold to %d bytes\n",
790				    sc->ste_unit, sc->ste_tx_thresh);
791			}
792			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
793			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
794			    (STE_PACKET_SIZE >> 4));
795		}
796		ste_init(sc);
797		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
798	}
799
800	return;
801}
802
803static void
804ste_txeof(sc)
805	struct ste_softc	*sc;
806{
807	struct ste_chain	*cur_tx = NULL;
808	struct ifnet		*ifp;
809	int			idx;
810
811	ifp = &sc->arpcom.ac_if;
812
813	idx = sc->ste_cdata.ste_tx_cons;
814	while(idx != sc->ste_cdata.ste_tx_prod) {
815		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
816
817		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
818			break;
819
820		if (cur_tx->ste_mbuf != NULL) {
821			m_freem(cur_tx->ste_mbuf);
822			cur_tx->ste_mbuf = NULL;
823		}
824
825		ifp->if_opackets++;
826
827		sc->ste_cdata.ste_tx_cnt--;
828		STE_INC(idx, STE_TX_LIST_CNT);
829		ifp->if_timer = 0;
830	}
831
832	sc->ste_cdata.ste_tx_cons = idx;
833
834	if (cur_tx != NULL)
835		ifp->if_flags &= ~IFF_OACTIVE;
836
837	return;
838}
839
840static void
841ste_stats_update(xsc)
842	void			*xsc;
843{
844	struct ste_softc	*sc;
845	struct ifnet		*ifp;
846	struct mii_data		*mii;
847
848	sc = xsc;
849	STE_LOCK(sc);
850
851	ifp = &sc->arpcom.ac_if;
852	mii = device_get_softc(sc->ste_miibus);
853
854	ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
855	    + CSR_READ_1(sc, STE_MULTI_COLLS)
856	    + CSR_READ_1(sc, STE_SINGLE_COLLS);
857
858	if (!sc->ste_link) {
859		mii_pollstat(mii);
860		if (mii->mii_media_status & IFM_ACTIVE &&
861		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
862			sc->ste_link++;
863			/*
864			* we don't get a call-back on re-init so do it
865			* otherwise we get stuck in the wrong link state
866			*/
867			ste_miibus_statchg(sc->ste_dev);
868			if (ifp->if_snd.ifq_head != NULL)
869				ste_start(ifp);
870		}
871	}
872
873	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
874	STE_UNLOCK(sc);
875
876	return;
877}
878
879
880/*
881 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
882 * IDs against our list and return a device name if we find a match.
883 */
884static int
885ste_probe(dev)
886	device_t		dev;
887{
888	struct ste_type		*t;
889
890	t = ste_devs;
891
892	while(t->ste_name != NULL) {
893		if ((pci_get_vendor(dev) == t->ste_vid) &&
894		    (pci_get_device(dev) == t->ste_did)) {
895			device_set_desc(dev, t->ste_name);
896			return(0);
897		}
898		t++;
899	}
900
901	return(ENXIO);
902}
903
904/*
905 * Attach the interface. Allocate softc structures, do ifmedia
906 * setup and ethernet/BPF attach.
907 */
908static int
909ste_attach(dev)
910	device_t		dev;
911{
912	struct ste_softc	*sc;
913	struct ifnet		*ifp;
914	int			unit, error = 0, rid;
915
916	sc = device_get_softc(dev);
917	unit = device_get_unit(dev);
918	sc->ste_dev = dev;
919
920	/*
921	 * Only use one PHY since this chip reports multiple
922	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
923	 * it is at 0 & 1.  It is rev 0x12.
924	 */
925	if (pci_get_vendor(dev) == DL_VENDORID &&
926	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
927	    pci_get_revid(dev) == 0x12 )
928		sc->ste_one_phy = 1;
929
930	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
931	    MTX_DEF | MTX_RECURSE);
932#ifndef BURN_BRIDGES
933	/*
934	 * Handle power management nonsense.
935	 */
936	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
937		u_int32_t		iobase, membase, irq;
938
939		/* Save important PCI config data. */
940		iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
941		membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
942		irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
943
944		/* Reset the power state. */
945		printf("ste%d: chip is in D%d power mode "
946		    "-- setting to D0\n", unit,
947		    pci_get_powerstate(dev));
948		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
949
950		/* Restore PCI config data. */
951		pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
952		pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
953		pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
954	}
955#endif
956	/*
957	 * Map control/status registers.
958	 */
959	pci_enable_busmaster(dev);
960
961	rid = STE_RID;
962	sc->ste_res = bus_alloc_resource(dev, STE_RES, &rid,
963	    0, ~0, 1, RF_ACTIVE);
964
965	if (sc->ste_res == NULL) {
966		printf ("ste%d: couldn't map ports/memory\n", unit);
967		error = ENXIO;
968		goto fail;
969	}
970
971	sc->ste_btag = rman_get_bustag(sc->ste_res);
972	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
973
974	/* Allocate interrupt */
975	rid = 0;
976	sc->ste_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
977	    RF_SHAREABLE | RF_ACTIVE);
978
979	if (sc->ste_irq == NULL) {
980		printf("ste%d: couldn't map interrupt\n", unit);
981		error = ENXIO;
982		goto fail;
983	}
984
985	callout_handle_init(&sc->ste_stat_ch);
986
987	/* Reset the adapter. */
988	ste_reset(sc);
989
990	/*
991	 * Get station address from the EEPROM.
992	 */
993	if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
994	    STE_EEADDR_NODE0, 3, 0)) {
995		printf("ste%d: failed to read station address\n", unit);
996		error = ENXIO;;
997		goto fail;
998	}
999
1000	/*
1001	 * A Sundance chip was detected. Inform the world.
1002	 */
1003	printf("ste%d: Ethernet address: %6D\n", unit,
1004	    sc->arpcom.ac_enaddr, ":");
1005
1006	sc->ste_unit = unit;
1007
1008	/* Allocate the descriptor queues. */
1009	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
1010	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1011
1012	if (sc->ste_ldata == NULL) {
1013		printf("ste%d: no memory for list buffers!\n", unit);
1014		error = ENXIO;
1015		goto fail;
1016	}
1017
1018	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1019
1020	/* Do MII setup. */
1021	if (mii_phy_probe(dev, &sc->ste_miibus,
1022	    ste_ifmedia_upd, ste_ifmedia_sts)) {
1023		printf("ste%d: MII without any phy!\n", sc->ste_unit);
1024		error = ENXIO;
1025		goto fail;
1026	}
1027
1028	ifp = &sc->arpcom.ac_if;
1029	ifp->if_softc = sc;
1030	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1031	ifp->if_mtu = ETHERMTU;
1032	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1033	ifp->if_ioctl = ste_ioctl;
1034	ifp->if_output = ether_output;
1035	ifp->if_start = ste_start;
1036	ifp->if_watchdog = ste_watchdog;
1037	ifp->if_init = ste_init;
1038	ifp->if_baudrate = 10000000;
1039	ifp->if_snd.ifq_maxlen = STE_TX_LIST_CNT - 1;
1040
1041	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1042
1043	/*
1044	 * Call MI attach routine.
1045	 */
1046	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1047
1048	/*
1049	 * Tell the upper layer(s) we support long frames.
1050	 */
1051	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1052	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1053
1054	/* Hook interrupt last to avoid having to lock softc */
1055	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
1056	    ste_intr, sc, &sc->ste_intrhand);
1057
1058	if (error) {
1059		printf("ste%d: couldn't set up irq\n", unit);
1060		ether_ifdetach(ifp);
1061		goto fail;
1062	}
1063
1064fail:
1065	if (error)
1066		ste_detach(dev);
1067
1068	return(error);
1069}
1070
1071/*
1072 * Shutdown hardware and free up resources. This can be called any
1073 * time after the mutex has been initialized. It is called in both
1074 * the error case in attach and the normal detach case so it needs
1075 * to be careful about only freeing resources that have actually been
1076 * allocated.
1077 */
1078static int
1079ste_detach(dev)
1080	device_t		dev;
1081{
1082	struct ste_softc	*sc;
1083	struct ifnet		*ifp;
1084
1085	sc = device_get_softc(dev);
1086	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1087	STE_LOCK(sc);
1088	ifp = &sc->arpcom.ac_if;
1089
1090	/* These should only be active if attach succeeded */
1091	if (device_is_attached(dev)) {
1092		ste_stop(sc);
1093		ether_ifdetach(ifp);
1094	}
1095	if (sc->ste_miibus)
1096		device_delete_child(dev, sc->ste_miibus);
1097	bus_generic_detach(dev);
1098
1099	if (sc->ste_intrhand)
1100		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1101	if (sc->ste_irq)
1102		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1103	if (sc->ste_res)
1104		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1105
1106	if (sc->ste_ldata) {
1107		contigfree(sc->ste_ldata, sizeof(struct ste_list_data),
1108		    M_DEVBUF);
1109	}
1110
1111	STE_UNLOCK(sc);
1112	mtx_destroy(&sc->ste_mtx);
1113
1114	return(0);
1115}
1116
1117static int
1118ste_newbuf(sc, c, m)
1119	struct ste_softc	*sc;
1120	struct ste_chain_onefrag	*c;
1121	struct mbuf		*m;
1122{
1123	struct mbuf		*m_new = NULL;
1124
1125	if (m == NULL) {
1126		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1127		if (m_new == NULL)
1128			return(ENOBUFS);
1129		MCLGET(m_new, M_DONTWAIT);
1130		if (!(m_new->m_flags & M_EXT)) {
1131			m_freem(m_new);
1132			return(ENOBUFS);
1133		}
1134		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1135	} else {
1136		m_new = m;
1137		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1138		m_new->m_data = m_new->m_ext.ext_buf;
1139	}
1140
1141	m_adj(m_new, ETHER_ALIGN);
1142
1143	c->ste_mbuf = m_new;
1144	c->ste_ptr->ste_status = 0;
1145	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1146	c->ste_ptr->ste_frag.ste_len = (1536 + ETHER_VLAN_ENCAP_LEN) | STE_FRAG_LAST;
1147
1148	return(0);
1149}
1150
1151static int
1152ste_init_rx_list(sc)
1153	struct ste_softc	*sc;
1154{
1155	struct ste_chain_data	*cd;
1156	struct ste_list_data	*ld;
1157	int			i;
1158
1159	cd = &sc->ste_cdata;
1160	ld = sc->ste_ldata;
1161
1162	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1163		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1164		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1165			return(ENOBUFS);
1166		if (i == (STE_RX_LIST_CNT - 1)) {
1167			cd->ste_rx_chain[i].ste_next =
1168			    &cd->ste_rx_chain[0];
1169			ld->ste_rx_list[i].ste_next =
1170			    vtophys(&ld->ste_rx_list[0]);
1171		} else {
1172			cd->ste_rx_chain[i].ste_next =
1173			    &cd->ste_rx_chain[i + 1];
1174			ld->ste_rx_list[i].ste_next =
1175			    vtophys(&ld->ste_rx_list[i + 1]);
1176		}
1177		ld->ste_rx_list[i].ste_status = 0;
1178	}
1179
1180	cd->ste_rx_head = &cd->ste_rx_chain[0];
1181
1182	return(0);
1183}
1184
1185static void
1186ste_init_tx_list(sc)
1187	struct ste_softc	*sc;
1188{
1189	struct ste_chain_data	*cd;
1190	struct ste_list_data	*ld;
1191	int			i;
1192
1193	cd = &sc->ste_cdata;
1194	ld = sc->ste_ldata;
1195	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1196		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1197		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1198		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1199		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1200		if (i == (STE_TX_LIST_CNT - 1))
1201			cd->ste_tx_chain[i].ste_next =
1202			    &cd->ste_tx_chain[0];
1203		else
1204			cd->ste_tx_chain[i].ste_next =
1205			    &cd->ste_tx_chain[i + 1];
1206		if (i == 0)
1207			cd->ste_tx_chain[i].ste_prev =
1208			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1209		else
1210			cd->ste_tx_chain[i].ste_prev =
1211			     &cd->ste_tx_chain[i - 1];
1212	}
1213
1214	cd->ste_tx_prod = 0;
1215	cd->ste_tx_cons = 0;
1216	cd->ste_tx_cnt = 0;
1217
1218	return;
1219}
1220
1221static void
1222ste_init(xsc)
1223	void			*xsc;
1224{
1225	struct ste_softc	*sc;
1226	int			i;
1227	struct ifnet		*ifp;
1228
1229	sc = xsc;
1230	STE_LOCK(sc);
1231	ifp = &sc->arpcom.ac_if;
1232
1233	ste_stop(sc);
1234
1235	/* Init our MAC address */
1236	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1237		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1238	}
1239
1240	/* Init RX list */
1241	if (ste_init_rx_list(sc) == ENOBUFS) {
1242		printf("ste%d: initialization failed: no "
1243		    "memory for RX buffers\n", sc->ste_unit);
1244		ste_stop(sc);
1245		STE_UNLOCK(sc);
1246		return;
1247	}
1248
1249	/* Set RX polling interval */
1250	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 1);
1251
1252	/* Init TX descriptors */
1253	ste_init_tx_list(sc);
1254
1255	/* Set the TX freethresh value */
1256	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1257
1258	/* Set the TX start threshold for best performance. */
1259	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1260
1261	/* Set the TX reclaim threshold. */
1262	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1263
1264	/* Set up the RX filter. */
1265	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1266
1267	/* If we want promiscuous mode, set the allframes bit. */
1268	if (ifp->if_flags & IFF_PROMISC) {
1269		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1270	} else {
1271		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1272	}
1273
1274	/* Set capture broadcast bit to accept broadcast frames. */
1275	if (ifp->if_flags & IFF_BROADCAST) {
1276		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1277	} else {
1278		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1279	}
1280
1281	ste_setmulti(sc);
1282
1283	/* Load the address of the RX list. */
1284	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1285	ste_wait(sc);
1286	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1287	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1288	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1289	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1290
1291	/* Set TX polling interval (defer until we TX first packet */
1292	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1293
1294	/* Load address of the TX list */
1295	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1296	ste_wait(sc);
1297	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1298	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1299	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1300	ste_wait(sc);
1301	sc->ste_tx_prev_idx=-1;
1302
1303	/* Enable receiver and transmitter */
1304	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1305	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1306	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1307	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1308
1309	/* Enable stats counters. */
1310	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1311
1312	/* Enable interrupts. */
1313	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1314	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1315
1316	/* Accept VLAN length packets */
1317	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1318
1319	ste_ifmedia_upd(ifp);
1320
1321	ifp->if_flags |= IFF_RUNNING;
1322	ifp->if_flags &= ~IFF_OACTIVE;
1323
1324	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
1325	STE_UNLOCK(sc);
1326
1327	return;
1328}
1329
1330static void
1331ste_stop(sc)
1332	struct ste_softc	*sc;
1333{
1334	int			i;
1335	struct ifnet		*ifp;
1336
1337	STE_LOCK(sc);
1338	ifp = &sc->arpcom.ac_if;
1339
1340	untimeout(ste_stats_update, sc, sc->ste_stat_ch);
1341
1342	CSR_WRITE_2(sc, STE_IMR, 0);
1343	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1344	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1345	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1346	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1347	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1348	ste_wait(sc);
1349	/*
1350	 * Try really hard to stop the RX engine or under heavy RX
1351	 * data chip will write into de-allocated memory.
1352	 */
1353	ste_reset(sc);
1354
1355	sc->ste_link = 0;
1356
1357	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1358		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1359			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1360			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1361		}
1362	}
1363
1364	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1365		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1366			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1367			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1368		}
1369	}
1370
1371	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1372
1373	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1374	STE_UNLOCK(sc);
1375
1376	return;
1377}
1378
1379static void
1380ste_reset(sc)
1381	struct ste_softc	*sc;
1382{
1383	int			i;
1384
1385	STE_SETBIT4(sc, STE_ASICCTL,
1386	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1387	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1388	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1389	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1390	    STE_ASICCTL_EXTRESET_RESET);
1391
1392	DELAY(100000);
1393
1394	for (i = 0; i < STE_TIMEOUT; i++) {
1395		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1396			break;
1397	}
1398
1399	if (i == STE_TIMEOUT)
1400		printf("ste%d: global reset never completed\n", sc->ste_unit);
1401
1402	return;
1403}
1404
1405static int
1406ste_ioctl(ifp, command, data)
1407	struct ifnet		*ifp;
1408	u_long			command;
1409	caddr_t			data;
1410{
1411	struct ste_softc	*sc;
1412	struct ifreq		*ifr;
1413	struct mii_data		*mii;
1414	int			error = 0;
1415
1416	sc = ifp->if_softc;
1417	STE_LOCK(sc);
1418	ifr = (struct ifreq *)data;
1419
1420	switch(command) {
1421	case SIOCSIFFLAGS:
1422		if (ifp->if_flags & IFF_UP) {
1423			if (ifp->if_flags & IFF_RUNNING &&
1424			    ifp->if_flags & IFF_PROMISC &&
1425			    !(sc->ste_if_flags & IFF_PROMISC)) {
1426				STE_SETBIT1(sc, STE_RX_MODE,
1427				    STE_RXMODE_PROMISC);
1428			} else if (ifp->if_flags & IFF_RUNNING &&
1429			    !(ifp->if_flags & IFF_PROMISC) &&
1430			    sc->ste_if_flags & IFF_PROMISC) {
1431				STE_CLRBIT1(sc, STE_RX_MODE,
1432				    STE_RXMODE_PROMISC);
1433			}
1434			if (!(ifp->if_flags & IFF_RUNNING)) {
1435				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1436				ste_init(sc);
1437			}
1438		} else {
1439			if (ifp->if_flags & IFF_RUNNING)
1440				ste_stop(sc);
1441		}
1442		sc->ste_if_flags = ifp->if_flags;
1443		error = 0;
1444		break;
1445	case SIOCADDMULTI:
1446	case SIOCDELMULTI:
1447		ste_setmulti(sc);
1448		error = 0;
1449		break;
1450	case SIOCGIFMEDIA:
1451	case SIOCSIFMEDIA:
1452		mii = device_get_softc(sc->ste_miibus);
1453		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1454		break;
1455	default:
1456		error = ether_ioctl(ifp, command, data);
1457		break;
1458	}
1459
1460	STE_UNLOCK(sc);
1461
1462	return(error);
1463}
1464
1465static int
1466ste_encap(sc, c, m_head)
1467	struct ste_softc	*sc;
1468	struct ste_chain	*c;
1469	struct mbuf		*m_head;
1470{
1471	int			frag = 0;
1472	struct ste_frag		*f = NULL;
1473	struct mbuf		*m;
1474	struct ste_desc		*d;
1475
1476	d = c->ste_ptr;
1477	d->ste_ctl = 0;
1478
1479encap_retry:
1480	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1481		if (m->m_len != 0) {
1482			if (frag == STE_MAXFRAGS)
1483				break;
1484			f = &d->ste_frags[frag];
1485			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1486			f->ste_len = m->m_len;
1487			frag++;
1488		}
1489	}
1490
1491	if (m != NULL) {
1492		struct mbuf *mn;
1493
1494		/*
1495		 * We ran out of segments. We have to recopy this
1496		 * mbuf chain first. Bail out if we can't get the
1497		 * new buffers. Code borrowed from if_fxp.c
1498		 */
1499		MGETHDR(mn, M_DONTWAIT, MT_DATA);
1500		if (mn == NULL) {
1501			m_freem(m_head);
1502			return ENOMEM;
1503		}
1504		if (m_head->m_pkthdr.len > MHLEN) {
1505			MCLGET(mn, M_DONTWAIT);
1506			if ((mn->m_flags & M_EXT) == 0) {
1507				m_freem(mn);
1508				m_freem(m_head);
1509				return ENOMEM;
1510			}
1511		}
1512		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1513		    mtod(mn, caddr_t));
1514		mn->m_pkthdr.len = mn->m_len = m_head->m_pkthdr.len;
1515		m_freem(m_head);
1516		m_head = mn;
1517		goto encap_retry;
1518	}
1519
1520	c->ste_mbuf = m_head;
1521	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1522	d->ste_ctl = 1;
1523
1524	return(0);
1525}
1526
1527static void
1528ste_start(ifp)
1529	struct ifnet		*ifp;
1530{
1531	struct ste_softc	*sc;
1532	struct mbuf		*m_head = NULL;
1533	struct ste_chain	*cur_tx = NULL;
1534	int			idx;
1535
1536	sc = ifp->if_softc;
1537	STE_LOCK(sc);
1538
1539	if (!sc->ste_link) {
1540		STE_UNLOCK(sc);
1541		return;
1542	}
1543
1544	if (ifp->if_flags & IFF_OACTIVE) {
1545		STE_UNLOCK(sc);
1546		return;
1547	}
1548
1549	idx = sc->ste_cdata.ste_tx_prod;
1550
1551	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1552
1553		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1554			ifp->if_flags |= IFF_OACTIVE;
1555			break;
1556		}
1557
1558		IF_DEQUEUE(&ifp->if_snd, m_head);
1559		if (m_head == NULL)
1560			break;
1561
1562		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1563
1564		if (ste_encap(sc, cur_tx, m_head) != 0)
1565			break;
1566
1567		cur_tx->ste_ptr->ste_next = 0;
1568
1569		if(sc->ste_tx_prev_idx < 0){
1570			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1571			/* Load address of the TX list */
1572			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1573			ste_wait(sc);
1574
1575			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1576			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1577
1578			/* Set TX polling interval to start TX engine */
1579			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1580
1581			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1582			ste_wait(sc);
1583		}else{
1584			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1585			sc->ste_cdata.ste_tx_chain[
1586			    sc->ste_tx_prev_idx].ste_ptr->ste_next
1587				= cur_tx->ste_phys;
1588		}
1589
1590		sc->ste_tx_prev_idx=idx;
1591
1592		/*
1593		 * If there's a BPF listener, bounce a copy of this frame
1594		 * to him.
1595	 	 */
1596		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1597
1598		STE_INC(idx, STE_TX_LIST_CNT);
1599		sc->ste_cdata.ste_tx_cnt++;
1600		ifp->if_timer = 5;
1601		sc->ste_cdata.ste_tx_prod = idx;
1602	}
1603
1604	STE_UNLOCK(sc);
1605
1606	return;
1607}
1608
1609static void
1610ste_watchdog(ifp)
1611	struct ifnet		*ifp;
1612{
1613	struct ste_softc	*sc;
1614
1615	sc = ifp->if_softc;
1616	STE_LOCK(sc);
1617
1618	ifp->if_oerrors++;
1619	printf("ste%d: watchdog timeout\n", sc->ste_unit);
1620
1621	ste_txeoc(sc);
1622	ste_txeof(sc);
1623	ste_rxeof(sc);
1624	ste_reset(sc);
1625	ste_init(sc);
1626
1627	if (ifp->if_snd.ifq_head != NULL)
1628		ste_start(ifp);
1629	STE_UNLOCK(sc);
1630
1631	return;
1632}
1633
1634static void
1635ste_shutdown(dev)
1636	device_t		dev;
1637{
1638	struct ste_softc	*sc;
1639
1640	sc = device_get_softc(dev);
1641
1642	ste_stop(sc);
1643
1644	return;
1645}
1646