1/*-
2 * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
3 * Copyright (c) 1997, 1998, 1999
4 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37/*
38 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
39 * available from http://www.sis.com.tw.
40 *
41 * This driver also supports the NatSemi DP83815. Datasheets are
42 * available from http://www.national.com.
43 *
44 * Written by Bill Paul <wpaul@ee.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48/*
49 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50 * simple TX and RX descriptors of 3 longwords in size. The receiver
51 * has a single perfect filter entry for the station address and a
52 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53 * transceiver while the 7016 requires an external transceiver chip.
54 * Both chips offer the standard bit-bang MII interface as well as
55 * an enchanced PHY interface which simplifies accessing MII registers.
56 *
57 * The only downside to this chipset is that RX descriptors must be
58 * longword aligned.
59 */
60
61#ifdef HAVE_KERNEL_OPTION_HEADERS
62#include "opt_device_polling.h"
63#endif
64
65#include <sys/param.h>
66#include <sys/systm.h>
67#include <sys/bus.h>
68#include <sys/endian.h>
69#include <sys/kernel.h>
70#include <sys/lock.h>
71#include <sys/malloc.h>
72#include <sys/mbuf.h>
73#include <sys/module.h>
74#include <sys/socket.h>
75#include <sys/sockio.h>
76#include <sys/sysctl.h>
77
78#include <net/if.h>
79#include <net/if_arp.h>
80#include <net/ethernet.h>
81#include <net/if_dl.h>
82#include <net/if_media.h>
83#include <net/if_types.h>
84#include <net/if_vlan_var.h>
85
86#include <net/bpf.h>
87
88#include <machine/bus.h>
89#include <machine/resource.h>
90#include <sys/rman.h>
91
92#include <dev/mii/mii.h>
93#include <dev/mii/mii_bitbang.h>
94#include <dev/mii/miivar.h>
95
96#include <dev/pci/pcireg.h>
97#include <dev/pci/pcivar.h>
98
99#define SIS_USEIOSPACE
100
101#include <dev/sis/if_sisreg.h>
102
103MODULE_DEPEND(sis, pci, 1, 1, 1);
104MODULE_DEPEND(sis, ether, 1, 1, 1);
105MODULE_DEPEND(sis, miibus, 1, 1, 1);
106
107/* "device miibus" required.  See GENERIC if you get errors here. */
108#include "miibus_if.h"
109
110#define	SIS_LOCK(_sc)		mtx_lock(&(_sc)->sis_mtx)
111#define	SIS_UNLOCK(_sc)		mtx_unlock(&(_sc)->sis_mtx)
112#define	SIS_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
113
114/*
115 * register space access macros
116 */
117#define CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sis_res[0], reg, val)
118
119#define CSR_READ_4(sc, reg)		bus_read_4(sc->sis_res[0], reg)
120
121#define CSR_READ_2(sc, reg)		bus_read_2(sc->sis_res[0], reg)
122
123#define	CSR_BARRIER(sc, reg, length, flags)				\
124	bus_barrier(sc->sis_res[0], reg, length, flags)
125
126/*
127 * Various supported device vendors/types and their names.
128 */
129static const struct sis_type sis_devs[] = {
130	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
131	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
132	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
133	{ 0, 0, NULL }
134};
135
136static int sis_detach(device_t);
137static __inline void sis_discard_rxbuf(struct sis_rxdesc *);
138static int sis_dma_alloc(struct sis_softc *);
139static void sis_dma_free(struct sis_softc *);
140static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t,
141    bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
142static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int);
143#ifndef __NO_STRICT_ALIGNMENT
144static __inline void sis_fixup_rx(struct mbuf *);
145#endif
146static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
147static int sis_ifmedia_upd(struct ifnet *);
148static void sis_init(void *);
149static void sis_initl(struct sis_softc *);
150static void sis_intr(void *);
151static int sis_ioctl(struct ifnet *, u_long, caddr_t);
152static uint32_t sis_mii_bitbang_read(device_t);
153static void sis_mii_bitbang_write(device_t, uint32_t);
154static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *);
155static int sis_resume(device_t);
156static int sis_rxeof(struct sis_softc *);
157static void sis_rxfilter(struct sis_softc *);
158static void sis_rxfilter_ns(struct sis_softc *);
159static void sis_rxfilter_sis(struct sis_softc *);
160static void sis_start(struct ifnet *);
161static void sis_startl(struct ifnet *);
162static void sis_stop(struct sis_softc *);
163static int sis_suspend(device_t);
164static void sis_add_sysctls(struct sis_softc *);
165static void sis_watchdog(struct sis_softc *);
166static void sis_wol(struct sis_softc *);
167
168/*
169 * MII bit-bang glue
170 */
171static const struct mii_bitbang_ops sis_mii_bitbang_ops = {
172	sis_mii_bitbang_read,
173	sis_mii_bitbang_write,
174	{
175		SIS_MII_DATA,		/* MII_BIT_MDO */
176		SIS_MII_DATA,		/* MII_BIT_MDI */
177		SIS_MII_CLK,		/* MII_BIT_MDC */
178		SIS_MII_DIR,		/* MII_BIT_DIR_HOST_PHY */
179		0,			/* MII_BIT_DIR_PHY_HOST */
180	}
181};
182
183static struct resource_spec sis_res_spec[] = {
184#ifdef SIS_USEIOSPACE
185	{ SYS_RES_IOPORT,	SIS_PCI_LOIO,	RF_ACTIVE},
186#else
187	{ SYS_RES_MEMORY,	SIS_PCI_LOMEM,	RF_ACTIVE},
188#endif
189	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE},
190	{ -1, 0 }
191};
192
193#define SIS_SETBIT(sc, reg, x)				\
194	CSR_WRITE_4(sc, reg,				\
195		CSR_READ_4(sc, reg) | (x))
196
197#define SIS_CLRBIT(sc, reg, x)				\
198	CSR_WRITE_4(sc, reg,				\
199		CSR_READ_4(sc, reg) & ~(x))
200
201#define SIO_SET(x)					\
202	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
203
204#define SIO_CLR(x)					\
205	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
206
207/*
208 * Routine to reverse the bits in a word. Stolen almost
209 * verbatim from /usr/games/fortune.
210 */
211static uint16_t
212sis_reverse(uint16_t n)
213{
214	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
215	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
216	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
217	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
218
219	return (n);
220}
221
222static void
223sis_delay(struct sis_softc *sc)
224{
225	int			idx;
226
227	for (idx = (300 / 33) + 1; idx > 0; idx--)
228		CSR_READ_4(sc, SIS_CSR);
229}
230
231static void
232sis_eeprom_idle(struct sis_softc *sc)
233{
234	int		i;
235
236	SIO_SET(SIS_EECTL_CSEL);
237	sis_delay(sc);
238	SIO_SET(SIS_EECTL_CLK);
239	sis_delay(sc);
240
241	for (i = 0; i < 25; i++) {
242		SIO_CLR(SIS_EECTL_CLK);
243		sis_delay(sc);
244		SIO_SET(SIS_EECTL_CLK);
245		sis_delay(sc);
246	}
247
248	SIO_CLR(SIS_EECTL_CLK);
249	sis_delay(sc);
250	SIO_CLR(SIS_EECTL_CSEL);
251	sis_delay(sc);
252	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
253}
254
255/*
256 * Send a read command and address to the EEPROM, check for ACK.
257 */
258static void
259sis_eeprom_putbyte(struct sis_softc *sc, int addr)
260{
261	int		d, i;
262
263	d = addr | SIS_EECMD_READ;
264
265	/*
266	 * Feed in each bit and stobe the clock.
267	 */
268	for (i = 0x400; i; i >>= 1) {
269		if (d & i) {
270			SIO_SET(SIS_EECTL_DIN);
271		} else {
272			SIO_CLR(SIS_EECTL_DIN);
273		}
274		sis_delay(sc);
275		SIO_SET(SIS_EECTL_CLK);
276		sis_delay(sc);
277		SIO_CLR(SIS_EECTL_CLK);
278		sis_delay(sc);
279	}
280}
281
282/*
283 * Read a word of data stored in the EEPROM at address 'addr.'
284 */
285static void
286sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
287{
288	int		i;
289	uint16_t	word = 0;
290
291	/* Force EEPROM to idle state. */
292	sis_eeprom_idle(sc);
293
294	/* Enter EEPROM access mode. */
295	sis_delay(sc);
296	SIO_CLR(SIS_EECTL_CLK);
297	sis_delay(sc);
298	SIO_SET(SIS_EECTL_CSEL);
299	sis_delay(sc);
300
301	/*
302	 * Send address of word we want to read.
303	 */
304	sis_eeprom_putbyte(sc, addr);
305
306	/*
307	 * Start reading bits from EEPROM.
308	 */
309	for (i = 0x8000; i; i >>= 1) {
310		SIO_SET(SIS_EECTL_CLK);
311		sis_delay(sc);
312		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
313			word |= i;
314		sis_delay(sc);
315		SIO_CLR(SIS_EECTL_CLK);
316		sis_delay(sc);
317	}
318
319	/* Turn off EEPROM access mode. */
320	sis_eeprom_idle(sc);
321
322	*dest = word;
323}
324
325/*
326 * Read a sequence of words from the EEPROM.
327 */
328static void
329sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
330{
331	int			i;
332	uint16_t		word = 0, *ptr;
333
334	for (i = 0; i < cnt; i++) {
335		sis_eeprom_getword(sc, off + i, &word);
336		ptr = (uint16_t *)(dest + (i * 2));
337		if (swap)
338			*ptr = ntohs(word);
339		else
340			*ptr = word;
341	}
342}
343
344#if defined(__i386__) || defined(__amd64__)
345static device_t
346sis_find_bridge(device_t dev)
347{
348	devclass_t		pci_devclass;
349	device_t		*pci_devices;
350	int			pci_count = 0;
351	device_t		*pci_children;
352	int			pci_childcount = 0;
353	device_t		*busp, *childp;
354	device_t		child = NULL;
355	int			i, j;
356
357	if ((pci_devclass = devclass_find("pci")) == NULL)
358		return (NULL);
359
360	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
361
362	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
363		if (device_get_children(*busp, &pci_children, &pci_childcount))
364			continue;
365		for (j = 0, childp = pci_children;
366		    j < pci_childcount; j++, childp++) {
367			if (pci_get_vendor(*childp) == SIS_VENDORID &&
368			    pci_get_device(*childp) == 0x0008) {
369				child = *childp;
370				free(pci_children, M_TEMP);
371				goto done;
372			}
373		}
374		free(pci_children, M_TEMP);
375	}
376
377done:
378	free(pci_devices, M_TEMP);
379	return (child);
380}
381
382static void
383sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
384{
385	device_t		bridge;
386	uint8_t			reg;
387	int			i;
388	bus_space_tag_t		btag;
389
390	bridge = sis_find_bridge(dev);
391	if (bridge == NULL)
392		return;
393	reg = pci_read_config(bridge, 0x48, 1);
394	pci_write_config(bridge, 0x48, reg|0x40, 1);
395
396	/* XXX */
397#if defined(__amd64__) || defined(__i386__)
398	btag = X86_BUS_SPACE_IO;
399#endif
400
401	for (i = 0; i < cnt; i++) {
402		bus_space_write_1(btag, 0x0, 0x70, i + off);
403		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
404	}
405
406	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
407}
408
409static void
410sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
411{
412	uint32_t		filtsave, csrsave;
413
414	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
415	csrsave = CSR_READ_4(sc, SIS_CSR);
416
417	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
418	CSR_WRITE_4(sc, SIS_CSR, 0);
419
420	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
421
422	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
423	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
424	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
425	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
426	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
427	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
428
429	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
430	CSR_WRITE_4(sc, SIS_CSR, csrsave);
431}
432#endif
433
434/*
435 * Read the MII serial port for the MII bit-bang module.
436 */
437static uint32_t
438sis_mii_bitbang_read(device_t dev)
439{
440	struct sis_softc	*sc;
441	uint32_t		val;
442
443	sc = device_get_softc(dev);
444
445	val = CSR_READ_4(sc, SIS_EECTL);
446	CSR_BARRIER(sc, SIS_EECTL, 4,
447	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
448	return (val);
449}
450
451/*
452 * Write the MII serial port for the MII bit-bang module.
453 */
454static void
455sis_mii_bitbang_write(device_t dev, uint32_t val)
456{
457	struct sis_softc	*sc;
458
459	sc = device_get_softc(dev);
460
461	CSR_WRITE_4(sc, SIS_EECTL, val);
462	CSR_BARRIER(sc, SIS_EECTL, 4,
463	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
464}
465
466static int
467sis_miibus_readreg(device_t dev, int phy, int reg)
468{
469	struct sis_softc	*sc;
470
471	sc = device_get_softc(dev);
472
473	if (sc->sis_type == SIS_TYPE_83815) {
474		if (phy != 0)
475			return (0);
476		/*
477		 * The NatSemi chip can take a while after
478		 * a reset to come ready, during which the BMSR
479		 * returns a value of 0. This is *never* supposed
480		 * to happen: some of the BMSR bits are meant to
481		 * be hardwired in the on position, and this can
482		 * confuse the miibus code a bit during the probe
483		 * and attach phase. So we make an effort to check
484		 * for this condition and wait for it to clear.
485		 */
486		if (!CSR_READ_4(sc, NS_BMSR))
487			DELAY(1000);
488		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
489	}
490
491	/*
492	 * Chipsets < SIS_635 seem not to be able to read/write
493	 * through mdio. Use the enhanced PHY access register
494	 * again for them.
495	 */
496	if (sc->sis_type == SIS_TYPE_900 &&
497	    sc->sis_rev < SIS_REV_635) {
498		int i, val = 0;
499
500		if (phy != 0)
501			return (0);
502
503		CSR_WRITE_4(sc, SIS_PHYCTL,
504		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
505		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
506
507		for (i = 0; i < SIS_TIMEOUT; i++) {
508			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
509				break;
510		}
511
512		if (i == SIS_TIMEOUT) {
513			device_printf(sc->sis_dev,
514			    "PHY failed to come ready\n");
515			return (0);
516		}
517
518		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
519
520		if (val == 0xFFFF)
521			return (0);
522
523		return (val);
524	} else
525		return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy,
526		    reg));
527}
528
529static int
530sis_miibus_writereg(device_t dev, int phy, int reg, int data)
531{
532	struct sis_softc	*sc;
533
534	sc = device_get_softc(dev);
535
536	if (sc->sis_type == SIS_TYPE_83815) {
537		if (phy != 0)
538			return (0);
539		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
540		return (0);
541	}
542
543	/*
544	 * Chipsets < SIS_635 seem not to be able to read/write
545	 * through mdio. Use the enhanced PHY access register
546	 * again for them.
547	 */
548	if (sc->sis_type == SIS_TYPE_900 &&
549	    sc->sis_rev < SIS_REV_635) {
550		int i;
551
552		if (phy != 0)
553			return (0);
554
555		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
556		    (reg << 6) | SIS_PHYOP_WRITE);
557		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
558
559		for (i = 0; i < SIS_TIMEOUT; i++) {
560			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
561				break;
562		}
563
564		if (i == SIS_TIMEOUT)
565			device_printf(sc->sis_dev,
566			    "PHY failed to come ready\n");
567	} else
568		mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg,
569		    data);
570	return (0);
571}
572
573static void
574sis_miibus_statchg(device_t dev)
575{
576	struct sis_softc	*sc;
577	struct mii_data		*mii;
578	struct ifnet		*ifp;
579	uint32_t		reg;
580
581	sc = device_get_softc(dev);
582	SIS_LOCK_ASSERT(sc);
583
584	mii = device_get_softc(sc->sis_miibus);
585	ifp = sc->sis_ifp;
586	if (mii == NULL || ifp == NULL ||
587	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
588		return;
589
590	sc->sis_flags &= ~SIS_FLAG_LINK;
591	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
592	    (IFM_ACTIVE | IFM_AVALID)) {
593		switch (IFM_SUBTYPE(mii->mii_media_active)) {
594		case IFM_10_T:
595			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
596			sc->sis_flags |= SIS_FLAG_LINK;
597			break;
598		case IFM_100_TX:
599			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
600			sc->sis_flags |= SIS_FLAG_LINK;
601			break;
602		default:
603			break;
604		}
605	}
606
607	if ((sc->sis_flags & SIS_FLAG_LINK) == 0) {
608		/*
609		 * Stopping MACs seem to reset SIS_TX_LISTPTR and
610		 * SIS_RX_LISTPTR which in turn requires resetting
611		 * TX/RX buffers.  So just don't do anything for
612		 * lost link.
613		 */
614		return;
615	}
616
617	/* Set full/half duplex mode. */
618	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
619		SIS_SETBIT(sc, SIS_TX_CFG,
620		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
621		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
622	} else {
623		SIS_CLRBIT(sc, SIS_TX_CFG,
624		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
625		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
626	}
627
628	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
629		/*
630		 * MPII03.D: Half Duplex Excessive Collisions.
631		 * Also page 49 in 83816 manual
632		 */
633		SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
634	}
635
636	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
637	    IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
638		/*
639		 * Short Cable Receive Errors (MP21.E)
640		 */
641		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
642		reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
643		CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
644		DELAY(100);
645		reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
646		if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
647			device_printf(sc->sis_dev,
648			    "Applying short cable fix (reg=%x)\n", reg);
649			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
650			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
651		}
652		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
653	}
654	/* Enable TX/RX MACs. */
655	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
656	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE);
657}
658
659static uint32_t
660sis_mchash(struct sis_softc *sc, const uint8_t *addr)
661{
662	uint32_t		crc;
663
664	/* Compute CRC for the address value. */
665	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
666
667	/*
668	 * return the filter bit position
669	 *
670	 * The NatSemi chip has a 512-bit filter, which is
671	 * different than the SiS, so we special-case it.
672	 */
673	if (sc->sis_type == SIS_TYPE_83815)
674		return (crc >> 23);
675	else if (sc->sis_rev >= SIS_REV_635 ||
676	    sc->sis_rev == SIS_REV_900B)
677		return (crc >> 24);
678	else
679		return (crc >> 25);
680}
681
682static void
683sis_rxfilter(struct sis_softc *sc)
684{
685
686	SIS_LOCK_ASSERT(sc);
687
688	if (sc->sis_type == SIS_TYPE_83815)
689		sis_rxfilter_ns(sc);
690	else
691		sis_rxfilter_sis(sc);
692}
693
694static void
695sis_rxfilter_ns(struct sis_softc *sc)
696{
697	struct ifnet		*ifp;
698	struct ifmultiaddr	*ifma;
699	uint32_t		h, i, filter;
700	int			bit, index;
701
702	ifp = sc->sis_ifp;
703	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
704	if (filter & SIS_RXFILTCTL_ENABLE) {
705		/*
706		 * Filter should be disabled to program other bits.
707		 */
708		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
709		CSR_READ_4(sc, SIS_RXFILT_CTL);
710	}
711	filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT |
712	    NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
713	    SIS_RXFILTCTL_ALLMULTI);
714
715	if (ifp->if_flags & IFF_BROADCAST)
716		filter |= SIS_RXFILTCTL_BROAD;
717	/*
718	 * For the NatSemi chip, we have to explicitly enable the
719	 * reception of ARP frames, as well as turn on the 'perfect
720	 * match' filter where we store the station address, otherwise
721	 * we won't receive unicasts meant for this host.
722	 */
723	filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT;
724
725	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
726		filter |= SIS_RXFILTCTL_ALLMULTI;
727		if (ifp->if_flags & IFF_PROMISC)
728			filter |= SIS_RXFILTCTL_ALLPHYS;
729	} else {
730		/*
731		 * We have to explicitly enable the multicast hash table
732		 * on the NatSemi chip if we want to use it, which we do.
733		 */
734		filter |= NS_RXFILTCTL_MCHASH;
735
736		/* first, zot all the existing hash bits */
737		for (i = 0; i < 32; i++) {
738			CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
739			    (i * 2));
740			CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
741		}
742
743		if_maddr_rlock(ifp);
744		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
745			if (ifma->ifma_addr->sa_family != AF_LINK)
746				continue;
747			h = sis_mchash(sc,
748			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
749			index = h >> 3;
750			bit = h & 0x1F;
751			CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
752			    index);
753			if (bit > 0xF)
754				bit -= 0x10;
755			SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
756		}
757		if_maddr_runlock(ifp);
758	}
759
760	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter);
761	CSR_READ_4(sc, SIS_RXFILT_CTL);
762}
763
764static void
765sis_rxfilter_sis(struct sis_softc *sc)
766{
767	struct ifnet		*ifp;
768	struct ifmultiaddr	*ifma;
769	uint32_t		filter, h, i, n;
770	uint16_t		hashes[16];
771
772	ifp = sc->sis_ifp;
773
774	/* hash table size */
775	if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
776		n = 16;
777	else
778		n = 8;
779
780	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
781	if (filter & SIS_RXFILTCTL_ENABLE) {
782		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILT_CTL);
783		CSR_READ_4(sc, SIS_RXFILT_CTL);
784	}
785	filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
786	    SIS_RXFILTCTL_ALLMULTI);
787	if (ifp->if_flags & IFF_BROADCAST)
788		filter |= SIS_RXFILTCTL_BROAD;
789
790	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
791		filter |= SIS_RXFILTCTL_ALLMULTI;
792		if (ifp->if_flags & IFF_PROMISC)
793			filter |= SIS_RXFILTCTL_ALLPHYS;
794		for (i = 0; i < n; i++)
795			hashes[i] = ~0;
796	} else {
797		for (i = 0; i < n; i++)
798			hashes[i] = 0;
799		i = 0;
800		if_maddr_rlock(ifp);
801		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
802			if (ifma->ifma_addr->sa_family != AF_LINK)
803			continue;
804			h = sis_mchash(sc,
805			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
806			hashes[h >> 4] |= 1 << (h & 0xf);
807			i++;
808		}
809		if_maddr_runlock(ifp);
810		if (i > n) {
811			filter |= SIS_RXFILTCTL_ALLMULTI;
812			for (i = 0; i < n; i++)
813				hashes[i] = ~0;
814		}
815	}
816
817	for (i = 0; i < n; i++) {
818		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
819		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
820	}
821
822	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter);
823	CSR_READ_4(sc, SIS_RXFILT_CTL);
824}
825
826static void
827sis_reset(struct sis_softc *sc)
828{
829	int		i;
830
831	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
832
833	for (i = 0; i < SIS_TIMEOUT; i++) {
834		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
835			break;
836	}
837
838	if (i == SIS_TIMEOUT)
839		device_printf(sc->sis_dev, "reset never completed\n");
840
841	/* Wait a little while for the chip to get its brains in order. */
842	DELAY(1000);
843
844	/*
845	 * If this is a NetSemi chip, make sure to clear
846	 * PME mode.
847	 */
848	if (sc->sis_type == SIS_TYPE_83815) {
849		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
850		CSR_WRITE_4(sc, NS_CLKRUN, 0);
851	} else {
852		/* Disable WOL functions. */
853		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0);
854	}
855}
856
857/*
858 * Probe for an SiS chip. Check the PCI vendor and device
859 * IDs against our list and return a device name if we find a match.
860 */
861static int
862sis_probe(device_t dev)
863{
864	const struct sis_type	*t;
865
866	t = sis_devs;
867
868	while (t->sis_name != NULL) {
869		if ((pci_get_vendor(dev) == t->sis_vid) &&
870		    (pci_get_device(dev) == t->sis_did)) {
871			device_set_desc(dev, t->sis_name);
872			return (BUS_PROBE_DEFAULT);
873		}
874		t++;
875	}
876
877	return (ENXIO);
878}
879
880/*
881 * Attach the interface. Allocate softc structures, do ifmedia
882 * setup and ethernet/BPF attach.
883 */
884static int
885sis_attach(device_t dev)
886{
887	u_char			eaddr[ETHER_ADDR_LEN];
888	struct sis_softc	*sc;
889	struct ifnet		*ifp;
890	int			error = 0, pmc, waittime = 0;
891
892	waittime = 0;
893	sc = device_get_softc(dev);
894
895	sc->sis_dev = dev;
896
897	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
898	    MTX_DEF);
899	callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
900
901	if (pci_get_device(dev) == SIS_DEVICEID_900)
902		sc->sis_type = SIS_TYPE_900;
903	if (pci_get_device(dev) == SIS_DEVICEID_7016)
904		sc->sis_type = SIS_TYPE_7016;
905	if (pci_get_vendor(dev) == NS_VENDORID)
906		sc->sis_type = SIS_TYPE_83815;
907
908	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
909	/*
910	 * Map control/status registers.
911	 */
912	pci_enable_busmaster(dev);
913
914	error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
915	if (error) {
916		device_printf(dev, "couldn't allocate resources\n");
917		goto fail;
918	}
919
920	/* Reset the adapter. */
921	sis_reset(sc);
922
923	if (sc->sis_type == SIS_TYPE_900 &&
924	    (sc->sis_rev == SIS_REV_635 ||
925	    sc->sis_rev == SIS_REV_900B)) {
926		SIO_SET(SIS_CFG_RND_CNT);
927		SIO_SET(SIS_CFG_PERR_DETECT);
928	}
929
930	/*
931	 * Get station address from the EEPROM.
932	 */
933	switch (pci_get_vendor(dev)) {
934	case NS_VENDORID:
935		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
936
937		/* We can't update the device description, so spew */
938		if (sc->sis_srr == NS_SRR_15C)
939			device_printf(dev, "Silicon Revision: DP83815C\n");
940		else if (sc->sis_srr == NS_SRR_15D)
941			device_printf(dev, "Silicon Revision: DP83815D\n");
942		else if (sc->sis_srr == NS_SRR_16A)
943			device_printf(dev, "Silicon Revision: DP83816A\n");
944		else
945			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
946
947		/*
948		 * Reading the MAC address out of the EEPROM on
949		 * the NatSemi chip takes a bit more work than
950		 * you'd expect. The address spans 4 16-bit words,
951		 * with the first word containing only a single bit.
952		 * You have to shift everything over one bit to
953		 * get it aligned properly. Also, the bits are
954		 * stored backwards (the LSB is really the MSB,
955		 * and so on) so you have to reverse them in order
956		 * to get the MAC address into the form we want.
957		 * Why? Who the hell knows.
958		 */
959		{
960			uint16_t		tmp[4];
961
962			sis_read_eeprom(sc, (caddr_t)&tmp,
963			    NS_EE_NODEADDR, 4, 0);
964
965			/* Shift everything over one bit. */
966			tmp[3] = tmp[3] >> 1;
967			tmp[3] |= tmp[2] << 15;
968			tmp[2] = tmp[2] >> 1;
969			tmp[2] |= tmp[1] << 15;
970			tmp[1] = tmp[1] >> 1;
971			tmp[1] |= tmp[0] << 15;
972
973			/* Now reverse all the bits. */
974			tmp[3] = sis_reverse(tmp[3]);
975			tmp[2] = sis_reverse(tmp[2]);
976			tmp[1] = sis_reverse(tmp[1]);
977
978			eaddr[0] = (tmp[1] >> 0) & 0xFF;
979			eaddr[1] = (tmp[1] >> 8) & 0xFF;
980			eaddr[2] = (tmp[2] >> 0) & 0xFF;
981			eaddr[3] = (tmp[2] >> 8) & 0xFF;
982			eaddr[4] = (tmp[3] >> 0) & 0xFF;
983			eaddr[5] = (tmp[3] >> 8) & 0xFF;
984		}
985		break;
986	case SIS_VENDORID:
987	default:
988#if defined(__i386__) || defined(__amd64__)
989		/*
990		 * If this is a SiS 630E chipset with an embedded
991		 * SiS 900 controller, we have to read the MAC address
992		 * from the APC CMOS RAM. Our method for doing this
993		 * is very ugly since we have to reach out and grab
994		 * ahold of hardware for which we cannot properly
995		 * allocate resources. This code is only compiled on
996		 * the i386 architecture since the SiS 630E chipset
997		 * is for x86 motherboards only. Note that there are
998		 * a lot of magic numbers in this hack. These are
999		 * taken from SiS's Linux driver. I'd like to replace
1000		 * them with proper symbolic definitions, but that
1001		 * requires some datasheets that I don't have access
1002		 * to at the moment.
1003		 */
1004		if (sc->sis_rev == SIS_REV_630S ||
1005		    sc->sis_rev == SIS_REV_630E ||
1006		    sc->sis_rev == SIS_REV_630EA1)
1007			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1008
1009		else if (sc->sis_rev == SIS_REV_635 ||
1010			 sc->sis_rev == SIS_REV_630ET)
1011			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1012		else if (sc->sis_rev == SIS_REV_96x) {
1013			/* Allow to read EEPROM from LAN. It is shared
1014			 * between a 1394 controller and the NIC and each
1015			 * time we access it, we need to set SIS_EECMD_REQ.
1016			 */
1017			SIO_SET(SIS_EECMD_REQ);
1018			for (waittime = 0; waittime < SIS_TIMEOUT;
1019			    waittime++) {
1020				/* Force EEPROM to idle state. */
1021				sis_eeprom_idle(sc);
1022				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1023					sis_read_eeprom(sc, (caddr_t)&eaddr,
1024					    SIS_EE_NODEADDR, 3, 0);
1025					break;
1026				}
1027				DELAY(1);
1028			}
1029			/*
1030			 * Set SIS_EECTL_CLK to high, so a other master
1031			 * can operate on the i2c bus.
1032			 */
1033			SIO_SET(SIS_EECTL_CLK);
1034			/* Refuse EEPROM access by LAN */
1035			SIO_SET(SIS_EECMD_DONE);
1036		} else
1037#endif
1038			sis_read_eeprom(sc, (caddr_t)&eaddr,
1039			    SIS_EE_NODEADDR, 3, 0);
1040		break;
1041	}
1042
1043	sis_add_sysctls(sc);
1044
1045	/* Allocate DMA'able memory. */
1046	if ((error = sis_dma_alloc(sc)) != 0)
1047		goto fail;
1048
1049	ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1050	if (ifp == NULL) {
1051		device_printf(dev, "can not if_alloc()\n");
1052		error = ENOSPC;
1053		goto fail;
1054	}
1055	ifp->if_softc = sc;
1056	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1057	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1058	ifp->if_ioctl = sis_ioctl;
1059	ifp->if_start = sis_start;
1060	ifp->if_init = sis_init;
1061	IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1062	ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1063	IFQ_SET_READY(&ifp->if_snd);
1064
1065	if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) {
1066		if (sc->sis_type == SIS_TYPE_83815)
1067			ifp->if_capabilities |= IFCAP_WOL;
1068		else
1069			ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1070		ifp->if_capenable = ifp->if_capabilities;
1071	}
1072
1073	/*
1074	 * Do MII setup.
1075	 */
1076	error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd,
1077	    sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1078	if (error != 0) {
1079		device_printf(dev, "attaching PHYs failed\n");
1080		goto fail;
1081	}
1082
1083	/*
1084	 * Call MI attach routine.
1085	 */
1086	ether_ifattach(ifp, eaddr);
1087
1088	/*
1089	 * Tell the upper layer(s) we support long frames.
1090	 */
1091	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1092	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1093	ifp->if_capenable = ifp->if_capabilities;
1094#ifdef DEVICE_POLLING
1095	ifp->if_capabilities |= IFCAP_POLLING;
1096#endif
1097
1098	/* Hook interrupt last to avoid having to lock softc */
1099	error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1100	    NULL, sis_intr, sc, &sc->sis_intrhand);
1101
1102	if (error) {
1103		device_printf(dev, "couldn't set up irq\n");
1104		ether_ifdetach(ifp);
1105		goto fail;
1106	}
1107
1108fail:
1109	if (error)
1110		sis_detach(dev);
1111
1112	return (error);
1113}
1114
1115/*
1116 * Shutdown hardware and free up resources. This can be called any
1117 * time after the mutex has been initialized. It is called in both
1118 * the error case in attach and the normal detach case so it needs
1119 * to be careful about only freeing resources that have actually been
1120 * allocated.
1121 */
1122static int
1123sis_detach(device_t dev)
1124{
1125	struct sis_softc	*sc;
1126	struct ifnet		*ifp;
1127
1128	sc = device_get_softc(dev);
1129	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1130	ifp = sc->sis_ifp;
1131
1132#ifdef DEVICE_POLLING
1133	if (ifp->if_capenable & IFCAP_POLLING)
1134		ether_poll_deregister(ifp);
1135#endif
1136
1137	/* These should only be active if attach succeeded. */
1138	if (device_is_attached(dev)) {
1139		SIS_LOCK(sc);
1140		sis_stop(sc);
1141		SIS_UNLOCK(sc);
1142		callout_drain(&sc->sis_stat_ch);
1143		ether_ifdetach(ifp);
1144	}
1145	if (sc->sis_miibus)
1146		device_delete_child(dev, sc->sis_miibus);
1147	bus_generic_detach(dev);
1148
1149	if (sc->sis_intrhand)
1150		bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1151	bus_release_resources(dev, sis_res_spec, sc->sis_res);
1152
1153	if (ifp)
1154		if_free(ifp);
1155
1156	sis_dma_free(sc);
1157
1158	mtx_destroy(&sc->sis_mtx);
1159
1160	return (0);
1161}
1162
1163struct sis_dmamap_arg {
1164	bus_addr_t	sis_busaddr;
1165};
1166
1167static void
1168sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1169{
1170	struct sis_dmamap_arg	*ctx;
1171
1172	if (error != 0)
1173		return;
1174
1175	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1176
1177	ctx = (struct sis_dmamap_arg *)arg;
1178	ctx->sis_busaddr = segs[0].ds_addr;
1179}
1180
1181static int
1182sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment,
1183    bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
1184    bus_addr_t *paddr, const char *msg)
1185{
1186	struct sis_dmamap_arg	ctx;
1187	int			error;
1188
1189	error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0,
1190	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1,
1191	    maxsize, 0, NULL, NULL, tag);
1192	if (error != 0) {
1193		device_printf(sc->sis_dev,
1194		    "could not create %s dma tag\n", msg);
1195		return (ENOMEM);
1196	}
1197	/* Allocate DMA'able memory for ring. */
1198	error = bus_dmamem_alloc(*tag, (void **)ring,
1199	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1200	if (error != 0) {
1201		device_printf(sc->sis_dev,
1202		    "could not allocate DMA'able memory for %s\n", msg);
1203		return (ENOMEM);
1204	}
1205	/* Load the address of the ring. */
1206	ctx.sis_busaddr = 0;
1207	error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb,
1208	    &ctx, BUS_DMA_NOWAIT);
1209	if (error != 0) {
1210		device_printf(sc->sis_dev,
1211		    "could not load DMA'able memory for %s\n", msg);
1212		return (ENOMEM);
1213	}
1214	*paddr = ctx.sis_busaddr;
1215	return (0);
1216}
1217
1218static int
1219sis_dma_alloc(struct sis_softc *sc)
1220{
1221	struct sis_rxdesc	*rxd;
1222	struct sis_txdesc	*txd;
1223	int			error, i;
1224
1225	/* Allocate the parent bus DMA tag appropriate for PCI. */
1226	error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev),
1227	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1228	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
1229	    0, NULL, NULL, &sc->sis_parent_tag);
1230	if (error != 0) {
1231		device_printf(sc->sis_dev,
1232		    "could not allocate parent dma tag\n");
1233		return (ENOMEM);
1234	}
1235
1236	/* Create RX ring. */
1237	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ,
1238	    &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list,
1239	    &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring");
1240	if (error)
1241		return (error);
1242
1243	/* Create TX ring. */
1244	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ,
1245	    &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list,
1246	    &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring");
1247	if (error)
1248		return (error);
1249
1250	/* Create tag for RX mbufs. */
1251	error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0,
1252	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1253	    MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag);
1254	if (error) {
1255		device_printf(sc->sis_dev, "could not allocate RX dma tag\n");
1256		return (error);
1257	}
1258
1259	/* Create tag for TX mbufs. */
1260	error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0,
1261	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1262	    MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1263	    &sc->sis_tx_tag);
1264	if (error) {
1265		device_printf(sc->sis_dev, "could not allocate TX dma tag\n");
1266		return (error);
1267	}
1268
1269	/* Create DMA maps for RX buffers. */
1270	error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap);
1271	if (error) {
1272		device_printf(sc->sis_dev,
1273		    "can't create spare DMA map for RX\n");
1274		return (error);
1275	}
1276	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1277		rxd = &sc->sis_rxdesc[i];
1278		rxd->rx_m = NULL;
1279		error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap);
1280		if (error) {
1281			device_printf(sc->sis_dev,
1282			    "can't create DMA map for RX\n");
1283			return (error);
1284		}
1285	}
1286
1287	/* Create DMA maps for TX buffers. */
1288	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1289		txd = &sc->sis_txdesc[i];
1290		txd->tx_m = NULL;
1291		error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap);
1292		if (error) {
1293			device_printf(sc->sis_dev,
1294			    "can't create DMA map for TX\n");
1295			return (error);
1296		}
1297	}
1298
1299	return (0);
1300}
1301
1302static void
1303sis_dma_free(struct sis_softc *sc)
1304{
1305	struct sis_rxdesc	*rxd;
1306	struct sis_txdesc	*txd;
1307	int			i;
1308
1309	/* Destroy DMA maps for RX buffers. */
1310	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1311		rxd = &sc->sis_rxdesc[i];
1312		if (rxd->rx_dmamap)
1313			bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap);
1314	}
1315	if (sc->sis_rx_sparemap)
1316		bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap);
1317
1318	/* Destroy DMA maps for TX buffers. */
1319	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1320		txd = &sc->sis_txdesc[i];
1321		if (txd->tx_dmamap)
1322			bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap);
1323	}
1324
1325	if (sc->sis_rx_tag)
1326		bus_dma_tag_destroy(sc->sis_rx_tag);
1327	if (sc->sis_tx_tag)
1328		bus_dma_tag_destroy(sc->sis_tx_tag);
1329
1330	/* Destroy RX ring. */
1331	if (sc->sis_rx_list_map)
1332		bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map);
1333	if (sc->sis_rx_list_map && sc->sis_rx_list)
1334		bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list,
1335		    sc->sis_rx_list_map);
1336
1337	if (sc->sis_rx_list_tag)
1338		bus_dma_tag_destroy(sc->sis_rx_list_tag);
1339
1340	/* Destroy TX ring. */
1341	if (sc->sis_tx_list_map)
1342		bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map);
1343
1344	if (sc->sis_tx_list_map && sc->sis_tx_list)
1345		bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list,
1346		    sc->sis_tx_list_map);
1347
1348	if (sc->sis_tx_list_tag)
1349		bus_dma_tag_destroy(sc->sis_tx_list_tag);
1350
1351	/* Destroy the parent tag. */
1352	if (sc->sis_parent_tag)
1353		bus_dma_tag_destroy(sc->sis_parent_tag);
1354}
1355
1356/*
1357 * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1358 * we arrange the descriptors in a closed ring, so that the last descriptor
1359 * points back to the first.
1360 */
1361static int
1362sis_ring_init(struct sis_softc *sc)
1363{
1364	struct sis_rxdesc	*rxd;
1365	struct sis_txdesc	*txd;
1366	bus_addr_t		next;
1367	int			error, i;
1368
1369	bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ);
1370	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1371		txd = &sc->sis_txdesc[i];
1372		txd->tx_m = NULL;
1373		if (i == SIS_TX_LIST_CNT - 1)
1374			next = SIS_TX_RING_ADDR(sc, 0);
1375		else
1376			next = SIS_TX_RING_ADDR(sc, i + 1);
1377		sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next));
1378	}
1379	sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1380	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1381	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1382
1383	sc->sis_rx_cons = 0;
1384	bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ);
1385	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1386		rxd = &sc->sis_rxdesc[i];
1387		rxd->rx_desc = &sc->sis_rx_list[i];
1388		if (i == SIS_RX_LIST_CNT - 1)
1389			next = SIS_RX_RING_ADDR(sc, 0);
1390		else
1391			next = SIS_RX_RING_ADDR(sc, i + 1);
1392		rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next));
1393		error = sis_newbuf(sc, rxd);
1394		if (error)
1395			return (error);
1396	}
1397	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1398	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1399
1400	return (0);
1401}
1402
1403/*
1404 * Initialize an RX descriptor and attach an MBUF cluster.
1405 */
1406static int
1407sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd)
1408{
1409	struct mbuf		*m;
1410	bus_dma_segment_t	segs[1];
1411	bus_dmamap_t		map;
1412	int nsegs;
1413
1414	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1415	if (m == NULL)
1416		return (ENOBUFS);
1417	m->m_len = m->m_pkthdr.len = SIS_RXLEN;
1418#ifndef __NO_STRICT_ALIGNMENT
1419	m_adj(m, SIS_RX_BUF_ALIGN);
1420#endif
1421
1422	if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m,
1423	    segs, &nsegs, 0) != 0) {
1424		m_freem(m);
1425		return (ENOBUFS);
1426	}
1427	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1428
1429	if (rxd->rx_m != NULL) {
1430		bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
1431		    BUS_DMASYNC_POSTREAD);
1432		bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
1433	}
1434	map = rxd->rx_dmamap;
1435	rxd->rx_dmamap = sc->sis_rx_sparemap;
1436	sc->sis_rx_sparemap = map;
1437	bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD);
1438	rxd->rx_m = m;
1439	rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr));
1440	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1441	return (0);
1442}
1443
1444static __inline void
1445sis_discard_rxbuf(struct sis_rxdesc *rxd)
1446{
1447
1448	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1449}
1450
1451#ifndef __NO_STRICT_ALIGNMENT
1452static __inline void
1453sis_fixup_rx(struct mbuf *m)
1454{
1455	uint16_t		*src, *dst;
1456	int			i;
1457
1458	src = mtod(m, uint16_t *);
1459	dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src);
1460
1461	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1462		*dst++ = *src++;
1463
1464	m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN;
1465}
1466#endif
1467
1468/*
1469 * A frame has been uploaded: pass the resulting mbuf chain up to
1470 * the higher level protocols.
1471 */
1472static int
1473sis_rxeof(struct sis_softc *sc)
1474{
1475	struct mbuf		*m;
1476	struct ifnet		*ifp;
1477	struct sis_rxdesc	*rxd;
1478	struct sis_desc		*cur_rx;
1479	int			prog, rx_cons, rx_npkts = 0, total_len;
1480	uint32_t		rxstat;
1481
1482	SIS_LOCK_ASSERT(sc);
1483
1484	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1485	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1486
1487	rx_cons = sc->sis_rx_cons;
1488	ifp = sc->sis_ifp;
1489
1490	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1491	    SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) {
1492#ifdef DEVICE_POLLING
1493		if (ifp->if_capenable & IFCAP_POLLING) {
1494			if (sc->rxcycles <= 0)
1495				break;
1496			sc->rxcycles--;
1497		}
1498#endif
1499		cur_rx = &sc->sis_rx_list[rx_cons];
1500		rxstat = le32toh(cur_rx->sis_cmdsts);
1501		if ((rxstat & SIS_CMDSTS_OWN) == 0)
1502			break;
1503		rxd = &sc->sis_rxdesc[rx_cons];
1504
1505		total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN;
1506		if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
1507		    total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
1508		    ETHER_CRC_LEN))
1509			rxstat &= ~SIS_RXSTAT_GIANT;
1510		if (SIS_RXSTAT_ERROR(rxstat) != 0) {
1511			ifp->if_ierrors++;
1512			if (rxstat & SIS_RXSTAT_COLL)
1513				ifp->if_collisions++;
1514			sis_discard_rxbuf(rxd);
1515			continue;
1516		}
1517
1518		/* Add a new receive buffer to the ring. */
1519		m = rxd->rx_m;
1520		if (sis_newbuf(sc, rxd) != 0) {
1521			ifp->if_iqdrops++;
1522			sis_discard_rxbuf(rxd);
1523			continue;
1524		}
1525
1526		/* No errors; receive the packet. */
1527		m->m_pkthdr.len = m->m_len = total_len;
1528#ifndef __NO_STRICT_ALIGNMENT
1529		/*
1530		 * On architectures without alignment problems we try to
1531		 * allocate a new buffer for the receive ring, and pass up
1532		 * the one where the packet is already, saving the expensive
1533		 * copy operation.
1534		 */
1535		sis_fixup_rx(m);
1536#endif
1537		ifp->if_ipackets++;
1538		m->m_pkthdr.rcvif = ifp;
1539
1540		SIS_UNLOCK(sc);
1541		(*ifp->if_input)(ifp, m);
1542		SIS_LOCK(sc);
1543		rx_npkts++;
1544	}
1545
1546	if (prog > 0) {
1547		sc->sis_rx_cons = rx_cons;
1548		bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1549		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1550	}
1551
1552	return (rx_npkts);
1553}
1554
1555/*
1556 * A frame was downloaded to the chip. It's safe for us to clean up
1557 * the list buffers.
1558 */
1559
1560static void
1561sis_txeof(struct sis_softc *sc)
1562{
1563	struct ifnet		*ifp;
1564	struct sis_desc		*cur_tx;
1565	struct sis_txdesc	*txd;
1566	uint32_t		cons, txstat;
1567
1568	SIS_LOCK_ASSERT(sc);
1569
1570	cons = sc->sis_tx_cons;
1571	if (cons == sc->sis_tx_prod)
1572		return;
1573
1574	ifp = sc->sis_ifp;
1575	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1576	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1577
1578	/*
1579	 * Go through our tx list and free mbufs for those
1580	 * frames that have been transmitted.
1581	 */
1582	for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) {
1583		cur_tx = &sc->sis_tx_list[cons];
1584		txstat = le32toh(cur_tx->sis_cmdsts);
1585		if ((txstat & SIS_CMDSTS_OWN) != 0)
1586			break;
1587		txd = &sc->sis_txdesc[cons];
1588		if (txd->tx_m != NULL) {
1589			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
1590			    BUS_DMASYNC_POSTWRITE);
1591			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1592			m_freem(txd->tx_m);
1593			txd->tx_m = NULL;
1594			if ((txstat & SIS_CMDSTS_PKT_OK) != 0) {
1595				ifp->if_opackets++;
1596				ifp->if_collisions +=
1597				    (txstat & SIS_TXSTAT_COLLCNT) >> 16;
1598			} else {
1599				ifp->if_oerrors++;
1600				if (txstat & SIS_TXSTAT_EXCESSCOLLS)
1601					ifp->if_collisions++;
1602				if (txstat & SIS_TXSTAT_OUTOFWINCOLL)
1603					ifp->if_collisions++;
1604			}
1605		}
1606		sc->sis_tx_cnt--;
1607		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1608	}
1609	sc->sis_tx_cons = cons;
1610	if (sc->sis_tx_cnt == 0)
1611		sc->sis_watchdog_timer = 0;
1612}
1613
1614static void
1615sis_tick(void *xsc)
1616{
1617	struct sis_softc	*sc;
1618	struct mii_data		*mii;
1619	struct ifnet		*ifp;
1620
1621	sc = xsc;
1622	SIS_LOCK_ASSERT(sc);
1623	ifp = sc->sis_ifp;
1624
1625	mii = device_get_softc(sc->sis_miibus);
1626	mii_tick(mii);
1627	sis_watchdog(sc);
1628	if ((sc->sis_flags & SIS_FLAG_LINK) == 0)
1629		sis_miibus_statchg(sc->sis_dev);
1630	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1631}
1632
1633#ifdef DEVICE_POLLING
1634static poll_handler_t sis_poll;
1635
1636static int
1637sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1638{
1639	struct	sis_softc *sc = ifp->if_softc;
1640	int rx_npkts = 0;
1641
1642	SIS_LOCK(sc);
1643	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1644		SIS_UNLOCK(sc);
1645		return (rx_npkts);
1646	}
1647
1648	/*
1649	 * On the sis, reading the status register also clears it.
1650	 * So before returning to intr mode we must make sure that all
1651	 * possible pending sources of interrupts have been served.
1652	 * In practice this means run to completion the *eof routines,
1653	 * and then call the interrupt routine
1654	 */
1655	sc->rxcycles = count;
1656	rx_npkts = sis_rxeof(sc);
1657	sis_txeof(sc);
1658	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1659		sis_startl(ifp);
1660
1661	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1662		uint32_t	status;
1663
1664		/* Reading the ISR register clears all interrupts. */
1665		status = CSR_READ_4(sc, SIS_ISR);
1666
1667		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1668			ifp->if_ierrors++;
1669
1670		if (status & (SIS_ISR_RX_IDLE))
1671			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1672
1673		if (status & SIS_ISR_SYSERR) {
1674			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1675			sis_initl(sc);
1676		}
1677	}
1678
1679	SIS_UNLOCK(sc);
1680	return (rx_npkts);
1681}
1682#endif /* DEVICE_POLLING */
1683
1684static void
1685sis_intr(void *arg)
1686{
1687	struct sis_softc	*sc;
1688	struct ifnet		*ifp;
1689	uint32_t		status;
1690
1691	sc = arg;
1692	ifp = sc->sis_ifp;
1693
1694	SIS_LOCK(sc);
1695#ifdef DEVICE_POLLING
1696	if (ifp->if_capenable & IFCAP_POLLING) {
1697		SIS_UNLOCK(sc);
1698		return;
1699	}
1700#endif
1701
1702	/* Reading the ISR register clears all interrupts. */
1703	status = CSR_READ_4(sc, SIS_ISR);
1704	if ((status & SIS_INTRS) == 0) {
1705		/* Not ours. */
1706		SIS_UNLOCK(sc);
1707		return;
1708	}
1709
1710	/* Disable interrupts. */
1711	CSR_WRITE_4(sc, SIS_IER, 0);
1712
1713	for (;(status & SIS_INTRS) != 0;) {
1714		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1715			break;
1716		if (status &
1717		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1718		    SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1719			sis_txeof(sc);
1720
1721		if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
1722		    SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
1723			sis_rxeof(sc);
1724
1725		if (status & SIS_ISR_RX_OFLOW)
1726			ifp->if_ierrors++;
1727
1728		if (status & (SIS_ISR_RX_IDLE))
1729			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1730
1731		if (status & SIS_ISR_SYSERR) {
1732			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1733			sis_initl(sc);
1734			SIS_UNLOCK(sc);
1735			return;
1736		}
1737		status = CSR_READ_4(sc, SIS_ISR);
1738	}
1739
1740	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1741		/* Re-enable interrupts. */
1742		CSR_WRITE_4(sc, SIS_IER, 1);
1743
1744		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1745			sis_startl(ifp);
1746	}
1747
1748	SIS_UNLOCK(sc);
1749}
1750
1751/*
1752 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1753 * pointers to the fragment pointers.
1754 */
1755static int
1756sis_encap(struct sis_softc *sc, struct mbuf **m_head)
1757{
1758	struct mbuf		*m;
1759	struct sis_txdesc	*txd;
1760	struct sis_desc		*f;
1761	bus_dma_segment_t	segs[SIS_MAXTXSEGS];
1762	bus_dmamap_t		map;
1763	int			error, i, frag, nsegs, prod;
1764	int			padlen;
1765
1766	prod = sc->sis_tx_prod;
1767	txd = &sc->sis_txdesc[prod];
1768	if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 &&
1769	    (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) {
1770		m = *m_head;
1771		padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len;
1772		if (M_WRITABLE(m) == 0) {
1773			/* Get a writable copy. */
1774			m = m_dup(*m_head, M_NOWAIT);
1775			m_freem(*m_head);
1776			if (m == NULL) {
1777				*m_head = NULL;
1778				return (ENOBUFS);
1779			}
1780			*m_head = m;
1781		}
1782		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1783			m = m_defrag(m, M_NOWAIT);
1784			if (m == NULL) {
1785				m_freem(*m_head);
1786				*m_head = NULL;
1787				return (ENOBUFS);
1788			}
1789		}
1790		/*
1791		 * Manually pad short frames, and zero the pad space
1792		 * to avoid leaking data.
1793		 */
1794		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1795		m->m_pkthdr.len += padlen;
1796		m->m_len = m->m_pkthdr.len;
1797		*m_head = m;
1798	}
1799	error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1800	    *m_head, segs, &nsegs, 0);
1801	if (error == EFBIG) {
1802		m = m_collapse(*m_head, M_NOWAIT, SIS_MAXTXSEGS);
1803		if (m == NULL) {
1804			m_freem(*m_head);
1805			*m_head = NULL;
1806			return (ENOBUFS);
1807		}
1808		*m_head = m;
1809		error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1810		    *m_head, segs, &nsegs, 0);
1811		if (error != 0) {
1812			m_freem(*m_head);
1813			*m_head = NULL;
1814			return (error);
1815		}
1816	} else if (error != 0)
1817		return (error);
1818
1819	/* Check for descriptor overruns. */
1820	if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) {
1821		bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1822		return (ENOBUFS);
1823	}
1824
1825	bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE);
1826
1827	frag = prod;
1828	for (i = 0; i < nsegs; i++) {
1829		f = &sc->sis_tx_list[prod];
1830		if (i == 0)
1831			f->sis_cmdsts = htole32(segs[i].ds_len |
1832			    SIS_CMDSTS_MORE);
1833		else
1834			f->sis_cmdsts = htole32(segs[i].ds_len |
1835			    SIS_CMDSTS_OWN | SIS_CMDSTS_MORE);
1836		f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr));
1837		SIS_INC(prod, SIS_TX_LIST_CNT);
1838		sc->sis_tx_cnt++;
1839	}
1840
1841	/* Update producer index. */
1842	sc->sis_tx_prod = prod;
1843
1844	/* Remove MORE flag on the last descriptor. */
1845	prod = (prod - 1) & (SIS_TX_LIST_CNT - 1);
1846	f = &sc->sis_tx_list[prod];
1847	f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE);
1848
1849	/* Lastly transfer ownership of packet to the controller. */
1850	f = &sc->sis_tx_list[frag];
1851	f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN);
1852
1853	/* Swap the last and the first dmamaps. */
1854	map = txd->tx_dmamap;
1855	txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap;
1856	sc->sis_txdesc[prod].tx_dmamap = map;
1857	sc->sis_txdesc[prod].tx_m = *m_head;
1858
1859	return (0);
1860}
1861
1862static void
1863sis_start(struct ifnet *ifp)
1864{
1865	struct sis_softc	*sc;
1866
1867	sc = ifp->if_softc;
1868	SIS_LOCK(sc);
1869	sis_startl(ifp);
1870	SIS_UNLOCK(sc);
1871}
1872
1873static void
1874sis_startl(struct ifnet *ifp)
1875{
1876	struct sis_softc	*sc;
1877	struct mbuf		*m_head;
1878	int			queued;
1879
1880	sc = ifp->if_softc;
1881
1882	SIS_LOCK_ASSERT(sc);
1883
1884	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1885	    IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0)
1886		return;
1887
1888	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1889	    sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) {
1890		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1891		if (m_head == NULL)
1892			break;
1893
1894		if (sis_encap(sc, &m_head) != 0) {
1895			if (m_head == NULL)
1896				break;
1897			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1898			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1899			break;
1900		}
1901
1902		queued++;
1903
1904		/*
1905		 * If there's a BPF listener, bounce a copy of this frame
1906		 * to him.
1907		 */
1908		BPF_MTAP(ifp, m_head);
1909	}
1910
1911	if (queued) {
1912		/* Transmit */
1913		bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1914		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1915		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1916
1917		/*
1918		 * Set a timeout in case the chip goes out to lunch.
1919		 */
1920		sc->sis_watchdog_timer = 5;
1921	}
1922}
1923
1924static void
1925sis_init(void *xsc)
1926{
1927	struct sis_softc	*sc = xsc;
1928
1929	SIS_LOCK(sc);
1930	sis_initl(sc);
1931	SIS_UNLOCK(sc);
1932}
1933
1934static void
1935sis_initl(struct sis_softc *sc)
1936{
1937	struct ifnet		*ifp = sc->sis_ifp;
1938	struct mii_data		*mii;
1939	uint8_t			*eaddr;
1940
1941	SIS_LOCK_ASSERT(sc);
1942
1943	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1944		return;
1945
1946	/*
1947	 * Cancel pending I/O and free all RX/TX buffers.
1948	 */
1949	sis_stop(sc);
1950	/*
1951	 * Reset the chip to a known state.
1952	 */
1953	sis_reset(sc);
1954#ifdef notyet
1955	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
1956		/*
1957		 * Configure 400usec of interrupt holdoff.  This is based
1958		 * on emperical tests on a Soekris 4801.
1959 		 */
1960		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
1961	}
1962#endif
1963
1964	mii = device_get_softc(sc->sis_miibus);
1965
1966	/* Set MAC address */
1967	eaddr = IF_LLADDR(sc->sis_ifp);
1968	if (sc->sis_type == SIS_TYPE_83815) {
1969		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1970		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1971		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1972		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1973		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1974		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1975	} else {
1976		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1977		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1978		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1979		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1980		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1981		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1982	}
1983
1984	/* Init circular TX/RX lists. */
1985	if (sis_ring_init(sc) != 0) {
1986		device_printf(sc->sis_dev,
1987		    "initialization failed: no memory for rx buffers\n");
1988		sis_stop(sc);
1989		return;
1990	}
1991
1992	if (sc->sis_type == SIS_TYPE_83815) {
1993		if (sc->sis_manual_pad != 0)
1994			sc->sis_flags |= SIS_FLAG_MANUAL_PAD;
1995		else
1996			sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD;
1997	}
1998
1999	/*
2000	 * Short Cable Receive Errors (MP21.E)
2001	 * also: Page 78 of the DP83815 data sheet (september 2002 version)
2002	 * recommends the following register settings "for optimum
2003	 * performance." for rev 15C.  Set this also for 15D parts as
2004	 * they require it in practice.
2005	 */
2006	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
2007		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2008		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2009		/* set val for c2 */
2010		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2011		/* load/kill c2 */
2012		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2013		/* rais SD off, from 4 to c */
2014		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2015		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2016	}
2017
2018	sis_rxfilter(sc);
2019	/* Turn the receive filter on */
2020	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
2021
2022	/*
2023	 * Load the address of the RX and TX lists.
2024	 */
2025	CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr));
2026	CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr));
2027
2028	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2029	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2030	 * for TX/RX DMA should be no larger than 16 double words.
2031	 */
2032	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2033		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2034	} else {
2035		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2036	}
2037
2038	/* Accept Long Packets for VLAN support */
2039	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2040
2041	/*
2042	 * Assume 100Mbps link, actual MAC configuration is done
2043	 * after getting a valid link.
2044	 */
2045	CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2046
2047	/*
2048	 * Enable interrupts.
2049	 */
2050	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2051#ifdef DEVICE_POLLING
2052	/*
2053	 * ... only enable interrupts if we are not polling, make sure
2054	 * they are off otherwise.
2055	 */
2056	if (ifp->if_capenable & IFCAP_POLLING)
2057		CSR_WRITE_4(sc, SIS_IER, 0);
2058	else
2059#endif
2060	CSR_WRITE_4(sc, SIS_IER, 1);
2061
2062	/* Clear MAC disable. */
2063	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
2064
2065	sc->sis_flags &= ~SIS_FLAG_LINK;
2066	mii_mediachg(mii);
2067
2068	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2069	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2070
2071	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2072}
2073
2074/*
2075 * Set media options.
2076 */
2077static int
2078sis_ifmedia_upd(struct ifnet *ifp)
2079{
2080	struct sis_softc	*sc;
2081	struct mii_data		*mii;
2082	struct mii_softc	*miisc;
2083	int			error;
2084
2085	sc = ifp->if_softc;
2086
2087	SIS_LOCK(sc);
2088	mii = device_get_softc(sc->sis_miibus);
2089	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2090		PHY_RESET(miisc);
2091	error = mii_mediachg(mii);
2092	SIS_UNLOCK(sc);
2093
2094	return (error);
2095}
2096
2097/*
2098 * Report current media status.
2099 */
2100static void
2101sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2102{
2103	struct sis_softc	*sc;
2104	struct mii_data		*mii;
2105
2106	sc = ifp->if_softc;
2107
2108	SIS_LOCK(sc);
2109	mii = device_get_softc(sc->sis_miibus);
2110	mii_pollstat(mii);
2111	ifmr->ifm_active = mii->mii_media_active;
2112	ifmr->ifm_status = mii->mii_media_status;
2113	SIS_UNLOCK(sc);
2114}
2115
2116static int
2117sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2118{
2119	struct sis_softc	*sc = ifp->if_softc;
2120	struct ifreq		*ifr = (struct ifreq *) data;
2121	struct mii_data		*mii;
2122	int			error = 0, mask;
2123
2124	switch (command) {
2125	case SIOCSIFFLAGS:
2126		SIS_LOCK(sc);
2127		if (ifp->if_flags & IFF_UP) {
2128			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2129			    ((ifp->if_flags ^ sc->sis_if_flags) &
2130			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2131				sis_rxfilter(sc);
2132			else
2133				sis_initl(sc);
2134		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2135			sis_stop(sc);
2136		sc->sis_if_flags = ifp->if_flags;
2137		SIS_UNLOCK(sc);
2138		break;
2139	case SIOCADDMULTI:
2140	case SIOCDELMULTI:
2141		SIS_LOCK(sc);
2142		sis_rxfilter(sc);
2143		SIS_UNLOCK(sc);
2144		break;
2145	case SIOCGIFMEDIA:
2146	case SIOCSIFMEDIA:
2147		mii = device_get_softc(sc->sis_miibus);
2148		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2149		break;
2150	case SIOCSIFCAP:
2151		SIS_LOCK(sc);
2152		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2153#ifdef DEVICE_POLLING
2154		if ((mask & IFCAP_POLLING) != 0 &&
2155		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2156			ifp->if_capenable ^= IFCAP_POLLING;
2157			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2158				error = ether_poll_register(sis_poll, ifp);
2159				if (error != 0) {
2160					SIS_UNLOCK(sc);
2161					break;
2162				}
2163				/* Disable interrupts. */
2164				CSR_WRITE_4(sc, SIS_IER, 0);
2165                        } else {
2166                                error = ether_poll_deregister(ifp);
2167                                /* Enable interrupts. */
2168				CSR_WRITE_4(sc, SIS_IER, 1);
2169                        }
2170		}
2171#endif /* DEVICE_POLLING */
2172		if ((mask & IFCAP_WOL) != 0 &&
2173		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2174			if ((mask & IFCAP_WOL_UCAST) != 0)
2175				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2176			if ((mask & IFCAP_WOL_MCAST) != 0)
2177				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2178			if ((mask & IFCAP_WOL_MAGIC) != 0)
2179				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2180		}
2181		SIS_UNLOCK(sc);
2182		break;
2183	default:
2184		error = ether_ioctl(ifp, command, data);
2185		break;
2186	}
2187
2188	return (error);
2189}
2190
2191static void
2192sis_watchdog(struct sis_softc *sc)
2193{
2194
2195	SIS_LOCK_ASSERT(sc);
2196
2197	if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
2198		return;
2199
2200	device_printf(sc->sis_dev, "watchdog timeout\n");
2201	sc->sis_ifp->if_oerrors++;
2202
2203	sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2204	sis_initl(sc);
2205
2206	if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
2207		sis_startl(sc->sis_ifp);
2208}
2209
2210/*
2211 * Stop the adapter and free any mbufs allocated to the
2212 * RX and TX lists.
2213 */
2214static void
2215sis_stop(struct sis_softc *sc)
2216{
2217	struct ifnet *ifp;
2218	struct sis_rxdesc *rxd;
2219	struct sis_txdesc *txd;
2220	int i;
2221
2222	SIS_LOCK_ASSERT(sc);
2223
2224	ifp = sc->sis_ifp;
2225	sc->sis_watchdog_timer = 0;
2226
2227	callout_stop(&sc->sis_stat_ch);
2228
2229	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2230	CSR_WRITE_4(sc, SIS_IER, 0);
2231	CSR_WRITE_4(sc, SIS_IMR, 0);
2232	CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2233	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2234	DELAY(1000);
2235	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2236	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2237
2238	sc->sis_flags &= ~SIS_FLAG_LINK;
2239
2240	/*
2241	 * Free data in the RX lists.
2242	 */
2243	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2244		rxd = &sc->sis_rxdesc[i];
2245		if (rxd->rx_m != NULL) {
2246			bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
2247			    BUS_DMASYNC_POSTREAD);
2248			bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
2249			m_freem(rxd->rx_m);
2250			rxd->rx_m = NULL;
2251		}
2252	}
2253
2254	/*
2255	 * Free the TX list buffers.
2256	 */
2257	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2258		txd = &sc->sis_txdesc[i];
2259		if (txd->tx_m != NULL) {
2260			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
2261			    BUS_DMASYNC_POSTWRITE);
2262			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
2263			m_freem(txd->tx_m);
2264			txd->tx_m = NULL;
2265		}
2266	}
2267}
2268
2269/*
2270 * Stop all chip I/O so that the kernel's probe routines don't
2271 * get confused by errant DMAs when rebooting.
2272 */
2273static int
2274sis_shutdown(device_t dev)
2275{
2276
2277	return (sis_suspend(dev));
2278}
2279
2280static int
2281sis_suspend(device_t dev)
2282{
2283	struct sis_softc	*sc;
2284
2285	sc = device_get_softc(dev);
2286	SIS_LOCK(sc);
2287	sis_stop(sc);
2288	sis_wol(sc);
2289	SIS_UNLOCK(sc);
2290	return (0);
2291}
2292
2293static int
2294sis_resume(device_t dev)
2295{
2296	struct sis_softc	*sc;
2297	struct ifnet		*ifp;
2298
2299	sc = device_get_softc(dev);
2300	SIS_LOCK(sc);
2301	ifp = sc->sis_ifp;
2302	if ((ifp->if_flags & IFF_UP) != 0) {
2303		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2304		sis_initl(sc);
2305	}
2306	SIS_UNLOCK(sc);
2307	return (0);
2308}
2309
2310static void
2311sis_wol(struct sis_softc *sc)
2312{
2313	struct ifnet		*ifp;
2314	uint32_t		val;
2315	uint16_t		pmstat;
2316	int			pmc;
2317
2318	ifp = sc->sis_ifp;
2319	if ((ifp->if_capenable & IFCAP_WOL) == 0)
2320		return;
2321
2322	if (sc->sis_type == SIS_TYPE_83815) {
2323		/* Reset RXDP. */
2324		CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2325
2326		/* Configure WOL events. */
2327		CSR_READ_4(sc, NS_WCSR);
2328		val = 0;
2329		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2330			val |= NS_WCSR_WAKE_UCAST;
2331		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2332			val |= NS_WCSR_WAKE_MCAST;
2333		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2334			val |= NS_WCSR_WAKE_MAGIC;
2335		CSR_WRITE_4(sc, NS_WCSR, val);
2336		/* Enable PME and clear PMESTS. */
2337		val = CSR_READ_4(sc, NS_CLKRUN);
2338		val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS;
2339		CSR_WRITE_4(sc, NS_CLKRUN, val);
2340		/* Enable silent RX mode. */
2341		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2342	} else {
2343		if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0)
2344			return;
2345		val = 0;
2346		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2347			val |= SIS_PWRMAN_WOL_MAGIC;
2348		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val);
2349		/* Request PME. */
2350		pmstat = pci_read_config(sc->sis_dev,
2351		    pmc + PCIR_POWER_STATUS, 2);
2352		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2353		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2354			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2355		pci_write_config(sc->sis_dev,
2356		    pmc + PCIR_POWER_STATUS, pmstat, 2);
2357	}
2358}
2359
2360static void
2361sis_add_sysctls(struct sis_softc *sc)
2362{
2363	struct sysctl_ctx_list *ctx;
2364	struct sysctl_oid_list *children;
2365	char tn[32];
2366	int unit;
2367
2368	ctx = device_get_sysctl_ctx(sc->sis_dev);
2369	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev));
2370
2371	unit = device_get_unit(sc->sis_dev);
2372	/*
2373	 * Unlike most other controllers, NS DP83815/DP83816 controllers
2374	 * seem to pad with 0xFF when it encounter short frames.  According
2375	 * to RFC 1042 the pad bytes should be 0x00.  Turning this tunable
2376	 * on will have driver pad manully but it's disabled by default
2377	 * because it will consume extra CPU cycles for short frames.
2378	 */
2379	sc->sis_manual_pad = 0;
2380	snprintf(tn, sizeof(tn), "dev.sis.%d.manual_pad", unit);
2381	TUNABLE_INT_FETCH(tn, &sc->sis_manual_pad);
2382	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad",
2383	    CTLFLAG_RW, &sc->sis_manual_pad, 0, "Manually pad short frames");
2384}
2385
2386static device_method_t sis_methods[] = {
2387	/* Device interface */
2388	DEVMETHOD(device_probe,		sis_probe),
2389	DEVMETHOD(device_attach,	sis_attach),
2390	DEVMETHOD(device_detach,	sis_detach),
2391	DEVMETHOD(device_shutdown,	sis_shutdown),
2392	DEVMETHOD(device_suspend,	sis_suspend),
2393	DEVMETHOD(device_resume,	sis_resume),
2394
2395	/* MII interface */
2396	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
2397	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
2398	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
2399
2400	DEVMETHOD_END
2401};
2402
2403static driver_t sis_driver = {
2404	"sis",
2405	sis_methods,
2406	sizeof(struct sis_softc)
2407};
2408
2409static devclass_t sis_devclass;
2410
2411DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2412DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
2413