hwpmc_mod.c revision 145256
1/*-
2 * Copyright (c) 2003-2005 Joseph Koshy
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/hwpmc/hwpmc_mod.c 145256 2005-04-19 04:01:25Z jkoshy $");
30
31#include <sys/param.h>
32#include <sys/eventhandler.h>
33#include <sys/jail.h>
34#include <sys/kernel.h>
35#include <sys/limits.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/module.h>
39#include <sys/mutex.h>
40#include <sys/pmc.h>
41#include <sys/pmckern.h>
42#include <sys/proc.h>
43#include <sys/queue.h>
44#include <sys/sched.h>
45#include <sys/signalvar.h>
46#include <sys/smp.h>
47#include <sys/sx.h>
48#include <sys/sysctl.h>
49#include <sys/sysent.h>
50#include <sys/systm.h>
51
52#include <machine/md_var.h>
53#include <machine/pmc_mdep.h>
54#include <machine/specialreg.h>
55
56/*
57 * Types
58 */
59
60enum pmc_flags {
61	PMC_FLAG_NONE	  = 0x00, /* do nothing */
62	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
63	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
64};
65
66/*
67 * The offset in sysent where the syscall is allocated.
68 */
69
70static int pmc_syscall_num = NO_SYSCALL;
71struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
72pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
73
74#define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
75
76struct mtx_pool		*pmc_mtxpool;
77static int		*pmc_pmcdisp;	 /* PMC row dispositions */
78
79#define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
80#define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
81#define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
82
83#define	PMC_MARK_ROW_FREE(R) do {					  \
84	pmc_pmcdisp[(R)] = 0;						  \
85} while (0)
86
87#define	PMC_MARK_ROW_STANDALONE(R) do {					  \
88	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
89		    __LINE__));						  \
90	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
91	KASSERT(pmc_pmcdisp[(R)] >= (-mp_ncpus), ("[pmc,%d] row "	  \
92		"disposition error", __LINE__));			  \
93} while (0)
94
95#define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
96	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
97	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
98		    __LINE__));						  \
99} while (0)
100
101#define	PMC_MARK_ROW_THREAD(R) do {					  \
102	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
103		    __LINE__));						  \
104	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
105} while (0)
106
107#define	PMC_UNMARK_ROW_THREAD(R) do {					  \
108	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
109	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
110		    __LINE__));						  \
111} while (0)
112
113
114/* various event handlers */
115static eventhandler_tag	pmc_exit_tag, pmc_fork_tag;
116
117/* Module statistics */
118struct pmc_op_getdriverstats pmc_stats;
119
120/* Machine/processor dependent operations */
121struct pmc_mdep  *md;
122
123/*
124 * Hash tables mapping owner processes and target threads to PMCs.
125 */
126
127struct mtx pmc_processhash_mtx;		/* spin mutex */
128static u_long pmc_processhashmask;
129static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
130
131/*
132 * Hash table of PMC owner descriptors.  This table is protected by
133 * the shared PMC "sx" lock.
134 */
135
136static u_long pmc_ownerhashmask;
137static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
138
139/*
140 * Prototypes
141 */
142
143#if	DEBUG
144static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
145static int	pmc_debugflags_parse(char *newstr, char *fence);
146#endif
147
148static int	load(struct module *module, int cmd, void *arg);
149static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
150static int	pmc_configure_log(struct pmc_owner *po, int logfd);
151static void	pmc_log_process_exit(struct pmc *pm, struct pmc_process *pp);
152static struct pmc *pmc_allocate_pmc_descriptor(void);
153static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
154    pmc_id_t pmc);
155static void	pmc_release_pmc_descriptor(struct pmc *pmc);
156static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri);
157static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
158    uint32_t mode);
159static void	pmc_remove_process_descriptor(struct pmc_process *pp);
160static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
161static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
162static void	pmc_remove_owner(struct pmc_owner *po);
163static void	pmc_maybe_remove_owner(struct pmc_owner *po);
164static void	pmc_unlink_target_process(struct pmc *pmc,
165    struct pmc_process *pp);
166static void	pmc_link_target_process(struct pmc *pm,
167    struct pmc_process *pp);
168static void	pmc_unlink_owner(struct pmc *pmc);
169static void	pmc_cleanup(void);
170static void	pmc_save_cpu_binding(struct pmc_binding *pb);
171static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
172static void	pmc_select_cpu(int cpu);
173static void	pmc_process_exit(void *arg, struct proc *p);
174static void	pmc_process_fork(void *arg, struct proc *p1,
175    struct proc *p2, int n);
176static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
177static int	pmc_attach_process(struct proc *p, struct pmc *pm);
178static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
179    int flags);
180static int	pmc_detach_process(struct proc *p, struct pmc *pm);
181static int	pmc_start(struct pmc *pm);
182static int	pmc_stop(struct pmc *pm);
183static int	pmc_can_attach(struct pmc *pm, struct proc *p);
184
185/*
186 * Kernel tunables and sysctl(8) interface.
187 */
188
189#define PMC_SYSCTL_NAME_PREFIX "kern." PMC_MODULE_NAME "."
190
191SYSCTL_NODE(_kern, OID_AUTO, hwpmc, CTLFLAG_RW, 0, "HWPMC parameters");
192
193#if	DEBUG
194unsigned int pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
195char	pmc_debugstr[PMC_DEBUG_STRSIZE];
196TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
197    sizeof(pmc_debugstr));
198SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
199    CTLTYPE_STRING|CTLFLAG_RW|CTLFLAG_TUN,
200    0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
201#endif
202
203/*
204 * kern.pmc.hashrows -- determines the number of rows in the
205 * of the hash table used to look up threads
206 */
207
208static int pmc_hashsize = PMC_HASH_SIZE;
209TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "hashsize", &pmc_hashsize);
210SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_TUN|CTLFLAG_RD,
211    &pmc_hashsize, 0, "rows in hash tables");
212
213/*
214 * kern.pmc.pcpusize -- the size of each per-cpu
215 * area for collection PC samples.
216 */
217
218static int pmc_pcpu_buffer_size = PMC_PCPU_BUFFER_SIZE;
219TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "pcpubuffersize", &pmc_pcpu_buffer_size);
220SYSCTL_INT(_kern_hwpmc, OID_AUTO, pcpubuffersize, CTLFLAG_TUN|CTLFLAG_RD,
221    &pmc_pcpu_buffer_size, 0, "size of per-cpu buffer in 4K pages");
222
223/*
224 * kern.pmc.mtxpoolsize -- number of mutexes in the mutex pool.
225 */
226
227static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
228TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "mtxpoolsize", &pmc_mtxpool_size);
229SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_TUN|CTLFLAG_RD,
230    &pmc_mtxpool_size, 0, "size of spin mutex pool");
231
232
233
234/*
235 * security.bsd.unprivileged_syspmcs -- allow non-root processes to
236 * allocate system-wide PMCs.
237 *
238 * Allowing unprivileged processes to allocate system PMCs is convenient
239 * if system-wide measurements need to be taken concurrently with other
240 * per-process measurements.  This feature is turned off by default.
241 */
242
243SYSCTL_DECL(_security_bsd);
244
245static int pmc_unprivileged_syspmcs = 0;
246TUNABLE_INT("security.bsd.unprivileged_syspmcs", &pmc_unprivileged_syspmcs);
247SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RW,
248    &pmc_unprivileged_syspmcs, 0,
249    "allow unprivileged process to allocate system PMCs");
250
251#if	PMC_HASH_USE_CRC32
252
253#define	PMC_HASH_PTR(P,M)	(crc32(&(P), sizeof((P))) & (M))
254
255#else 	/* integer multiplication */
256
257#if	LONG_BIT == 64
258#define	_PMC_HM		11400714819323198486u
259#elif	LONG_BIT == 32
260#define	_PMC_HM		2654435769u
261#else
262#error 	Must know the size of 'long' to compile
263#endif
264
265/*
266 * Hash function.  Discard the lower 2 bits of the pointer since
267 * these are always zero for our uses.  The hash multiplier is
268 * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
269 */
270
271#define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
272
273#endif
274
275/*
276 * Syscall structures
277 */
278
279/* The `sysent' for the new syscall */
280static struct sysent pmc_sysent = {
281	2,			/* sy_narg */
282	pmc_syscall_handler	/* sy_call */
283};
284
285static struct syscall_module_data pmc_syscall_mod = {
286	load,
287	NULL,
288	&pmc_syscall_num,
289	&pmc_sysent,
290	{ 0, NULL }
291};
292
293static moduledata_t pmc_mod = {
294	PMC_MODULE_NAME,
295	syscall_module_handler,
296	&pmc_syscall_mod
297};
298
299DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
300MODULE_VERSION(pmc, PMC_VERSION);
301
302#if	DEBUG
303static int
304pmc_debugflags_parse(char *newstr, char *fence)
305{
306	char c, *e, *p, *q;
307	unsigned int tmpflags;
308	int level;
309	char tmpbuf[4];		/* 3 character keyword + '\0' */
310
311	tmpflags = 0;
312	level = 0xF;	/* max verbosity */
313
314	p = newstr;
315
316	for (; p < fence && (c = *p);) {
317
318		/* skip separators */
319		if (c == ' ' || c == '\t' || c == ',') {
320			p++; continue;
321		}
322
323		(void) strlcpy(tmpbuf, p, sizeof(tmpbuf));
324
325#define	CMP_SET_FLAG_MAJ(S,F)					\
326		else if (strncmp(tmpbuf, S, 3) == 0)		\
327			tmpflags |= __PMCDFMAJ(F)
328
329#define	CMP_SET_FLAG_MIN(S,F)					\
330		else if (strncmp(tmpbuf, S, 3) == 0)		\
331			tmpflags |= __PMCDFMIN(F)
332
333		if (e - p > 6 && strncmp(p, "level=", 6) == 0) {
334			p += 6;	/* skip over keyword */
335			level = strtoul(p, &q, 16);
336		}
337		CMP_SET_FLAG_MAJ("mod", MOD);
338		CMP_SET_FLAG_MAJ("pmc", PMC);
339		CMP_SET_FLAG_MAJ("ctx", CTX);
340		CMP_SET_FLAG_MAJ("own", OWN);
341		CMP_SET_FLAG_MAJ("prc", PRC);
342		CMP_SET_FLAG_MAJ("mdp", MDP);
343		CMP_SET_FLAG_MAJ("cpu", CPU);
344
345		CMP_SET_FLAG_MIN("all", ALL);
346		CMP_SET_FLAG_MIN("rel", REL);
347		CMP_SET_FLAG_MIN("ops", OPS);
348		CMP_SET_FLAG_MIN("ini", INI);
349		CMP_SET_FLAG_MIN("fnd", FND);
350		CMP_SET_FLAG_MIN("pmh", PMH);
351		CMP_SET_FLAG_MIN("pms", PMS);
352		CMP_SET_FLAG_MIN("orm", ORM);
353		CMP_SET_FLAG_MIN("omr", OMR);
354		CMP_SET_FLAG_MIN("tlk", TLK);
355		CMP_SET_FLAG_MIN("tul", TUL);
356		CMP_SET_FLAG_MIN("ext", EXT);
357		CMP_SET_FLAG_MIN("exc", EXC);
358		CMP_SET_FLAG_MIN("frk", FRK);
359		CMP_SET_FLAG_MIN("att", ATT);
360		CMP_SET_FLAG_MIN("swi", SWI);
361		CMP_SET_FLAG_MIN("swo", SWO);
362		CMP_SET_FLAG_MIN("reg", REG);
363		CMP_SET_FLAG_MIN("alr", ALR);
364		CMP_SET_FLAG_MIN("rea", REA);
365		CMP_SET_FLAG_MIN("wri", WRI);
366		CMP_SET_FLAG_MIN("cfg", CFG);
367		CMP_SET_FLAG_MIN("sta", STA);
368		CMP_SET_FLAG_MIN("sto", STO);
369		CMP_SET_FLAG_MIN("bnd", BND);
370		CMP_SET_FLAG_MIN("sel", SEL);
371		else	/* unrecognized keyword */
372			return EINVAL;
373
374		p += 4;	/* skip keyword and separator */
375	}
376
377	pmc_debugflags = (tmpflags|level);
378
379	return 0;
380}
381
382static int
383pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
384{
385	char *fence, *newstr;
386	int error;
387	unsigned int n;
388
389	(void) arg1; (void) arg2; /* unused parameters */
390
391	n = sizeof(pmc_debugstr);
392	MALLOC(newstr, char *, n, M_PMC, M_ZERO|M_WAITOK);
393	(void) strlcpy(newstr, pmc_debugstr, sizeof(pmc_debugstr));
394
395	error = sysctl_handle_string(oidp, newstr, n, req);
396
397	/* if there is a new string, parse and copy it */
398	if (error == 0 && req->newptr != NULL) {
399		fence = newstr + (n < req->newlen ? n : req->newlen);
400		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
401			(void) strlcpy(pmc_debugstr, newstr,
402			    sizeof(pmc_debugstr));
403	}
404
405	FREE(newstr, M_PMC);
406
407	return error;
408}
409#endif
410
411/*
412 * Concurrency Control
413 *
414 * The driver manages the following data structures:
415 *
416 *   - target process descriptors, one per target process
417 *   - owner process descriptors (and attached lists), one per owner process
418 *   - lookup hash tables for owner and target processes
419 *   - PMC descriptors (and attached lists)
420 *   - per-cpu hardware state
421 *   - the 'hook' variable through which the kernel calls into
422 *     this module
423 *   - the machine hardware state (managed by the MD layer)
424 *
425 * These data structures are accessed from:
426 *
427 * - thread context-switch code
428 * - interrupt handlers (possibly on multiple cpus)
429 * - kernel threads on multiple cpus running on behalf of user
430 *   processes doing system calls
431 * - this driver's private kernel threads
432 *
433 * = Locks and Locking strategy =
434 *
435 * The driver uses four locking strategies for its operation:
436 *
437 * - There is a 'global' SX lock "pmc_sx" that is used to protect
438 *   the its 'meta-data'.
439 *
440 *   Calls into the module (via syscall() or by the kernel) start with
441 *   this lock being held in exclusive mode.  Depending on the requested
442 *   operation, the lock may be downgraded to 'shared' mode to allow
443 *   more concurrent readers into the module.
444 *
445 *   This SX lock is held in exclusive mode for any operations that
446 *   modify the linkages between the driver's internal data structures.
447 *
448 *   The 'pmc_hook' function pointer is also protected by this lock.
449 *   It is only examined with the sx lock held in exclusive mode.  The
450 *   kernel module is allowed to be unloaded only with the sx lock
451 *   held in exclusive mode.  In normal syscall handling, after
452 *   acquiring the pmc_sx lock we first check that 'pmc_hook' is
453 *   non-null before proceeding.  This prevents races between the
454 *   thread unloading the module and other threads seeking to use the
455 *   module.
456 *
457 * - Lookups of target process structures and owner process structures
458 *   cannot use the global "pmc_sx" SX lock because these lookups need
459 *   to happen during context switches and in other critical sections
460 *   where sleeping is not allowed.  We protect these lookup tables
461 *   with their own private spin-mutexes, "pmc_processhash_mtx" and
462 *   "pmc_ownerhash_mtx".  These are 'leaf' mutexes, in that no other
463 *   lock is acquired with these locks held.
464 *
465 * - Interrupt handlers work in a lock free manner.  At interrupt
466 *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
467 *   when the PMC was started.  If this pointer is NULL, the interrupt
468 *   is ignored after updating driver statistics.  We ensure that this
469 *   pointer is set (using an atomic operation if necessary) before the
470 *   PMC hardware is started.  Conversely, this pointer is unset atomically
471 *   only after the PMC hardware is stopped.
472 *
473 *   We ensure that everything needed for the operation of an
474 *   interrupt handler is available without it needing to acquire any
475 *   locks.  We also ensure that a PMC's software state is destroyed only
476 *   after the PMC is taken off hardware (on all CPUs).
477 *
478 * - Context-switch handling with process-private PMCs needs more
479 *   care.
480 *
481 *   A given process may be the target of multiple PMCs.  For example,
482 *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
483 *   while the target process is running on another.  A PMC could also
484 *   be getting released because its owner is exiting.  We tackle
485 *   these situations in the following manner:
486 *
487 *   - each target process structure 'pmc_process' has an array
488 *     of 'struct pmc *' pointers, one for each hardware PMC.
489 *
490 *   - At context switch IN time, each "target" PMC in RUNNING state
491 *     gets started on hardware and a pointer to each PMC is copied into
492 *     the per-cpu phw array.  The 'runcount' for the PMC is
493 *     incremented.
494 *
495 *   - At context switch OUT time, all process-virtual PMCs are stopped
496 *     on hardware.  The saved value is added to the PMCs value field
497 *     only if the PMC is in a non-deleted state (the PMCs state could
498 *     have changed during the current time slice).
499 *
500 *     Note that since in-between a switch IN on a processor and a switch
501 *     OUT, the PMC could have been released on another CPU.  Therefore
502 *     context switch OUT always looks at the hardware state to turn
503 *     OFF PMCs and will update a PMC's saved value only if reachable
504 *     from the target process record.
505 *
506 *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
507 *     be attached to many processes at the time of the call and could
508 *     be active on multiple CPUs).
509 *
510 *     We prevent further scheduling of the PMC by marking it as in
511 *     state 'DELETED'.  If the runcount of the PMC is non-zero then
512 *     this PMC is currently running on a CPU somewhere.  The thread
513 *     doing the PMCRELEASE operation waits by repeatedly doing an
514 *     tsleep() till the runcount comes to zero.
515 *
516 */
517
518/*
519 * save the cpu binding of the current kthread
520 */
521
522static void
523pmc_save_cpu_binding(struct pmc_binding *pb)
524{
525	PMCDBG(CPU,BND,2, "%s", "save-cpu");
526	mtx_lock_spin(&sched_lock);
527	pb->pb_bound = sched_is_bound(curthread);
528	pb->pb_cpu   = curthread->td_oncpu;
529	mtx_unlock_spin(&sched_lock);
530	PMCDBG(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
531}
532
533/*
534 * restore the cpu binding of the current thread
535 */
536
537static void
538pmc_restore_cpu_binding(struct pmc_binding *pb)
539{
540	PMCDBG(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
541	    curthread->td_oncpu, pb->pb_cpu);
542	mtx_lock_spin(&sched_lock);
543	if (pb->pb_bound)
544		sched_bind(curthread, pb->pb_cpu);
545	else
546		sched_unbind(curthread);
547	mtx_unlock_spin(&sched_lock);
548	PMCDBG(CPU,BND,2, "%s", "restore-cpu done");
549}
550
551/*
552 * move execution over the specified cpu and bind it there.
553 */
554
555static void
556pmc_select_cpu(int cpu)
557{
558	KASSERT(cpu >= 0 && cpu < mp_ncpus,
559	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
560
561	/* never move to a disabled CPU */
562	KASSERT(pmc_cpu_is_disabled(cpu) == 0, ("[pmc,%d] selecting "
563	    "disabled CPU %d", __LINE__, cpu));
564
565	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d", cpu);
566	mtx_lock_spin(&sched_lock);
567	sched_bind(curthread, cpu);
568	mtx_unlock_spin(&sched_lock);
569
570	KASSERT(curthread->td_oncpu == cpu,
571	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
572		cpu, curthread->td_oncpu));
573
574	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
575}
576
577/*
578 * Update the per-pmc histogram
579 */
580
581void
582pmc_update_histogram(struct pmc_hw *phw, uintptr_t pc)
583{
584	(void) phw;
585	(void) pc;
586}
587
588/*
589 * Send a signal to a process.  This is meant to be invoked from an
590 * interrupt handler.
591 */
592
593void
594pmc_send_signal(struct pmc *pmc)
595{
596	(void) pmc;	/* shutup gcc */
597
598#if	0
599	struct proc   *proc;
600	struct thread *td;
601
602	KASSERT(pmc->pm_owner != NULL,
603	    ("[pmc,%d] No owner for PMC", __LINE__));
604
605	KASSERT((pmc->pm_owner->po_flags & PMC_FLAG_IS_OWNER) &&
606	    (pmc->pm_owner->po_flags & PMC_FLAG_HAS_TS_PMC),
607	    ("[pmc,%d] interrupting PMC owner has wrong flags 0x%x",
608		__LINE__, pmc->pm_owner->po_flags));
609
610	proc = pmc->pm_owner->po_owner;
611
612	KASSERT(curthread->td_proc == proc,
613	    ("[pmc,%d] interruping the wrong thread (owner %p, "
614		"cur %p)", __LINE__, (void *) proc, curthread->td_proc));
615
616	mtx_lock_spin(&sched_lock);
617	td = TAILQ_FIRST(&proc->p_threads);
618	mtx_unlock_spin(&sched_lock);
619	/* XXX RACE HERE: can 'td' disappear now? */
620	trapsignal(td, SIGPROF, 0);
621	/* XXX rework this to use the regular 'psignal' interface from a
622	   helper thread */
623#endif
624
625}
626
627/*
628 * remove an process owning PMCs
629 */
630
631void
632pmc_remove_owner(struct pmc_owner *po)
633{
634	struct pmc_list *pl, *tmp;
635
636	sx_assert(&pmc_sx, SX_XLOCKED);
637
638	PMCDBG(OWN,ORM,1, "remove-owner po=%p", po);
639
640	/* Remove descriptor from the owner hash table */
641	LIST_REMOVE(po, po_next);
642
643	/* pass 1: release all owned PMC descriptors */
644	LIST_FOREACH_SAFE(pl, &po->po_pmcs, pl_next, tmp) {
645
646		PMCDBG(OWN,ORM,2, "pl=%p pmc=%p", pl, pl->pl_pmc);
647
648		/* remove the associated PMC descriptor, if present */
649		if (pl->pl_pmc)
650			pmc_release_pmc_descriptor(pl->pl_pmc);
651
652		/* remove the linked list entry */
653		LIST_REMOVE(pl, pl_next);
654		FREE(pl, M_PMC);
655	}
656
657	/* pass 2: delete the pmc_list chain */
658	LIST_FOREACH_SAFE(pl, &po->po_pmcs, pl_next, tmp) {
659		KASSERT(pl->pl_pmc == NULL,
660		    ("[pmc,%d] non-null pmc pointer", __LINE__));
661		LIST_REMOVE(pl, pl_next);
662		FREE(pl, M_PMC);
663	}
664
665	KASSERT(LIST_EMPTY(&po->po_pmcs),
666		("[pmc,%d] PMC list not empty", __LINE__));
667
668
669	/*
670	 * If this process owns a log file used for system wide logging,
671	 * remove the log file.
672	 *
673	 * XXX rework needed.
674	 */
675
676	if (po->po_flags & PMC_FLAG_OWNS_LOGFILE)
677		pmc_configure_log(po, -1);
678
679}
680
681/*
682 * remove an owner process record if all conditions are met.
683 */
684
685static void
686pmc_maybe_remove_owner(struct pmc_owner *po)
687{
688
689	PMCDBG(OWN,OMR,1, "maybe-remove-owner po=%p", po);
690
691	/*
692	 * Remove owner record if
693	 * - this process does not own any PMCs
694	 * - this process has not allocated a system-wide sampling buffer
695	 */
696
697	if (LIST_EMPTY(&po->po_pmcs) &&
698	    ((po->po_flags & PMC_FLAG_OWNS_LOGFILE) == 0)) {
699		pmc_remove_owner(po);
700		FREE(po, M_PMC);
701	}
702}
703
704/*
705 * Add an association between a target process and a PMC.
706 */
707
708static void
709pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
710{
711	int ri;
712	struct pmc_target *pt;
713
714	sx_assert(&pmc_sx, SX_XLOCKED);
715
716	KASSERT(pm != NULL && pp != NULL,
717	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
718
719	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt < ((int) md->pmd_npmc - 1),
720	    ("[pmc,%d] Illegal reference count %d for process record %p",
721		__LINE__, pp->pp_refcnt, (void *) pp));
722
723	ri = pm->pm_rowindex;
724
725	PMCDBG(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
726	    pm, ri, pp);
727
728#if	DEBUG
729	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
730	    if (pt->pt_process == pp)
731		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
732				__LINE__, pp, pm));
733#endif
734
735	MALLOC(pt, struct pmc_target *, sizeof(struct pmc_target),
736	    M_PMC, M_ZERO|M_WAITOK);
737
738	pt->pt_process = pp;
739
740	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
741
742	atomic_store_rel_ptr(&pp->pp_pmcs[ri].pp_pmc, pm);
743
744	pp->pp_refcnt++;
745
746}
747
748/*
749 * Removes the association between a target process and a PMC.
750 */
751
752static void
753pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
754{
755	int ri;
756	struct pmc_target *ptgt;
757
758	sx_assert(&pmc_sx, SX_XLOCKED);
759
760	KASSERT(pm != NULL && pp != NULL,
761	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
762
763	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt < (int) md->pmd_npmc,
764	    ("[pmc,%d] Illegal ref count %d on process record %p",
765		__LINE__, pp->pp_refcnt, (void *) pp));
766
767	ri = pm->pm_rowindex;
768
769	PMCDBG(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
770	    pm, ri, pp);
771
772	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
773	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
774		ri, pm, pp->pp_pmcs[ri].pp_pmc));
775
776	pp->pp_pmcs[ri].pp_pmc = NULL;
777	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
778
779	pp->pp_refcnt--;
780
781	/* Remove the target process from the PMC structure */
782	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
783		if (ptgt->pt_process == pp)
784			break;
785
786	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
787		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
788
789	PMCDBG(PRC,TUL,4, "unlink ptgt=%p", ptgt);
790
791	LIST_REMOVE(ptgt, pt_next);
792	FREE(ptgt, M_PMC);
793}
794
795/*
796 * Remove PMC descriptor 'pmc' from the owner descriptor.
797 */
798
799void
800pmc_unlink_owner(struct pmc *pm)
801{
802	struct pmc_list	*pl, *tmp;
803	struct pmc_owner *po;
804
805#if	DEBUG
806	KASSERT(LIST_EMPTY(&pm->pm_targets),
807	    ("[pmc,%d] unlinking PMC with targets", __LINE__));
808#endif
809
810	po = pm->pm_owner;
811
812	KASSERT(po != NULL, ("[pmc,%d] No owner for PMC", __LINE__));
813
814	LIST_FOREACH_SAFE(pl, &po->po_pmcs, pl_next, tmp) {
815		if (pl->pl_pmc == pm) {
816			pl->pl_pmc    = NULL;
817			pm->pm_owner = NULL;
818			return;
819		}
820	}
821
822	KASSERT(0, ("[pmc,%d] couldn't find pmc in owner list", __LINE__));
823}
824
825/*
826 * Check if PMC 'pm' may be attached to target process 't'.
827 */
828
829static int
830pmc_can_attach(struct pmc *pm, struct proc *t)
831{
832	struct proc *o;		/* pmc owner */
833	struct ucred *oc, *tc;	/* owner, target credentials */
834	int decline_attach, i;
835
836	/*
837	 * A PMC's owner can always attach that PMC to itself.
838	 */
839
840	if ((o = pm->pm_owner->po_owner) == t)
841		return 0;
842
843	PROC_LOCK(o);
844	oc = o->p_ucred;
845	crhold(oc);
846	PROC_UNLOCK(o);
847
848	PROC_LOCK(t);
849	tc = t->p_ucred;
850	crhold(tc);
851	PROC_UNLOCK(t);
852
853	/*
854	 * The effective uid of the PMC owner should match at least one
855	 * of the {effective,real,saved} uids of the target process.
856	 */
857
858	decline_attach = oc->cr_uid != tc->cr_uid &&
859	    oc->cr_uid != tc->cr_svuid &&
860	    oc->cr_uid != tc->cr_ruid;
861
862	/*
863	 * Every one of the target's group ids, must be in the owner's
864	 * group list.
865	 */
866	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
867		decline_attach = !groupmember(tc->cr_groups[i], oc);
868
869	/* check the read and saved gids too */
870	if (decline_attach == 0)
871		decline_attach = !groupmember(tc->cr_rgid, oc) ||
872		    !groupmember(tc->cr_svgid, oc);
873
874	crfree(tc);
875	crfree(oc);
876
877	return !decline_attach;
878}
879
880/*
881 * Attach a process to a PMC.
882 */
883
884static int
885pmc_attach_one_process(struct proc *p, struct pmc *pm)
886{
887	int ri;
888	struct pmc_process	*pp;
889
890	sx_assert(&pmc_sx, SX_XLOCKED);
891
892	PMCDBG(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
893	    pm->pm_rowindex, p, p->p_pid, p->p_comm);
894
895	/*
896	 * Locate the process descriptor corresponding to process 'p',
897	 * allocating space as needed.
898	 *
899	 * Verify that rowindex 'pm_rowindex' is free in the process
900	 * descriptor.
901	 *
902	 * If not, allocate space for a descriptor and link the
903	 * process descriptor and PMC.
904	 */
905
906	ri = pm->pm_rowindex;
907
908	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
909		return ENOMEM;
910
911	if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
912		return EEXIST;
913
914	if (pp->pp_pmcs[ri].pp_pmc != NULL)
915		return EBUSY;
916
917	pmc_link_target_process(pm, pp);
918
919	/* mark process as using HWPMCs */
920	PROC_LOCK(p);
921	p->p_flag |= P_HWPMC;
922	PROC_UNLOCK(p);
923
924	return 0;
925}
926
927/*
928 * Attach a process and optionally its children
929 */
930
931static int
932pmc_attach_process(struct proc *p, struct pmc *pm)
933{
934	int error;
935	struct proc *top;
936
937	sx_assert(&pmc_sx, SX_XLOCKED);
938
939	PMCDBG(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
940	    pm->pm_rowindex, p, p->p_pid, p->p_comm);
941
942	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
943		return pmc_attach_one_process(p, pm);
944
945	/*
946	 * Traverse all child processes, attaching them to
947	 * this PMC.
948	 */
949
950	sx_slock(&proctree_lock);
951
952	top = p;
953
954	for (;;) {
955		if ((error = pmc_attach_one_process(p, pm)) != 0)
956			break;
957		if (!LIST_EMPTY(&p->p_children))
958			p = LIST_FIRST(&p->p_children);
959		else for (;;) {
960			if (p == top)
961				goto done;
962			if (LIST_NEXT(p, p_sibling)) {
963				p = LIST_NEXT(p, p_sibling);
964				break;
965			}
966			p = p->p_pptr;
967		}
968	}
969
970	if (error)
971		(void) pmc_detach_process(top, pm);
972
973 done:
974	sx_sunlock(&proctree_lock);
975	return error;
976}
977
978/*
979 * Detach a process from a PMC.  If there are no other PMCs tracking
980 * this process, remove the process structure from its hash table.  If
981 * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
982 */
983
984static int
985pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
986{
987	int ri;
988	struct pmc_process *pp;
989
990	sx_assert(&pmc_sx, SX_XLOCKED);
991
992	KASSERT(pm != NULL,
993	    ("[pmc,%d] null pm pointer", __LINE__));
994
995	PMCDBG(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
996	    pm, pm->pm_rowindex, p, p->p_pid, p->p_comm, flags);
997
998	ri = pm->pm_rowindex;
999
1000	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1001		return ESRCH;
1002
1003	if (pp->pp_pmcs[ri].pp_pmc != pm)
1004		return EINVAL;
1005
1006	pmc_unlink_target_process(pm, pp);
1007
1008	/*
1009	 * If there are no PMCs targetting this process, we remove its
1010	 * descriptor from the target hash table and unset the P_HWPMC
1011	 * flag in the struct proc.
1012	 */
1013
1014	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt < (int) md->pmd_npmc,
1015	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
1016		__LINE__, pp->pp_refcnt, pp));
1017
1018	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
1019		return 0;
1020
1021	pmc_remove_process_descriptor(pp);
1022
1023	if (flags & PMC_FLAG_REMOVE)
1024		FREE(pp, M_PMC);
1025
1026	PROC_LOCK(p);
1027	p->p_flag &= ~P_HWPMC;
1028	PROC_UNLOCK(p);
1029
1030	return 0;
1031}
1032
1033/*
1034 * Detach a process and optionally its descendants from a PMC.
1035 */
1036
1037static int
1038pmc_detach_process(struct proc *p, struct pmc *pm)
1039{
1040	struct proc *top;
1041
1042	sx_assert(&pmc_sx, SX_XLOCKED);
1043
1044	PMCDBG(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1045	    pm->pm_rowindex, p, p->p_pid, p->p_comm);
1046
1047	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1048		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1049
1050	/*
1051	 * Traverse all children, detaching them from this PMC.  We
1052	 * ignore errors since we could be detaching a PMC from a
1053	 * partially attached proc tree.
1054	 */
1055
1056	sx_slock(&proctree_lock);
1057
1058	top = p;
1059
1060	for (;;) {
1061		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1062
1063		if (!LIST_EMPTY(&p->p_children))
1064			p = LIST_FIRST(&p->p_children);
1065		else for (;;) {
1066			if (p == top)
1067				goto done;
1068			if (LIST_NEXT(p, p_sibling)) {
1069				p = LIST_NEXT(p, p_sibling);
1070				break;
1071			}
1072			p = p->p_pptr;
1073		}
1074	}
1075
1076 done:
1077	sx_sunlock(&proctree_lock);
1078	return 0;
1079}
1080
1081/*
1082 * The 'hook' invoked from the kernel proper
1083 */
1084
1085
1086#if	DEBUG
1087const char *pmc_hooknames[] = {
1088	"",
1089	"EXIT",
1090	"EXEC",
1091	"FORK",
1092	"CSW-IN",
1093	"CSW-OUT"
1094};
1095#endif
1096
1097static int
1098pmc_hook_handler(struct thread *td, int function, void *arg)
1099{
1100
1101	KASSERT(td->td_proc->p_flag & P_HWPMC,
1102	    ("[pmc,%d] unregistered thread called pmc_hook()", __LINE__));
1103
1104	PMCDBG(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
1105	    pmc_hooknames[function], arg);
1106
1107	switch (function)
1108	{
1109
1110	/*
1111	 * Process exit.
1112	 *
1113	 * Remove this process from all hash tables.  If this process
1114	 * owned any PMCs, turn off those PMCs and deallocate them,
1115	 * removing any associations with target processes.
1116	 *
1117	 * This function will be called by the last 'thread' of a
1118	 * process.
1119	 *
1120	 */
1121
1122	case PMC_FN_PROCESS_EXIT: /* release PMCs */
1123	{
1124		int cpu;
1125		unsigned int ri;
1126		struct pmc *pm;
1127		struct pmc_hw *phw;
1128		struct pmc_process *pp;
1129		struct pmc_owner *po;
1130		struct proc *p;
1131		pmc_value_t newvalue, tmp;
1132
1133		sx_assert(&pmc_sx, SX_XLOCKED);
1134
1135		p = (struct proc *) arg;
1136
1137		/*
1138		 * Since this code is invoked by the last thread in an
1139		 * exiting process, we would have context switched IN
1140		 * at some prior point.  Kernel mode context switches
1141		 * may happen any time, so we want to disable a context
1142		 * switch OUT till we get any PMCs targetting this
1143		 * process off the hardware.
1144		 *
1145		 * We also need to atomically remove this process'
1146		 * entry from our target process hash table, using
1147		 * PMC_FLAG_REMOVE.
1148		 */
1149
1150		PMCDBG(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
1151		    p->p_comm);
1152
1153		critical_enter(); /* no preemption */
1154
1155		cpu = curthread->td_oncpu;
1156
1157		if ((pp = pmc_find_process_descriptor(p,
1158			 PMC_FLAG_REMOVE)) != NULL) {
1159
1160			PMCDBG(PRC,EXT,2,
1161			    "process-exit proc=%p pmc-process=%p", p, pp);
1162
1163			/*
1164			 * This process could the target of some PMCs.
1165			 * Such PMCs will thus be running on currently
1166			 * executing CPU at this point in the code
1167			 * since we've disallowed context switches.
1168			 * We need to turn these PMCs off like we
1169			 * would do at context switch OUT time.
1170			 */
1171
1172			for (ri = 0; ri < md->pmd_npmc; ri++) {
1173
1174				/*
1175				 * Pick up the pmc pointer from hardware
1176				 * state similar to the CSW_OUT code.
1177				 */
1178
1179				phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
1180				pm  = phw->phw_pmc;
1181
1182				PMCDBG(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
1183
1184				if (pm == NULL ||
1185				    !PMC_IS_VIRTUAL_MODE(pm->pm_mode))
1186					continue;
1187
1188				PMCDBG(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
1189				    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
1190				    pm, pm->pm_state);
1191
1192				KASSERT(pm->pm_rowindex == ri,
1193				    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1194					__LINE__, pm->pm_rowindex, ri));
1195
1196				KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1197				    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
1198					__LINE__, pm, ri,
1199					pp->pp_pmcs[ri].pp_pmc));
1200
1201				(void) md->pmd_stop_pmc(cpu, ri);
1202
1203				KASSERT(pm->pm_runcount > 0,
1204				    ("[pmc,%d] bad runcount ri %d rc %d",
1205					__LINE__, ri, pm->pm_runcount));
1206
1207				if (pm->pm_state == PMC_STATE_RUNNING) {
1208					md->pmd_read_pmc(cpu, ri, &newvalue);
1209					tmp = newvalue -
1210					    PMC_PCPU_SAVED(cpu,ri);
1211
1212					mtx_pool_lock_spin(pmc_mtxpool, pm);
1213					pm->pm_gv.pm_savedvalue += tmp;
1214					pp->pp_pmcs[ri].pp_pmcval += tmp;
1215					mtx_pool_unlock_spin(pmc_mtxpool, pm);
1216				}
1217
1218				KASSERT((int) pm->pm_runcount >= 0,
1219				    ("[pmc,%d] runcount is %d", __LINE__, ri));
1220
1221				atomic_subtract_rel_32(&pm->pm_runcount,1);
1222				(void) md->pmd_config_pmc(cpu, ri, NULL);
1223			}
1224			critical_exit(); /* ok to be pre-empted now */
1225
1226			/*
1227			 * Unlink this process from the PMCs that are
1228			 * targetting it.  Log value at exit() time if
1229			 * requested.
1230			 */
1231
1232			for (ri = 0; ri < md->pmd_npmc; ri++)
1233				if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1234					if (pm->pm_flags &
1235					    PMC_F_LOG_TC_PROCEXIT)
1236						pmc_log_process_exit(pm, pp);
1237					pmc_unlink_target_process(pm, pp);
1238				}
1239
1240			FREE(pp, M_PMC);
1241
1242		} else
1243			critical_exit(); /* pp == NULL */
1244
1245		/*
1246		 * If the process owned PMCs, free them up and free up
1247		 * memory.
1248		 */
1249
1250		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1251			pmc_remove_owner(po);
1252			FREE(po, M_PMC);
1253		}
1254
1255	}
1256	break;
1257
1258	/*
1259	 * Process exec()
1260	 */
1261
1262	case PMC_FN_PROCESS_EXEC:
1263	{
1264		int *credentials_changed;
1265		unsigned int ri;
1266		struct pmc *pm;
1267		struct proc *p;
1268		struct pmc_owner *po;
1269		struct pmc_process *pp;
1270
1271		sx_assert(&pmc_sx, SX_XLOCKED);
1272
1273		/*
1274		 * PMCs are not inherited across an exec():  remove any
1275		 * PMCs that this process is the owner of.
1276		 */
1277
1278		p = td->td_proc;
1279
1280		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1281			pmc_remove_owner(po);
1282			FREE(po, M_PMC);
1283		}
1284
1285		/*
1286		 * If this process is the target of a PMC, check if the new
1287		 * credentials are compatible with the owner's permissions.
1288		 */
1289
1290		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1291			break;
1292
1293		credentials_changed = arg;
1294
1295		PMCDBG(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1296		    p, p->p_pid, p->p_comm, *credentials_changed);
1297
1298		if (*credentials_changed == 0) /* credentials didn't change */
1299			break;
1300
1301		/*
1302		 * If the newly exec()'ed process has a different credential
1303		 * than before, allow it to be the target of a PMC only if
1304		 * the PMC's owner has sufficient priviledge.
1305		 */
1306
1307		for (ri = 0; ri < md->pmd_npmc; ri++)
1308			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
1309				if (pmc_can_attach(pm, td->td_proc) != 0)
1310					pmc_detach_one_process(td->td_proc,
1311					    pm, PMC_FLAG_NONE);
1312
1313		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt < (int) md->pmd_npmc,
1314		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
1315			pp->pp_refcnt, pp));
1316
1317		/*
1318		 * If this process is no longer the target of any
1319		 * PMCs, we can remove the process entry and free
1320		 * up space.
1321		 */
1322
1323		if (pp->pp_refcnt == 0) {
1324			pmc_remove_process_descriptor(pp);
1325			FREE(pp, M_PMC);
1326		}
1327	}
1328	break;
1329
1330	/*
1331	 * Process fork()
1332	 */
1333
1334	case PMC_FN_PROCESS_FORK:
1335	{
1336		unsigned int ri;
1337		uint32_t do_descendants;
1338		struct pmc *pm;
1339		struct pmc_process *ppnew, *ppold;
1340		struct proc *newproc;
1341
1342		sx_assert(&pmc_sx, SX_XLOCKED);
1343
1344		newproc = (struct proc *) arg;
1345
1346		PMCDBG(PMC,FRK,2, "process-fork p1=%p p2=%p",
1347		    curthread->td_proc, newproc);
1348		/*
1349		 * If the parent process (curthread->td_proc) is a
1350		 * target of any PMCs, look for PMCs that are to be
1351		 * inherited, and link these into the new process
1352		 * descriptor.
1353		 */
1354
1355		if ((ppold = pmc_find_process_descriptor(
1356		    curthread->td_proc, PMC_FLAG_NONE)) == NULL)
1357			break;
1358
1359		do_descendants = 0;
1360		for (ri = 0; ri < md->pmd_npmc; ri++)
1361			if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
1362				do_descendants |=
1363				    pm->pm_flags & PMC_F_DESCENDANTS;
1364		if (do_descendants == 0) /* nothing to do */
1365			break;
1366
1367		if ((ppnew = pmc_find_process_descriptor(newproc,
1368		    PMC_FLAG_ALLOCATE)) == NULL)
1369			return ENOMEM;
1370
1371		/*
1372		 * Run through all PMCs targeting the old process and
1373		 * attach them to the new process.
1374		 */
1375
1376		for (ri = 0; ri < md->pmd_npmc; ri++)
1377			if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
1378			    pm->pm_flags & PMC_F_DESCENDANTS)
1379				pmc_link_target_process(pm, ppnew);
1380
1381		/*
1382		 * Now mark the new process as being tracked by this
1383		 * driver.
1384		 */
1385
1386		PROC_LOCK(newproc);
1387		newproc->p_flag |= P_HWPMC;
1388		PROC_UNLOCK(newproc);
1389
1390	}
1391	break;
1392
1393	/*
1394	 * Thread context switch IN
1395	 */
1396
1397	case PMC_FN_CSW_IN:
1398	{
1399		int cpu;
1400		unsigned int ri;
1401		struct pmc *pm;
1402		struct proc *p;
1403		struct pmc_cpu *pc;
1404		struct pmc_hw *phw;
1405		struct pmc_process *pp;
1406		pmc_value_t newvalue;
1407
1408		p = td->td_proc;
1409
1410		if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1411			break;
1412
1413		KASSERT(pp->pp_proc == td->td_proc,
1414		    ("[pmc,%d] not my thread state", __LINE__));
1415
1416		critical_enter(); /* no preemption on this CPU */
1417
1418		cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1419
1420		PMCDBG(CTX,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1421		    p->p_pid, p->p_comm, pp);
1422
1423		KASSERT(cpu >= 0 && cpu < mp_ncpus,
1424		    ("[pmc,%d] wierd CPU id %d", __LINE__, cpu));
1425
1426		pc = pmc_pcpu[cpu];
1427
1428		for (ri = 0; ri < md->pmd_npmc; ri++) {
1429
1430			if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1431				continue;
1432
1433			KASSERT(PMC_IS_VIRTUAL_MODE(pm->pm_mode),
1434			    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1435				__LINE__, pm->pm_mode));
1436
1437			KASSERT(pm->pm_rowindex == ri,
1438			    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1439				__LINE__, pm->pm_rowindex, ri));
1440
1441			/*
1442			 * Only PMCs that are marked as 'RUNNING' need
1443			 * be placed on hardware.
1444			 */
1445
1446			if (pm->pm_state != PMC_STATE_RUNNING)
1447				continue;
1448
1449			/* increment PMC runcount */
1450			atomic_add_rel_32(&pm->pm_runcount, 1);
1451
1452			/* configure the HWPMC we are going to use. */
1453			md->pmd_config_pmc(cpu, ri, pm);
1454
1455			phw = pc->pc_hwpmcs[ri];
1456
1457			KASSERT(phw != NULL,
1458			    ("[pmc,%d] null hw pointer", __LINE__));
1459
1460			KASSERT(phw->phw_pmc == pm,
1461			    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1462				phw->phw_pmc, pm));
1463
1464			/* write out saved value and start the PMC */
1465			mtx_pool_lock_spin(pmc_mtxpool, pm);
1466			newvalue = PMC_PCPU_SAVED(cpu, ri) =
1467			    pm->pm_gv.pm_savedvalue;
1468			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1469
1470			md->pmd_write_pmc(cpu, ri, newvalue);
1471			md->pmd_start_pmc(cpu, ri);
1472
1473		}
1474
1475		/*
1476		 * perform any other architecture/cpu dependent thread
1477		 * switch-in actions.
1478		 */
1479
1480		(void) (*md->pmd_switch_in)(pc);
1481
1482		critical_exit();
1483
1484	}
1485	break;
1486
1487	/*
1488	 * Thread context switch OUT.
1489	 */
1490
1491	case PMC_FN_CSW_OUT:
1492	{
1493		int cpu;
1494		unsigned int ri;
1495		struct pmc *pm;
1496		struct proc *p;
1497		struct pmc_cpu *pc;
1498		struct pmc_hw *phw;
1499		struct pmc_process *pp;
1500		pmc_value_t newvalue, tmp;
1501
1502		/*
1503		 * Locate our process descriptor; this may be NULL if
1504		 * this process is exiting and we have already removed
1505		 * the process from the target process table.
1506		 *
1507		 * Note that due to kernel preemption, multiple
1508		 * context switches may happen while the process is
1509		 * exiting.
1510		 *
1511		 * Note also that if the target process cannot be
1512		 * found we still need to deconfigure any PMCs that
1513		 * are currently running on hardware.
1514		 */
1515
1516		p = td->td_proc;
1517		pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1518
1519		/*
1520		 * save PMCs
1521		 */
1522
1523		critical_enter();
1524
1525		cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1526
1527		PMCDBG(CTX,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1528		    p->p_pid, p->p_comm, pp);
1529
1530		KASSERT(cpu >= 0 && cpu < mp_ncpus,
1531		    ("[pmc,%d wierd CPU id %d", __LINE__, cpu));
1532
1533		pc = pmc_pcpu[cpu];
1534
1535		/*
1536		 * When a PMC gets unlinked from a target PMC, it will
1537		 * be removed from the target's pp_pmc[] array.
1538		 *
1539		 * However, on a MP system, the target could have been
1540		 * executing on another CPU at the time of the unlink.
1541		 * So, at context switch OUT time, we need to look at
1542		 * the hardware to determine if a PMC is scheduled on
1543		 * it.
1544		 */
1545
1546		for (ri = 0; ri < md->pmd_npmc; ri++) {
1547
1548			phw = pc->pc_hwpmcs[ri];
1549			pm  = phw->phw_pmc;
1550
1551			if (pm == NULL)	/* nothing at this row index */
1552				continue;
1553
1554			if (!PMC_IS_VIRTUAL_MODE(pm->pm_mode))
1555				continue; /* not a process virtual PMC */
1556
1557			KASSERT(pm->pm_rowindex == ri,
1558			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1559				__LINE__, pm->pm_rowindex, ri));
1560
1561			/* Stop hardware */
1562			md->pmd_stop_pmc(cpu, ri);
1563
1564			/* reduce this PMC's runcount */
1565			atomic_subtract_rel_32(&pm->pm_runcount, 1);
1566
1567			/*
1568			 * If this PMC is associated with this process,
1569			 * save the reading.
1570			 */
1571
1572			if (pp != NULL && pp->pp_pmcs[ri].pp_pmc != NULL) {
1573
1574				KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1575				    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
1576					__LINE__, pm, ri,
1577					pp->pp_pmcs[ri].pp_pmc));
1578
1579				KASSERT(pp->pp_refcnt > 0,
1580				    ("[pmc,%d] pp refcnt = %d", __LINE__,
1581					pp->pp_refcnt));
1582
1583				md->pmd_read_pmc(cpu, ri, &newvalue);
1584
1585				tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1586
1587				KASSERT((int64_t) tmp >= 0,
1588				    ("[pmc,%d] negative increment cpu=%d "
1589					"ri=%d newvalue=%jx saved=%jx "
1590					"incr=%jx", __LINE__, cpu, ri,
1591					newvalue, PMC_PCPU_SAVED(cpu,ri),
1592					tmp));
1593
1594				/*
1595				 * Increment the PMC's count and this
1596				 * target process's count by the difference
1597				 * between the current reading and the
1598				 * saved value at context switch in time.
1599				 */
1600
1601				mtx_pool_lock_spin(pmc_mtxpool, pm);
1602
1603				pm->pm_gv.pm_savedvalue += tmp;
1604				pp->pp_pmcs[ri].pp_pmcval += tmp;
1605
1606				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1607
1608			}
1609
1610			/* mark hardware as free */
1611			md->pmd_config_pmc(cpu, ri, NULL);
1612		}
1613
1614		/*
1615		 * perform any other architecture/cpu dependent thread
1616		 * switch out functions.
1617		 */
1618
1619		(void) (*md->pmd_switch_out)(pc);
1620
1621		critical_exit();
1622
1623	}
1624	break;
1625
1626	default:
1627#if DEBUG
1628		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
1629#endif
1630		break;
1631
1632	}
1633
1634	return 0;
1635}
1636
1637/*
1638 * allocate a 'struct pmc_owner' descriptor in the owner hash table.
1639 */
1640
1641static struct pmc_owner *
1642pmc_allocate_owner_descriptor(struct proc *p)
1643{
1644	uint32_t hindex;
1645	struct pmc_owner *po;
1646	struct pmc_ownerhash *poh;
1647
1648	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
1649	poh = &pmc_ownerhash[hindex];
1650
1651	/* allocate space for N pointers and one descriptor struct */
1652	MALLOC(po, struct pmc_owner *, sizeof(struct pmc_owner),
1653	    M_PMC, M_WAITOK);
1654
1655	po->po_flags = 0;
1656	po->po_owner = p;
1657	LIST_INIT(&po->po_pmcs);
1658	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
1659
1660	PMCDBG(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
1661	    p, p->p_pid, p->p_comm, po);
1662
1663	return po;
1664}
1665
1666/*
1667 * find the descriptor corresponding to process 'p', adding or removing it
1668 * as specified by 'mode'.
1669 */
1670
1671static struct pmc_process *
1672pmc_find_process_descriptor(struct proc *p, uint32_t mode)
1673{
1674	uint32_t hindex;
1675	struct pmc_process *pp, *ppnew;
1676	struct pmc_processhash *pph;
1677
1678	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
1679	pph = &pmc_processhash[hindex];
1680
1681	ppnew = NULL;
1682
1683	/*
1684	 * Pre-allocate memory in the FIND_ALLOCATE case since we
1685	 * cannot call malloc(9) once we hold a spin lock.
1686	 */
1687
1688	if (mode & PMC_FLAG_ALLOCATE) {
1689		/* allocate additional space for 'n' pmc pointers */
1690		MALLOC(ppnew, struct pmc_process *,
1691		    sizeof(struct pmc_process) + md->pmd_npmc *
1692		    sizeof(struct pmc_targetstate), M_PMC, M_ZERO|M_WAITOK);
1693	}
1694
1695	mtx_lock_spin(&pmc_processhash_mtx);
1696	LIST_FOREACH(pp, pph, pp_next)
1697	    if (pp->pp_proc == p)
1698		    break;
1699
1700	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
1701		LIST_REMOVE(pp, pp_next);
1702
1703	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
1704	    ppnew != NULL) {
1705		ppnew->pp_proc = p;
1706		LIST_INSERT_HEAD(pph, ppnew, pp_next);
1707		pp = ppnew;
1708		ppnew = NULL;
1709	}
1710	mtx_unlock_spin(&pmc_processhash_mtx);
1711
1712	if (pp != NULL && ppnew != NULL)
1713		FREE(ppnew, M_PMC);
1714
1715	return pp;
1716}
1717
1718/*
1719 * remove a process descriptor from the process hash table.
1720 */
1721
1722static void
1723pmc_remove_process_descriptor(struct pmc_process *pp)
1724{
1725	KASSERT(pp->pp_refcnt == 0,
1726	    ("[pmc,%d] Removing process descriptor %p with count %d",
1727		__LINE__, pp, pp->pp_refcnt));
1728
1729	mtx_lock_spin(&pmc_processhash_mtx);
1730	LIST_REMOVE(pp, pp_next);
1731	mtx_unlock_spin(&pmc_processhash_mtx);
1732}
1733
1734
1735/*
1736 * find an owner descriptor corresponding to proc 'p'
1737 */
1738
1739static struct pmc_owner *
1740pmc_find_owner_descriptor(struct proc *p)
1741{
1742	uint32_t hindex;
1743	struct pmc_owner *po;
1744	struct pmc_ownerhash *poh;
1745
1746	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
1747	poh = &pmc_ownerhash[hindex];
1748
1749	po = NULL;
1750	LIST_FOREACH(po, poh, po_next)
1751	    if (po->po_owner == p)
1752		    break;
1753
1754	PMCDBG(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
1755	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
1756
1757	return po;
1758}
1759
1760/*
1761 * pmc_allocate_pmc_descriptor
1762 *
1763 * Allocate a pmc descriptor and initialize its
1764 * fields.
1765 */
1766
1767static struct pmc *
1768pmc_allocate_pmc_descriptor(void)
1769{
1770	struct pmc *pmc;
1771
1772	MALLOC(pmc, struct pmc *, sizeof(struct pmc), M_PMC, M_ZERO|M_WAITOK);
1773
1774	if (pmc != NULL) {
1775		pmc->pm_owner = NULL;
1776		LIST_INIT(&pmc->pm_targets);
1777	}
1778
1779	PMCDBG(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
1780
1781	return pmc;
1782}
1783
1784/*
1785 * Destroy a pmc descriptor.
1786 */
1787
1788static void
1789pmc_destroy_pmc_descriptor(struct pmc *pm)
1790{
1791	(void) pm;
1792
1793#if	DEBUG
1794	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
1795	    pm->pm_state == PMC_STATE_FREE,
1796	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
1797	KASSERT(LIST_EMPTY(&pm->pm_targets),
1798	    ("[pmc,%d] destroying pmc with targets", __LINE__));
1799	KASSERT(pm->pm_owner == NULL,
1800	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
1801	KASSERT(pm->pm_runcount == 0,
1802	    ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
1803		pm->pm_runcount));
1804#endif
1805}
1806
1807/*
1808 * This function does the following things:
1809 *
1810 *  - detaches the PMC from hardware
1811 *  - unlinks all target threads that were attached to it
1812 *  - removes the PMC from its owner's list
1813 *  - destroy's the PMC private mutex
1814 *
1815 * Once this function completes, the given pmc pointer can be safely
1816 * FREE'd by the caller.
1817 */
1818
1819static void
1820pmc_release_pmc_descriptor(struct pmc *pm)
1821{
1822#if	DEBUG
1823	volatile int maxloop;
1824#endif
1825	u_int ri, cpu;
1826	u_char curpri;
1827	struct pmc_hw *phw;
1828	struct pmc_process *pp;
1829	struct pmc_target *ptgt, *tmp;
1830	struct pmc_binding pb;
1831
1832	sx_assert(&pmc_sx, SX_XLOCKED);
1833
1834	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
1835
1836	ri = pm->pm_rowindex;
1837
1838	PMCDBG(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
1839	    pm->pm_mode);
1840
1841	/*
1842	 * First, we take the PMC off hardware.
1843	 */
1844
1845	if (PMC_IS_SYSTEM_MODE(pm->pm_mode)) {
1846
1847		/*
1848		 * A system mode PMC runs on a specific CPU.  Switch
1849		 * to this CPU and turn hardware off.
1850		 */
1851
1852		pmc_save_cpu_binding(&pb);
1853
1854		cpu = pm->pm_gv.pm_cpu;
1855
1856		if (pm->pm_state == PMC_STATE_RUNNING) {
1857
1858			pmc_select_cpu(cpu);
1859
1860			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
1861
1862			KASSERT(phw->phw_pmc == pm,
1863			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
1864				__LINE__, ri, phw->phw_pmc, pm));
1865
1866			PMCDBG(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
1867
1868			critical_enter();
1869			md->pmd_stop_pmc(cpu, ri);
1870			critical_exit();
1871		}
1872
1873		PMCDBG(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
1874
1875		critical_enter();
1876		md->pmd_config_pmc(cpu, ri, NULL);
1877		critical_exit();
1878
1879		pm->pm_state = PMC_STATE_DELETED;
1880
1881		pmc_restore_cpu_binding(&pb);
1882
1883	} else if (PMC_IS_VIRTUAL_MODE(pm->pm_mode)) {
1884
1885		/*
1886		 * A virtual PMC could be running on multiple CPUs at
1887		 * a given instant.
1888		 *
1889		 * By marking its state as DELETED, we ensure that
1890		 * this PMC is never further scheduled on hardware.
1891		 *
1892		 * Then we wait till all CPUs are done with this PMC.
1893		 */
1894
1895		pm->pm_state = PMC_STATE_DELETED;
1896
1897
1898		/*
1899		 * Wait for the PMCs runcount to come to zero.
1900		 */
1901
1902#if	DEBUG
1903		maxloop = 100 * mp_ncpus;
1904#endif
1905
1906		while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
1907
1908#if	DEBUG
1909			maxloop--;
1910			KASSERT(maxloop > 0,
1911			    ("[pmc,%d] (ri%d, rc%d) waiting too long for "
1912				"pmc to be free", __LINE__, pm->pm_rowindex,
1913				pm->pm_runcount));
1914#endif
1915
1916			mtx_lock_spin(&sched_lock);
1917			curpri = curthread->td_priority;
1918			mtx_unlock_spin(&sched_lock);
1919
1920			(void) tsleep((void *) pmc_release_pmc_descriptor,
1921			    curpri, "pmcrel", 1);
1922
1923		}
1924
1925		/*
1926		 * At this point the PMC is off all CPUs and cannot be
1927		 * freshly scheduled onto a CPU.  It is now safe to
1928		 * unlink all targets from this PMC.  If a
1929		 * process-record's refcount falls to zero, we remove
1930		 * it from the hash table.  The module-wide SX lock
1931		 * protects us from races.
1932		 */
1933
1934		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
1935			pp = ptgt->pt_process;
1936			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
1937
1938			PMCDBG(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
1939
1940			/*
1941			 * If the target process record shows that no
1942			 * PMCs are attached to it, reclaim its space.
1943			 */
1944
1945			if (pp->pp_refcnt == 0) {
1946				pmc_remove_process_descriptor(pp);
1947				FREE(pp, M_PMC);
1948			}
1949		}
1950
1951		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
1952
1953	}
1954
1955	/*
1956	 * Release any MD resources
1957	 */
1958
1959	(void) md->pmd_release_pmc(cpu, ri, pm);
1960
1961	/*
1962	 * Update row disposition
1963	 */
1964
1965	if (PMC_IS_SYSTEM_MODE(pm->pm_mode))
1966		PMC_UNMARK_ROW_STANDALONE(ri);
1967	else
1968		PMC_UNMARK_ROW_THREAD(ri);
1969
1970	/* unlink from the owner's list */
1971	if (pm->pm_owner)
1972		pmc_unlink_owner(pm);
1973
1974	pmc_destroy_pmc_descriptor(pm);
1975}
1976
1977/*
1978 * Register an owner and a pmc.
1979 */
1980
1981static int
1982pmc_register_owner(struct proc *p, struct pmc *pmc)
1983{
1984	struct pmc_list	*pl;
1985	struct pmc_owner *po;
1986
1987	sx_assert(&pmc_sx, SX_XLOCKED);
1988
1989	MALLOC(pl, struct pmc_list *, sizeof(struct pmc_list), M_PMC,
1990	    M_WAITOK);
1991
1992	if (pl == NULL)
1993		return ENOMEM;
1994
1995	if ((po = pmc_find_owner_descriptor(p)) == NULL) {
1996		if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
1997			FREE(pl, M_PMC);
1998			return ENOMEM;
1999		}
2000		po->po_flags |= PMC_FLAG_IS_OWNER; /* real owner */
2001	}
2002
2003	if (pmc->pm_mode == PMC_MODE_TS) {
2004		/* can have only one TS mode PMC per process */
2005		if (po->po_flags & PMC_FLAG_HAS_TS_PMC) {
2006			FREE(pl, M_PMC);
2007			return EINVAL;
2008		}
2009		po->po_flags |= PMC_FLAG_HAS_TS_PMC;
2010	}
2011
2012	KASSERT(pmc->pm_owner == NULL,
2013	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2014	pmc->pm_owner  = po;
2015
2016	pl->pl_pmc = pmc;
2017
2018	LIST_INSERT_HEAD(&po->po_pmcs, pl, pl_next);
2019
2020	PROC_LOCK(p);
2021	p->p_flag |= P_HWPMC;
2022	PROC_UNLOCK(p);
2023
2024	PMCDBG(PMC,REG,1, "register-owner pmc-owner=%p pl=%p pmc=%p",
2025	    po, pl, pmc);
2026
2027	return 0;
2028}
2029
2030/*
2031 * Return the current row disposition:
2032 * == 0 => FREE
2033 *  > 0 => PROCESS MODE
2034 *  < 0 => SYSTEM MODE
2035 */
2036
2037int
2038pmc_getrowdisp(int ri)
2039{
2040	return pmc_pmcdisp[ri];
2041}
2042
2043/*
2044 * Check if a PMC at row index 'ri' can be allocated to the current
2045 * process.
2046 *
2047 * Allocation can fail if:
2048 *   - the current process is already being profiled by a PMC at index 'ri',
2049 *     attached to it via OP_PMCATTACH.
2050 *   - the current process has already allocated a PMC at index 'ri'
2051 *     via OP_ALLOCATE.
2052 */
2053
2054static int
2055pmc_can_allocate_rowindex(struct proc *p, unsigned int ri)
2056{
2057	struct pmc_list *pl;
2058	struct pmc_owner *po;
2059	struct pmc_process *pp;
2060
2061	PMCDBG(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d",
2062	    p, p->p_pid, p->p_comm, ri);
2063
2064	/* we shouldn't have allocated a PMC at row index 'ri' */
2065	if ((po = pmc_find_owner_descriptor(p)) != NULL)
2066		LIST_FOREACH(pl, &po->po_pmcs, pl_next)
2067		    if (pl->pl_pmc->pm_rowindex == ri)
2068			    return EEXIST;
2069
2070	/* we shouldn't be the target of any PMC ourselves at this index */
2071	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2072		if (pp->pp_pmcs[ri].pp_pmc)
2073			return EEXIST;
2074
2075	PMCDBG(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2076	    p, p->p_pid, p->p_comm, ri);
2077
2078	return 0;
2079}
2080
2081/*
2082 * Check if a given PMC at row index 'ri' can be currently used in
2083 * mode 'mode'.
2084 */
2085
2086static int
2087pmc_can_allocate_row(int ri, enum pmc_mode mode)
2088{
2089	enum pmc_disp	disp;
2090
2091	sx_assert(&pmc_sx, SX_XLOCKED);
2092
2093	PMCDBG(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2094
2095	if (PMC_IS_SYSTEM_MODE(mode))
2096		disp = PMC_DISP_STANDALONE;
2097	else
2098		disp = PMC_DISP_THREAD;
2099
2100	/*
2101	 * check disposition for PMC row 'ri':
2102	 *
2103	 * Expected disposition		Row-disposition		Result
2104	 *
2105	 * STANDALONE			STANDALONE or FREE	proceed
2106	 * STANDALONE			THREAD			fail
2107	 * THREAD			THREAD or FREE		proceed
2108	 * THREAD			STANDALONE		fail
2109	 */
2110
2111	if (!PMC_ROW_DISP_IS_FREE(ri) &&
2112	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2113	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2114		return EBUSY;
2115
2116	/*
2117	 * All OK
2118	 */
2119
2120	PMCDBG(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2121
2122	return 0;
2123
2124}
2125
2126/*
2127 * Find a PMC descriptor with user handle 'pmc' for thread 'td'.
2128 */
2129
2130static struct pmc *
2131pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2132{
2133	struct pmc_list	*pl;
2134
2135	KASSERT(pmcid < md->pmd_npmc,
2136	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__, pmcid,
2137		md->pmd_npmc));
2138
2139	LIST_FOREACH(pl, &po->po_pmcs, pl_next)
2140	    if (pl->pl_pmc->pm_rowindex == pmcid)
2141		    return pl->pl_pmc;
2142
2143	return NULL;
2144}
2145
2146static int
2147pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
2148{
2149
2150	struct pmc *pm;
2151	struct pmc_owner *po;
2152
2153	PMCDBG(PMC,FND,1, "find-pmc id=%d", pmcid);
2154
2155	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL)
2156		return ESRCH;
2157
2158	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
2159		return EINVAL;
2160
2161	PMCDBG(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
2162
2163	*pmc = pm;
2164	return 0;
2165}
2166
2167/*
2168 * Start a PMC.
2169 */
2170
2171static int
2172pmc_start(struct pmc *pm)
2173{
2174	int error, cpu, ri;
2175	struct pmc_binding pb;
2176
2177	KASSERT(pm != NULL,
2178	    ("[pmc,%d] null pm", __LINE__));
2179
2180	PMCDBG(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, pm->pm_mode,
2181	    pm->pm_rowindex);
2182
2183	pm->pm_state = PMC_STATE_RUNNING;
2184
2185	if (PMC_IS_VIRTUAL_MODE(pm->pm_mode)) {
2186
2187		/*
2188		 * If a PMCATTACH hadn't been done on this
2189		 * PMC, attach this PMC to its owner process.
2190		 */
2191
2192		if (LIST_EMPTY(&pm->pm_targets))
2193			return pmc_attach_process(pm->pm_owner->po_owner, pm);
2194
2195
2196		/*
2197		 * Nothing further to be done; thread context switch code
2198		 * will start/stop the PMC as appropriate.
2199		 */
2200
2201		return 0;
2202
2203	}
2204
2205	/*
2206	 * A system-mode PMC.  Move to the CPU associated with this
2207	 * PMC, and start the hardware.
2208	 */
2209
2210	pmc_save_cpu_binding(&pb);
2211
2212	cpu = pm->pm_gv.pm_cpu;
2213
2214	if (pmc_cpu_is_disabled(cpu))
2215		return ENXIO;
2216
2217	ri  = pm->pm_rowindex;
2218
2219	pmc_select_cpu(cpu);
2220
2221	/*
2222	 * global PMCs are configured at allocation time
2223	 * so write out the initial value and start the PMC.
2224	 */
2225
2226	if ((error = md->pmd_write_pmc(cpu, ri,
2227		 PMC_IS_SAMPLING_MODE(pm->pm_mode) ?
2228		 pm->pm_sc.pm_reloadcount :
2229		 pm->pm_sc.pm_initial)) == 0)
2230		error = md->pmd_start_pmc(cpu, ri);
2231
2232	pmc_restore_cpu_binding(&pb);
2233
2234	return error;
2235}
2236
2237/*
2238 * Stop a PMC.
2239 */
2240
2241static int
2242pmc_stop(struct pmc *pm)
2243{
2244	int error, cpu;
2245	struct pmc_binding pb;
2246
2247	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
2248
2249	PMCDBG(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm, pm->pm_mode,
2250	    pm->pm_rowindex);
2251
2252	pm->pm_state = PMC_STATE_STOPPED;
2253
2254	/*
2255	 * If the PMC is a virtual mode one, changing the state to
2256	 * non-RUNNING is enough to ensure that the PMC never gets
2257	 * scheduled.
2258	 *
2259	 * If this PMC is current running on a CPU, then it will
2260	 * handled correctly at the time its target process is context
2261	 * switched out.
2262	 */
2263
2264	if (PMC_IS_VIRTUAL_MODE(pm->pm_mode))
2265		return 0;
2266
2267	/*
2268	 * A system-mode PMC.  Move to the CPU associated with
2269	 * this PMC, and stop the hardware.  We update the
2270	 * 'initial count' so that a subsequent PMCSTART will
2271	 * resume counting from the current hardware count.
2272	 */
2273
2274	pmc_save_cpu_binding(&pb);
2275
2276	cpu = pm->pm_gv.pm_cpu;
2277
2278	if (pmc_cpu_is_disabled(cpu))
2279		return ENXIO;
2280
2281	pmc_select_cpu(cpu);
2282
2283	if ((error = md->pmd_stop_pmc(cpu, pm->pm_rowindex)) == 0)
2284		error = md->pmd_read_pmc(cpu, pm->pm_rowindex,
2285		    &pm->pm_sc.pm_initial);
2286
2287	pmc_restore_cpu_binding(&pb);
2288
2289	return error;
2290}
2291
2292
2293#if	DEBUG
2294static const char *pmc_op_to_name[] = {
2295#undef	__PMC_OP
2296#define	__PMC_OP(N, D)	#N ,
2297	__PMC_OPS()
2298	NULL
2299};
2300#endif
2301
2302/*
2303 * The syscall interface
2304 */
2305
2306#define	PMC_GET_SX_XLOCK(...) do {		\
2307	sx_xlock(&pmc_sx);			\
2308	if (pmc_hook == NULL) {			\
2309		sx_xunlock(&pmc_sx);		\
2310		return __VA_ARGS__;		\
2311	}					\
2312} while (0)
2313
2314#define	PMC_DOWNGRADE_SX() do {			\
2315	sx_downgrade(&pmc_sx);			\
2316	is_sx_downgraded = 1;			\
2317} while (0)
2318
2319static int
2320pmc_syscall_handler(struct thread *td, void *syscall_args)
2321{
2322	int error, is_sx_downgraded, op;
2323	struct pmc_syscall_args *c;
2324	void *arg;
2325
2326	PMC_GET_SX_XLOCK(ENOSYS);
2327
2328	is_sx_downgraded = 0;
2329
2330	c = (struct pmc_syscall_args *) syscall_args;
2331
2332	op = c->pmop_code;
2333	arg = c->pmop_data;
2334
2335	PMCDBG(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
2336	    pmc_op_to_name[op], arg);
2337
2338	error = 0;
2339	atomic_add_int(&pmc_stats.pm_syscalls, 1);
2340
2341	switch(op)
2342	{
2343
2344
2345	/*
2346	 * Configure a log file.
2347	 *
2348	 * XXX This OP will be reworked.
2349	 */
2350
2351	case PMC_OP_CONFIGURELOG:
2352	{
2353		struct pmc_owner *po;
2354		struct pmc_op_configurelog cl;
2355		struct proc *p;
2356
2357		sx_assert(&pmc_sx, SX_XLOCKED);
2358
2359		if ((error = copyin(arg, &cl, sizeof(cl))) != 0)
2360			break;
2361
2362		/* mark this process as owning a log file */
2363		p = td->td_proc;
2364		if ((po = pmc_find_owner_descriptor(p)) == NULL)
2365			if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2366				return ENOMEM;
2367
2368		if ((error = pmc_configure_log(po, cl.pm_logfd)) != 0)
2369			break;
2370
2371	}
2372	break;
2373
2374
2375	/*
2376	 * Retrieve hardware configuration.
2377	 */
2378
2379	case PMC_OP_GETCPUINFO:	/* CPU information */
2380	{
2381		struct pmc_op_getcpuinfo gci;
2382
2383		gci.pm_cputype = md->pmd_cputype;
2384		gci.pm_npmc    = md->pmd_npmc;
2385		gci.pm_nclass  = md->pmd_nclass;
2386		bcopy(md->pmd_classes, &gci.pm_classes,
2387		    sizeof(gci.pm_classes));
2388		gci.pm_ncpu    = mp_ncpus;
2389		error = copyout(&gci, arg, sizeof(gci));
2390	}
2391	break;
2392
2393
2394	/*
2395	 * Get module statistics
2396	 */
2397
2398	case PMC_OP_GETDRIVERSTATS:
2399	{
2400		struct pmc_op_getdriverstats gms;
2401
2402		bcopy(&pmc_stats, &gms, sizeof(gms));
2403		error = copyout(&gms, arg, sizeof(gms));
2404	}
2405	break;
2406
2407
2408	/*
2409	 * Retrieve module version number
2410	 */
2411
2412	case PMC_OP_GETMODULEVERSION:
2413	{
2414		error = copyout(&_pmc_version.mv_version, arg, sizeof(int));
2415	}
2416	break;
2417
2418
2419	/*
2420	 * Retrieve the state of all the PMCs on a given
2421	 * CPU.
2422	 */
2423
2424	case PMC_OP_GETPMCINFO:
2425	{
2426		uint32_t cpu, n, npmc;
2427		size_t pmcinfo_size;
2428		struct pmc *pm;
2429		struct pmc_info *p, *pmcinfo;
2430		struct pmc_op_getpmcinfo *gpi;
2431		struct pmc_owner *po;
2432		struct pmc_binding pb;
2433
2434		PMC_DOWNGRADE_SX();
2435
2436		gpi = (struct pmc_op_getpmcinfo *) arg;
2437
2438		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
2439			break;
2440
2441		if (cpu >= (unsigned int) mp_ncpus) {
2442			error = EINVAL;
2443			break;
2444		}
2445
2446		if (pmc_cpu_is_disabled(cpu)) {
2447			error = ENXIO;
2448			break;
2449		}
2450
2451		/* switch to CPU 'cpu' */
2452		pmc_save_cpu_binding(&pb);
2453		pmc_select_cpu(cpu);
2454
2455		npmc = md->pmd_npmc;
2456
2457		pmcinfo_size = npmc * sizeof(struct pmc_info);
2458		MALLOC(pmcinfo, struct pmc_info *, pmcinfo_size, M_PMC,
2459		    M_WAITOK);
2460
2461		p = pmcinfo;
2462
2463		for (n = 0; n < md->pmd_npmc; n++, p++) {
2464
2465			if ((error = md->pmd_describe(cpu, n, p, &pm)) != 0)
2466				break;
2467
2468			if (PMC_ROW_DISP_IS_STANDALONE(n))
2469				p->pm_rowdisp = PMC_DISP_STANDALONE;
2470			else if (PMC_ROW_DISP_IS_THREAD(n))
2471				p->pm_rowdisp = PMC_DISP_THREAD;
2472			else
2473				p->pm_rowdisp = PMC_DISP_FREE;
2474
2475			p->pm_ownerpid = -1;
2476
2477			if (pm == NULL)	/* no PMC associated */
2478				continue;
2479
2480			po = pm->pm_owner;
2481
2482			KASSERT(po->po_owner != NULL,
2483			    ("[pmc,%d] pmc_owner had a null proc pointer",
2484				__LINE__));
2485
2486			p->pm_ownerpid = po->po_owner->p_pid;
2487			p->pm_mode     = pm->pm_mode;
2488			p->pm_event    = pm->pm_event;
2489			p->pm_flags    = pm->pm_flags;
2490
2491			if (PMC_IS_SAMPLING_MODE(pm->pm_mode))
2492				p->pm_reloadcount =
2493				    pm->pm_sc.pm_reloadcount;
2494		}
2495
2496		pmc_restore_cpu_binding(&pb);
2497
2498		/* now copy out the PMC info collected */
2499		if (error == 0)
2500			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
2501
2502		FREE(pmcinfo, M_PMC);
2503	}
2504	break;
2505
2506
2507	/*
2508	 * Set the administrative state of a PMC.  I.e. whether
2509	 * the PMC is to be used or not.
2510	 */
2511
2512	case PMC_OP_PMCADMIN:
2513	{
2514		int cpu, ri;
2515		enum pmc_state request;
2516		struct pmc_cpu *pc;
2517		struct pmc_hw *phw;
2518		struct pmc_op_pmcadmin pma;
2519		struct pmc_binding pb;
2520
2521		sx_assert(&pmc_sx, SX_XLOCKED);
2522
2523		KASSERT(td == curthread,
2524		    ("[pmc,%d] td != curthread", __LINE__));
2525
2526		if (suser(td) || jailed(td->td_ucred)) {
2527			error =  EPERM;
2528			break;
2529		}
2530
2531		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
2532			break;
2533
2534		cpu = pma.pm_cpu;
2535
2536		if (cpu < 0 || cpu >= mp_ncpus) {
2537			error = EINVAL;
2538			break;
2539		}
2540
2541		if (pmc_cpu_is_disabled(cpu)) {
2542			error = ENXIO;
2543			break;
2544		}
2545
2546		request = pma.pm_state;
2547
2548		if (request != PMC_STATE_DISABLED &&
2549		    request != PMC_STATE_FREE) {
2550			error = EINVAL;
2551			break;
2552		}
2553
2554		ri = pma.pm_pmc; /* pmc id == row index */
2555		if (ri < 0 || ri >= (int) md->pmd_npmc) {
2556			error = EINVAL;
2557			break;
2558		}
2559
2560		/*
2561		 * We can't disable a PMC with a row-index allocated
2562		 * for process virtual PMCs.
2563		 */
2564
2565		if (PMC_ROW_DISP_IS_THREAD(ri) &&
2566		    request == PMC_STATE_DISABLED) {
2567			error = EBUSY;
2568			break;
2569		}
2570
2571		/*
2572		 * otherwise, this PMC on this CPU is either free or
2573		 * in system-wide mode.
2574		 */
2575
2576		pmc_save_cpu_binding(&pb);
2577		pmc_select_cpu(cpu);
2578
2579		pc  = pmc_pcpu[cpu];
2580		phw = pc->pc_hwpmcs[ri];
2581
2582		/*
2583		 * XXX do we need some kind of 'forced' disable?
2584		 */
2585
2586		if (phw->phw_pmc == NULL) {
2587			if (request == PMC_STATE_DISABLED &&
2588			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
2589				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
2590				PMC_MARK_ROW_STANDALONE(ri);
2591			} else if (request == PMC_STATE_FREE &&
2592			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
2593				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
2594				PMC_UNMARK_ROW_STANDALONE(ri);
2595			}
2596			/* other cases are a no-op */
2597		} else
2598			error = EBUSY;
2599
2600		pmc_restore_cpu_binding(&pb);
2601	}
2602	break;
2603
2604
2605	/*
2606	 * Allocate a PMC.
2607	 */
2608
2609	case PMC_OP_PMCALLOCATE:
2610	{
2611		uint32_t caps;
2612		u_int cpu;
2613		int n;
2614		enum pmc_mode mode;
2615		struct pmc *pmc;
2616		struct pmc_op_pmcallocate pa;
2617		struct pmc_binding pb;
2618
2619		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
2620			break;
2621
2622		caps = pa.pm_caps;
2623		mode = pa.pm_mode;
2624		cpu  = pa.pm_cpu;
2625
2626		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
2627		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
2628		    (cpu != (u_int) PMC_CPU_ANY && cpu >= (u_int) mp_ncpus)) {
2629			error = EINVAL;
2630			break;
2631		}
2632
2633		/*
2634		 * Virtual PMCs should only ask for a default CPU.
2635		 * System mode PMCs need to specify a non-default CPU.
2636		 */
2637
2638		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
2639		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
2640			error = EINVAL;
2641			break;
2642		}
2643
2644		/*
2645		 * Check that a disabled CPU is not being asked for.
2646		 */
2647
2648		if (PMC_IS_SYSTEM_MODE(mode) && pmc_cpu_is_disabled(cpu)) {
2649			error = ENXIO;
2650			break;
2651		}
2652
2653		/*
2654		 * Refuse an allocation for a system-wide PMC if this
2655		 * process has been jailed, or if this process lacks
2656		 * super-user credentials and the sysctl tunable
2657		 * 'security.bsd.unprivileged_syspmcs' is zero.
2658		 */
2659
2660		if (PMC_IS_SYSTEM_MODE(mode)) {
2661			if (jailed(curthread->td_ucred))
2662				error = EPERM;
2663			else if (suser(curthread) &&
2664			    (pmc_unprivileged_syspmcs == 0))
2665				error = EPERM;
2666		}
2667
2668		if (error)
2669			break;
2670
2671		/*
2672		 * Look for valid values for 'pm_flags'
2673		 */
2674
2675		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS|PMC_F_LOG_TC_CSW))
2676		    != 0) {
2677			error = EINVAL;
2678			break;
2679		}
2680
2681		/*
2682		 * All sampling mode PMCs need to be able to interrupt the
2683		 * CPU.
2684		 */
2685
2686		if (PMC_IS_SAMPLING_MODE(mode)) {
2687			caps |= PMC_CAP_INTERRUPT;
2688			error = ENOSYS; /* for snapshot 6 */
2689			break;
2690		}
2691
2692		PMCDBG(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
2693		    pa.pm_ev, caps, mode, cpu);
2694
2695		pmc = pmc_allocate_pmc_descriptor();
2696		pmc->pm_event = pa.pm_ev;
2697		pmc->pm_class = pa.pm_class;
2698		pmc->pm_state = PMC_STATE_FREE;
2699		pmc->pm_mode  = mode;
2700		pmc->pm_caps  = caps;
2701		pmc->pm_flags = pa.pm_flags;
2702
2703		/* switch thread to CPU 'cpu' */
2704		pmc_save_cpu_binding(&pb);
2705
2706#define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
2707	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
2708	 PMC_PHW_FLAG_IS_SHAREABLE)
2709#define	PMC_IS_UNALLOCATED(cpu, n)				\
2710	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
2711
2712		if (PMC_IS_SYSTEM_MODE(mode)) {
2713			pmc_select_cpu(cpu);
2714			for (n = 0; n < (int) md->pmd_npmc; n++)
2715				if (pmc_can_allocate_row(n, mode) == 0 &&
2716				    pmc_can_allocate_rowindex(
2717					    curthread->td_proc, n) == 0 &&
2718				    (PMC_IS_UNALLOCATED(cpu, n) ||
2719				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
2720				    md->pmd_allocate_pmc(cpu, n, pmc,
2721					&pa) == 0)
2722					break;
2723		} else {
2724			/* Process virtual mode */
2725			for (n = 0; n < (int) md->pmd_npmc; n++) {
2726				if (pmc_can_allocate_row(n, mode) == 0 &&
2727				    pmc_can_allocate_rowindex(
2728					    curthread->td_proc, n) == 0 &&
2729				    md->pmd_allocate_pmc(curthread->td_oncpu,
2730					n, pmc, &pa) == 0)
2731					break;
2732			}
2733		}
2734
2735#undef	PMC_IS_UNALLOCATED
2736#undef	PMC_IS_SHAREABLE_PMC
2737
2738		pmc_restore_cpu_binding(&pb);
2739
2740		if (n == (int) md->pmd_npmc) {
2741			pmc_destroy_pmc_descriptor(pmc);
2742			FREE(pmc, M_PMC);
2743			pmc = NULL;
2744			error = EINVAL;
2745			break;
2746		}
2747
2748		PMCDBG(PMC,ALL,2, "ev=%d class=%d mode=%d -> n=%d",
2749		    pmc->pm_event, pmc->pm_class, pmc->pm_mode, n);
2750
2751		/*
2752		 * Configure global pmc's immediately
2753		 */
2754
2755		if (PMC_IS_SYSTEM_MODE(pmc->pm_mode))
2756			if ((error = md->pmd_config_pmc(cpu, n, pmc)) != 0) {
2757				(void) md->pmd_release_pmc(cpu, n, pmc);
2758				pmc_destroy_pmc_descriptor(pmc);
2759				FREE(pmc, M_PMC);
2760				pmc = NULL;
2761				break;
2762			}
2763
2764		/*
2765		 * Mark the row index allocated.
2766		 */
2767
2768		pmc->pm_rowindex = n;
2769		pmc->pm_state    = PMC_STATE_ALLOCATED;
2770
2771		/*
2772		 * mark row disposition
2773		 */
2774
2775		if (PMC_IS_SYSTEM_MODE(mode))
2776			PMC_MARK_ROW_STANDALONE(n);
2777		else
2778			PMC_MARK_ROW_THREAD(n);
2779
2780		/*
2781		 * If this is a system-wide CPU, mark the CPU it
2782		 * was allocated on.
2783		 */
2784
2785		if (PMC_IS_SYSTEM_MODE(mode))
2786			pmc->pm_gv.pm_cpu = cpu;
2787
2788		/*
2789		 * Register this PMC with the current thread as its owner.
2790		 */
2791
2792		if ((error =
2793		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
2794			pmc_release_pmc_descriptor(pmc);
2795			FREE(pmc, M_PMC);
2796			pmc = NULL;
2797			break;
2798		}
2799
2800		/*
2801		 * Return the allocated index.
2802		 */
2803
2804		pa.pm_pmcid = n;
2805
2806		error = copyout(&pa, arg, sizeof(pa));
2807	}
2808	break;
2809
2810
2811	/*
2812	 * Attach a PMC to a process.
2813	 */
2814
2815	case PMC_OP_PMCATTACH:
2816	{
2817		struct pmc *pm;
2818		struct proc *p;
2819		struct pmc_op_pmcattach a;
2820
2821		sx_assert(&pmc_sx, SX_XLOCKED);
2822
2823		if ((error = copyin(arg, &a, sizeof(a))) != 0)
2824			break;
2825
2826		if (a.pm_pid < 0) {
2827			error = EINVAL;
2828			break;
2829		} else if (a.pm_pid == 0)
2830			a.pm_pid = td->td_proc->p_pid;
2831
2832		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
2833			break;
2834
2835		if (PMC_IS_SYSTEM_MODE(pm->pm_mode)) {
2836			error = EINVAL;
2837			break;
2838		}
2839
2840		/* PMCs may be (re)attached only when allocated or stopped */
2841		if (pm->pm_state == PMC_STATE_RUNNING) {
2842			error = EBUSY;
2843			break;
2844		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
2845		    pm->pm_state != PMC_STATE_STOPPED) {
2846			error = EINVAL;
2847			break;
2848		}
2849
2850		/* lookup pid */
2851		if ((p = pfind(a.pm_pid)) == NULL) {
2852			error = ESRCH;
2853			break;
2854		}
2855
2856		/*
2857		 * Ignore processes that are working on exiting.
2858		 */
2859		if (p->p_flag & P_WEXIT) {
2860			error = ESRCH;
2861			PROC_UNLOCK(p);	/* pfind() returns a locked process */
2862			break;
2863		}
2864
2865		/*
2866		 * we are allowed to attach a PMC to a process if
2867		 * we can debug it.
2868		 */
2869		error = p_candebug(curthread, p);
2870
2871		PROC_UNLOCK(p);
2872
2873		if (error == 0)
2874			error = pmc_attach_process(p, pm);
2875	}
2876	break;
2877
2878
2879	/*
2880	 * Detach an attached PMC from a process.
2881	 */
2882
2883	case PMC_OP_PMCDETACH:
2884	{
2885		struct pmc *pm;
2886		struct proc *p;
2887		struct pmc_op_pmcattach a;
2888
2889		if ((error = copyin(arg, &a, sizeof(a))) != 0)
2890			break;
2891
2892		if (a.pm_pid < 0) {
2893			error = EINVAL;
2894			break;
2895		} else if (a.pm_pid == 0)
2896			a.pm_pid = td->td_proc->p_pid;
2897
2898		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
2899			break;
2900
2901		if ((p = pfind(a.pm_pid)) == NULL) {
2902			error = ESRCH;
2903			break;
2904		}
2905
2906		/*
2907		 * Treat processes that are in the process of exiting
2908		 * as if they were not present.
2909		 */
2910
2911		if (p->p_flag & P_WEXIT)
2912			error = ESRCH;
2913
2914		PROC_UNLOCK(p);	/* pfind() returns a locked process */
2915
2916		if (error == 0)
2917			error = pmc_detach_process(p, pm);
2918	}
2919	break;
2920
2921
2922	/*
2923	 * Release an allocated PMC
2924	 */
2925
2926	case PMC_OP_PMCRELEASE:
2927	{
2928		pmc_id_t pmcid;
2929		struct pmc *pm;
2930		struct pmc_owner *po;
2931		struct pmc_op_simple sp;
2932
2933		/*
2934		 * Find PMC pointer for the named PMC.
2935		 *
2936		 * Use pmc_release_pmc_descriptor() to switch off the
2937		 * PMC, remove all its target threads, and remove the
2938		 * PMC from its owner's list.
2939		 *
2940		 * Remove the owner record if this is the last PMC
2941		 * owned.
2942		 *
2943		 * Free up space.
2944		 */
2945
2946		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
2947			break;
2948
2949		pmcid = sp.pm_pmcid;
2950
2951		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
2952			break;
2953
2954		po = pm->pm_owner;
2955		pmc_release_pmc_descriptor(pm);
2956		pmc_maybe_remove_owner(po);
2957
2958		FREE(pm, M_PMC);
2959	}
2960	break;
2961
2962
2963	/*
2964	 * Read and/or write a PMC.
2965	 */
2966
2967	case PMC_OP_PMCRW:
2968	{
2969		uint32_t cpu, ri;
2970		struct pmc *pm;
2971		struct pmc_op_pmcrw *pprw;
2972		struct pmc_op_pmcrw prw;
2973		struct pmc_binding pb;
2974		pmc_value_t oldvalue;
2975
2976		PMC_DOWNGRADE_SX();
2977
2978		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
2979			break;
2980
2981		PMCDBG(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
2982		    prw.pm_flags);
2983
2984		/* must have at least one flag set */
2985		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
2986			error = EINVAL;
2987			break;
2988		}
2989
2990		/* locate pmc descriptor */
2991		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
2992			break;
2993
2994		/* Can't read a PMC that hasn't been started. */
2995		if (pm->pm_state != PMC_STATE_ALLOCATED &&
2996		    pm->pm_state != PMC_STATE_STOPPED &&
2997		    pm->pm_state != PMC_STATE_RUNNING) {
2998			error = EINVAL;
2999			break;
3000		}
3001
3002		/* writing a new value is allowed only for 'STOPPED' pmcs */
3003		if (pm->pm_state == PMC_STATE_RUNNING &&
3004		    (prw.pm_flags & PMC_F_NEWVALUE)) {
3005			error = EBUSY;
3006			break;
3007		}
3008
3009		if (PMC_IS_VIRTUAL_MODE(pm->pm_mode)) {
3010
3011			/* read/write the saved value in the PMC record */
3012			mtx_pool_lock_spin(pmc_mtxpool, pm);
3013			if (prw.pm_flags & PMC_F_OLDVALUE)
3014				oldvalue = pm->pm_gv.pm_savedvalue;
3015			if (prw.pm_flags & PMC_F_NEWVALUE)
3016				pm->pm_gv.pm_savedvalue = prw.pm_value;
3017			mtx_pool_unlock_spin(pmc_mtxpool, pm);
3018
3019		} else { /* System mode PMCs */
3020			cpu = pm->pm_gv.pm_cpu;
3021			ri  = pm->pm_rowindex;
3022
3023			if (pmc_cpu_is_disabled(cpu)) {
3024				error = ENXIO;
3025				break;
3026			}
3027
3028			/* move this thread to CPU 'cpu' */
3029			pmc_save_cpu_binding(&pb);
3030			pmc_select_cpu(cpu);
3031
3032			/* save old value */
3033			if (prw.pm_flags & PMC_F_OLDVALUE)
3034				if ((error = (*md->pmd_read_pmc)(cpu, ri,
3035					 &oldvalue)))
3036					goto error;
3037			/* write out new value */
3038			if (prw.pm_flags & PMC_F_NEWVALUE)
3039				error = (*md->pmd_write_pmc)(cpu, ri,
3040				    prw.pm_value);
3041		error:
3042			pmc_restore_cpu_binding(&pb);
3043			if (error)
3044				break;
3045		}
3046
3047		pprw = (struct pmc_op_pmcrw *) arg;
3048
3049#if	DEBUG
3050		if (prw.pm_flags & PMC_F_NEWVALUE)
3051			PMCDBG(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3052			    ri, prw.pm_value, oldvalue);
3053		else
3054			PMCDBG(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
3055#endif
3056
3057		/* return old value if requested */
3058		if (prw.pm_flags & PMC_F_OLDVALUE)
3059			if ((error = copyout(&oldvalue, &pprw->pm_value,
3060				 sizeof(prw.pm_value))))
3061				break;
3062
3063		/*
3064		 * send a signal (SIGIO) to the owner if it is trying to read
3065		 * a PMC with no target processes attached.
3066		 */
3067
3068		if (LIST_EMPTY(&pm->pm_targets) &&
3069		    (prw.pm_flags & PMC_F_OLDVALUE)) {
3070			PROC_LOCK(curthread->td_proc);
3071			psignal(curthread->td_proc, SIGIO);
3072			PROC_UNLOCK(curthread->td_proc);
3073		}
3074	}
3075	break;
3076
3077
3078	/*
3079	 * Set the sampling rate for a sampling mode PMC and the
3080	 * initial count for a counting mode PMC.
3081	 */
3082
3083	case PMC_OP_PMCSETCOUNT:
3084	{
3085		struct pmc *pm;
3086		struct pmc_op_pmcsetcount sc;
3087
3088		PMC_DOWNGRADE_SX();
3089
3090		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
3091			break;
3092
3093		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
3094			break;
3095
3096		if (pm->pm_state == PMC_STATE_RUNNING) {
3097			error = EBUSY;
3098			break;
3099		}
3100
3101		if (PMC_IS_SAMPLING_MODE(pm->pm_mode))
3102			pm->pm_sc.pm_reloadcount = sc.pm_count;
3103		else
3104			pm->pm_sc.pm_initial = sc.pm_count;
3105	}
3106	break;
3107
3108
3109	/*
3110	 * Start a PMC.
3111	 */
3112
3113	case PMC_OP_PMCSTART:
3114	{
3115		pmc_id_t pmcid;
3116		struct pmc *pm;
3117		struct pmc_op_simple sp;
3118
3119		sx_assert(&pmc_sx, SX_XLOCKED);
3120
3121		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3122			break;
3123
3124		pmcid = sp.pm_pmcid;
3125
3126		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3127			break;
3128
3129		KASSERT(pmcid == pm->pm_rowindex,
3130		    ("[pmc,%d] row index %d != id %d", __LINE__,
3131			pm->pm_rowindex, pmcid));
3132
3133		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
3134			break;
3135		else if (pm->pm_state != PMC_STATE_STOPPED &&
3136		    pm->pm_state != PMC_STATE_ALLOCATED) {
3137			error = EINVAL;
3138			break;
3139		}
3140
3141		error = pmc_start(pm);
3142	}
3143	break;
3144
3145
3146	/*
3147	 * Stop a PMC.
3148	 */
3149
3150	case PMC_OP_PMCSTOP:
3151	{
3152		pmc_id_t pmcid;
3153		struct pmc *pm;
3154		struct pmc_op_simple sp;
3155
3156		PMC_DOWNGRADE_SX();
3157
3158		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3159			break;
3160
3161		pmcid = sp.pm_pmcid;
3162
3163		/*
3164		 * Mark the PMC as inactive and invoke the MD stop
3165		 * routines if needed.
3166		 */
3167
3168		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3169			break;
3170
3171		KASSERT(pmcid == pm->pm_rowindex,
3172		    ("[pmc,%d] row index %d != pmcid %d", __LINE__,
3173			pm->pm_rowindex, pmcid));
3174
3175		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
3176			break;
3177		else if (pm->pm_state != PMC_STATE_RUNNING) {
3178			error = EINVAL;
3179			break;
3180		}
3181
3182		error = pmc_stop(pm);
3183	}
3184	break;
3185
3186
3187	/*
3188	 * Write a user-entry to the log file.
3189	 */
3190
3191	case PMC_OP_WRITELOG:
3192	{
3193
3194		PMC_DOWNGRADE_SX();
3195
3196		/*
3197		 * flush all per-cpu hash tables
3198		 * append user-log entry
3199		 */
3200
3201		error = ENOSYS;
3202	}
3203	break;
3204
3205
3206#if __i386__ || __amd64__
3207
3208	/*
3209	 * Machine dependent operation for i386-class processors.
3210	 *
3211	 * Retrieve the MSR number associated with the counter
3212	 * 'pmc_id'.  This allows processes to directly use RDPMC
3213	 * instructions to read their PMCs, without the overhead of a
3214	 * system call.
3215	 */
3216
3217	case PMC_OP_PMCX86GETMSR:
3218	{
3219		int ri;
3220		struct pmc	*pm;
3221		struct pmc_op_x86_getmsr gm;
3222
3223		PMC_DOWNGRADE_SX();
3224
3225		/* CPU has no 'GETMSR' support */
3226		if (md->pmd_get_msr == NULL) {
3227			error = ENOSYS;
3228			break;
3229		}
3230
3231		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
3232			break;
3233
3234		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
3235			break;
3236
3237		/*
3238		 * The allocated PMC needs to be a process virtual PMC,
3239		 * i.e., of type T[CS].
3240		 *
3241		 * Global PMCs can only be read using the PMCREAD
3242		 * operation since they may be allocated on a
3243		 * different CPU than the one we could be running on
3244		 * at the time of the read.
3245		 */
3246
3247		if (!PMC_IS_VIRTUAL_MODE(pm->pm_mode)) {
3248			error = EINVAL;
3249			break;
3250		}
3251
3252		ri = pm->pm_rowindex;
3253
3254		if ((error = (*md->pmd_get_msr)(ri, &gm.pm_msr)) < 0)
3255			break;
3256		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
3257			break;
3258	}
3259	break;
3260#endif
3261
3262	default:
3263		error = EINVAL;
3264		break;
3265	}
3266
3267	if (is_sx_downgraded)
3268		sx_sunlock(&pmc_sx);
3269	else
3270		sx_xunlock(&pmc_sx);
3271
3272	if (error)
3273		atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
3274
3275	return error;
3276}
3277
3278/*
3279 * Helper functions
3280 */
3281
3282/*
3283 * Configure a log file.
3284 */
3285
3286static int
3287pmc_configure_log(struct pmc_owner *po, int logfd)
3288{
3289	struct proc *p;
3290
3291	return ENOSYS; /* for now */
3292
3293	p = po->po_owner;
3294
3295	if (po->po_logfd < 0 && logfd < 0) /* nothing to do */
3296		return 0;
3297
3298	if (po->po_logfd >= 0 && logfd < 0) {
3299		/* deconfigure log */
3300		/* XXX */
3301		po->po_flags &= ~PMC_FLAG_OWNS_LOGFILE;
3302		pmc_maybe_remove_owner(po);
3303
3304	} else if (po->po_logfd < 0 && logfd >= 0) {
3305		/* configure log file */
3306		/* XXX */
3307		po->po_flags |= PMC_FLAG_OWNS_LOGFILE;
3308
3309		/* mark process as using HWPMCs */
3310		PROC_LOCK(p);
3311		p->p_flag |= P_HWPMC;
3312		PROC_UNLOCK(p);
3313	} else
3314		return EBUSY;
3315
3316	return 0;
3317}
3318
3319/*
3320 * Log an exit event to the PMC owner's log file.
3321 */
3322
3323static void
3324pmc_log_process_exit(struct pmc *pm, struct pmc_process *pp)
3325{
3326	KASSERT(pm->pm_flags & PMC_F_LOG_TC_PROCEXIT,
3327	    ("[pmc,%d] log-process-exit called gratuitously", __LINE__));
3328
3329	(void) pm;
3330	(void) pp;
3331
3332	return;
3333}
3334
3335/*
3336 * Event handlers.
3337 */
3338
3339/*
3340 * Handle a process exit.
3341 *
3342 * XXX This eventhandler gets called early in the exit process.
3343 * Consider using a 'hook' invocation from thread_exit() or equivalent
3344 * spot.  Another negative is that kse_exit doesn't seem to call
3345 * exit1() [??].
3346 */
3347
3348static void
3349pmc_process_exit(void *arg __unused, struct proc *p)
3350{
3351	int is_using_hwpmcs;
3352
3353	PROC_LOCK(p);
3354	is_using_hwpmcs = p->p_flag & P_HWPMC;
3355	PROC_UNLOCK(p);
3356
3357	if (is_using_hwpmcs) {
3358		PMCDBG(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
3359		    p->p_comm);
3360
3361		PMC_GET_SX_XLOCK();
3362		(void) pmc_hook_handler(curthread, PMC_FN_PROCESS_EXIT,
3363		    (void *) p);
3364		sx_xunlock(&pmc_sx);
3365	}
3366}
3367
3368/*
3369 * Handle a process fork.
3370 *
3371 * If the parent process 'p1' is under HWPMC monitoring, then copy
3372 * over any attached PMCs that have 'do_descendants' semantics.
3373 */
3374
3375static void
3376pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *p2,
3377    int flags)
3378{
3379	int is_using_hwpmcs;
3380
3381	(void) flags;		/* unused parameter */
3382
3383	PROC_LOCK(p1);
3384	is_using_hwpmcs = p1->p_flag & P_HWPMC;
3385	PROC_UNLOCK(p1);
3386
3387	if (is_using_hwpmcs) {
3388		PMCDBG(PMC,FRK,1, "process-fork proc=%p (%d, %s)", p1,
3389		    p1->p_pid, p1->p_comm);
3390		PMC_GET_SX_XLOCK();
3391		(void) pmc_hook_handler(curthread, PMC_FN_PROCESS_FORK,
3392		    (void *) p2);
3393		sx_xunlock(&pmc_sx);
3394	}
3395}
3396
3397
3398/*
3399 * initialization
3400 */
3401
3402static const char *pmc_name_of_pmcclass[] = {
3403#undef	__PMC_CLASS
3404#define	__PMC_CLASS(N) #N ,
3405	__PMC_CLASSES()
3406};
3407
3408static int
3409pmc_initialize(void)
3410{
3411	int error, cpu, n;
3412	struct pmc_binding pb;
3413
3414	md = NULL;
3415	error = 0;
3416
3417#if	DEBUG
3418	/* parse debug flags first */
3419	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
3420		pmc_debugstr, sizeof(pmc_debugstr)))
3421		pmc_debugflags_parse(pmc_debugstr,
3422		    pmc_debugstr+strlen(pmc_debugstr));
3423#endif
3424
3425	PMCDBG(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
3426
3427	/*
3428	 * check sysctl parameters
3429	 */
3430
3431	if (pmc_hashsize <= 0) {
3432		(void) printf("pmc: sysctl variable \""
3433		    PMC_SYSCTL_NAME_PREFIX "hashsize\" must be greater than "
3434		    "zero\n");
3435		pmc_hashsize = PMC_HASH_SIZE;
3436	}
3437
3438#if	defined(__i386__)
3439	/* determine the CPU kind.  This is i386 specific */
3440	if (strcmp(cpu_vendor, "AuthenticAMD") == 0)
3441		md = pmc_amd_initialize();
3442	else if (strcmp(cpu_vendor, "GenuineIntel") == 0)
3443		md = pmc_intel_initialize();
3444	/* XXX: what about the other i386 CPU manufacturers? */
3445#elif	defined(__amd64__)
3446	if (strcmp(cpu_vendor, "AuthenticAMD") == 0)
3447		md = pmc_amd_initialize();
3448#else  /* other architectures */
3449	md = NULL;
3450#endif
3451
3452	if (md == NULL || md->pmd_init == NULL)
3453		return ENOSYS;
3454
3455	/* allocate space for the per-cpu array */
3456	MALLOC(pmc_pcpu, struct pmc_cpu **, mp_ncpus * sizeof(struct pmc_cpu *),
3457	    M_PMC, M_WAITOK|M_ZERO);
3458
3459	/* per-cpu 'saved values' for managing process-mode PMCs */
3460	MALLOC(pmc_pcpu_saved, pmc_value_t *,
3461	    sizeof(pmc_value_t) * mp_ncpus * md->pmd_npmc, M_PMC, M_WAITOK);
3462
3463	/* perform cpu dependent initialization */
3464	pmc_save_cpu_binding(&pb);
3465	for (cpu = 0; cpu < mp_ncpus; cpu++) {
3466		if (pmc_cpu_is_disabled(cpu))
3467			continue;
3468		pmc_select_cpu(cpu);
3469		if ((error = md->pmd_init(cpu)) != 0)
3470			break;
3471	}
3472	pmc_restore_cpu_binding(&pb);
3473
3474	if (error != 0)
3475		return error;
3476
3477	/* allocate space for the row disposition array */
3478	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
3479	    M_PMC, M_WAITOK|M_ZERO);
3480
3481	KASSERT(pmc_pmcdisp != NULL,
3482	    ("[pmc,%d] pmcdisp allocation returned NULL", __LINE__));
3483
3484	/* mark all PMCs as available */
3485	for (n = 0; n < (int) md->pmd_npmc; n++)
3486		PMC_MARK_ROW_FREE(n);
3487
3488	/* allocate thread hash tables */
3489	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
3490	    &pmc_ownerhashmask);
3491
3492	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
3493	    &pmc_processhashmask);
3494	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc", MTX_SPIN);
3495
3496	/* allocate a pool of spin mutexes */
3497	pmc_mtxpool = mtx_pool_create("pmc", pmc_mtxpool_size, MTX_SPIN);
3498
3499	PMCDBG(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
3500	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
3501	    pmc_processhash, pmc_processhashmask);
3502
3503	/* register process {exit,fork,exec} handlers */
3504	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
3505	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
3506	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
3507	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
3508
3509	/* set hook functions */
3510	pmc_intr = md->pmd_intr;
3511	pmc_hook = pmc_hook_handler;
3512
3513	if (error == 0) {
3514		printf(PMC_MODULE_NAME ":");
3515		for (n = 0; n < (int) md->pmd_nclass; n++)
3516			printf(" %s(%d)",
3517			    pmc_name_of_pmcclass[md->pmd_classes[n]],
3518			    md->pmd_nclasspmcs[n]);
3519		printf("\n");
3520	}
3521
3522	return error;
3523}
3524
3525/* prepare to be unloaded */
3526static void
3527pmc_cleanup(void)
3528{
3529	int cpu;
3530	struct pmc_ownerhash *ph;
3531	struct pmc_owner *po, *tmp;
3532	struct pmc_binding pb;
3533#if	DEBUG
3534	struct pmc_processhash *prh;
3535#endif
3536
3537	PMCDBG(MOD,INI,0, "%s", "cleanup");
3538
3539	pmc_intr = NULL;	/* no more interrupts please */
3540
3541	sx_xlock(&pmc_sx);
3542	if (pmc_hook == NULL) {	/* being unloaded already */
3543		sx_xunlock(&pmc_sx);
3544		return;
3545	}
3546
3547	pmc_hook = NULL; /* prevent new threads from entering module */
3548
3549	/* deregister event handlers */
3550	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
3551	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
3552
3553	/* send SIGBUS to all owner threads, free up allocations */
3554	if (pmc_ownerhash)
3555		for (ph = pmc_ownerhash;
3556		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
3557		     ph++) {
3558			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
3559				pmc_remove_owner(po);
3560
3561				/* send SIGBUS to owner processes */
3562				PMCDBG(MOD,INI,2, "cleanup signal proc=%p "
3563				    "(%d, %s)", po->po_owner,
3564				    po->po_owner->p_pid,
3565				    po->po_owner->p_comm);
3566
3567				PROC_LOCK(po->po_owner);
3568				psignal(po->po_owner, SIGBUS);
3569				PROC_UNLOCK(po->po_owner);
3570				FREE(po, M_PMC);
3571			}
3572		}
3573
3574	/* reclaim allocated data structures */
3575	if (pmc_mtxpool)
3576		mtx_pool_destroy(&pmc_mtxpool);
3577
3578	mtx_destroy(&pmc_processhash_mtx);
3579	if (pmc_processhash) {
3580#if	DEBUG
3581		struct pmc_process *pp;
3582
3583		PMCDBG(MOD,INI,3, "%s", "destroy process hash");
3584		for (prh = pmc_processhash;
3585		     prh <= &pmc_processhash[pmc_processhashmask];
3586		     prh++)
3587			LIST_FOREACH(pp, prh, pp_next)
3588			    PMCDBG(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
3589#endif
3590
3591		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
3592		pmc_processhash = NULL;
3593	}
3594
3595	if (pmc_ownerhash) {
3596		PMCDBG(MOD,INI,3, "%s", "destroy owner hash");
3597		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
3598		pmc_ownerhash = NULL;
3599	}
3600
3601 	/* do processor dependent cleanup */
3602	PMCDBG(MOD,INI,3, "%s", "md cleanup");
3603	if (md) {
3604		pmc_save_cpu_binding(&pb);
3605		for (cpu = 0; cpu < mp_ncpus; cpu++) {
3606			PMCDBG(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
3607			    cpu, pmc_pcpu[cpu]);
3608			if (pmc_cpu_is_disabled(cpu))
3609				continue;
3610			pmc_select_cpu(cpu);
3611			if (pmc_pcpu[cpu])
3612				(void) md->pmd_cleanup(cpu);
3613		}
3614		FREE(md, M_PMC);
3615		md = NULL;
3616		pmc_restore_cpu_binding(&pb);
3617	}
3618
3619	/* deallocate per-cpu structures */
3620	FREE(pmc_pcpu, M_PMC);
3621	pmc_pcpu = NULL;
3622
3623	FREE(pmc_pcpu_saved, M_PMC);
3624	pmc_pcpu_saved = NULL;
3625
3626	if (pmc_pmcdisp) {
3627		FREE(pmc_pmcdisp, M_PMC);
3628		pmc_pmcdisp = NULL;
3629	}
3630
3631	sx_xunlock(&pmc_sx); 	/* we are done */
3632}
3633
3634/*
3635 * The function called at load/unload.
3636 */
3637
3638static int
3639load (struct module *module __unused, int cmd, void *arg __unused)
3640{
3641	int error;
3642
3643	error = 0;
3644
3645	switch (cmd) {
3646	case MOD_LOAD :
3647		/* initialize the subsystem */
3648		error = pmc_initialize();
3649		if (error != 0)
3650			break;
3651		PMCDBG(MOD,INI,1, "syscall=%d ncpus=%d",
3652		    pmc_syscall_num, mp_ncpus);
3653		break;
3654
3655
3656	case MOD_UNLOAD :
3657	case MOD_SHUTDOWN:
3658		pmc_cleanup();
3659		PMCDBG(MOD,INI,1, "%s", "unloaded");
3660		break;
3661
3662	default :
3663		error = EINVAL;	/* XXX should panic(9) */
3664		break;
3665	}
3666
3667	return error;
3668}
3669
3670/* memory pool */
3671MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");
3672