acpi_cpu.c revision 223449
1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/acpica/acpi_cpu.c 223449 2011-06-22 22:56:42Z jkim $");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/cpu.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/pcpu.h>
39#include <sys/power.h>
40#include <sys/proc.h>
41#include <sys/sbuf.h>
42#include <sys/smp.h>
43
44#include <dev/pci/pcivar.h>
45#include <machine/atomic.h>
46#include <machine/bus.h>
47#if defined(__amd64__) || defined(__i386__)
48#include <machine/clock.h>
49#endif
50#include <sys/rman.h>
51
52#include <contrib/dev/acpica/include/acpi.h>
53#include <contrib/dev/acpica/include/accommon.h>
54
55#include <dev/acpica/acpivar.h>
56
57/*
58 * Support for ACPI Processor devices, including C[1-3] sleep states.
59 */
60
61/* Hooks for the ACPI CA debugging infrastructure */
62#define _COMPONENT	ACPI_PROCESSOR
63ACPI_MODULE_NAME("PROCESSOR")
64
65struct acpi_cx {
66    struct resource	*p_lvlx;	/* Register to read to enter state. */
67    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
68    uint32_t		 trans_lat;	/* Transition latency (usec). */
69    uint32_t		 power;		/* Power consumed (mW). */
70    int			 res_type;	/* Resource type for p_lvlx. */
71};
72#define MAX_CX_STATES	 8
73
74struct acpi_cpu_softc {
75    device_t		 cpu_dev;
76    ACPI_HANDLE		 cpu_handle;
77    struct pcpu		*cpu_pcpu;
78    uint32_t		 cpu_acpi_id;	/* ACPI processor id */
79    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
80    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
81    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
82    int			 cpu_cx_count;	/* Number of valid Cx states. */
83    int			 cpu_prev_sleep;/* Last idle sleep duration. */
84    int			 cpu_features;	/* Child driver supported features. */
85    /* Runtime state. */
86    int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
87    u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
88    /* Values for sysctl. */
89    struct sysctl_ctx_list cpu_sysctl_ctx;
90    struct sysctl_oid	*cpu_sysctl_tree;
91    int			 cpu_cx_lowest;
92    char 		 cpu_cx_supported[64];
93    int			 cpu_rid;
94};
95
96struct acpi_cpu_device {
97    struct resource_list	ad_rl;
98};
99
100#define CPU_GET_REG(reg, width) 					\
101    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
102		      rman_get_bushandle((reg)), 0))
103#define CPU_SET_REG(reg, width, val)					\
104    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
105		       rman_get_bushandle((reg)), 0, (val)))
106
107#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
108
109#define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
110
111#define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
112#define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
113
114#define PCI_VENDOR_INTEL	0x8086
115#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
116#define PCI_REVISION_A_STEP	0
117#define PCI_REVISION_B_STEP	1
118#define PCI_REVISION_4E		2
119#define PCI_REVISION_4M		3
120#define PIIX4_DEVACTB_REG	0x58
121#define PIIX4_BRLD_EN_IRQ0	(1<<0)
122#define PIIX4_BRLD_EN_IRQ	(1<<1)
123#define PIIX4_BRLD_EN_IRQ8	(1<<5)
124#define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
125#define PIIX4_PCNTRL_BST_EN	(1<<10)
126
127/* Platform hardware resource information. */
128static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
129static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
130static int		 cpu_quirks;	/* Indicate any hardware bugs. */
131
132/* Runtime state. */
133static int		 cpu_disable_idle; /* Disable entry to idle function */
134static int		 cpu_cx_count;	/* Number of valid Cx states */
135
136/* Values for sysctl. */
137static struct sysctl_ctx_list cpu_sysctl_ctx;
138static struct sysctl_oid *cpu_sysctl_tree;
139static int		 cpu_cx_generic;
140static int		 cpu_cx_lowest;
141
142static device_t		*cpu_devices;
143static int		 cpu_ndevices;
144static struct acpi_cpu_softc **cpu_softc;
145ACPI_SERIAL_DECL(cpu, "ACPI CPU");
146
147static int	acpi_cpu_probe(device_t dev);
148static int	acpi_cpu_attach(device_t dev);
149static int	acpi_cpu_suspend(device_t dev);
150static int	acpi_cpu_resume(device_t dev);
151static int	acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
152		    uint32_t *cpu_id);
153static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
154static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
155		    int unit);
156static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
157		    uintptr_t *result);
158static int	acpi_cpu_shutdown(device_t dev);
159static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
160static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
161static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
162static void	acpi_cpu_startup(void *arg);
163static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
164static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
165static void	acpi_cpu_idle(void);
166static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
167static int	acpi_cpu_quirks(void);
168static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
169static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val);
170static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
171static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
172
173static device_method_t acpi_cpu_methods[] = {
174    /* Device interface */
175    DEVMETHOD(device_probe,	acpi_cpu_probe),
176    DEVMETHOD(device_attach,	acpi_cpu_attach),
177    DEVMETHOD(device_detach,	bus_generic_detach),
178    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
179    DEVMETHOD(device_suspend,	acpi_cpu_suspend),
180    DEVMETHOD(device_resume,	acpi_cpu_resume),
181
182    /* Bus interface */
183    DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
184    DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
185    DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
186    DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
187    DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
188    DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
189    DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
190    DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
191    DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
192    DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
193    DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
194    DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
195
196    {0, 0}
197};
198
199static driver_t acpi_cpu_driver = {
200    "cpu",
201    acpi_cpu_methods,
202    sizeof(struct acpi_cpu_softc),
203};
204
205static devclass_t acpi_cpu_devclass;
206DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
207MODULE_DEPEND(cpu, acpi, 1, 1, 1);
208
209static int
210acpi_cpu_probe(device_t dev)
211{
212    int			   acpi_id, cpu_id;
213    ACPI_BUFFER		   buf;
214    ACPI_HANDLE		   handle;
215    ACPI_OBJECT		   *obj;
216    ACPI_STATUS		   status;
217
218    if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
219	return (ENXIO);
220
221    handle = acpi_get_handle(dev);
222    if (cpu_softc == NULL)
223	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
224	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
225
226    /* Get our Processor object. */
227    buf.Pointer = NULL;
228    buf.Length = ACPI_ALLOCATE_BUFFER;
229    status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
230    if (ACPI_FAILURE(status)) {
231	device_printf(dev, "probe failed to get Processor obj - %s\n",
232		      AcpiFormatException(status));
233	return (ENXIO);
234    }
235    obj = (ACPI_OBJECT *)buf.Pointer;
236    if (obj->Type != ACPI_TYPE_PROCESSOR) {
237	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
238	AcpiOsFree(obj);
239	return (ENXIO);
240    }
241
242    /*
243     * Find the processor associated with our unit.  We could use the
244     * ProcId as a key, however, some boxes do not have the same values
245     * in their Processor object as the ProcId values in the MADT.
246     */
247    acpi_id = obj->Processor.ProcId;
248    AcpiOsFree(obj);
249    if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
250	return (ENXIO);
251
252    /*
253     * Check if we already probed this processor.  We scan the bus twice
254     * so it's possible we've already seen this one.
255     */
256    if (cpu_softc[cpu_id] != NULL)
257	return (ENXIO);
258
259    /* Mark this processor as in-use and save our derived id for attach. */
260    cpu_softc[cpu_id] = (void *)1;
261    acpi_set_private(dev, (void*)(intptr_t)cpu_id);
262    device_set_desc(dev, "ACPI CPU");
263
264    return (0);
265}
266
267static int
268acpi_cpu_attach(device_t dev)
269{
270    ACPI_BUFFER		   buf;
271    ACPI_OBJECT		   arg[4], *obj;
272    ACPI_OBJECT_LIST	   arglist;
273    struct pcpu		   *pcpu_data;
274    struct acpi_cpu_softc *sc;
275    struct acpi_softc	  *acpi_sc;
276    ACPI_STATUS		   status;
277    u_int		   features;
278    int			   cpu_id, drv_count, i;
279    driver_t 		  **drivers;
280    uint32_t		   cap_set[3];
281
282    /* UUID needed by _OSC evaluation */
283    static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
284				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
285				       0x58, 0x71, 0x39, 0x53 };
286
287    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
288
289    sc = device_get_softc(dev);
290    sc->cpu_dev = dev;
291    sc->cpu_handle = acpi_get_handle(dev);
292    cpu_id = (int)(intptr_t)acpi_get_private(dev);
293    cpu_softc[cpu_id] = sc;
294    pcpu_data = pcpu_find(cpu_id);
295    pcpu_data->pc_device = dev;
296    sc->cpu_pcpu = pcpu_data;
297    cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
298    cpu_cst_cnt = AcpiGbl_FADT.CstControl;
299
300    buf.Pointer = NULL;
301    buf.Length = ACPI_ALLOCATE_BUFFER;
302    status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
303    if (ACPI_FAILURE(status)) {
304	device_printf(dev, "attach failed to get Processor obj - %s\n",
305		      AcpiFormatException(status));
306	return (ENXIO);
307    }
308    obj = (ACPI_OBJECT *)buf.Pointer;
309    sc->cpu_p_blk = obj->Processor.PblkAddress;
310    sc->cpu_p_blk_len = obj->Processor.PblkLength;
311    sc->cpu_acpi_id = obj->Processor.ProcId;
312    AcpiOsFree(obj);
313    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
314		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
315
316    /*
317     * If this is the first cpu we attach, create and initialize the generic
318     * resources that will be used by all acpi cpu devices.
319     */
320    if (device_get_unit(dev) == 0) {
321	/* Assume we won't be using generic Cx mode by default */
322	cpu_cx_generic = FALSE;
323
324	/* Install hw.acpi.cpu sysctl tree */
325	acpi_sc = acpi_device_get_parent_softc(dev);
326	sysctl_ctx_init(&cpu_sysctl_ctx);
327	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
328	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
329	    CTLFLAG_RD, 0, "node for CPU children");
330
331	/* Queue post cpu-probing task handler */
332	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
333    }
334
335    /*
336     * Before calling any CPU methods, collect child driver feature hints
337     * and notify ACPI of them.  We support unified SMP power control
338     * so advertise this ourselves.  Note this is not the same as independent
339     * SMP control where each CPU can have different settings.
340     */
341    sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
342    if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
343	for (i = 0; i < drv_count; i++) {
344	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
345		sc->cpu_features |= features;
346	}
347	free(drivers, M_TEMP);
348    }
349
350    /*
351     * CPU capabilities are specified in
352     * Intel Processor Vendor-Specific ACPI Interface Specification.
353     */
354    if (sc->cpu_features) {
355	arglist.Pointer = arg;
356	arglist.Count = 4;
357	arg[0].Type = ACPI_TYPE_BUFFER;
358	arg[0].Buffer.Length = sizeof(cpu_oscuuid);
359	arg[0].Buffer.Pointer = cpu_oscuuid;	/* UUID */
360	arg[1].Type = ACPI_TYPE_INTEGER;
361	arg[1].Integer.Value = 1;		/* revision */
362	arg[2].Type = ACPI_TYPE_INTEGER;
363	arg[2].Integer.Value = 1;		/* count */
364	arg[3].Type = ACPI_TYPE_BUFFER;
365	arg[3].Buffer.Length = sizeof(cap_set);	/* Capabilities buffer */
366	arg[3].Buffer.Pointer = (uint8_t *)cap_set;
367	cap_set[0] = 0;				/* status */
368	cap_set[1] = sc->cpu_features;
369	status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
370	if (ACPI_SUCCESS(status)) {
371	    if (cap_set[0] != 0)
372		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
373	}
374	else {
375	    arglist.Pointer = arg;
376	    arglist.Count = 1;
377	    arg[0].Type = ACPI_TYPE_BUFFER;
378	    arg[0].Buffer.Length = sizeof(cap_set);
379	    arg[0].Buffer.Pointer = (uint8_t *)cap_set;
380	    cap_set[0] = 1; /* revision */
381	    cap_set[1] = 1; /* number of capabilities integers */
382	    cap_set[2] = sc->cpu_features;
383	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
384	}
385    }
386
387    /* Probe for Cx state support. */
388    acpi_cpu_cx_probe(sc);
389
390    return (0);
391}
392
393static void
394acpi_cpu_postattach(void *unused __unused)
395{
396    device_t *devices;
397    int err;
398    int i, n;
399
400    err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
401    if (err != 0) {
402	printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
403	return;
404    }
405    for (i = 0; i < n; i++)
406	bus_generic_probe(devices[i]);
407    for (i = 0; i < n; i++)
408	bus_generic_attach(devices[i]);
409    free(devices, M_TEMP);
410}
411
412SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
413    acpi_cpu_postattach, NULL);
414
415/*
416 * Disable any entry to the idle function during suspend and re-enable it
417 * during resume.
418 */
419static int
420acpi_cpu_suspend(device_t dev)
421{
422    int error;
423
424    error = bus_generic_suspend(dev);
425    if (error)
426	return (error);
427    cpu_disable_idle = TRUE;
428    return (0);
429}
430
431static int
432acpi_cpu_resume(device_t dev)
433{
434
435    cpu_disable_idle = FALSE;
436    return (bus_generic_resume(dev));
437}
438
439/*
440 * Find the nth present CPU and return its pc_cpuid as well as set the
441 * pc_acpi_id from the most reliable source.
442 */
443static int
444acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
445{
446    struct pcpu	*pcpu_data;
447    uint32_t	 i;
448
449    KASSERT(acpi_id != NULL, ("Null acpi_id"));
450    KASSERT(cpu_id != NULL, ("Null cpu_id"));
451    CPU_FOREACH(i) {
452	pcpu_data = pcpu_find(i);
453	KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
454	if (idx-- == 0) {
455	    /*
456	     * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
457	     * override it with the value from the ASL.  Otherwise, if the
458	     * two don't match, prefer the MADT-derived value.  Finally,
459	     * return the pc_cpuid to reference this processor.
460	     */
461	    if (pcpu_data->pc_acpi_id == 0xffffffff)
462		pcpu_data->pc_acpi_id = *acpi_id;
463	    else if (pcpu_data->pc_acpi_id != *acpi_id)
464		*acpi_id = pcpu_data->pc_acpi_id;
465	    *cpu_id = pcpu_data->pc_cpuid;
466	    return (0);
467	}
468    }
469
470    return (ESRCH);
471}
472
473static struct resource_list *
474acpi_cpu_get_rlist(device_t dev, device_t child)
475{
476    struct acpi_cpu_device *ad;
477
478    ad = device_get_ivars(child);
479    if (ad == NULL)
480	return (NULL);
481    return (&ad->ad_rl);
482}
483
484static device_t
485acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
486{
487    struct acpi_cpu_device *ad;
488    device_t child;
489
490    if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
491	return (NULL);
492
493    resource_list_init(&ad->ad_rl);
494
495    child = device_add_child_ordered(dev, order, name, unit);
496    if (child != NULL)
497	device_set_ivars(child, ad);
498    else
499	free(ad, M_TEMP);
500    return (child);
501}
502
503static int
504acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
505{
506    struct acpi_cpu_softc *sc;
507
508    sc = device_get_softc(dev);
509    switch (index) {
510    case ACPI_IVAR_HANDLE:
511	*result = (uintptr_t)sc->cpu_handle;
512	break;
513    case CPU_IVAR_PCPU:
514	*result = (uintptr_t)sc->cpu_pcpu;
515	break;
516#if defined(__amd64__) || defined(__i386__)
517    case CPU_IVAR_NOMINAL_MHZ:
518	if (tsc_is_invariant) {
519	    *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
520	    break;
521	}
522	/* FALLTHROUGH */
523#endif
524    default:
525	return (ENOENT);
526    }
527    return (0);
528}
529
530static int
531acpi_cpu_shutdown(device_t dev)
532{
533    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
534
535    /* Allow children to shutdown first. */
536    bus_generic_shutdown(dev);
537
538    /*
539     * Disable any entry to the idle function.  There is a small race where
540     * an idle thread have passed this check but not gone to sleep.  This
541     * is ok since device_shutdown() does not free the softc, otherwise
542     * we'd have to be sure all threads were evicted before returning.
543     */
544    cpu_disable_idle = TRUE;
545
546    return_VALUE (0);
547}
548
549static void
550acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
551{
552    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
553
554    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
555    sc->cpu_prev_sleep = 1000000;
556    sc->cpu_cx_lowest = 0;
557
558    /*
559     * Check for the ACPI 2.0 _CST sleep states object. If we can't find
560     * any, we'll revert to generic FADT/P_BLK Cx control method which will
561     * be handled by acpi_cpu_startup. We need to defer to after having
562     * probed all the cpus in the system before probing for generic Cx
563     * states as we may already have found cpus with valid _CST packages
564     */
565    if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
566	/*
567	 * We were unable to find a _CST package for this cpu or there
568	 * was an error parsing it. Switch back to generic mode.
569	 */
570	cpu_cx_generic = TRUE;
571	if (bootverbose)
572	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
573    }
574
575    /*
576     * TODO: _CSD Package should be checked here.
577     */
578}
579
580static void
581acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
582{
583    ACPI_GENERIC_ADDRESS	 gas;
584    struct acpi_cx		*cx_ptr;
585
586    sc->cpu_cx_count = 0;
587    cx_ptr = sc->cpu_cx_states;
588
589    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
590    sc->cpu_prev_sleep = 1000000;
591
592    /* C1 has been required since just after ACPI 1.0 */
593    cx_ptr->type = ACPI_STATE_C1;
594    cx_ptr->trans_lat = 0;
595    cx_ptr++;
596    sc->cpu_cx_count++;
597
598    /*
599     * The spec says P_BLK must be 6 bytes long.  However, some systems
600     * use it to indicate a fractional set of features present so we
601     * take 5 as C2.  Some may also have a value of 7 to indicate
602     * another C3 but most use _CST for this (as required) and having
603     * "only" C1-C3 is not a hardship.
604     */
605    if (sc->cpu_p_blk_len < 5)
606	return;
607
608    /* Validate and allocate resources for C2 (P_LVL2). */
609    gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
610    gas.BitWidth = 8;
611    if (AcpiGbl_FADT.C2Latency <= 100) {
612	gas.Address = sc->cpu_p_blk + 4;
613	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
614	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
615	if (cx_ptr->p_lvlx != NULL) {
616	    sc->cpu_rid++;
617	    cx_ptr->type = ACPI_STATE_C2;
618	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
619	    cx_ptr++;
620	    sc->cpu_cx_count++;
621	}
622    }
623    if (sc->cpu_p_blk_len < 6)
624	return;
625
626    /* Validate and allocate resources for C3 (P_LVL3). */
627    if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
628	gas.Address = sc->cpu_p_blk + 5;
629	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
630	    &cx_ptr->p_lvlx, RF_SHAREABLE);
631	if (cx_ptr->p_lvlx != NULL) {
632	    sc->cpu_rid++;
633	    cx_ptr->type = ACPI_STATE_C3;
634	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
635	    cx_ptr++;
636	    sc->cpu_cx_count++;
637	}
638    }
639}
640
641/*
642 * Parse a _CST package and set up its Cx states.  Since the _CST object
643 * can change dynamically, our notify handler may call this function
644 * to clean up and probe the new _CST package.
645 */
646static int
647acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
648{
649    struct	 acpi_cx *cx_ptr;
650    ACPI_STATUS	 status;
651    ACPI_BUFFER	 buf;
652    ACPI_OBJECT	*top;
653    ACPI_OBJECT	*pkg;
654    uint32_t	 count;
655    int		 i;
656
657    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
658
659    buf.Pointer = NULL;
660    buf.Length = ACPI_ALLOCATE_BUFFER;
661    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
662    if (ACPI_FAILURE(status))
663	return (ENXIO);
664
665    /* _CST is a package with a count and at least one Cx package. */
666    top = (ACPI_OBJECT *)buf.Pointer;
667    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
668	device_printf(sc->cpu_dev, "invalid _CST package\n");
669	AcpiOsFree(buf.Pointer);
670	return (ENXIO);
671    }
672    if (count != top->Package.Count - 1) {
673	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
674	       count, top->Package.Count - 1);
675	count = top->Package.Count - 1;
676    }
677    if (count > MAX_CX_STATES) {
678	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
679	count = MAX_CX_STATES;
680    }
681
682    sc->cpu_non_c3 = 0;
683    sc->cpu_cx_count = 0;
684    cx_ptr = sc->cpu_cx_states;
685
686    /*
687     * C1 has been required since just after ACPI 1.0.
688     * Reserve the first slot for it.
689     */
690    cx_ptr->type = ACPI_STATE_C0;
691    cx_ptr++;
692    sc->cpu_cx_count++;
693
694    /* Set up all valid states. */
695    for (i = 0; i < count; i++) {
696	pkg = &top->Package.Elements[i + 1];
697	if (!ACPI_PKG_VALID(pkg, 4) ||
698	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
699	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
700	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
701
702	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
703	    continue;
704	}
705
706	/* Validate the state to see if we should use it. */
707	switch (cx_ptr->type) {
708	case ACPI_STATE_C1:
709	    if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
710		/* This is the first C1 state.  Use the reserved slot. */
711		sc->cpu_cx_states[0] = *cx_ptr;
712	    } else {
713		sc->cpu_non_c3 = i;
714		cx_ptr++;
715		sc->cpu_cx_count++;
716	    }
717	    continue;
718	case ACPI_STATE_C2:
719	    sc->cpu_non_c3 = i;
720	    break;
721	case ACPI_STATE_C3:
722	default:
723	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
724		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
725				 "acpi_cpu%d: C3[%d] not available.\n",
726				 device_get_unit(sc->cpu_dev), i));
727		continue;
728	    }
729	    break;
730	}
731
732#ifdef notyet
733	/* Free up any previous register. */
734	if (cx_ptr->p_lvlx != NULL) {
735	    bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
736	    cx_ptr->p_lvlx = NULL;
737	}
738#endif
739
740	/* Allocate the control register for C2 or C3. */
741	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
742	    &cx_ptr->p_lvlx, RF_SHAREABLE);
743	if (cx_ptr->p_lvlx) {
744	    sc->cpu_rid++;
745	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
746			     "acpi_cpu%d: Got C%d - %d latency\n",
747			     device_get_unit(sc->cpu_dev), cx_ptr->type,
748			     cx_ptr->trans_lat));
749	    cx_ptr++;
750	    sc->cpu_cx_count++;
751	}
752    }
753    AcpiOsFree(buf.Pointer);
754
755    /* If C1 state was not found, we need one now. */
756    cx_ptr = sc->cpu_cx_states;
757    if (cx_ptr->type == ACPI_STATE_C0) {
758	cx_ptr->type = ACPI_STATE_C1;
759	cx_ptr->trans_lat = 0;
760    }
761
762    return (0);
763}
764
765/*
766 * Call this *after* all CPUs have been attached.
767 */
768static void
769acpi_cpu_startup(void *arg)
770{
771    struct acpi_cpu_softc *sc;
772    int i;
773
774    /* Get set of CPU devices */
775    devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
776
777    /*
778     * Setup any quirks that might necessary now that we have probed
779     * all the CPUs
780     */
781    acpi_cpu_quirks();
782
783    cpu_cx_count = 0;
784    if (cpu_cx_generic) {
785	/*
786	 * We are using generic Cx mode, probe for available Cx states
787	 * for all processors.
788	 */
789	for (i = 0; i < cpu_ndevices; i++) {
790	    sc = device_get_softc(cpu_devices[i]);
791	    acpi_cpu_generic_cx_probe(sc);
792	    if (sc->cpu_cx_count > cpu_cx_count)
793		    cpu_cx_count = sc->cpu_cx_count;
794	}
795
796	/*
797	 * Find the highest Cx state common to all CPUs
798	 * in the system, taking quirks into account.
799	 */
800	for (i = 0; i < cpu_ndevices; i++) {
801	    sc = device_get_softc(cpu_devices[i]);
802	    if (sc->cpu_cx_count < cpu_cx_count)
803		cpu_cx_count = sc->cpu_cx_count;
804	}
805    } else {
806	/*
807	 * We are using _CST mode, remove C3 state if necessary.
808	 * Update the largest Cx state supported in the global cpu_cx_count.
809	 * It will be used in the global Cx sysctl handler.
810	 * As we now know for sure that we will be using _CST mode
811	 * install our notify handler.
812	 */
813	for (i = 0; i < cpu_ndevices; i++) {
814	    sc = device_get_softc(cpu_devices[i]);
815	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
816		sc->cpu_cx_count = sc->cpu_non_c3 + 1;
817	    }
818	    if (sc->cpu_cx_count > cpu_cx_count)
819		cpu_cx_count = sc->cpu_cx_count;
820	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
821		acpi_cpu_notify, sc);
822	}
823    }
824
825    /* Perform Cx final initialization. */
826    for (i = 0; i < cpu_ndevices; i++) {
827	sc = device_get_softc(cpu_devices[i]);
828	acpi_cpu_startup_cx(sc);
829    }
830
831    /* Add a sysctl handler to handle global Cx lowest setting */
832    SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
833	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
834	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
835	"Global lowest Cx sleep state to use");
836
837    /* Take over idling from cpu_idle_default(). */
838    cpu_cx_lowest = 0;
839    cpu_disable_idle = FALSE;
840    cpu_idle_hook = acpi_cpu_idle;
841}
842
843static void
844acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
845{
846    struct sbuf sb;
847    int i;
848
849    /*
850     * Set up the list of Cx states
851     */
852    sc->cpu_non_c3 = 0;
853    sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
854	SBUF_FIXEDLEN);
855    for (i = 0; i < sc->cpu_cx_count; i++) {
856	sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
857	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
858	    sc->cpu_non_c3 = i;
859#ifndef __ia64__
860	else
861	    cpu_can_deep_sleep = 1;
862#endif
863    }
864    sbuf_trim(&sb);
865    sbuf_finish(&sb);
866}
867
868static void
869acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
870{
871    acpi_cpu_cx_list(sc);
872
873    SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
874		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
875		      OID_AUTO, "cx_supported", CTLFLAG_RD,
876		      sc->cpu_cx_supported, 0,
877		      "Cx/microsecond values for supported Cx states");
878    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
879		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
880		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
881		    (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
882		    "lowest Cx sleep state to use");
883    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
884		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
885		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
886		    (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
887		    "percent usage for each Cx state");
888
889#ifdef notyet
890    /* Signal platform that we can handle _CST notification. */
891    if (!cpu_cx_generic && cpu_cst_cnt != 0) {
892	ACPI_LOCK(acpi);
893	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
894	ACPI_UNLOCK(acpi);
895    }
896#endif
897}
898
899/*
900 * Idle the CPU in the lowest state possible.  This function is called with
901 * interrupts disabled.  Note that once it re-enables interrupts, a task
902 * switch can occur so do not access shared data (i.e. the softc) after
903 * interrupts are re-enabled.
904 */
905static void
906acpi_cpu_idle()
907{
908    struct	acpi_cpu_softc *sc;
909    struct	acpi_cx *cx_next;
910    uint32_t	start_time, end_time;
911    int		bm_active, cx_next_idx, i;
912
913    /* If disabled, return immediately. */
914    if (cpu_disable_idle) {
915	ACPI_ENABLE_IRQS();
916	return;
917    }
918
919    /*
920     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
921     * since there is no ACPI processor object for this CPU.  This occurs
922     * for logical CPUs in the HTT case.
923     */
924    sc = cpu_softc[PCPU_GET(cpuid)];
925    if (sc == NULL) {
926	acpi_cpu_c1();
927	return;
928    }
929
930    /* Find the lowest state that has small enough latency. */
931    cx_next_idx = 0;
932#ifndef __ia64__
933    if (cpu_disable_deep_sleep)
934	i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
935    else
936#endif
937	i = sc->cpu_cx_lowest;
938    for (; i >= 0; i--) {
939	if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
940	    cx_next_idx = i;
941	    break;
942	}
943    }
944
945    /*
946     * Check for bus master activity.  If there was activity, clear
947     * the bit and use the lowest non-C3 state.  Note that the USB
948     * driver polling for new devices keeps this bit set all the
949     * time if USB is loaded.
950     */
951    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
952	AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
953	if (bm_active != 0) {
954	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
955	    cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
956	}
957    }
958
959    /* Select the next state and update statistics. */
960    cx_next = &sc->cpu_cx_states[cx_next_idx];
961    sc->cpu_cx_stats[cx_next_idx]++;
962    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
963
964    /*
965     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
966     * precisely calculate the time spent in C1 since the place we wake up
967     * is an ISR.  Assume we slept no more then half of quantum, unless
968     * we are called inside critical section, delaying context switch.
969     */
970    if (cx_next->type == ACPI_STATE_C1) {
971	AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
972	acpi_cpu_c1();
973	AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
974        end_time = PM_USEC(acpi_TimerDelta(end_time, start_time));
975        if (curthread->td_critnest == 0)
976		end_time = min(end_time, 500000 / hz);
977	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
978	return;
979    }
980
981    /*
982     * For C3, disable bus master arbitration and enable bus master wake
983     * if BM control is available, otherwise flush the CPU cache.
984     */
985    if (cx_next->type == ACPI_STATE_C3) {
986	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
987	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
988	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
989	} else
990	    ACPI_FLUSH_CPU_CACHE();
991    }
992
993    /*
994     * Read from P_LVLx to enter C2(+), checking time spent asleep.
995     * Use the ACPI timer for measuring sleep time.  Since we need to
996     * get the time very close to the CPU start/stop clock logic, this
997     * is the only reliable time source.
998     */
999    AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
1000    CPU_GET_REG(cx_next->p_lvlx, 1);
1001
1002    /*
1003     * Read the end time twice.  Since it may take an arbitrary time
1004     * to enter the idle state, the first read may be executed before
1005     * the processor has stopped.  Doing it again provides enough
1006     * margin that we are certain to have a correct value.
1007     */
1008    AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
1009    AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
1010
1011    /* Enable bus master arbitration and disable bus master wakeup. */
1012    if (cx_next->type == ACPI_STATE_C3 &&
1013	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1014	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
1015	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1016    }
1017    ACPI_ENABLE_IRQS();
1018
1019    /* Find the actual time asleep in microseconds. */
1020    end_time = acpi_TimerDelta(end_time, start_time);
1021    sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
1022}
1023
1024/*
1025 * Re-evaluate the _CST object when we are notified that it changed.
1026 *
1027 * XXX Re-evaluation disabled until locking is done.
1028 */
1029static void
1030acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1031{
1032    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1033    struct acpi_cpu_softc *isc;
1034    int i;
1035
1036    if (notify != ACPI_NOTIFY_CX_STATES)
1037	return;
1038
1039    /* Update the list of Cx states. */
1040    acpi_cpu_cx_cst(sc);
1041    acpi_cpu_cx_list(sc);
1042
1043    /* Update the new lowest useable Cx state for all CPUs. */
1044    ACPI_SERIAL_BEGIN(cpu);
1045    cpu_cx_count = 0;
1046    for (i = 0; i < cpu_ndevices; i++) {
1047	isc = device_get_softc(cpu_devices[i]);
1048	if (isc->cpu_cx_count > cpu_cx_count)
1049	    cpu_cx_count = isc->cpu_cx_count;
1050    }
1051    if (sc->cpu_cx_lowest < cpu_cx_lowest)
1052	acpi_cpu_set_cx_lowest(sc, min(cpu_cx_lowest, sc->cpu_cx_count - 1));
1053    ACPI_SERIAL_END(cpu);
1054}
1055
1056static int
1057acpi_cpu_quirks(void)
1058{
1059    device_t acpi_dev;
1060    uint32_t val;
1061
1062    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1063
1064    /*
1065     * Bus mastering arbitration control is needed to keep caches coherent
1066     * while sleeping in C3.  If it's not present but a working flush cache
1067     * instruction is present, flush the caches before entering C3 instead.
1068     * Otherwise, just disable C3 completely.
1069     */
1070    if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1071	AcpiGbl_FADT.Pm2ControlLength == 0) {
1072	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1073	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1074	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1075	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1076		"acpi_cpu: no BM control, using flush cache method\n"));
1077	} else {
1078	    cpu_quirks |= CPU_QUIRK_NO_C3;
1079	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1080		"acpi_cpu: no BM control, C3 not available\n"));
1081	}
1082    }
1083
1084    /*
1085     * If we are using generic Cx mode, C3 on multiple CPUs requires using
1086     * the expensive flush cache instruction.
1087     */
1088    if (cpu_cx_generic && mp_ncpus > 1) {
1089	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1090	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1091	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1092    }
1093
1094    /* Look for various quirks of the PIIX4 part. */
1095    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1096    if (acpi_dev != NULL) {
1097	switch (pci_get_revid(acpi_dev)) {
1098	/*
1099	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1100	 * do not report the BMIDE status to the BM status register and
1101	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1102	 * works around the BMIDE bug by reading the BM status directly
1103	 * but we take the simpler approach of disabling C3 for these
1104	 * parts.
1105	 *
1106	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1107	 * Livelock") from the January 2002 PIIX4 specification update.
1108	 * Applies to all PIIX4 models.
1109	 *
1110	 * Also, make sure that all interrupts cause a "Stop Break"
1111	 * event to exit from C2 state.
1112	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1113	 * should be set to zero, otherwise it causes C2 to short-sleep.
1114	 * PIIX4 doesn't properly support C3 and bus master activity
1115	 * need not break out of C2.
1116	 */
1117	case PCI_REVISION_A_STEP:
1118	case PCI_REVISION_B_STEP:
1119	case PCI_REVISION_4E:
1120	case PCI_REVISION_4M:
1121	    cpu_quirks |= CPU_QUIRK_NO_C3;
1122	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1123		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1124
1125	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1126	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1127		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1128		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1129	    	val |= PIIX4_STOP_BREAK_MASK;
1130		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1131	    }
1132	    AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1133	    if (val) {
1134		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1135		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1136		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1137	    }
1138	    break;
1139	default:
1140	    break;
1141	}
1142    }
1143
1144    return (0);
1145}
1146
1147static int
1148acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1149{
1150    struct acpi_cpu_softc *sc;
1151    struct sbuf	 sb;
1152    char	 buf[128];
1153    int		 i;
1154    uintmax_t	 fract, sum, whole;
1155
1156    sc = (struct acpi_cpu_softc *) arg1;
1157    sum = 0;
1158    for (i = 0; i < sc->cpu_cx_count; i++)
1159	sum += sc->cpu_cx_stats[i];
1160    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1161    for (i = 0; i < sc->cpu_cx_count; i++) {
1162	if (sum > 0) {
1163	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1164	    fract = (whole % sum) * 100;
1165	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1166		(u_int)(fract / sum));
1167	} else
1168	    sbuf_printf(&sb, "0.00%% ");
1169    }
1170    sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1171    sbuf_trim(&sb);
1172    sbuf_finish(&sb);
1173    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1174    sbuf_delete(&sb);
1175
1176    return (0);
1177}
1178
1179static int
1180acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val)
1181{
1182    int i;
1183
1184    ACPI_SERIAL_ASSERT(cpu);
1185    sc->cpu_cx_lowest = val;
1186
1187    /* If not disabling, cache the new lowest non-C3 state. */
1188    sc->cpu_non_c3 = 0;
1189    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1190	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1191	    sc->cpu_non_c3 = i;
1192	    break;
1193	}
1194    }
1195
1196    /* Reset the statistics counters. */
1197    bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1198    return (0);
1199}
1200
1201static int
1202acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1203{
1204    struct	 acpi_cpu_softc *sc;
1205    char	 state[8];
1206    int		 val, error;
1207
1208    sc = (struct acpi_cpu_softc *) arg1;
1209    snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
1210    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1211    if (error != 0 || req->newptr == NULL)
1212	return (error);
1213    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1214	return (EINVAL);
1215    val = (int) strtol(state + 1, NULL, 10) - 1;
1216    if (val < 0 || val > sc->cpu_cx_count - 1)
1217	return (EINVAL);
1218
1219    ACPI_SERIAL_BEGIN(cpu);
1220    acpi_cpu_set_cx_lowest(sc, val);
1221    ACPI_SERIAL_END(cpu);
1222
1223    return (0);
1224}
1225
1226static int
1227acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1228{
1229    struct	acpi_cpu_softc *sc;
1230    char	state[8];
1231    int		val, error, i;
1232
1233    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
1234    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1235    if (error != 0 || req->newptr == NULL)
1236	return (error);
1237    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1238	return (EINVAL);
1239    val = (int) strtol(state + 1, NULL, 10) - 1;
1240    if (val < 0 || val > cpu_cx_count - 1)
1241	return (EINVAL);
1242    cpu_cx_lowest = val;
1243
1244    /* Update the new lowest useable Cx state for all CPUs. */
1245    ACPI_SERIAL_BEGIN(cpu);
1246    for (i = 0; i < cpu_ndevices; i++) {
1247	sc = device_get_softc(cpu_devices[i]);
1248	acpi_cpu_set_cx_lowest(sc, min(val, sc->cpu_cx_count - 1));
1249    }
1250    ACPI_SERIAL_END(cpu);
1251
1252    return (0);
1253}
1254