acpi_cpu.c revision 212549
1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/acpica/acpi_cpu.c 212549 2010-09-13 09:51:24Z avg $");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/cpu.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/pcpu.h>
39#include <sys/power.h>
40#include <sys/proc.h>
41#include <sys/sbuf.h>
42#include <sys/smp.h>
43
44#include <dev/pci/pcivar.h>
45#include <machine/atomic.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48
49#include <contrib/dev/acpica/include/acpi.h>
50#include <contrib/dev/acpica/include/accommon.h>
51
52#include <dev/acpica/acpivar.h>
53
54/*
55 * Support for ACPI Processor devices, including C[1-3] sleep states.
56 */
57
58/* Hooks for the ACPI CA debugging infrastructure */
59#define _COMPONENT	ACPI_PROCESSOR
60ACPI_MODULE_NAME("PROCESSOR")
61
62struct acpi_cx {
63    struct resource	*p_lvlx;	/* Register to read to enter state. */
64    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
65    uint32_t		 trans_lat;	/* Transition latency (usec). */
66    uint32_t		 power;		/* Power consumed (mW). */
67    int			 res_type;	/* Resource type for p_lvlx. */
68};
69#define MAX_CX_STATES	 8
70
71struct acpi_cpu_softc {
72    device_t		 cpu_dev;
73    ACPI_HANDLE		 cpu_handle;
74    struct pcpu		*cpu_pcpu;
75    uint32_t		 cpu_acpi_id;	/* ACPI processor id */
76    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
77    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
78    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
79    int			 cpu_cx_count;	/* Number of valid Cx states. */
80    int			 cpu_prev_sleep;/* Last idle sleep duration. */
81    int			 cpu_features;	/* Child driver supported features. */
82    /* Runtime state. */
83    int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
84    u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
85    /* Values for sysctl. */
86    struct sysctl_ctx_list cpu_sysctl_ctx;
87    struct sysctl_oid	*cpu_sysctl_tree;
88    int			 cpu_cx_lowest;
89    char 		 cpu_cx_supported[64];
90    int			 cpu_rid;
91};
92
93struct acpi_cpu_device {
94    struct resource_list	ad_rl;
95};
96
97#define CPU_GET_REG(reg, width) 					\
98    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
99		      rman_get_bushandle((reg)), 0))
100#define CPU_SET_REG(reg, width, val)					\
101    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
102		       rman_get_bushandle((reg)), 0, (val)))
103
104#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
105
106#define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
107
108#define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
109#define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
110
111#define PCI_VENDOR_INTEL	0x8086
112#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
113#define PCI_REVISION_A_STEP	0
114#define PCI_REVISION_B_STEP	1
115#define PCI_REVISION_4E		2
116#define PCI_REVISION_4M		3
117#define PIIX4_DEVACTB_REG	0x58
118#define PIIX4_BRLD_EN_IRQ0	(1<<0)
119#define PIIX4_BRLD_EN_IRQ	(1<<1)
120#define PIIX4_BRLD_EN_IRQ8	(1<<5)
121#define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
122#define PIIX4_PCNTRL_BST_EN	(1<<10)
123
124/* Platform hardware resource information. */
125static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
126static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
127static int		 cpu_quirks;	/* Indicate any hardware bugs. */
128
129/* Runtime state. */
130static int		 cpu_disable_idle; /* Disable entry to idle function */
131static int		 cpu_cx_count;	/* Number of valid Cx states */
132
133/* Values for sysctl. */
134static struct sysctl_ctx_list cpu_sysctl_ctx;
135static struct sysctl_oid *cpu_sysctl_tree;
136static int		 cpu_cx_generic;
137static int		 cpu_cx_lowest;
138
139static device_t		*cpu_devices;
140static int		 cpu_ndevices;
141static struct acpi_cpu_softc **cpu_softc;
142ACPI_SERIAL_DECL(cpu, "ACPI CPU");
143
144static int	acpi_cpu_probe(device_t dev);
145static int	acpi_cpu_attach(device_t dev);
146static int	acpi_cpu_suspend(device_t dev);
147static int	acpi_cpu_resume(device_t dev);
148static int	acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
149		    uint32_t *cpu_id);
150static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
151static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
152		    int unit);
153static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
154		    uintptr_t *result);
155static int	acpi_cpu_shutdown(device_t dev);
156static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
157static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
158static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
159static void	acpi_cpu_startup(void *arg);
160static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
161static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
162static void	acpi_cpu_idle(void);
163static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
164static int	acpi_cpu_quirks(void);
165static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
166static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val);
167static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
168static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
169
170static device_method_t acpi_cpu_methods[] = {
171    /* Device interface */
172    DEVMETHOD(device_probe,	acpi_cpu_probe),
173    DEVMETHOD(device_attach,	acpi_cpu_attach),
174    DEVMETHOD(device_detach,	bus_generic_detach),
175    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
176    DEVMETHOD(device_suspend,	acpi_cpu_suspend),
177    DEVMETHOD(device_resume,	acpi_cpu_resume),
178
179    /* Bus interface */
180    DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
181    DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
182    DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
183    DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
184    DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
185    DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
186    DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
187    DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
188    DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
189    DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
190    DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
191    DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
192
193    {0, 0}
194};
195
196static driver_t acpi_cpu_driver = {
197    "cpu",
198    acpi_cpu_methods,
199    sizeof(struct acpi_cpu_softc),
200};
201
202static devclass_t acpi_cpu_devclass;
203DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
204MODULE_DEPEND(cpu, acpi, 1, 1, 1);
205
206static int
207acpi_cpu_probe(device_t dev)
208{
209    int			   acpi_id, cpu_id;
210    ACPI_BUFFER		   buf;
211    ACPI_HANDLE		   handle;
212    ACPI_OBJECT		   *obj;
213    ACPI_STATUS		   status;
214
215    if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
216	return (ENXIO);
217
218    handle = acpi_get_handle(dev);
219    if (cpu_softc == NULL)
220	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
221	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
222
223    /* Get our Processor object. */
224    buf.Pointer = NULL;
225    buf.Length = ACPI_ALLOCATE_BUFFER;
226    status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
227    if (ACPI_FAILURE(status)) {
228	device_printf(dev, "probe failed to get Processor obj - %s\n",
229		      AcpiFormatException(status));
230	return (ENXIO);
231    }
232    obj = (ACPI_OBJECT *)buf.Pointer;
233    if (obj->Type != ACPI_TYPE_PROCESSOR) {
234	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
235	AcpiOsFree(obj);
236	return (ENXIO);
237    }
238
239    /*
240     * Find the processor associated with our unit.  We could use the
241     * ProcId as a key, however, some boxes do not have the same values
242     * in their Processor object as the ProcId values in the MADT.
243     */
244    acpi_id = obj->Processor.ProcId;
245    AcpiOsFree(obj);
246    if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
247	return (ENXIO);
248
249    /*
250     * Check if we already probed this processor.  We scan the bus twice
251     * so it's possible we've already seen this one.
252     */
253    if (cpu_softc[cpu_id] != NULL)
254	return (ENXIO);
255
256    /* Mark this processor as in-use and save our derived id for attach. */
257    cpu_softc[cpu_id] = (void *)1;
258    acpi_set_private(dev, (void*)(intptr_t)cpu_id);
259    device_set_desc(dev, "ACPI CPU");
260
261    return (0);
262}
263
264static int
265acpi_cpu_attach(device_t dev)
266{
267    ACPI_BUFFER		   buf;
268    ACPI_OBJECT		   arg[4], *obj;
269    ACPI_OBJECT_LIST	   arglist;
270    struct pcpu		   *pcpu_data;
271    struct acpi_cpu_softc *sc;
272    struct acpi_softc	  *acpi_sc;
273    ACPI_STATUS		   status;
274    u_int		   features;
275    int			   cpu_id, drv_count, i;
276    driver_t 		  **drivers;
277    uint32_t		   cap_set[3];
278
279    /* UUID needed by _OSC evaluation */
280    static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
281				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
282				       0x58, 0x71, 0x39, 0x53 };
283
284    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
285
286    sc = device_get_softc(dev);
287    sc->cpu_dev = dev;
288    sc->cpu_handle = acpi_get_handle(dev);
289    cpu_id = (int)(intptr_t)acpi_get_private(dev);
290    cpu_softc[cpu_id] = sc;
291    pcpu_data = pcpu_find(cpu_id);
292    pcpu_data->pc_device = dev;
293    sc->cpu_pcpu = pcpu_data;
294    cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
295    cpu_cst_cnt = AcpiGbl_FADT.CstControl;
296
297    buf.Pointer = NULL;
298    buf.Length = ACPI_ALLOCATE_BUFFER;
299    status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
300    if (ACPI_FAILURE(status)) {
301	device_printf(dev, "attach failed to get Processor obj - %s\n",
302		      AcpiFormatException(status));
303	return (ENXIO);
304    }
305    obj = (ACPI_OBJECT *)buf.Pointer;
306    sc->cpu_p_blk = obj->Processor.PblkAddress;
307    sc->cpu_p_blk_len = obj->Processor.PblkLength;
308    sc->cpu_acpi_id = obj->Processor.ProcId;
309    AcpiOsFree(obj);
310    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
311		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
312
313    /*
314     * If this is the first cpu we attach, create and initialize the generic
315     * resources that will be used by all acpi cpu devices.
316     */
317    if (device_get_unit(dev) == 0) {
318	/* Assume we won't be using generic Cx mode by default */
319	cpu_cx_generic = FALSE;
320
321	/* Install hw.acpi.cpu sysctl tree */
322	acpi_sc = acpi_device_get_parent_softc(dev);
323	sysctl_ctx_init(&cpu_sysctl_ctx);
324	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
325	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
326	    CTLFLAG_RD, 0, "node for CPU children");
327
328	/* Queue post cpu-probing task handler */
329	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
330    }
331
332    /*
333     * Before calling any CPU methods, collect child driver feature hints
334     * and notify ACPI of them.  We support unified SMP power control
335     * so advertise this ourselves.  Note this is not the same as independent
336     * SMP control where each CPU can have different settings.
337     */
338    sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
339    if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
340	for (i = 0; i < drv_count; i++) {
341	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
342		sc->cpu_features |= features;
343	}
344	free(drivers, M_TEMP);
345    }
346
347    /*
348     * CPU capabilities are specified in
349     * Intel Processor Vendor-Specific ACPI Interface Specification.
350     */
351    if (sc->cpu_features) {
352	arglist.Pointer = arg;
353	arglist.Count = 4;
354	arg[0].Type = ACPI_TYPE_BUFFER;
355	arg[0].Buffer.Length = sizeof(cpu_oscuuid);
356	arg[0].Buffer.Pointer = cpu_oscuuid;	/* UUID */
357	arg[1].Type = ACPI_TYPE_INTEGER;
358	arg[1].Integer.Value = 1;		/* revision */
359	arg[2].Type = ACPI_TYPE_INTEGER;
360	arg[2].Integer.Value = 1;		/* count */
361	arg[3].Type = ACPI_TYPE_BUFFER;
362	arg[3].Buffer.Length = sizeof(cap_set);	/* Capabilities buffer */
363	arg[3].Buffer.Pointer = (uint8_t *)cap_set;
364	cap_set[0] = 0;				/* status */
365	cap_set[1] = sc->cpu_features;
366	status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
367	if (ACPI_SUCCESS(status)) {
368	    if (cap_set[0] != 0)
369		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
370	}
371	else {
372	    arglist.Pointer = arg;
373	    arglist.Count = 1;
374	    arg[0].Type = ACPI_TYPE_BUFFER;
375	    arg[0].Buffer.Length = sizeof(cap_set);
376	    arg[0].Buffer.Pointer = (uint8_t *)cap_set;
377	    cap_set[0] = 1; /* revision */
378	    cap_set[1] = 1; /* number of capabilities integers */
379	    cap_set[2] = sc->cpu_features;
380	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
381	}
382    }
383
384    /* Probe for Cx state support. */
385    acpi_cpu_cx_probe(sc);
386
387    return (0);
388}
389
390static void
391acpi_cpu_postattach(void *unused __unused)
392{
393    device_t *devices;
394    int err;
395    int i, n;
396
397    err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
398    if (err != 0) {
399	printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
400	return;
401    }
402    for (i = 0; i < n; i++)
403	bus_generic_probe(devices[i]);
404    for (i = 0; i < n; i++)
405	bus_generic_attach(devices[i]);
406    free(devices, M_TEMP);
407}
408
409SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
410    acpi_cpu_postattach, NULL);
411
412/*
413 * Disable any entry to the idle function during suspend and re-enable it
414 * during resume.
415 */
416static int
417acpi_cpu_suspend(device_t dev)
418{
419    int error;
420
421    error = bus_generic_suspend(dev);
422    if (error)
423	return (error);
424    cpu_disable_idle = TRUE;
425    return (0);
426}
427
428static int
429acpi_cpu_resume(device_t dev)
430{
431
432    cpu_disable_idle = FALSE;
433    return (bus_generic_resume(dev));
434}
435
436/*
437 * Find the nth present CPU and return its pc_cpuid as well as set the
438 * pc_acpi_id from the most reliable source.
439 */
440static int
441acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
442{
443    struct pcpu	*pcpu_data;
444    uint32_t	 i;
445
446    KASSERT(acpi_id != NULL, ("Null acpi_id"));
447    KASSERT(cpu_id != NULL, ("Null cpu_id"));
448    CPU_FOREACH(i) {
449	pcpu_data = pcpu_find(i);
450	KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
451	if (idx-- == 0) {
452	    /*
453	     * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
454	     * override it with the value from the ASL.  Otherwise, if the
455	     * two don't match, prefer the MADT-derived value.  Finally,
456	     * return the pc_cpuid to reference this processor.
457	     */
458	    if (pcpu_data->pc_acpi_id == 0xffffffff)
459		pcpu_data->pc_acpi_id = *acpi_id;
460	    else if (pcpu_data->pc_acpi_id != *acpi_id)
461		*acpi_id = pcpu_data->pc_acpi_id;
462	    *cpu_id = pcpu_data->pc_cpuid;
463	    return (0);
464	}
465    }
466
467    return (ESRCH);
468}
469
470static struct resource_list *
471acpi_cpu_get_rlist(device_t dev, device_t child)
472{
473    struct acpi_cpu_device *ad;
474
475    ad = device_get_ivars(child);
476    if (ad == NULL)
477	return (NULL);
478    return (&ad->ad_rl);
479}
480
481static device_t
482acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
483{
484    struct acpi_cpu_device *ad;
485    device_t child;
486
487    if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
488	return (NULL);
489
490    resource_list_init(&ad->ad_rl);
491
492    child = device_add_child_ordered(dev, order, name, unit);
493    if (child != NULL)
494	device_set_ivars(child, ad);
495    else
496	free(ad, M_TEMP);
497    return (child);
498}
499
500static int
501acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
502{
503    struct acpi_cpu_softc *sc;
504
505    sc = device_get_softc(dev);
506    switch (index) {
507    case ACPI_IVAR_HANDLE:
508	*result = (uintptr_t)sc->cpu_handle;
509	break;
510    case CPU_IVAR_PCPU:
511	*result = (uintptr_t)sc->cpu_pcpu;
512	break;
513    default:
514	return (ENOENT);
515    }
516    return (0);
517}
518
519static int
520acpi_cpu_shutdown(device_t dev)
521{
522    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
523
524    /* Allow children to shutdown first. */
525    bus_generic_shutdown(dev);
526
527    /*
528     * Disable any entry to the idle function.  There is a small race where
529     * an idle thread have passed this check but not gone to sleep.  This
530     * is ok since device_shutdown() does not free the softc, otherwise
531     * we'd have to be sure all threads were evicted before returning.
532     */
533    cpu_disable_idle = TRUE;
534
535    return_VALUE (0);
536}
537
538static void
539acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
540{
541    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
542
543    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
544    sc->cpu_prev_sleep = 1000000;
545    sc->cpu_cx_lowest = 0;
546
547    /*
548     * Check for the ACPI 2.0 _CST sleep states object. If we can't find
549     * any, we'll revert to generic FADT/P_BLK Cx control method which will
550     * be handled by acpi_cpu_startup. We need to defer to after having
551     * probed all the cpus in the system before probing for generic Cx
552     * states as we may already have found cpus with valid _CST packages
553     */
554    if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
555	/*
556	 * We were unable to find a _CST package for this cpu or there
557	 * was an error parsing it. Switch back to generic mode.
558	 */
559	cpu_cx_generic = TRUE;
560	if (bootverbose)
561	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
562    }
563
564    /*
565     * TODO: _CSD Package should be checked here.
566     */
567}
568
569static void
570acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
571{
572    ACPI_GENERIC_ADDRESS	 gas;
573    struct acpi_cx		*cx_ptr;
574
575    sc->cpu_cx_count = 0;
576    cx_ptr = sc->cpu_cx_states;
577
578    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
579    sc->cpu_prev_sleep = 1000000;
580
581    /* C1 has been required since just after ACPI 1.0 */
582    cx_ptr->type = ACPI_STATE_C1;
583    cx_ptr->trans_lat = 0;
584    cx_ptr++;
585    sc->cpu_cx_count++;
586
587    /*
588     * The spec says P_BLK must be 6 bytes long.  However, some systems
589     * use it to indicate a fractional set of features present so we
590     * take 5 as C2.  Some may also have a value of 7 to indicate
591     * another C3 but most use _CST for this (as required) and having
592     * "only" C1-C3 is not a hardship.
593     */
594    if (sc->cpu_p_blk_len < 5)
595	return;
596
597    /* Validate and allocate resources for C2 (P_LVL2). */
598    gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
599    gas.BitWidth = 8;
600    if (AcpiGbl_FADT.C2Latency <= 100) {
601	gas.Address = sc->cpu_p_blk + 4;
602	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
603	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
604	if (cx_ptr->p_lvlx != NULL) {
605	    sc->cpu_rid++;
606	    cx_ptr->type = ACPI_STATE_C2;
607	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
608	    cx_ptr++;
609	    sc->cpu_cx_count++;
610	}
611    }
612    if (sc->cpu_p_blk_len < 6)
613	return;
614
615    /* Validate and allocate resources for C3 (P_LVL3). */
616    if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
617	gas.Address = sc->cpu_p_blk + 5;
618	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
619	    &cx_ptr->p_lvlx, RF_SHAREABLE);
620	if (cx_ptr->p_lvlx != NULL) {
621	    sc->cpu_rid++;
622	    cx_ptr->type = ACPI_STATE_C3;
623	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
624	    cx_ptr++;
625	    sc->cpu_cx_count++;
626	}
627    }
628}
629
630/*
631 * Parse a _CST package and set up its Cx states.  Since the _CST object
632 * can change dynamically, our notify handler may call this function
633 * to clean up and probe the new _CST package.
634 */
635static int
636acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
637{
638    struct	 acpi_cx *cx_ptr;
639    ACPI_STATUS	 status;
640    ACPI_BUFFER	 buf;
641    ACPI_OBJECT	*top;
642    ACPI_OBJECT	*pkg;
643    uint32_t	 count;
644    int		 i;
645
646    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
647
648    buf.Pointer = NULL;
649    buf.Length = ACPI_ALLOCATE_BUFFER;
650    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
651    if (ACPI_FAILURE(status))
652	return (ENXIO);
653
654    /* _CST is a package with a count and at least one Cx package. */
655    top = (ACPI_OBJECT *)buf.Pointer;
656    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
657	device_printf(sc->cpu_dev, "invalid _CST package\n");
658	AcpiOsFree(buf.Pointer);
659	return (ENXIO);
660    }
661    if (count != top->Package.Count - 1) {
662	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
663	       count, top->Package.Count - 1);
664	count = top->Package.Count - 1;
665    }
666    if (count > MAX_CX_STATES) {
667	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
668	count = MAX_CX_STATES;
669    }
670
671    /* Set up all valid states. */
672    sc->cpu_cx_count = 0;
673    cx_ptr = sc->cpu_cx_states;
674    for (i = 0; i < count; i++) {
675	pkg = &top->Package.Elements[i + 1];
676	if (!ACPI_PKG_VALID(pkg, 4) ||
677	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
678	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
679	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
680
681	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
682	    continue;
683	}
684
685	/* Validate the state to see if we should use it. */
686	switch (cx_ptr->type) {
687	case ACPI_STATE_C1:
688	    sc->cpu_non_c3 = i;
689	    cx_ptr++;
690	    sc->cpu_cx_count++;
691	    continue;
692	case ACPI_STATE_C2:
693	    sc->cpu_non_c3 = i;
694	    break;
695	case ACPI_STATE_C3:
696	default:
697	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
698		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
699				 "acpi_cpu%d: C3[%d] not available.\n",
700				 device_get_unit(sc->cpu_dev), i));
701		continue;
702	    }
703	    break;
704	}
705
706#ifdef notyet
707	/* Free up any previous register. */
708	if (cx_ptr->p_lvlx != NULL) {
709	    bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
710	    cx_ptr->p_lvlx = NULL;
711	}
712#endif
713
714	/* Allocate the control register for C2 or C3. */
715	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
716	    &cx_ptr->p_lvlx, RF_SHAREABLE);
717	if (cx_ptr->p_lvlx) {
718	    sc->cpu_rid++;
719	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
720			     "acpi_cpu%d: Got C%d - %d latency\n",
721			     device_get_unit(sc->cpu_dev), cx_ptr->type,
722			     cx_ptr->trans_lat));
723	    cx_ptr++;
724	    sc->cpu_cx_count++;
725	}
726    }
727    AcpiOsFree(buf.Pointer);
728
729    return (0);
730}
731
732/*
733 * Call this *after* all CPUs have been attached.
734 */
735static void
736acpi_cpu_startup(void *arg)
737{
738    struct acpi_cpu_softc *sc;
739    int i;
740
741    /* Get set of CPU devices */
742    devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
743
744    /*
745     * Setup any quirks that might necessary now that we have probed
746     * all the CPUs
747     */
748    acpi_cpu_quirks();
749
750    cpu_cx_count = 0;
751    if (cpu_cx_generic) {
752	/*
753	 * We are using generic Cx mode, probe for available Cx states
754	 * for all processors.
755	 */
756	for (i = 0; i < cpu_ndevices; i++) {
757	    sc = device_get_softc(cpu_devices[i]);
758	    acpi_cpu_generic_cx_probe(sc);
759	    if (sc->cpu_cx_count > cpu_cx_count)
760		    cpu_cx_count = sc->cpu_cx_count;
761	}
762
763	/*
764	 * Find the highest Cx state common to all CPUs
765	 * in the system, taking quirks into account.
766	 */
767	for (i = 0; i < cpu_ndevices; i++) {
768	    sc = device_get_softc(cpu_devices[i]);
769	    if (sc->cpu_cx_count < cpu_cx_count)
770		cpu_cx_count = sc->cpu_cx_count;
771	}
772    } else {
773	/*
774	 * We are using _CST mode, remove C3 state if necessary.
775	 * Update the largest Cx state supported in the global cpu_cx_count.
776	 * It will be used in the global Cx sysctl handler.
777	 * As we now know for sure that we will be using _CST mode
778	 * install our notify handler.
779	 */
780	for (i = 0; i < cpu_ndevices; i++) {
781	    sc = device_get_softc(cpu_devices[i]);
782	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
783		sc->cpu_cx_count = sc->cpu_non_c3 + 1;
784	    }
785	    if (sc->cpu_cx_count > cpu_cx_count)
786		cpu_cx_count = sc->cpu_cx_count;
787	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
788		acpi_cpu_notify, sc);
789	}
790    }
791
792    /* Perform Cx final initialization. */
793    for (i = 0; i < cpu_ndevices; i++) {
794	sc = device_get_softc(cpu_devices[i]);
795	acpi_cpu_startup_cx(sc);
796    }
797
798    /* Add a sysctl handler to handle global Cx lowest setting */
799    SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
800	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
801	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
802	"Global lowest Cx sleep state to use");
803
804    /* Take over idling from cpu_idle_default(). */
805    cpu_cx_lowest = 0;
806    cpu_disable_idle = FALSE;
807    cpu_idle_hook = acpi_cpu_idle;
808}
809
810static void
811acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
812{
813    struct sbuf sb;
814    int i;
815
816    /*
817     * Set up the list of Cx states
818     */
819    sc->cpu_non_c3 = 0;
820    sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
821	SBUF_FIXEDLEN);
822    for (i = 0; i < sc->cpu_cx_count; i++) {
823	sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
824	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
825	    sc->cpu_non_c3 = i;
826    }
827    sbuf_trim(&sb);
828    sbuf_finish(&sb);
829}
830
831static void
832acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
833{
834    acpi_cpu_cx_list(sc);
835
836    SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
837		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
838		      OID_AUTO, "cx_supported", CTLFLAG_RD,
839		      sc->cpu_cx_supported, 0,
840		      "Cx/microsecond values for supported Cx states");
841    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
842		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
843		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
844		    (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
845		    "lowest Cx sleep state to use");
846    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
847		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
848		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
849		    (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
850		    "percent usage for each Cx state");
851
852#ifdef notyet
853    /* Signal platform that we can handle _CST notification. */
854    if (!cpu_cx_generic && cpu_cst_cnt != 0) {
855	ACPI_LOCK(acpi);
856	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
857	ACPI_UNLOCK(acpi);
858    }
859#endif
860}
861
862/*
863 * Idle the CPU in the lowest state possible.  This function is called with
864 * interrupts disabled.  Note that once it re-enables interrupts, a task
865 * switch can occur so do not access shared data (i.e. the softc) after
866 * interrupts are re-enabled.
867 */
868static void
869acpi_cpu_idle()
870{
871    struct	acpi_cpu_softc *sc;
872    struct	acpi_cx *cx_next;
873    uint32_t	start_time, end_time;
874    int		bm_active, cx_next_idx, i;
875
876    /* If disabled, return immediately. */
877    if (cpu_disable_idle) {
878	ACPI_ENABLE_IRQS();
879	return;
880    }
881
882    /*
883     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
884     * since there is no ACPI processor object for this CPU.  This occurs
885     * for logical CPUs in the HTT case.
886     */
887    sc = cpu_softc[PCPU_GET(cpuid)];
888    if (sc == NULL) {
889	acpi_cpu_c1();
890	return;
891    }
892
893    /* Find the lowest state that has small enough latency. */
894    cx_next_idx = 0;
895#ifndef __ia64__
896    if (cpu_disable_deep_sleep)
897	i = sc->cpu_non_c3;
898    else
899#endif
900	i = sc->cpu_cx_lowest;
901    for (; i >= 0; i--) {
902	if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
903	    cx_next_idx = i;
904	    break;
905	}
906    }
907
908    /*
909     * Check for bus master activity.  If there was activity, clear
910     * the bit and use the lowest non-C3 state.  Note that the USB
911     * driver polling for new devices keeps this bit set all the
912     * time if USB is loaded.
913     */
914    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
915	AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
916	if (bm_active != 0) {
917	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
918	    cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
919	}
920    }
921
922    /* Select the next state and update statistics. */
923    cx_next = &sc->cpu_cx_states[cx_next_idx];
924    sc->cpu_cx_stats[cx_next_idx]++;
925    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
926
927    /*
928     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
929     * precisely calculate the time spent in C1 since the place we wake up
930     * is an ISR.  Assume we slept no more then half of quantum, unless
931     * we are called inside critical section, delaying context switch.
932     */
933    if (cx_next->type == ACPI_STATE_C1) {
934	AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
935	acpi_cpu_c1();
936	AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
937        end_time = PM_USEC(acpi_TimerDelta(end_time, start_time));
938        if (curthread->td_critnest == 0)
939		end_time = min(end_time, 500000 / hz);
940	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
941	return;
942    }
943
944    /*
945     * For C3, disable bus master arbitration and enable bus master wake
946     * if BM control is available, otherwise flush the CPU cache.
947     */
948    if (cx_next->type == ACPI_STATE_C3) {
949	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
950	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
951	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
952	} else
953	    ACPI_FLUSH_CPU_CACHE();
954    }
955
956    /*
957     * Read from P_LVLx to enter C2(+), checking time spent asleep.
958     * Use the ACPI timer for measuring sleep time.  Since we need to
959     * get the time very close to the CPU start/stop clock logic, this
960     * is the only reliable time source.
961     */
962    AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
963    CPU_GET_REG(cx_next->p_lvlx, 1);
964
965    /*
966     * Read the end time twice.  Since it may take an arbitrary time
967     * to enter the idle state, the first read may be executed before
968     * the processor has stopped.  Doing it again provides enough
969     * margin that we are certain to have a correct value.
970     */
971    AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
972    AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
973
974    /* Enable bus master arbitration and disable bus master wakeup. */
975    if (cx_next->type == ACPI_STATE_C3 &&
976	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
977	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
978	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
979    }
980    ACPI_ENABLE_IRQS();
981
982    /* Find the actual time asleep in microseconds. */
983    end_time = acpi_TimerDelta(end_time, start_time);
984    sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
985}
986
987/*
988 * Re-evaluate the _CST object when we are notified that it changed.
989 *
990 * XXX Re-evaluation disabled until locking is done.
991 */
992static void
993acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
994{
995    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
996    struct acpi_cpu_softc *isc;
997    int i;
998
999    if (notify != ACPI_NOTIFY_CX_STATES)
1000	return;
1001
1002    /* Update the list of Cx states. */
1003    acpi_cpu_cx_cst(sc);
1004    acpi_cpu_cx_list(sc);
1005
1006    /* Update the new lowest useable Cx state for all CPUs. */
1007    ACPI_SERIAL_BEGIN(cpu);
1008    cpu_cx_count = 0;
1009    for (i = 0; i < cpu_ndevices; i++) {
1010	isc = device_get_softc(cpu_devices[i]);
1011	if (isc->cpu_cx_count > cpu_cx_count)
1012	    cpu_cx_count = isc->cpu_cx_count;
1013    }
1014    if (sc->cpu_cx_lowest < cpu_cx_lowest)
1015	acpi_cpu_set_cx_lowest(sc, min(cpu_cx_lowest, sc->cpu_cx_count - 1));
1016    ACPI_SERIAL_END(cpu);
1017}
1018
1019static int
1020acpi_cpu_quirks(void)
1021{
1022    device_t acpi_dev;
1023    uint32_t val;
1024
1025    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1026
1027    /*
1028     * Bus mastering arbitration control is needed to keep caches coherent
1029     * while sleeping in C3.  If it's not present but a working flush cache
1030     * instruction is present, flush the caches before entering C3 instead.
1031     * Otherwise, just disable C3 completely.
1032     */
1033    if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1034	AcpiGbl_FADT.Pm2ControlLength == 0) {
1035	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1036	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1037	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1038	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1039		"acpi_cpu: no BM control, using flush cache method\n"));
1040	} else {
1041	    cpu_quirks |= CPU_QUIRK_NO_C3;
1042	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1043		"acpi_cpu: no BM control, C3 not available\n"));
1044	}
1045    }
1046
1047    /*
1048     * If we are using generic Cx mode, C3 on multiple CPUs requires using
1049     * the expensive flush cache instruction.
1050     */
1051    if (cpu_cx_generic && mp_ncpus > 1) {
1052	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1053	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1054	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1055    }
1056
1057    /* Look for various quirks of the PIIX4 part. */
1058    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1059    if (acpi_dev != NULL) {
1060	switch (pci_get_revid(acpi_dev)) {
1061	/*
1062	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1063	 * do not report the BMIDE status to the BM status register and
1064	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1065	 * works around the BMIDE bug by reading the BM status directly
1066	 * but we take the simpler approach of disabling C3 for these
1067	 * parts.
1068	 *
1069	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1070	 * Livelock") from the January 2002 PIIX4 specification update.
1071	 * Applies to all PIIX4 models.
1072	 *
1073	 * Also, make sure that all interrupts cause a "Stop Break"
1074	 * event to exit from C2 state.
1075	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1076	 * should be set to zero, otherwise it causes C2 to short-sleep.
1077	 * PIIX4 doesn't properly support C3 and bus master activity
1078	 * need not break out of C2.
1079	 */
1080	case PCI_REVISION_A_STEP:
1081	case PCI_REVISION_B_STEP:
1082	case PCI_REVISION_4E:
1083	case PCI_REVISION_4M:
1084	    cpu_quirks |= CPU_QUIRK_NO_C3;
1085	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1086		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1087
1088	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1089	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1090		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1091		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1092	    	val |= PIIX4_STOP_BREAK_MASK;
1093		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1094	    }
1095	    AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1096	    if (val) {
1097		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1098		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1099		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1100	    }
1101	    break;
1102	default:
1103	    break;
1104	}
1105    }
1106
1107    return (0);
1108}
1109
1110static int
1111acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1112{
1113    struct acpi_cpu_softc *sc;
1114    struct sbuf	 sb;
1115    char	 buf[128];
1116    int		 i;
1117    uintmax_t	 fract, sum, whole;
1118
1119    sc = (struct acpi_cpu_softc *) arg1;
1120    sum = 0;
1121    for (i = 0; i < sc->cpu_cx_count; i++)
1122	sum += sc->cpu_cx_stats[i];
1123    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1124    for (i = 0; i < sc->cpu_cx_count; i++) {
1125	if (sum > 0) {
1126	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1127	    fract = (whole % sum) * 100;
1128	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1129		(u_int)(fract / sum));
1130	} else
1131	    sbuf_printf(&sb, "0.00%% ");
1132    }
1133    sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1134    sbuf_trim(&sb);
1135    sbuf_finish(&sb);
1136    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1137    sbuf_delete(&sb);
1138
1139    return (0);
1140}
1141
1142static int
1143acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val)
1144{
1145    int i;
1146
1147    ACPI_SERIAL_ASSERT(cpu);
1148    sc->cpu_cx_lowest = val;
1149
1150    /* If not disabling, cache the new lowest non-C3 state. */
1151    sc->cpu_non_c3 = 0;
1152    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1153	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1154	    sc->cpu_non_c3 = i;
1155	    break;
1156	}
1157    }
1158
1159    /* Reset the statistics counters. */
1160    bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1161    return (0);
1162}
1163
1164static int
1165acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1166{
1167    struct	 acpi_cpu_softc *sc;
1168    char	 state[8];
1169    int		 val, error;
1170
1171    sc = (struct acpi_cpu_softc *) arg1;
1172    snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
1173    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1174    if (error != 0 || req->newptr == NULL)
1175	return (error);
1176    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1177	return (EINVAL);
1178    val = (int) strtol(state + 1, NULL, 10) - 1;
1179    if (val < 0 || val > sc->cpu_cx_count - 1)
1180	return (EINVAL);
1181
1182    ACPI_SERIAL_BEGIN(cpu);
1183    acpi_cpu_set_cx_lowest(sc, val);
1184    ACPI_SERIAL_END(cpu);
1185
1186    return (0);
1187}
1188
1189static int
1190acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1191{
1192    struct	acpi_cpu_softc *sc;
1193    char	state[8];
1194    int		val, error, i;
1195
1196    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
1197    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1198    if (error != 0 || req->newptr == NULL)
1199	return (error);
1200    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1201	return (EINVAL);
1202    val = (int) strtol(state + 1, NULL, 10) - 1;
1203    if (val < 0 || val > cpu_cx_count - 1)
1204	return (EINVAL);
1205    cpu_cx_lowest = val;
1206
1207    /* Update the new lowest useable Cx state for all CPUs. */
1208    ACPI_SERIAL_BEGIN(cpu);
1209    for (i = 0; i < cpu_ndevices; i++) {
1210	sc = device_get_softc(cpu_devices[i]);
1211	acpi_cpu_set_cx_lowest(sc, min(val, sc->cpu_cx_count - 1));
1212    }
1213    ACPI_SERIAL_END(cpu);
1214
1215    return (0);
1216}
1217