acpi_cpu.c revision 196403
16081Sphk/*-
28857Srgrimes * Copyright (c) 2003-2005 Nate Lawson (SDG)
319983Smckay * Copyright (c) 2001 Michael Smith
419983Smckay * All rights reserved.
519983Smckay *
619983Smckay * Redistribution and use in source and binary forms, with or without
76081Sphk * modification, are permitted provided that the following conditions
86081Sphk * are met:
96081Sphk * 1. Redistributions of source code must retain the above copyright
108857Srgrimes *    notice, this list of conditions and the following disclaimer.
118857Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
128857Srgrimes *    notice, this list of conditions and the following disclaimer in the
1316880Sgpalmer *    documentation and/or other materials provided with the distribution.
1450479Speter *
156081Sphk * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
166081Sphk * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
176081Sphk * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1816880Sgpalmer * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
196081Sphk * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
206290Sphk * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2116880Sgpalmer * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
226081Sphk * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
236081Sphk * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
246081Sphk * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
256081Sphk * SUCH DAMAGE.
2619983Smckay */
276081Sphk
286081Sphk#include <sys/cdefs.h>
296081Sphk__FBSDID("$FreeBSD: head/sys/dev/acpica/acpi_cpu.c 196403 2009-08-20 19:17:53Z jhb $");
306081Sphk
316081Sphk#include "opt_acpi.h"
3219983Smckay#include <sys/param.h>
336081Sphk#include <sys/bus.h>
3419983Smckay#include <sys/cpu.h>
3519983Smckay#include <sys/kernel.h>
3619983Smckay#include <sys/malloc.h>
376081Sphk#include <sys/module.h>
3819983Smckay#include <sys/pcpu.h>
3919983Smckay#include <sys/power.h>
4019983Smckay#include <sys/proc.h>
4119983Smckay#include <sys/sbuf.h>
426081Sphk#include <sys/smp.h>
436081Sphk
446081Sphk#include <dev/pci/pcivar.h>
4519983Smckay#include <machine/atomic.h>
466081Sphk#include <machine/bus.h>
476081Sphk#include <sys/rman.h>
486081Sphk
496081Sphk#include <contrib/dev/acpica/include/acpi.h>
506290Sphk#include <contrib/dev/acpica/include/accommon.h>
516081Sphk
526081Sphk#include <dev/acpica/acpivar.h>
5319983Smckay
546081Sphk/*
556081Sphk * Support for ACPI Processor devices, including C[1-3] sleep states.
566081Sphk */
576081Sphk
586081Sphk/* Hooks for the ACPI CA debugging infrastructure */
5916880Sgpalmer#define _COMPONENT	ACPI_PROCESSOR
6019983SmckayACPI_MODULE_NAME("PROCESSOR")
6119983Smckay
626081Sphkstruct acpi_cx {
636081Sphk    struct resource	*p_lvlx;	/* Register to read to enter state. */
646081Sphk    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
656081Sphk    uint32_t		 trans_lat;	/* Transition latency (usec). */
6616880Sgpalmer    uint32_t		 power;		/* Power consumed (mW). */
676081Sphk    int			 res_type;	/* Resource type for p_lvlx. */
686081Sphk};
696081Sphk#define MAX_CX_STATES	 8
7016880Sgpalmer
716081Sphkstruct acpi_cpu_softc {
726081Sphk    device_t		 cpu_dev;
736081Sphk    ACPI_HANDLE		 cpu_handle;
746081Sphk    struct pcpu		*cpu_pcpu;
756081Sphk    uint32_t		 cpu_acpi_id;	/* ACPI processor id */
766081Sphk    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
776081Sphk    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
786081Sphk    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
796081Sphk    int			 cpu_cx_count;	/* Number of valid Cx states. */
806081Sphk    int			 cpu_prev_sleep;/* Last idle sleep duration. */
816081Sphk    int			 cpu_features;	/* Child driver supported features. */
8219983Smckay    /* Runtime state. */
8319983Smckay    int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
8419983Smckay    u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
8519983Smckay    /* Values for sysctl. */
8619983Smckay    struct sysctl_ctx_list cpu_sysctl_ctx;
8719983Smckay    struct sysctl_oid	*cpu_sysctl_tree;
886081Sphk    int			 cpu_cx_lowest;
8919983Smckay    char 		 cpu_cx_supported[64];
906081Sphk    int			 cpu_rid;
916081Sphk};
928857Srgrimes
936081Sphkstruct acpi_cpu_device {
9419983Smckay    struct resource_list	ad_rl;
956081Sphk};
9619983Smckay
9719983Smckay#define CPU_GET_REG(reg, width) 					\
986081Sphk    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
9919983Smckay		      rman_get_bushandle((reg)), 0))
10019983Smckay#define CPU_SET_REG(reg, width, val)					\
10119983Smckay    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
1026081Sphk		       rman_get_bushandle((reg)), 0, (val)))
1036081Sphk
1046081Sphk#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
1056081Sphk
10619983Smckay#define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
10719983Smckay
1086081Sphk#define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
10919983Smckay#define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
11019983Smckay
11119983Smckay#define PCI_VENDOR_INTEL	0x8086
1126081Sphk#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
1136081Sphk#define PCI_REVISION_A_STEP	0
1146081Sphk#define PCI_REVISION_B_STEP	1
1156081Sphk#define PCI_REVISION_4E		2
11619983Smckay#define PCI_REVISION_4M		3
1176081Sphk#define PIIX4_DEVACTB_REG	0x58
11816880Sgpalmer#define PIIX4_BRLD_EN_IRQ0	(1<<0)
11919983Smckay#define PIIX4_BRLD_EN_IRQ	(1<<1)
12016880Sgpalmer#define PIIX4_BRLD_EN_IRQ8	(1<<5)
1216081Sphk#define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
1226081Sphk#define PIIX4_PCNTRL_BST_EN	(1<<10)
1236081Sphk
1246081Sphk/* Platform hardware resource information. */
1256081Sphkstatic uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
1266081Sphkstatic uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
1276081Sphkstatic int		 cpu_quirks;	/* Indicate any hardware bugs. */
1286081Sphk
1296081Sphk/* Runtime state. */
1306081Sphkstatic int		 cpu_disable_idle; /* Disable entry to idle function */
1316081Sphkstatic int		 cpu_cx_count;	/* Number of valid Cx states */
1326081Sphk
1336081Sphk/* Values for sysctl. */
13419983Smckaystatic struct sysctl_ctx_list cpu_sysctl_ctx;
13519983Smckaystatic struct sysctl_oid *cpu_sysctl_tree;
13619983Smckaystatic int		 cpu_cx_generic;
1376081Sphkstatic int		 cpu_cx_lowest;
13819983Smckay
13919983Smckaystatic device_t		*cpu_devices;
14019983Smckaystatic int		 cpu_ndevices;
14119983Smckaystatic struct acpi_cpu_softc **cpu_softc;
1426081SphkACPI_SERIAL_DECL(cpu, "ACPI CPU");
1436081Sphk
14419983Smckaystatic int	acpi_cpu_probe(device_t dev);
14519983Smckaystatic int	acpi_cpu_attach(device_t dev);
14618120Speterstatic int	acpi_cpu_suspend(device_t dev);
14719983Smckaystatic int	acpi_cpu_resume(device_t dev);
14819983Smckaystatic int	acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
14919983Smckay		    uint32_t *cpu_id);
15019983Smckaystatic struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
15119983Smckaystatic device_t	acpi_cpu_add_child(device_t dev, int order, const char *name,
15219983Smckay		    int unit);
15319983Smckaystatic int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
15419983Smckay		    uintptr_t *result);
15519983Smckaystatic int	acpi_cpu_shutdown(device_t dev);
15619983Smckaystatic void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
15719983Smckaystatic void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
15819983Smckaystatic int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
15919983Smckaystatic void	acpi_cpu_startup(void *arg);
16019983Smckaystatic void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
16119983Smckaystatic void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
16219983Smckaystatic void	acpi_cpu_idle(void);
16319983Smckaystatic void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
16419983Smckaystatic int	acpi_cpu_quirks(void);
16519983Smckaystatic int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
1666081Sphkstatic int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val);
1676081Sphkstatic int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
16819983Smckaystatic int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
16919983Smckay
17019983Smckaystatic device_method_t acpi_cpu_methods[] = {
17119983Smckay    /* Device interface */
17219983Smckay    DEVMETHOD(device_probe,	acpi_cpu_probe),
1736081Sphk    DEVMETHOD(device_attach,	acpi_cpu_attach),
17419983Smckay    DEVMETHOD(device_detach,	bus_generic_detach),
17519983Smckay    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
17619983Smckay    DEVMETHOD(device_suspend,	acpi_cpu_suspend),
17719983Smckay    DEVMETHOD(device_resume,	acpi_cpu_resume),
17819983Smckay
17919983Smckay    /* Bus interface */
18019983Smckay    DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
18119983Smckay    DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
1826081Sphk    DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
1836081Sphk    DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
18419983Smckay    DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
1856081Sphk    DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
1866081Sphk    DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
18719983Smckay    DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
18819983Smckay    DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
18919983Smckay    DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
19016880Sgpalmer    DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
19119983Smckay    DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
19219983Smckay
1936081Sphk    {0, 0}
19419983Smckay};
19519983Smckay
19619983Smckaystatic driver_t acpi_cpu_driver = {
19719983Smckay    "cpu",
19819983Smckay    acpi_cpu_methods,
19919983Smckay    sizeof(struct acpi_cpu_softc),
20019983Smckay};
20119983Smckay
20219983Smckaystatic devclass_t acpi_cpu_devclass;
20319983SmckayDRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
20419983SmckayMODULE_DEPEND(cpu, acpi, 1, 1, 1);
20519983Smckay
20619983Smckaystatic int
20719983Smckayacpi_cpu_probe(device_t dev)
20819983Smckay{
20919983Smckay    int			   acpi_id, cpu_id;
21016880Sgpalmer    ACPI_BUFFER		   buf;
21119983Smckay    ACPI_HANDLE		   handle;
21219983Smckay    ACPI_OBJECT		   *obj;
21316880Sgpalmer    ACPI_STATUS		   status;
21416880Sgpalmer
21519983Smckay    if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
21619983Smckay	return (ENXIO);
21719983Smckay
21816880Sgpalmer    handle = acpi_get_handle(dev);
21919983Smckay    if (cpu_softc == NULL)
22019983Smckay	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
22119983Smckay	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
22216880Sgpalmer
22319983Smckay    /* Get our Processor object. */
22419983Smckay    buf.Pointer = NULL;
22519983Smckay    buf.Length = ACPI_ALLOCATE_BUFFER;
22619983Smckay    status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
22719983Smckay    if (ACPI_FAILURE(status)) {
22819983Smckay	device_printf(dev, "probe failed to get Processor obj - %s\n",
22916880Sgpalmer		      AcpiFormatException(status));
23019983Smckay	return (ENXIO);
23119983Smckay    }
23219983Smckay    obj = (ACPI_OBJECT *)buf.Pointer;
23319983Smckay    if (obj->Type != ACPI_TYPE_PROCESSOR) {
23419983Smckay	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
23519983Smckay	AcpiOsFree(obj);
23619983Smckay	return (ENXIO);
23719983Smckay    }
23819983Smckay
23919983Smckay    /*
24019983Smckay     * Find the processor associated with our unit.  We could use the
24119983Smckay     * ProcId as a key, however, some boxes do not have the same values
24219983Smckay     * in their Processor object as the ProcId values in the MADT.
24319983Smckay     */
24419983Smckay    acpi_id = obj->Processor.ProcId;
24519983Smckay    AcpiOsFree(obj);
24619983Smckay    if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
24719983Smckay	return (ENXIO);
24819983Smckay
24919983Smckay    /*
25019983Smckay     * Check if we already probed this processor.  We scan the bus twice
25116880Sgpalmer     * so it's possible we've already seen this one.
25219983Smckay     */
25319983Smckay    if (cpu_softc[cpu_id] != NULL)
25419983Smckay	return (ENXIO);
25516880Sgpalmer
25619983Smckay    /* Mark this processor as in-use and save our derived id for attach. */
25719983Smckay    cpu_softc[cpu_id] = (void *)1;
25819983Smckay    acpi_set_magic(dev, cpu_id);
25919983Smckay    device_set_desc(dev, "ACPI CPU");
26019983Smckay
26119983Smckay    return (0);
26219983Smckay}
26319983Smckay
26419983Smckaystatic int
26519983Smckayacpi_cpu_attach(device_t dev)
26619983Smckay{
26719983Smckay    ACPI_BUFFER		   buf;
26816880Sgpalmer    ACPI_OBJECT		   arg[4], *obj;
26916880Sgpalmer    ACPI_OBJECT_LIST	   arglist;
27016880Sgpalmer    struct pcpu		   *pcpu_data;
27119983Smckay    struct acpi_cpu_softc *sc;
27219983Smckay    struct acpi_softc	  *acpi_sc;
27319983Smckay    ACPI_STATUS		   status;
27419983Smckay    u_int		   features;
27519983Smckay    int			   cpu_id, drv_count, i;
27616880Sgpalmer    driver_t 		  **drivers;
27719983Smckay    uint32_t		   cap_set[3];
27819983Smckay
27916880Sgpalmer    /* UUID needed by _OSC evaluation */
28019983Smckay    static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
28119983Smckay				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
28216880Sgpalmer				       0x58, 0x71, 0x39, 0x53 };
28319983Smckay
28419983Smckay    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
28519983Smckay
28616880Sgpalmer    sc = device_get_softc(dev);
28716880Sgpalmer    sc->cpu_dev = dev;
28816880Sgpalmer    sc->cpu_handle = acpi_get_handle(dev);
28916880Sgpalmer    cpu_id = acpi_get_magic(dev);
2906081Sphk    cpu_softc[cpu_id] = sc;
2916081Sphk    pcpu_data = pcpu_find(cpu_id);
2926081Sphk    pcpu_data->pc_device = dev;
2936081Sphk    sc->cpu_pcpu = pcpu_data;
2946081Sphk    cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
2956081Sphk    cpu_cst_cnt = AcpiGbl_FADT.CstControl;
2966081Sphk
2976081Sphk    buf.Pointer = NULL;
2986081Sphk    buf.Length = ACPI_ALLOCATE_BUFFER;
2996081Sphk    status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
3006081Sphk    if (ACPI_FAILURE(status)) {
3016081Sphk	device_printf(dev, "attach failed to get Processor obj - %s\n",
3026081Sphk		      AcpiFormatException(status));
3036081Sphk	return (ENXIO);
3046081Sphk    }
3056081Sphk    obj = (ACPI_OBJECT *)buf.Pointer;
3066081Sphk    sc->cpu_p_blk = obj->Processor.PblkAddress;
3076081Sphk    sc->cpu_p_blk_len = obj->Processor.PblkLength;
3086081Sphk    sc->cpu_acpi_id = obj->Processor.ProcId;
3096081Sphk    AcpiOsFree(obj);
3106081Sphk    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
3116081Sphk		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
3126081Sphk
3136081Sphk    /*
31419983Smckay     * If this is the first cpu we attach, create and initialize the generic
31519983Smckay     * resources that will be used by all acpi cpu devices.
3166081Sphk     */
3176081Sphk    if (device_get_unit(dev) == 0) {
3186081Sphk	/* Assume we won't be using generic Cx mode by default */
3196081Sphk	cpu_cx_generic = FALSE;
3206081Sphk
3216081Sphk	/* Install hw.acpi.cpu sysctl tree */
3226081Sphk	acpi_sc = acpi_device_get_parent_softc(dev);
3236081Sphk	sysctl_ctx_init(&cpu_sysctl_ctx);
3246081Sphk	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
3256081Sphk	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
3266081Sphk	    CTLFLAG_RD, 0, "node for CPU children");
3276081Sphk
3286081Sphk	/* Queue post cpu-probing task handler */
3296081Sphk	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
3306081Sphk    }
3316081Sphk
3326081Sphk    /*
3336081Sphk     * Before calling any CPU methods, collect child driver feature hints
3346081Sphk     * and notify ACPI of them.  We support unified SMP power control
3356081Sphk     * so advertise this ourselves.  Note this is not the same as independent
3366081Sphk     * SMP control where each CPU can have different settings.
3376081Sphk     */
3386081Sphk    sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
3396081Sphk    if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
3406081Sphk	for (i = 0; i < drv_count; i++) {
3416081Sphk	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
3426081Sphk		sc->cpu_features |= features;
3436081Sphk	}
3446081Sphk	free(drivers, M_TEMP);
3456081Sphk    }
3466081Sphk
3476081Sphk    /*
3486081Sphk     * CPU capabilities are specified as a buffer of 32-bit integers:
3496081Sphk     * revision, count, and one or more capabilities.  The revision of
3506081Sphk     * "1" is not specified anywhere but seems to match Linux.
3516081Sphk     */
3526081Sphk    if (sc->cpu_features) {
3536081Sphk	arglist.Pointer = arg;
3546081Sphk	arglist.Count = 1;
3556081Sphk	arg[0].Type = ACPI_TYPE_BUFFER;
3566081Sphk	arg[0].Buffer.Length = sizeof(cap_set);
3576081Sphk	arg[0].Buffer.Pointer = (uint8_t *)cap_set;
3586081Sphk	cap_set[0] = 1; /* revision */
3596081Sphk	cap_set[1] = 1; /* number of capabilities integers */
3606081Sphk	cap_set[2] = sc->cpu_features;
3616081Sphk	AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
3626081Sphk
3636081Sphk	/*
3646081Sphk	 * On some systems we need to evaluate _OSC so that the ASL
3656081Sphk	 * loads the _PSS and/or _PDC methods at runtime.
3666081Sphk	 *
3676081Sphk	 * TODO: evaluate failure of _OSC.
3686081Sphk	 */
3696081Sphk	arglist.Pointer = arg;
37019983Smckay	arglist.Count = 4;
3716081Sphk	arg[0].Type = ACPI_TYPE_BUFFER;
3726081Sphk	arg[0].Buffer.Length = sizeof(cpu_oscuuid);
37319983Smckay	arg[0].Buffer.Pointer = cpu_oscuuid;	/* UUID */
3746081Sphk	arg[1].Type = ACPI_TYPE_INTEGER;
37519983Smckay	arg[1].Integer.Value = 1;		/* revision */
3766081Sphk	arg[2].Type = ACPI_TYPE_INTEGER;
3776081Sphk	arg[2].Integer.Value = 1;		/* count */
3786081Sphk	arg[3].Type = ACPI_TYPE_BUFFER;
3796081Sphk	arg[3].Buffer.Length = sizeof(cap_set);	/* Capabilities buffer */
3806081Sphk	arg[3].Buffer.Pointer = (uint8_t *)cap_set;
3816081Sphk	cap_set[0] = 0;
3826081Sphk	AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
3836081Sphk    }
3846081Sphk
3856457Sphk    /* Probe for Cx state support. */
3866081Sphk    acpi_cpu_cx_probe(sc);
38719983Smckay
3886081Sphk    /* Finally,  call identify and probe/attach for child devices. */
38919983Smckay    bus_generic_probe(dev);
3906081Sphk    bus_generic_attach(dev);
3916081Sphk
3926081Sphk    return (0);
3936081Sphk}
3946081Sphk
3956081Sphk/*
3966081Sphk * Disable any entry to the idle function during suspend and re-enable it
3976081Sphk * during resume.
3986081Sphk */
3996081Sphkstatic int
4006081Sphkacpi_cpu_suspend(device_t dev)
4016081Sphk{
4026081Sphk    int error;
4036081Sphk
4046081Sphk    error = bus_generic_suspend(dev);
40519983Smckay    if (error)
4066081Sphk	return (error);
40719983Smckay    cpu_disable_idle = TRUE;
4086081Sphk    return (0);
4096081Sphk}
4106081Sphk
4116081Sphkstatic int
4126081Sphkacpi_cpu_resume(device_t dev)
4136081Sphk{
41419983Smckay
4156081Sphk    cpu_disable_idle = FALSE;
41619983Smckay    return (bus_generic_resume(dev));
4176081Sphk}
41819983Smckay
4196081Sphk/*
42019983Smckay * Find the nth present CPU and return its pc_cpuid as well as set the
4216081Sphk * pc_acpi_id from the most reliable source.
42219983Smckay */
42319983Smckaystatic int
4246081Sphkacpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
4256081Sphk{
42619983Smckay    struct pcpu	*pcpu_data;
42719983Smckay    uint32_t	 i;
42819983Smckay
4296081Sphk    KASSERT(acpi_id != NULL, ("Null acpi_id"));
4306081Sphk    KASSERT(cpu_id != NULL, ("Null cpu_id"));
4316081Sphk    for (i = 0; i <= mp_maxid; i++) {
4326081Sphk	if (CPU_ABSENT(i))
4336081Sphk	    continue;
4346081Sphk	pcpu_data = pcpu_find(i);
4356081Sphk	KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
4366081Sphk	if (idx-- == 0) {
4376081Sphk	    /*
4386081Sphk	     * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
4396081Sphk	     * override it with the value from the ASL.  Otherwise, if the
4406081Sphk	     * two don't match, prefer the MADT-derived value.  Finally,
4416081Sphk	     * return the pc_cpuid to reference this processor.
44218110Speter	     */
4436081Sphk	    if (pcpu_data->pc_acpi_id == 0xffffffff)
4446081Sphk		pcpu_data->pc_acpi_id = *acpi_id;
4456081Sphk	    else if (pcpu_data->pc_acpi_id != *acpi_id)
4466081Sphk		*acpi_id = pcpu_data->pc_acpi_id;
4476081Sphk	    *cpu_id = pcpu_data->pc_cpuid;
4486081Sphk	    return (0);
4496081Sphk	}
4506081Sphk    }
4516081Sphk
4526081Sphk    return (ESRCH);
4536081Sphk}
4546081Sphk
4556081Sphkstatic struct resource_list *
4566081Sphkacpi_cpu_get_rlist(device_t dev, device_t child)
4576081Sphk{
4586081Sphk    struct acpi_cpu_device *ad;
4596081Sphk
4606081Sphk    ad = device_get_ivars(child);
4616081Sphk    if (ad == NULL)
4626081Sphk	return (NULL);
4636081Sphk    return (&ad->ad_rl);
4646081Sphk}
4656081Sphk
4666081Sphkstatic device_t
4676081Sphkacpi_cpu_add_child(device_t dev, int order, const char *name, int unit)
4686081Sphk{
4696081Sphk    struct acpi_cpu_device *ad;
470    device_t child;
471
472    if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
473	return (NULL);
474
475    resource_list_init(&ad->ad_rl);
476
477    child = device_add_child_ordered(dev, order, name, unit);
478    if (child != NULL)
479	device_set_ivars(child, ad);
480    else
481	free(ad, M_TEMP);
482    return (child);
483}
484
485static int
486acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
487{
488    struct acpi_cpu_softc *sc;
489
490    sc = device_get_softc(dev);
491    switch (index) {
492    case ACPI_IVAR_HANDLE:
493	*result = (uintptr_t)sc->cpu_handle;
494	break;
495    case CPU_IVAR_PCPU:
496	*result = (uintptr_t)sc->cpu_pcpu;
497	break;
498    default:
499	return (ENOENT);
500    }
501    return (0);
502}
503
504static int
505acpi_cpu_shutdown(device_t dev)
506{
507    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
508
509    /* Allow children to shutdown first. */
510    bus_generic_shutdown(dev);
511
512    /*
513     * Disable any entry to the idle function.  There is a small race where
514     * an idle thread have passed this check but not gone to sleep.  This
515     * is ok since device_shutdown() does not free the softc, otherwise
516     * we'd have to be sure all threads were evicted before returning.
517     */
518    cpu_disable_idle = TRUE;
519
520    return_VALUE (0);
521}
522
523static void
524acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
525{
526    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
527
528    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
529    sc->cpu_prev_sleep = 1000000;
530    sc->cpu_cx_lowest = 0;
531
532    /*
533     * Check for the ACPI 2.0 _CST sleep states object. If we can't find
534     * any, we'll revert to generic FADT/P_BLK Cx control method which will
535     * be handled by acpi_cpu_startup. We need to defer to after having
536     * probed all the cpus in the system before probing for generic Cx
537     * states as we may already have found cpus with valid _CST packages
538     */
539    if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
540	/*
541	 * We were unable to find a _CST package for this cpu or there
542	 * was an error parsing it. Switch back to generic mode.
543	 */
544	cpu_cx_generic = TRUE;
545	if (bootverbose)
546	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
547    }
548
549    /*
550     * TODO: _CSD Package should be checked here.
551     */
552}
553
554static void
555acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
556{
557    ACPI_GENERIC_ADDRESS	 gas;
558    struct acpi_cx		*cx_ptr;
559
560    sc->cpu_cx_count = 0;
561    cx_ptr = sc->cpu_cx_states;
562
563    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
564    sc->cpu_prev_sleep = 1000000;
565
566    /* C1 has been required since just after ACPI 1.0 */
567    cx_ptr->type = ACPI_STATE_C1;
568    cx_ptr->trans_lat = 0;
569    cx_ptr++;
570    sc->cpu_cx_count++;
571
572    /*
573     * The spec says P_BLK must be 6 bytes long.  However, some systems
574     * use it to indicate a fractional set of features present so we
575     * take 5 as C2.  Some may also have a value of 7 to indicate
576     * another C3 but most use _CST for this (as required) and having
577     * "only" C1-C3 is not a hardship.
578     */
579    if (sc->cpu_p_blk_len < 5)
580	return;
581
582    /* Validate and allocate resources for C2 (P_LVL2). */
583    gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
584    gas.BitWidth = 8;
585    if (AcpiGbl_FADT.C2Latency <= 100) {
586	gas.Address = sc->cpu_p_blk + 4;
587	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
588	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
589	if (cx_ptr->p_lvlx != NULL) {
590	    sc->cpu_rid++;
591	    cx_ptr->type = ACPI_STATE_C2;
592	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
593	    cx_ptr++;
594	    sc->cpu_cx_count++;
595	}
596    }
597    if (sc->cpu_p_blk_len < 6)
598	return;
599
600    /* Validate and allocate resources for C3 (P_LVL3). */
601    if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
602	gas.Address = sc->cpu_p_blk + 5;
603	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
604	    &cx_ptr->p_lvlx, RF_SHAREABLE);
605	if (cx_ptr->p_lvlx != NULL) {
606	    sc->cpu_rid++;
607	    cx_ptr->type = ACPI_STATE_C3;
608	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
609	    cx_ptr++;
610	    sc->cpu_cx_count++;
611	}
612    }
613}
614
615/*
616 * Parse a _CST package and set up its Cx states.  Since the _CST object
617 * can change dynamically, our notify handler may call this function
618 * to clean up and probe the new _CST package.
619 */
620static int
621acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
622{
623    struct	 acpi_cx *cx_ptr;
624    ACPI_STATUS	 status;
625    ACPI_BUFFER	 buf;
626    ACPI_OBJECT	*top;
627    ACPI_OBJECT	*pkg;
628    uint32_t	 count;
629    int		 i;
630
631    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
632
633    buf.Pointer = NULL;
634    buf.Length = ACPI_ALLOCATE_BUFFER;
635    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
636    if (ACPI_FAILURE(status))
637	return (ENXIO);
638
639    /* _CST is a package with a count and at least one Cx package. */
640    top = (ACPI_OBJECT *)buf.Pointer;
641    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
642	device_printf(sc->cpu_dev, "invalid _CST package\n");
643	AcpiOsFree(buf.Pointer);
644	return (ENXIO);
645    }
646    if (count != top->Package.Count - 1) {
647	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
648	       count, top->Package.Count - 1);
649	count = top->Package.Count - 1;
650    }
651    if (count > MAX_CX_STATES) {
652	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
653	count = MAX_CX_STATES;
654    }
655
656    /* Set up all valid states. */
657    sc->cpu_cx_count = 0;
658    cx_ptr = sc->cpu_cx_states;
659    for (i = 0; i < count; i++) {
660	pkg = &top->Package.Elements[i + 1];
661	if (!ACPI_PKG_VALID(pkg, 4) ||
662	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
663	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
664	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
665
666	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
667	    continue;
668	}
669
670	/* Validate the state to see if we should use it. */
671	switch (cx_ptr->type) {
672	case ACPI_STATE_C1:
673	    sc->cpu_non_c3 = i;
674	    cx_ptr++;
675	    sc->cpu_cx_count++;
676	    continue;
677	case ACPI_STATE_C2:
678	    if (cx_ptr->trans_lat > 100) {
679		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
680				 "acpi_cpu%d: C2[%d] not available.\n",
681				 device_get_unit(sc->cpu_dev), i));
682		continue;
683	    }
684	    sc->cpu_non_c3 = i;
685	    break;
686	case ACPI_STATE_C3:
687	default:
688	    if (cx_ptr->trans_lat > 1000 ||
689		(cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
690
691		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
692				 "acpi_cpu%d: C3[%d] not available.\n",
693				 device_get_unit(sc->cpu_dev), i));
694		continue;
695	    }
696	    break;
697	}
698
699#ifdef notyet
700	/* Free up any previous register. */
701	if (cx_ptr->p_lvlx != NULL) {
702	    bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
703	    cx_ptr->p_lvlx = NULL;
704	}
705#endif
706
707	/* Allocate the control register for C2 or C3. */
708	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
709	    &cx_ptr->p_lvlx, RF_SHAREABLE);
710	if (cx_ptr->p_lvlx) {
711	    sc->cpu_rid++;
712	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
713			     "acpi_cpu%d: Got C%d - %d latency\n",
714			     device_get_unit(sc->cpu_dev), cx_ptr->type,
715			     cx_ptr->trans_lat));
716	    cx_ptr++;
717	    sc->cpu_cx_count++;
718	}
719    }
720    AcpiOsFree(buf.Pointer);
721
722    return (0);
723}
724
725/*
726 * Call this *after* all CPUs have been attached.
727 */
728static void
729acpi_cpu_startup(void *arg)
730{
731    struct acpi_cpu_softc *sc;
732    int i;
733
734    /* Get set of CPU devices */
735    devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
736
737    /*
738     * Setup any quirks that might necessary now that we have probed
739     * all the CPUs
740     */
741    acpi_cpu_quirks();
742
743    cpu_cx_count = 0;
744    if (cpu_cx_generic) {
745	/*
746	 * We are using generic Cx mode, probe for available Cx states
747	 * for all processors.
748	 */
749	for (i = 0; i < cpu_ndevices; i++) {
750	    sc = device_get_softc(cpu_devices[i]);
751	    acpi_cpu_generic_cx_probe(sc);
752	    if (sc->cpu_cx_count > cpu_cx_count)
753		    cpu_cx_count = sc->cpu_cx_count;
754	}
755
756	/*
757	 * Find the highest Cx state common to all CPUs
758	 * in the system, taking quirks into account.
759	 */
760	for (i = 0; i < cpu_ndevices; i++) {
761	    sc = device_get_softc(cpu_devices[i]);
762	    if (sc->cpu_cx_count < cpu_cx_count)
763		cpu_cx_count = sc->cpu_cx_count;
764	}
765    } else {
766	/*
767	 * We are using _CST mode, remove C3 state if necessary.
768	 * Update the largest Cx state supported in the global cpu_cx_count.
769	 * It will be used in the global Cx sysctl handler.
770	 * As we now know for sure that we will be using _CST mode
771	 * install our notify handler.
772	 */
773	for (i = 0; i < cpu_ndevices; i++) {
774	    sc = device_get_softc(cpu_devices[i]);
775	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
776		sc->cpu_cx_count = sc->cpu_non_c3 + 1;
777	    }
778	    if (sc->cpu_cx_count > cpu_cx_count)
779		cpu_cx_count = sc->cpu_cx_count;
780	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
781		acpi_cpu_notify, sc);
782	}
783    }
784
785    /* Perform Cx final initialization. */
786    for (i = 0; i < cpu_ndevices; i++) {
787	sc = device_get_softc(cpu_devices[i]);
788	acpi_cpu_startup_cx(sc);
789    }
790
791    /* Add a sysctl handler to handle global Cx lowest setting */
792    SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
793	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
794	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
795	"Global lowest Cx sleep state to use");
796
797    /* Take over idling from cpu_idle_default(). */
798    cpu_cx_lowest = 0;
799    cpu_disable_idle = FALSE;
800    cpu_idle_hook = acpi_cpu_idle;
801}
802
803static void
804acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
805{
806    struct sbuf sb;
807    int i;
808
809    /*
810     * Set up the list of Cx states
811     */
812    sc->cpu_non_c3 = 0;
813    sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
814	SBUF_FIXEDLEN);
815    for (i = 0; i < sc->cpu_cx_count; i++) {
816	sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
817	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
818	    sc->cpu_non_c3 = i;
819    }
820    sbuf_trim(&sb);
821    sbuf_finish(&sb);
822}
823
824static void
825acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
826{
827    acpi_cpu_cx_list(sc);
828
829    SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
830		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
831		      OID_AUTO, "cx_supported", CTLFLAG_RD,
832		      sc->cpu_cx_supported, 0,
833		      "Cx/microsecond values for supported Cx states");
834    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
835		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
836		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
837		    (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
838		    "lowest Cx sleep state to use");
839    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
840		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
841		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
842		    (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
843		    "percent usage for each Cx state");
844
845#ifdef notyet
846    /* Signal platform that we can handle _CST notification. */
847    if (!cpu_cx_generic && cpu_cst_cnt != 0) {
848	ACPI_LOCK(acpi);
849	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
850	ACPI_UNLOCK(acpi);
851    }
852#endif
853}
854
855/*
856 * Idle the CPU in the lowest state possible.  This function is called with
857 * interrupts disabled.  Note that once it re-enables interrupts, a task
858 * switch can occur so do not access shared data (i.e. the softc) after
859 * interrupts are re-enabled.
860 */
861static void
862acpi_cpu_idle()
863{
864    struct	acpi_cpu_softc *sc;
865    struct	acpi_cx *cx_next;
866    uint32_t	start_time, end_time;
867    int		bm_active, cx_next_idx, i;
868
869    /* If disabled, return immediately. */
870    if (cpu_disable_idle) {
871	ACPI_ENABLE_IRQS();
872	return;
873    }
874
875    /*
876     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
877     * since there is no ACPI processor object for this CPU.  This occurs
878     * for logical CPUs in the HTT case.
879     */
880    sc = cpu_softc[PCPU_GET(cpuid)];
881    if (sc == NULL) {
882	acpi_cpu_c1();
883	return;
884    }
885
886    /* Find the lowest state that has small enough latency. */
887    cx_next_idx = 0;
888    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
889	if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
890	    cx_next_idx = i;
891	    break;
892	}
893    }
894
895    /*
896     * Check for bus master activity.  If there was activity, clear
897     * the bit and use the lowest non-C3 state.  Note that the USB
898     * driver polling for new devices keeps this bit set all the
899     * time if USB is loaded.
900     */
901    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
902	AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
903	if (bm_active != 0) {
904	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
905	    cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
906	}
907    }
908
909    /* Select the next state and update statistics. */
910    cx_next = &sc->cpu_cx_states[cx_next_idx];
911    sc->cpu_cx_stats[cx_next_idx]++;
912    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
913
914    /*
915     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
916     * calculate the time spent in C1 since the place we wake up is an
917     * ISR.  Assume we slept half of quantum and return.
918     */
919    if (cx_next->type == ACPI_STATE_C1) {
920	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + 500000 / hz) / 4;
921	acpi_cpu_c1();
922	return;
923    }
924
925    /*
926     * For C3, disable bus master arbitration and enable bus master wake
927     * if BM control is available, otherwise flush the CPU cache.
928     */
929    if (cx_next->type == ACPI_STATE_C3) {
930	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
931	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
932	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
933	} else
934	    ACPI_FLUSH_CPU_CACHE();
935    }
936
937    /*
938     * Read from P_LVLx to enter C2(+), checking time spent asleep.
939     * Use the ACPI timer for measuring sleep time.  Since we need to
940     * get the time very close to the CPU start/stop clock logic, this
941     * is the only reliable time source.
942     */
943    AcpiRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
944    CPU_GET_REG(cx_next->p_lvlx, 1);
945
946    /*
947     * Read the end time twice.  Since it may take an arbitrary time
948     * to enter the idle state, the first read may be executed before
949     * the processor has stopped.  Doing it again provides enough
950     * margin that we are certain to have a correct value.
951     */
952    AcpiRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
953    AcpiRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
954
955    /* Enable bus master arbitration and disable bus master wakeup. */
956    if (cx_next->type == ACPI_STATE_C3 &&
957	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
958	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
959	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
960    }
961    ACPI_ENABLE_IRQS();
962
963    /* Find the actual time asleep in microseconds. */
964    end_time = acpi_TimerDelta(end_time, start_time);
965    sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
966}
967
968/*
969 * Re-evaluate the _CST object when we are notified that it changed.
970 *
971 * XXX Re-evaluation disabled until locking is done.
972 */
973static void
974acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
975{
976    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
977    struct acpi_cpu_softc *isc;
978    int i;
979
980    if (notify != ACPI_NOTIFY_CX_STATES)
981	return;
982
983    /* Update the list of Cx states. */
984    acpi_cpu_cx_cst(sc);
985    acpi_cpu_cx_list(sc);
986
987    /* Update the new lowest useable Cx state for all CPUs. */
988    ACPI_SERIAL_BEGIN(cpu);
989    cpu_cx_count = 0;
990    for (i = 0; i < cpu_ndevices; i++) {
991	isc = device_get_softc(cpu_devices[i]);
992	if (isc->cpu_cx_count > cpu_cx_count)
993	    cpu_cx_count = isc->cpu_cx_count;
994    }
995    ACPI_SERIAL_END(cpu);
996}
997
998static int
999acpi_cpu_quirks(void)
1000{
1001    device_t acpi_dev;
1002    uint32_t val;
1003
1004    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1005
1006    /*
1007     * Bus mastering arbitration control is needed to keep caches coherent
1008     * while sleeping in C3.  If it's not present but a working flush cache
1009     * instruction is present, flush the caches before entering C3 instead.
1010     * Otherwise, just disable C3 completely.
1011     */
1012    if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1013	AcpiGbl_FADT.Pm2ControlLength == 0) {
1014	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1015	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1016	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1017	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1018		"acpi_cpu: no BM control, using flush cache method\n"));
1019	} else {
1020	    cpu_quirks |= CPU_QUIRK_NO_C3;
1021	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1022		"acpi_cpu: no BM control, C3 not available\n"));
1023	}
1024    }
1025
1026    /*
1027     * If we are using generic Cx mode, C3 on multiple CPUs requires using
1028     * the expensive flush cache instruction.
1029     */
1030    if (cpu_cx_generic && mp_ncpus > 1) {
1031	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1032	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1033	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1034    }
1035
1036    /* Look for various quirks of the PIIX4 part. */
1037    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1038    if (acpi_dev != NULL) {
1039	switch (pci_get_revid(acpi_dev)) {
1040	/*
1041	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1042	 * do not report the BMIDE status to the BM status register and
1043	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1044	 * works around the BMIDE bug by reading the BM status directly
1045	 * but we take the simpler approach of disabling C3 for these
1046	 * parts.
1047	 *
1048	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1049	 * Livelock") from the January 2002 PIIX4 specification update.
1050	 * Applies to all PIIX4 models.
1051	 *
1052	 * Also, make sure that all interrupts cause a "Stop Break"
1053	 * event to exit from C2 state.
1054	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1055	 * should be set to zero, otherwise it causes C2 to short-sleep.
1056	 * PIIX4 doesn't properly support C3 and bus master activity
1057	 * need not break out of C2.
1058	 */
1059	case PCI_REVISION_A_STEP:
1060	case PCI_REVISION_B_STEP:
1061	case PCI_REVISION_4E:
1062	case PCI_REVISION_4M:
1063	    cpu_quirks |= CPU_QUIRK_NO_C3;
1064	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1065		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1066
1067	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1068	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1069		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1070		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1071	    	val |= PIIX4_STOP_BREAK_MASK;
1072		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1073	    }
1074	    AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1075	    if (val) {
1076		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1077		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1078		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1079	    }
1080	    break;
1081	default:
1082	    break;
1083	}
1084    }
1085
1086    return (0);
1087}
1088
1089static int
1090acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1091{
1092    struct acpi_cpu_softc *sc;
1093    struct sbuf	 sb;
1094    char	 buf[128];
1095    int		 i;
1096    uintmax_t	 fract, sum, whole;
1097
1098    sc = (struct acpi_cpu_softc *) arg1;
1099    sum = 0;
1100    for (i = 0; i < sc->cpu_cx_count; i++)
1101	sum += sc->cpu_cx_stats[i];
1102    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1103    for (i = 0; i < sc->cpu_cx_count; i++) {
1104	if (sum > 0) {
1105	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1106	    fract = (whole % sum) * 100;
1107	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1108		(u_int)(fract / sum));
1109	} else
1110	    sbuf_printf(&sb, "0.00%% ");
1111    }
1112    sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1113    sbuf_trim(&sb);
1114    sbuf_finish(&sb);
1115    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1116    sbuf_delete(&sb);
1117
1118    return (0);
1119}
1120
1121static int
1122acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val)
1123{
1124    int i;
1125
1126    ACPI_SERIAL_ASSERT(cpu);
1127    sc->cpu_cx_lowest = val;
1128
1129    /* If not disabling, cache the new lowest non-C3 state. */
1130    sc->cpu_non_c3 = 0;
1131    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1132	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1133	    sc->cpu_non_c3 = i;
1134	    break;
1135	}
1136    }
1137
1138    /* Reset the statistics counters. */
1139    bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1140    return (0);
1141}
1142
1143static int
1144acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1145{
1146    struct	 acpi_cpu_softc *sc;
1147    char	 state[8];
1148    int		 val, error;
1149
1150    sc = (struct acpi_cpu_softc *) arg1;
1151    snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
1152    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1153    if (error != 0 || req->newptr == NULL)
1154	return (error);
1155    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1156	return (EINVAL);
1157    val = (int) strtol(state + 1, NULL, 10) - 1;
1158    if (val < 0 || val > sc->cpu_cx_count - 1)
1159	return (EINVAL);
1160
1161    ACPI_SERIAL_BEGIN(cpu);
1162    acpi_cpu_set_cx_lowest(sc, val);
1163    ACPI_SERIAL_END(cpu);
1164
1165    return (0);
1166}
1167
1168static int
1169acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1170{
1171    struct	acpi_cpu_softc *sc;
1172    char	state[8];
1173    int		val, error, i;
1174
1175    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
1176    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1177    if (error != 0 || req->newptr == NULL)
1178	return (error);
1179    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1180	return (EINVAL);
1181    val = (int) strtol(state + 1, NULL, 10) - 1;
1182    if (val < 0 || val > cpu_cx_count - 1)
1183	return (EINVAL);
1184    cpu_cx_lowest = val;
1185
1186    /* Update the new lowest useable Cx state for all CPUs. */
1187    ACPI_SERIAL_BEGIN(cpu);
1188    for (i = 0; i < cpu_ndevices; i++) {
1189	sc = device_get_softc(cpu_devices[i]);
1190	acpi_cpu_set_cx_lowest(sc, val);
1191    }
1192    ACPI_SERIAL_END(cpu);
1193
1194    return (0);
1195}
1196