acpi_cpu.c revision 172022
1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/acpica/acpi_cpu.c 172022 2007-08-30 21:18:42Z njl $");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/cpu.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/pcpu.h>
39#include <sys/power.h>
40#include <sys/proc.h>
41#include <sys/sbuf.h>
42#include <sys/smp.h>
43
44#include <dev/pci/pcivar.h>
45#include <machine/atomic.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48
49#include <contrib/dev/acpica/acpi.h>
50#include <dev/acpica/acpivar.h>
51
52/*
53 * Support for ACPI Processor devices, including C[1-3] sleep states.
54 */
55
56/* Hooks for the ACPI CA debugging infrastructure */
57#define _COMPONENT	ACPI_PROCESSOR
58ACPI_MODULE_NAME("PROCESSOR")
59
60struct acpi_cx {
61    struct resource	*p_lvlx;	/* Register to read to enter state. */
62    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
63    uint32_t		 trans_lat;	/* Transition latency (usec). */
64    uint32_t		 power;		/* Power consumed (mW). */
65    int			 res_type;	/* Resource type for p_lvlx. */
66};
67#define MAX_CX_STATES	 8
68
69struct acpi_cpu_softc {
70    device_t		 cpu_dev;
71    ACPI_HANDLE		 cpu_handle;
72    struct pcpu		*cpu_pcpu;
73    uint32_t		 cpu_acpi_id;	/* ACPI processor id */
74    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
75    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
76    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
77    int			 cpu_cx_count;	/* Number of valid Cx states. */
78    int			 cpu_prev_sleep;/* Last idle sleep duration. */
79    int			 cpu_features;	/* Child driver supported features. */
80    /* Runtime state. */
81    int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
82    int			 cpu_short_slp;	/* Count of < 1us sleeps. */
83    u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
84    /* Values for sysctl. */
85    struct sysctl_ctx_list cpu_sysctl_ctx;
86    struct sysctl_oid	*cpu_sysctl_tree;
87    int			 cpu_cx_lowest;
88    char 		 cpu_cx_supported[64];
89    int			 cpu_rid;
90};
91
92struct acpi_cpu_device {
93    struct resource_list	ad_rl;
94};
95
96#define CPU_GET_REG(reg, width) 					\
97    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
98		      rman_get_bushandle((reg)), 0))
99#define CPU_SET_REG(reg, width, val)					\
100    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
101		       rman_get_bushandle((reg)), 0, (val)))
102
103#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
104
105#define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
106
107#define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
108#define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
109
110#define PCI_VENDOR_INTEL	0x8086
111#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
112#define PCI_REVISION_A_STEP	0
113#define PCI_REVISION_B_STEP	1
114#define PCI_REVISION_4E		2
115#define PCI_REVISION_4M		3
116
117/* Platform hardware resource information. */
118static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
119static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
120static int		 cpu_quirks;	/* Indicate any hardware bugs. */
121
122/* Runtime state. */
123static int		 cpu_disable_idle; /* Disable entry to idle function */
124static int		 cpu_cx_count;	/* Number of valid Cx states */
125
126/* Values for sysctl. */
127static struct sysctl_ctx_list cpu_sysctl_ctx;
128static struct sysctl_oid *cpu_sysctl_tree;
129static int		 cpu_cx_generic;
130static int		 cpu_cx_lowest;
131
132static device_t		*cpu_devices;
133static int		 cpu_ndevices;
134static struct acpi_cpu_softc **cpu_softc;
135ACPI_SERIAL_DECL(cpu, "ACPI CPU");
136
137static int	acpi_cpu_probe(device_t dev);
138static int	acpi_cpu_attach(device_t dev);
139static int	acpi_cpu_suspend(device_t dev);
140static int	acpi_cpu_resume(device_t dev);
141static int	acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
142		    uint32_t *cpu_id);
143static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
144static device_t	acpi_cpu_add_child(device_t dev, int order, const char *name,
145		    int unit);
146static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
147		    uintptr_t *result);
148static int	acpi_cpu_shutdown(device_t dev);
149static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
150static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
151static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
152static void	acpi_cpu_startup(void *arg);
153static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
154static void	acpi_cpu_idle(void);
155static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
156static int	acpi_cpu_quirks(void);
157static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
158static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val);
159static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
160static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
161
162static device_method_t acpi_cpu_methods[] = {
163    /* Device interface */
164    DEVMETHOD(device_probe,	acpi_cpu_probe),
165    DEVMETHOD(device_attach,	acpi_cpu_attach),
166    DEVMETHOD(device_detach,	bus_generic_detach),
167    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
168    DEVMETHOD(device_suspend,	acpi_cpu_suspend),
169    DEVMETHOD(device_resume,	acpi_cpu_resume),
170
171    /* Bus interface */
172    DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
173    DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
174    DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
175    DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
176    DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
177    DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
178    DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
179    DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
180    DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
181    DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
182    DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
183    DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
184
185    {0, 0}
186};
187
188static driver_t acpi_cpu_driver = {
189    "cpu",
190    acpi_cpu_methods,
191    sizeof(struct acpi_cpu_softc),
192};
193
194static devclass_t acpi_cpu_devclass;
195DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
196MODULE_DEPEND(cpu, acpi, 1, 1, 1);
197
198static int
199acpi_cpu_probe(device_t dev)
200{
201    int			   acpi_id, cpu_id;
202    ACPI_BUFFER		   buf;
203    ACPI_HANDLE		   handle;
204    ACPI_OBJECT		   *obj;
205    ACPI_STATUS		   status;
206
207    if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
208	return (ENXIO);
209
210    handle = acpi_get_handle(dev);
211    if (cpu_softc == NULL)
212	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
213	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
214
215    /* Get our Processor object. */
216    buf.Pointer = NULL;
217    buf.Length = ACPI_ALLOCATE_BUFFER;
218    status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
219    if (ACPI_FAILURE(status)) {
220	device_printf(dev, "probe failed to get Processor obj - %s\n",
221		      AcpiFormatException(status));
222	return (ENXIO);
223    }
224    obj = (ACPI_OBJECT *)buf.Pointer;
225    if (obj->Type != ACPI_TYPE_PROCESSOR) {
226	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
227	AcpiOsFree(obj);
228	return (ENXIO);
229    }
230
231    /*
232     * Find the processor associated with our unit.  We could use the
233     * ProcId as a key, however, some boxes do not have the same values
234     * in their Processor object as the ProcId values in the MADT.
235     */
236    acpi_id = obj->Processor.ProcId;
237    AcpiOsFree(obj);
238    if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
239	return (ENXIO);
240
241    /*
242     * Check if we already probed this processor.  We scan the bus twice
243     * so it's possible we've already seen this one.
244     */
245    if (cpu_softc[cpu_id] != NULL)
246	return (ENXIO);
247
248    /* Mark this processor as in-use and save our derived id for attach. */
249    cpu_softc[cpu_id] = (void *)1;
250    acpi_set_magic(dev, cpu_id);
251    device_set_desc(dev, "ACPI CPU");
252
253    return (0);
254}
255
256static int
257acpi_cpu_attach(device_t dev)
258{
259    ACPI_BUFFER		   buf;
260    ACPI_OBJECT		   arg[4], *obj;
261    ACPI_OBJECT_LIST	   arglist;
262    struct pcpu		   *pcpu_data;
263    struct acpi_cpu_softc *sc;
264    struct acpi_softc	  *acpi_sc;
265    ACPI_STATUS		   status;
266    u_int		   features;
267    int			   cpu_id, drv_count, i;
268    driver_t 		  **drivers;
269    uint32_t		   cap_set[3];
270
271    /* UUID needed by _OSC evaluation */
272    static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
273				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
274				       0x58, 0x71, 0x39, 0x53 };
275
276    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
277
278    sc = device_get_softc(dev);
279    sc->cpu_dev = dev;
280    sc->cpu_handle = acpi_get_handle(dev);
281    cpu_id = acpi_get_magic(dev);
282    cpu_softc[cpu_id] = sc;
283    pcpu_data = pcpu_find(cpu_id);
284    pcpu_data->pc_device = dev;
285    sc->cpu_pcpu = pcpu_data;
286    cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
287    cpu_cst_cnt = AcpiGbl_FADT.CstControl;
288
289    buf.Pointer = NULL;
290    buf.Length = ACPI_ALLOCATE_BUFFER;
291    status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
292    if (ACPI_FAILURE(status)) {
293	device_printf(dev, "attach failed to get Processor obj - %s\n",
294		      AcpiFormatException(status));
295	return (ENXIO);
296    }
297    obj = (ACPI_OBJECT *)buf.Pointer;
298    sc->cpu_p_blk = obj->Processor.PblkAddress;
299    sc->cpu_p_blk_len = obj->Processor.PblkLength;
300    sc->cpu_acpi_id = obj->Processor.ProcId;
301    AcpiOsFree(obj);
302    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
303		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
304
305    /*
306     * If this is the first cpu we attach, create and initialize the generic
307     * resources that will be used by all acpi cpu devices.
308     */
309    if (device_get_unit(dev) == 0) {
310	/* Assume we won't be using generic Cx mode by default */
311	cpu_cx_generic = FALSE;
312
313	/* Install hw.acpi.cpu sysctl tree */
314	acpi_sc = acpi_device_get_parent_softc(dev);
315	sysctl_ctx_init(&cpu_sysctl_ctx);
316	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
317	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
318	    CTLFLAG_RD, 0, "node for CPU children");
319
320	/* Queue post cpu-probing task handler */
321	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
322    }
323
324    /*
325     * Before calling any CPU methods, collect child driver feature hints
326     * and notify ACPI of them.  We support unified SMP power control
327     * so advertise this ourselves.  Note this is not the same as independent
328     * SMP control where each CPU can have different settings.
329     */
330    sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
331    if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
332	for (i = 0; i < drv_count; i++) {
333	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
334		sc->cpu_features |= features;
335	}
336	free(drivers, M_TEMP);
337    }
338
339    /*
340     * CPU capabilities are specified as a buffer of 32-bit integers:
341     * revision, count, and one or more capabilities.  The revision of
342     * "1" is not specified anywhere but seems to match Linux.
343     */
344    if (sc->cpu_features) {
345	arglist.Pointer = arg;
346	arglist.Count = 1;
347	arg[0].Type = ACPI_TYPE_BUFFER;
348	arg[0].Buffer.Length = sizeof(cap_set);
349	arg[0].Buffer.Pointer = (uint8_t *)cap_set;
350	cap_set[0] = 1; /* revision */
351	cap_set[1] = 1; /* number of capabilities integers */
352	cap_set[2] = sc->cpu_features;
353	AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
354
355	/*
356	 * On some systems we need to evaluate _OSC so that the ASL
357	 * loads the _PSS and/or _PDC methods at runtime.
358	 *
359	 * TODO: evaluate failure of _OSC.
360	 */
361	arglist.Pointer = arg;
362	arglist.Count = 4;
363	arg[0].Type = ACPI_TYPE_BUFFER;
364	arg[0].Buffer.Length = sizeof(cpu_oscuuid);
365	arg[0].Buffer.Pointer = cpu_oscuuid;	/* UUID */
366	arg[1].Type = ACPI_TYPE_INTEGER;
367	arg[1].Integer.Value = 1;		/* revision */
368	arg[2].Type = ACPI_TYPE_INTEGER;
369	arg[2].Integer.Value = 1;		/* count */
370	arg[3].Type = ACPI_TYPE_BUFFER;
371	arg[3].Buffer.Length = sizeof(cap_set);	/* Capabilities buffer */
372	arg[3].Buffer.Pointer = (uint8_t *)cap_set;
373	cap_set[0] = 0;
374	AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
375    }
376
377    /* Probe for Cx state support. */
378    acpi_cpu_cx_probe(sc);
379
380    /* Finally,  call identify and probe/attach for child devices. */
381    bus_generic_probe(dev);
382    bus_generic_attach(dev);
383
384    return (0);
385}
386
387/*
388 * Disable any entry to the idle function during suspend and re-enable it
389 * during resume.
390 */
391static int
392acpi_cpu_suspend(device_t dev)
393{
394    int error;
395
396    error = bus_generic_suspend(dev);
397    if (error)
398	return (error);
399    cpu_disable_idle = TRUE;
400    return (0);
401}
402
403static int
404acpi_cpu_resume(device_t dev)
405{
406
407    cpu_disable_idle = FALSE;
408    return (bus_generic_resume(dev));
409}
410
411/*
412 * Find the nth present CPU and return its pc_cpuid as well as set the
413 * pc_acpi_id from the most reliable source.
414 */
415static int
416acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
417{
418    struct pcpu	*pcpu_data;
419    uint32_t	 i;
420
421    KASSERT(acpi_id != NULL, ("Null acpi_id"));
422    KASSERT(cpu_id != NULL, ("Null cpu_id"));
423    for (i = 0; i <= mp_maxid; i++) {
424	if (CPU_ABSENT(i))
425	    continue;
426	pcpu_data = pcpu_find(i);
427	KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
428	if (idx-- == 0) {
429	    /*
430	     * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
431	     * override it with the value from the ASL.  Otherwise, if the
432	     * two don't match, prefer the MADT-derived value.  Finally,
433	     * return the pc_cpuid to reference this processor.
434	     */
435	    if (pcpu_data->pc_acpi_id == 0xffffffff)
436		pcpu_data->pc_acpi_id = *acpi_id;
437	    else if (pcpu_data->pc_acpi_id != *acpi_id)
438		*acpi_id = pcpu_data->pc_acpi_id;
439	    *cpu_id = pcpu_data->pc_cpuid;
440	    return (0);
441	}
442    }
443
444    return (ESRCH);
445}
446
447static struct resource_list *
448acpi_cpu_get_rlist(device_t dev, device_t child)
449{
450    struct acpi_cpu_device *ad;
451
452    ad = device_get_ivars(child);
453    if (ad == NULL)
454	return (NULL);
455    return (&ad->ad_rl);
456}
457
458static device_t
459acpi_cpu_add_child(device_t dev, int order, const char *name, int unit)
460{
461    struct acpi_cpu_device *ad;
462    device_t child;
463
464    if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
465	return (NULL);
466
467    resource_list_init(&ad->ad_rl);
468
469    child = device_add_child_ordered(dev, order, name, unit);
470    if (child != NULL)
471	device_set_ivars(child, ad);
472    else
473	free(ad, M_TEMP);
474    return (child);
475}
476
477static int
478acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
479{
480    struct acpi_cpu_softc *sc;
481
482    sc = device_get_softc(dev);
483    switch (index) {
484    case ACPI_IVAR_HANDLE:
485	*result = (uintptr_t)sc->cpu_handle;
486	break;
487    case CPU_IVAR_PCPU:
488	*result = (uintptr_t)sc->cpu_pcpu;
489	break;
490    default:
491	return (ENOENT);
492    }
493    return (0);
494}
495
496static int
497acpi_cpu_shutdown(device_t dev)
498{
499    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
500
501    /* Allow children to shutdown first. */
502    bus_generic_shutdown(dev);
503
504    /* Disable any entry to the idle function. */
505    cpu_disable_idle = TRUE;
506
507    /* Signal and wait for all processors to exit acpi_cpu_idle(). */
508    smp_rendezvous(NULL, NULL, NULL, NULL);
509
510    return_VALUE (0);
511}
512
513static void
514acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
515{
516    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
517
518    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
519    sc->cpu_prev_sleep = 1000000;
520    sc->cpu_cx_lowest = 0;
521
522    /*
523     * Check for the ACPI 2.0 _CST sleep states object. If we can't find
524     * any, we'll revert to generic FADT/P_BLK Cx control method which will
525     * be handled by acpi_cpu_startup. We need to defer to after having
526     * probed all the cpus in the system before probing for generic Cx
527     * states as we may already have found cpus with valid _CST packages
528     */
529    if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
530	/*
531	 * We were unable to find a _CST package for this cpu or there
532	 * was an error parsing it. Switch back to generic mode.
533	 */
534	cpu_cx_generic = TRUE;
535	if (bootverbose)
536	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
537    }
538
539    /*
540     * TODO: _CSD Package should be checked here.
541     */
542}
543
544static void
545acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
546{
547    ACPI_GENERIC_ADDRESS	 gas;
548    struct acpi_cx		*cx_ptr;
549
550    sc->cpu_cx_count = 0;
551    cx_ptr = sc->cpu_cx_states;
552
553    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
554    sc->cpu_prev_sleep = 1000000;
555
556    /* C1 has been required since just after ACPI 1.0 */
557    cx_ptr->type = ACPI_STATE_C1;
558    cx_ptr->trans_lat = 0;
559    cx_ptr++;
560    sc->cpu_cx_count++;
561
562    /*
563     * The spec says P_BLK must be 6 bytes long.  However, some systems
564     * use it to indicate a fractional set of features present so we
565     * take 5 as C2.  Some may also have a value of 7 to indicate
566     * another C3 but most use _CST for this (as required) and having
567     * "only" C1-C3 is not a hardship.
568     */
569    if (sc->cpu_p_blk_len < 5)
570	return;
571
572    /* Validate and allocate resources for C2 (P_LVL2). */
573    gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
574    gas.BitWidth = 8;
575    if (AcpiGbl_FADT.C2Latency <= 100) {
576	gas.Address = sc->cpu_p_blk + 4;
577	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
578	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
579	if (cx_ptr->p_lvlx != NULL) {
580	    sc->cpu_rid++;
581	    cx_ptr->type = ACPI_STATE_C2;
582	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
583	    cx_ptr++;
584	    sc->cpu_cx_count++;
585	}
586    }
587    if (sc->cpu_p_blk_len < 6)
588	return;
589
590    /* Validate and allocate resources for C3 (P_LVL3). */
591    if (AcpiGbl_FADT.C3Latency <= 1000) {
592	gas.Address = sc->cpu_p_blk + 5;
593	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
594	    &cx_ptr->p_lvlx, RF_SHAREABLE);
595	if (cx_ptr->p_lvlx != NULL) {
596	    sc->cpu_rid++;
597	    cx_ptr->type = ACPI_STATE_C3;
598	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
599	    cx_ptr++;
600	    sc->cpu_cx_count++;
601	}
602    }
603
604    /* Update the largest cx_count seen so far */
605    if (sc->cpu_cx_count > cpu_cx_count)
606	cpu_cx_count = sc->cpu_cx_count;
607}
608
609/*
610 * Parse a _CST package and set up its Cx states.  Since the _CST object
611 * can change dynamically, our notify handler may call this function
612 * to clean up and probe the new _CST package.
613 */
614static int
615acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
616{
617    struct	 acpi_cx *cx_ptr;
618    ACPI_STATUS	 status;
619    ACPI_BUFFER	 buf;
620    ACPI_OBJECT	*top;
621    ACPI_OBJECT	*pkg;
622    uint32_t	 count;
623    int		 i;
624
625    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
626
627    buf.Pointer = NULL;
628    buf.Length = ACPI_ALLOCATE_BUFFER;
629    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
630    if (ACPI_FAILURE(status))
631	return (ENXIO);
632
633    /* _CST is a package with a count and at least one Cx package. */
634    top = (ACPI_OBJECT *)buf.Pointer;
635    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
636	device_printf(sc->cpu_dev, "invalid _CST package\n");
637	AcpiOsFree(buf.Pointer);
638	return (ENXIO);
639    }
640    if (count != top->Package.Count - 1) {
641	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
642	       count, top->Package.Count - 1);
643	count = top->Package.Count - 1;
644    }
645    if (count > MAX_CX_STATES) {
646	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
647	count = MAX_CX_STATES;
648    }
649
650    /* Set up all valid states. */
651    sc->cpu_cx_count = 0;
652    cx_ptr = sc->cpu_cx_states;
653    for (i = 0; i < count; i++) {
654	pkg = &top->Package.Elements[i + 1];
655	if (!ACPI_PKG_VALID(pkg, 4) ||
656	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
657	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
658	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
659
660	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
661	    continue;
662	}
663
664	/* Validate the state to see if we should use it. */
665	switch (cx_ptr->type) {
666	case ACPI_STATE_C1:
667	    sc->cpu_non_c3 = i;
668	    cx_ptr++;
669	    sc->cpu_cx_count++;
670	    continue;
671	case ACPI_STATE_C2:
672	    if (cx_ptr->trans_lat > 100) {
673		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
674				 "acpi_cpu%d: C2[%d] not available.\n",
675				 device_get_unit(sc->cpu_dev), i));
676		continue;
677	    }
678	    sc->cpu_non_c3 = i;
679	    break;
680	case ACPI_STATE_C3:
681	default:
682	    if (cx_ptr->trans_lat > 1000 ||
683		(cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
684
685		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
686				 "acpi_cpu%d: C3[%d] not available.\n",
687				 device_get_unit(sc->cpu_dev), i));
688		continue;
689	    }
690	    break;
691	}
692
693#ifdef notyet
694	/* Free up any previous register. */
695	if (cx_ptr->p_lvlx != NULL) {
696	    bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
697	    cx_ptr->p_lvlx = NULL;
698	}
699#endif
700
701	/* Allocate the control register for C2 or C3. */
702	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
703	    &cx_ptr->p_lvlx, RF_SHAREABLE);
704	if (cx_ptr->p_lvlx) {
705	    sc->cpu_rid++;
706	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
707			     "acpi_cpu%d: Got C%d - %d latency\n",
708			     device_get_unit(sc->cpu_dev), cx_ptr->type,
709			     cx_ptr->trans_lat));
710	    cx_ptr++;
711	    sc->cpu_cx_count++;
712	}
713    }
714    AcpiOsFree(buf.Pointer);
715
716    return (0);
717}
718
719/*
720 * Call this *after* all CPUs have been attached.
721 */
722static void
723acpi_cpu_startup(void *arg)
724{
725    struct acpi_cpu_softc *sc;
726    int i;
727
728    /* Get set of CPU devices */
729    devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
730
731    /*
732     * Setup any quirks that might necessary now that we have probed
733     * all the CPUs
734     */
735    acpi_cpu_quirks();
736
737    cpu_cx_count = 0;
738    if (cpu_cx_generic) {
739	/*
740	 * We are using generic Cx mode, probe for available Cx states
741	 * for all processors.
742	 */
743	for (i = 0; i < cpu_ndevices; i++) {
744	    sc = device_get_softc(cpu_devices[i]);
745	    acpi_cpu_generic_cx_probe(sc);
746	}
747
748	/*
749	 * Find the highest Cx state common to all CPUs
750	 * in the system, taking quirks into account.
751	 */
752	for (i = 0; i < cpu_ndevices; i++) {
753	    sc = device_get_softc(cpu_devices[i]);
754	    if (sc->cpu_cx_count < cpu_cx_count)
755		cpu_cx_count = sc->cpu_cx_count;
756	}
757    } else {
758	/*
759	 * We are using _CST mode, remove C3 state if necessary.
760	 * Update the largest Cx state supported in the global cpu_cx_count.
761	 * It will be used in the global Cx sysctl handler.
762	 * As we now know for sure that we will be using _CST mode
763	 * install our notify handler.
764	 */
765	for (i = 0; i < cpu_ndevices; i++) {
766	    sc = device_get_softc(cpu_devices[i]);
767	    if (cpu_quirks && CPU_QUIRK_NO_C3) {
768		sc->cpu_cx_count = sc->cpu_non_c3 + 1;
769	    }
770	    if (sc->cpu_cx_count > cpu_cx_count)
771		cpu_cx_count = sc->cpu_cx_count;
772	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
773		acpi_cpu_notify, sc);
774	}
775    }
776
777    /* Perform Cx final initialization. */
778    for (i = 0; i < cpu_ndevices; i++) {
779	sc = device_get_softc(cpu_devices[i]);
780	acpi_cpu_startup_cx(sc);
781    }
782
783    /* Add a sysctl handler to handle global Cx lowest setting */
784    SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
785	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
786	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
787	"Global lowest Cx sleep state to use");
788
789    /* Take over idling from cpu_idle_default(). */
790    cpu_cx_lowest = 0;
791    cpu_disable_idle = FALSE;
792    cpu_idle_hook = acpi_cpu_idle;
793}
794
795static void
796acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
797{
798    struct sbuf sb;
799    int i;
800
801    /*
802     * Set up the list of Cx states
803     */
804    sc->cpu_non_c3 = 0;
805    sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
806	SBUF_FIXEDLEN);
807    for (i = 0; i < sc->cpu_cx_count; i++) {
808	sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
809	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
810	    sc->cpu_non_c3 = i;
811    }
812    sbuf_trim(&sb);
813    sbuf_finish(&sb);
814
815    SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
816		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
817		      OID_AUTO, "cx_supported", CTLFLAG_RD,
818		      sc->cpu_cx_supported, 0,
819		      "Cx/microsecond values for supported Cx states");
820    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
821		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
822		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
823		    (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
824		    "lowest Cx sleep state to use");
825    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
826		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
827		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
828		    (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
829		    "percent usage for each Cx state");
830
831#ifdef notyet
832    /* Signal platform that we can handle _CST notification. */
833    if (!cpu_cx_generic && cpu_cst_cnt != 0) {
834	ACPI_LOCK(acpi);
835	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
836	ACPI_UNLOCK(acpi);
837    }
838#endif
839}
840
841/*
842 * Idle the CPU in the lowest state possible.  This function is called with
843 * interrupts disabled.  Note that once it re-enables interrupts, a task
844 * switch can occur so do not access shared data (i.e. the softc) after
845 * interrupts are re-enabled.
846 */
847static void
848acpi_cpu_idle()
849{
850    struct	acpi_cpu_softc *sc;
851    struct	acpi_cx *cx_next;
852    uint32_t	start_time, end_time;
853    int		bm_active, cx_next_idx, i;
854
855    /* If disabled, return immediately. */
856    if (cpu_disable_idle) {
857	ACPI_ENABLE_IRQS();
858	return;
859    }
860
861    /*
862     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
863     * since there is no ACPI processor object for this CPU.  This occurs
864     * for logical CPUs in the HTT case.
865     */
866    sc = cpu_softc[PCPU_GET(cpuid)];
867    if (sc == NULL) {
868	acpi_cpu_c1();
869	return;
870    }
871
872    /*
873     * If we slept 100 us or more, use the lowest Cx state.  Otherwise,
874     * find the lowest state that has a latency less than or equal to
875     * the length of our last sleep.
876     */
877    cx_next_idx = sc->cpu_cx_lowest;
878    if (sc->cpu_prev_sleep < 100) {
879	/*
880	 * If we sleep too short all the time, this system may not implement
881	 * C2/3 correctly (i.e. reads return immediately).  In this case,
882	 * back off and use the next higher level.
883	 * It seems that when you have a dual core cpu (like the Intel Core Duo)
884	 * that both cores will get out of C3 state as soon as one of them
885	 * requires it. This breaks the sleep detection logic as the sleep
886	 * counter is local to each cpu. Disable the sleep logic for now as a
887	 * workaround if there's more than one CPU. The right fix would probably
888	 * be to add quirks for system that don't really support C3 state.
889	 */
890	if (mp_ncpus < 2 && sc->cpu_prev_sleep <= 1) {
891	    sc->cpu_short_slp++;
892	    if (sc->cpu_short_slp == 1000 && sc->cpu_cx_lowest != 0) {
893		if (sc->cpu_non_c3 == sc->cpu_cx_lowest && sc->cpu_non_c3 != 0)
894		    sc->cpu_non_c3--;
895		sc->cpu_cx_lowest--;
896		sc->cpu_short_slp = 0;
897		device_printf(sc->cpu_dev,
898		    "too many short sleeps, backing off to C%d\n",
899		    sc->cpu_cx_lowest + 1);
900	    }
901	} else
902	    sc->cpu_short_slp = 0;
903
904	for (i = sc->cpu_cx_lowest; i >= 0; i--)
905	    if (sc->cpu_cx_states[i].trans_lat <= sc->cpu_prev_sleep) {
906		cx_next_idx = i;
907		break;
908	    }
909    }
910
911    /*
912     * Check for bus master activity.  If there was activity, clear
913     * the bit and use the lowest non-C3 state.  Note that the USB
914     * driver polling for new devices keeps this bit set all the
915     * time if USB is loaded.
916     */
917    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
918	AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
919	if (bm_active != 0) {
920	    AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
921	    cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
922	}
923    }
924
925    /* Select the next state and update statistics. */
926    cx_next = &sc->cpu_cx_states[cx_next_idx];
927    sc->cpu_cx_stats[cx_next_idx]++;
928    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
929
930    /*
931     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
932     * calculate the time spent in C1 since the place we wake up is an
933     * ISR.  Assume we slept one quantum and return.
934     */
935    if (cx_next->type == ACPI_STATE_C1) {
936	sc->cpu_prev_sleep = 1000000 / hz;
937	acpi_cpu_c1();
938	return;
939    }
940
941    /*
942     * For C3, disable bus master arbitration and enable bus master wake
943     * if BM control is available, otherwise flush the CPU cache.
944     */
945    if (cx_next->type == ACPI_STATE_C3) {
946	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
947	    AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1);
948	    AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
949	} else
950	    ACPI_FLUSH_CPU_CACHE();
951    }
952
953    /*
954     * Read from P_LVLx to enter C2(+), checking time spent asleep.
955     * Use the ACPI timer for measuring sleep time.  Since we need to
956     * get the time very close to the CPU start/stop clock logic, this
957     * is the only reliable time source.
958     */
959    AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT.XPmTimerBlock);
960    CPU_GET_REG(cx_next->p_lvlx, 1);
961
962    /*
963     * Read the end time twice.  Since it may take an arbitrary time
964     * to enter the idle state, the first read may be executed before
965     * the processor has stopped.  Doing it again provides enough
966     * margin that we are certain to have a correct value.
967     */
968    AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT.XPmTimerBlock);
969    AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT.XPmTimerBlock);
970
971    /* Enable bus master arbitration and disable bus master wakeup. */
972    if (cx_next->type == ACPI_STATE_C3 &&
973	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
974	AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0);
975	AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
976    }
977    ACPI_ENABLE_IRQS();
978
979    /* Find the actual time asleep in microseconds, minus overhead. */
980    end_time = acpi_TimerDelta(end_time, start_time);
981    sc->cpu_prev_sleep = PM_USEC(end_time) - cx_next->trans_lat;
982}
983
984/*
985 * Re-evaluate the _CST object when we are notified that it changed.
986 *
987 * XXX Re-evaluation disabled until locking is done.
988 */
989static void
990acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
991{
992    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
993
994    if (notify != ACPI_NOTIFY_CX_STATES)
995	return;
996
997    device_printf(sc->cpu_dev, "Cx states changed\n");
998    /* acpi_cpu_cx_cst(sc); */
999}
1000
1001static int
1002acpi_cpu_quirks(void)
1003{
1004    device_t acpi_dev;
1005
1006    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1007
1008    /*
1009     * Bus mastering arbitration control is needed to keep caches coherent
1010     * while sleeping in C3.  If it's not present but a working flush cache
1011     * instruction is present, flush the caches before entering C3 instead.
1012     * Otherwise, just disable C3 completely.
1013     */
1014    if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1015	AcpiGbl_FADT.Pm2ControlLength == 0) {
1016	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1017	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1018	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1019	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1020		"acpi_cpu: no BM control, using flush cache method\n"));
1021	} else {
1022	    cpu_quirks |= CPU_QUIRK_NO_C3;
1023	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1024		"acpi_cpu: no BM control, C3 not available\n"));
1025	}
1026    }
1027
1028    /*
1029     * If we are using generic Cx mode, C3 on multiple CPUs requires using
1030     * the expensive flush cache instruction.
1031     */
1032    if (cpu_cx_generic && mp_ncpus > 1) {
1033	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1034	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1035	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1036    }
1037
1038    /* Look for various quirks of the PIIX4 part. */
1039    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1040    if (acpi_dev != NULL) {
1041	switch (pci_get_revid(acpi_dev)) {
1042	/*
1043	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1044	 * do not report the BMIDE status to the BM status register and
1045	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1046	 * works around the BMIDE bug by reading the BM status directly
1047	 * but we take the simpler approach of disabling C3 for these
1048	 * parts.
1049	 *
1050	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1051	 * Livelock") from the January 2002 PIIX4 specification update.
1052	 * Applies to all PIIX4 models.
1053	 */
1054	case PCI_REVISION_4E:
1055	case PCI_REVISION_4M:
1056	    cpu_quirks |= CPU_QUIRK_NO_C3;
1057	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1058		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1059	    break;
1060	default:
1061	    break;
1062	}
1063    }
1064
1065    return (0);
1066}
1067
1068static int
1069acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1070{
1071    struct acpi_cpu_softc *sc;
1072    struct sbuf	 sb;
1073    char	 buf[128];
1074    int		 i;
1075    uintmax_t	 fract, sum, whole;
1076
1077    sc = (struct acpi_cpu_softc *) arg1;
1078    sum = 0;
1079    for (i = 0; i < sc->cpu_cx_count; i++)
1080	sum += sc->cpu_cx_stats[i];
1081    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1082    for (i = 0; i < sc->cpu_cx_count; i++) {
1083	if (sum > 0) {
1084	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1085	    fract = (whole % sum) * 100;
1086	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1087		(u_int)(fract / sum));
1088	} else
1089	    sbuf_printf(&sb, "0%% ");
1090    }
1091    sbuf_trim(&sb);
1092    sbuf_finish(&sb);
1093    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1094    sbuf_delete(&sb);
1095
1096    return (0);
1097}
1098
1099static int
1100acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val)
1101{
1102    int i;
1103
1104    ACPI_SERIAL_ASSERT(cpu);
1105    sc->cpu_cx_lowest = val;
1106
1107    /* If not disabling, cache the new lowest non-C3 state. */
1108    sc->cpu_non_c3 = 0;
1109    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1110	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1111	    sc->cpu_non_c3 = i;
1112	    break;
1113	}
1114    }
1115
1116    /* Reset the statistics counters. */
1117    bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1118    return (0);
1119}
1120
1121static int
1122acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1123{
1124    struct	 acpi_cpu_softc *sc;
1125    char	 state[8];
1126    int		 val, error;
1127
1128    sc = (struct acpi_cpu_softc *) arg1;
1129    snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
1130    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1131    if (error != 0 || req->newptr == NULL)
1132	return (error);
1133    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1134	return (EINVAL);
1135    val = (int) strtol(state + 1, NULL, 10) - 1;
1136    if (val < 0 || val > sc->cpu_cx_count - 1)
1137	return (EINVAL);
1138
1139    ACPI_SERIAL_BEGIN(cpu);
1140    acpi_cpu_set_cx_lowest(sc, val);
1141    ACPI_SERIAL_END(cpu);
1142
1143    return (0);
1144}
1145
1146static int
1147acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1148{
1149    struct	acpi_cpu_softc *sc;
1150    char	state[8];
1151    int		val, error, i;
1152
1153    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
1154    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1155    if (error != 0 || req->newptr == NULL)
1156	return (error);
1157    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1158	return (EINVAL);
1159    val = (int) strtol(state + 1, NULL, 10) - 1;
1160    if (val < 0 || val > cpu_cx_count - 1)
1161	return (EINVAL);
1162    cpu_cx_lowest = val;
1163
1164    /* Update the new lowest useable Cx state for all CPUs. */
1165    ACPI_SERIAL_BEGIN(cpu);
1166    for (i = 0; i < cpu_ndevices; i++) {
1167	sc = device_get_softc(cpu_devices[i]);
1168	acpi_cpu_set_cx_lowest(sc, val);
1169    }
1170    ACPI_SERIAL_END(cpu);
1171
1172    return (0);
1173}
1174