acpi_cpu.c revision 141238
1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/acpica/acpi_cpu.c 141238 2005-02-04 05:36:40Z njl $");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/cpu.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/pcpu.h>
39#include <sys/power.h>
40#include <sys/proc.h>
41#include <sys/sbuf.h>
42#include <sys/smp.h>
43
44#include <dev/pci/pcivar.h>
45#include <machine/atomic.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48
49#include "acpi.h"
50#include <dev/acpica/acpivar.h>
51
52/*
53 * Support for ACPI Processor devices, including ACPI 2.0 throttling
54 * and C[1-3] sleep states.
55 *
56 * TODO: implement scans of all CPUs to be sure all Cx states are
57 * equivalent.
58 */
59
60/* Hooks for the ACPI CA debugging infrastructure */
61#define _COMPONENT	ACPI_PROCESSOR
62ACPI_MODULE_NAME("PROCESSOR")
63
64struct acpi_cx {
65    struct resource	*p_lvlx;	/* Register to read to enter state. */
66    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
67    uint32_t		 trans_lat;	/* Transition latency (usec). */
68    uint32_t		 power;		/* Power consumed (mW). */
69};
70#define MAX_CX_STATES	 8
71
72struct acpi_cpu_softc {
73    device_t		 cpu_dev;
74    ACPI_HANDLE		 cpu_handle;
75    struct pcpu		*cpu_pcpu;
76    uint32_t		 cpu_acpi_id;	/* ACPI processor id */
77    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
78    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
79    struct resource	*cpu_p_cnt;	/* Throttling control register */
80    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
81    int			 cpu_cx_count;	/* Number of valid Cx states. */
82    int			 cpu_prev_sleep;/* Last idle sleep duration. */
83};
84
85struct acpi_cpu_device {
86    struct resource_list        ad_rl;
87};
88
89#define CPU_GET_REG(reg, width) 					\
90    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
91		      rman_get_bushandle((reg)), 0))
92#define CPU_SET_REG(reg, width, val)					\
93    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
94		       rman_get_bushandle((reg)), 0, (val)))
95
96/*
97 * Speeds are stored in counts, from 1 to CPU_MAX_SPEED, and
98 * reported to the user in tenths of a percent.
99 */
100static uint32_t		 cpu_duty_offset;
101static uint32_t		 cpu_duty_width;
102#define CPU_MAX_SPEED		(1 << cpu_duty_width)
103#define CPU_SPEED_PERCENT(x)	((1000 * (x)) / CPU_MAX_SPEED)
104#define CPU_SPEED_PRINTABLE(x)	(CPU_SPEED_PERCENT(x) / 10),	\
105				(CPU_SPEED_PERCENT(x) % 10)
106#define CPU_P_CNT_THT_EN (1<<4)
107#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
108
109#define ACPI_CPU_NOTIFY_PERF_STATES	0x80	/* _PSS changed. */
110#define ACPI_CPU_NOTIFY_CX_STATES	0x81	/* _CST changed. */
111
112#define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
113#define CPU_QUIRK_NO_THROTTLE	(1<<1)	/* Throttling is not usable. */
114#define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
115
116#define PCI_VENDOR_INTEL	0x8086
117#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
118#define PCI_REVISION_A_STEP	0
119#define PCI_REVISION_B_STEP	1
120#define PCI_REVISION_4E		2
121#define PCI_REVISION_4M		3
122
123/* Platform hardware resource information. */
124static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
125static uint8_t		 cpu_pstate_cnt;/* Register to take over throttling. */
126static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
127static int		 cpu_rid;	/* Driver-wide resource id. */
128static int		 cpu_quirks;	/* Indicate any hardware bugs. */
129
130/* Runtime state. */
131static int		 cpu_cx_count;	/* Number of valid states */
132static int		 cpu_non_c3;	/* Index of lowest non-C3 state. */
133static u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
134
135/* Values for sysctl. */
136static struct sysctl_ctx_list acpi_cpu_sysctl_ctx;
137static struct sysctl_oid *acpi_cpu_sysctl_tree;
138static uint32_t		 cpu_throttle_state;
139static uint32_t		 cpu_throttle_max;
140static int		 cpu_cx_lowest;
141static char 		 cpu_cx_supported[64];
142
143static device_t		*cpu_devices;
144static int		 cpu_ndevices;
145static struct acpi_cpu_softc **cpu_softc;
146ACPI_SERIAL_DECL(cpu, "ACPI CPU");
147
148static int	acpi_cpu_probe(device_t dev);
149static int	acpi_cpu_attach(device_t dev);
150static int	acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
151		    uint32_t *cpu_id);
152static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
153static device_t	acpi_cpu_add_child(device_t dev, int order, const char *name,
154		    int unit);
155static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
156		    uintptr_t *result);
157static int	acpi_cpu_shutdown(device_t dev);
158static int	acpi_cpu_throttle_probe(struct acpi_cpu_softc *sc);
159static int	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
160static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
161static void	acpi_cpu_startup(void *arg);
162static void	acpi_cpu_startup_throttling(void);
163static void	acpi_cpu_startup_cx(void);
164static void	acpi_cpu_throttle_set(uint32_t speed);
165static void	acpi_cpu_idle(void);
166static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
167static int	acpi_cpu_quirks(struct acpi_cpu_softc *sc);
168static int	acpi_cpu_throttle_sysctl(SYSCTL_HANDLER_ARGS);
169static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
170static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
171
172static device_method_t acpi_cpu_methods[] = {
173    /* Device interface */
174    DEVMETHOD(device_probe,	acpi_cpu_probe),
175    DEVMETHOD(device_attach,	acpi_cpu_attach),
176    DEVMETHOD(device_detach,	bus_generic_detach),
177    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
178    DEVMETHOD(device_suspend,	bus_generic_suspend),
179    DEVMETHOD(device_resume,	bus_generic_resume),
180
181    /* Bus interface */
182    DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
183    DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
184    DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
185    DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
186    DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
187    DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
188    DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
189    DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
190    DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
191    DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
192    DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
193    DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
194
195    {0, 0}
196};
197
198static driver_t acpi_cpu_driver = {
199    "cpu",
200    acpi_cpu_methods,
201    sizeof(struct acpi_cpu_softc),
202};
203
204extern devclass_t cpu_devclass;
205DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, cpu_devclass, 0, 0);
206MODULE_DEPEND(cpu, acpi, 1, 1, 1);
207
208static int
209acpi_cpu_probe(device_t dev)
210{
211    int			   acpi_id, cpu_id, cx_count;
212    ACPI_BUFFER		   buf;
213    ACPI_HANDLE		   handle;
214    char		   msg[32];
215    ACPI_OBJECT		   *obj;
216    ACPI_STATUS		   status;
217
218    if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
219	return (ENXIO);
220
221    handle = acpi_get_handle(dev);
222    if (cpu_softc == NULL)
223	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
224	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
225
226    /* Get our Processor object. */
227    buf.Pointer = NULL;
228    buf.Length = ACPI_ALLOCATE_BUFFER;
229    status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
230    if (ACPI_FAILURE(status)) {
231	device_printf(dev, "probe failed to get Processor obj - %s\n",
232		      AcpiFormatException(status));
233	return (ENXIO);
234    }
235    obj = (ACPI_OBJECT *)buf.Pointer;
236    if (obj->Type != ACPI_TYPE_PROCESSOR) {
237	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
238	AcpiOsFree(obj);
239	return (ENXIO);
240    }
241
242    /*
243     * Find the processor associated with our unit.  We could use the
244     * ProcId as a key, however, some boxes do not have the same values
245     * in their Processor object as the ProcId values in the MADT.
246     */
247    acpi_id = obj->Processor.ProcId;
248    AcpiOsFree(obj);
249    if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
250	return (ENXIO);
251
252    /*
253     * Check if we already probed this processor.  We scan the bus twice
254     * so it's possible we've already seen this one.
255     */
256    if (cpu_softc[cpu_id] != NULL)
257	return (ENXIO);
258
259    /* Get a count of Cx states for our device string. */
260    cx_count = 0;
261    buf.Pointer = NULL;
262    buf.Length = ACPI_ALLOCATE_BUFFER;
263    status = AcpiEvaluateObject(handle, "_CST", NULL, &buf);
264    if (ACPI_SUCCESS(status)) {
265	obj = (ACPI_OBJECT *)buf.Pointer;
266	if (ACPI_PKG_VALID(obj, 2))
267	    acpi_PkgInt32(obj, 0, &cx_count);
268	AcpiOsFree(obj);
269    } else {
270	if (AcpiGbl_FADT->Plvl2Lat <= 100)
271	    cx_count++;
272	if (AcpiGbl_FADT->Plvl3Lat <= 1000)
273	    cx_count++;
274	if (cx_count > 0)
275	    cx_count++;
276    }
277    if (cx_count > 0)
278	snprintf(msg, sizeof(msg), "ACPI CPU (%d Cx states)", cx_count);
279    else
280	strlcpy(msg, "ACPI CPU", sizeof(msg));
281    device_set_desc_copy(dev, msg);
282
283    /* Mark this processor as in-use and save our derived id for attach. */
284    cpu_softc[cpu_id] = (void *)1;
285    acpi_set_magic(dev, cpu_id);
286
287    return (0);
288}
289
290static int
291acpi_cpu_attach(device_t dev)
292{
293    ACPI_BUFFER		   buf;
294    ACPI_OBJECT		   *obj;
295    struct pcpu		   *pcpu_data;
296    struct acpi_cpu_softc *sc;
297    struct acpi_softc	  *acpi_sc;
298    ACPI_STATUS		   status;
299    int			   cx_ret, cpu_id, thr_ret;
300
301    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
302
303    sc = device_get_softc(dev);
304    sc->cpu_dev = dev;
305    sc->cpu_handle = acpi_get_handle(dev);
306    cpu_id = acpi_get_magic(dev);
307    cpu_softc[cpu_id] = sc;
308    pcpu_data = pcpu_find(cpu_id);
309    pcpu_data->pc_device = dev;
310    sc->cpu_pcpu = pcpu_data;
311
312    buf.Pointer = NULL;
313    buf.Length = ACPI_ALLOCATE_BUFFER;
314    status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
315    if (ACPI_FAILURE(status)) {
316	device_printf(dev, "attach failed to get Processor obj - %s\n",
317		      AcpiFormatException(status));
318	return (ENXIO);
319    }
320    obj = (ACPI_OBJECT *)buf.Pointer;
321    sc->cpu_p_blk = obj->Processor.PblkAddress;
322    sc->cpu_p_blk_len = obj->Processor.PblkLength;
323    sc->cpu_acpi_id = obj->Processor.ProcId;
324    AcpiOsFree(obj);
325    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
326		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
327
328    acpi_sc = acpi_device_get_parent_softc(dev);
329    sysctl_ctx_init(&acpi_cpu_sysctl_ctx);
330    acpi_cpu_sysctl_tree = SYSCTL_ADD_NODE(&acpi_cpu_sysctl_ctx,
331	SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
332	CTLFLAG_RD, 0, "");
333
334    /*
335     * Probe for throttling and Cx state support.
336     * If none of these is present, free up unused resources.
337     */
338    thr_ret = acpi_cpu_throttle_probe(sc);
339    cx_ret = acpi_cpu_cx_probe(sc);
340    if (thr_ret == 0 || cx_ret == 0) {
341	status = AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
342					  acpi_cpu_notify, sc);
343	if (device_get_unit(dev) == 0)
344	    AcpiOsQueueForExecution(OSD_PRIORITY_LO, acpi_cpu_startup, NULL);
345    } else {
346	sysctl_ctx_free(&acpi_cpu_sysctl_ctx);
347    }
348
349    /* Call identify and then probe/attach for cpu child drivers. */
350    bus_generic_probe(dev);
351    bus_generic_attach(dev);
352
353    return (0);
354}
355
356/*
357 * Find the nth present CPU and return its pc_cpuid as well as set the
358 * pc_acpi_id from the most reliable source.
359 */
360static int
361acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
362{
363    struct pcpu	*pcpu_data;
364    uint32_t	 i;
365
366    KASSERT(acpi_id != NULL, ("Null acpi_id"));
367    KASSERT(cpu_id != NULL, ("Null cpu_id"));
368    for (i = 0; i <= mp_maxid; i++) {
369	if (CPU_ABSENT(i))
370	    continue;
371	pcpu_data = pcpu_find(i);
372	KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
373	if (idx-- == 0) {
374	    /*
375	     * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
376	     * override it with the value from the ASL.  Otherwise, if the
377	     * two don't match, prefer the MADT-derived value.  Finally,
378	     * return the pc_cpuid to reference this processor.
379	     */
380	    if (pcpu_data->pc_acpi_id == 0xffffffff)
381		 pcpu_data->pc_acpi_id = *acpi_id;
382	    else if (pcpu_data->pc_acpi_id != *acpi_id)
383		*acpi_id = pcpu_data->pc_acpi_id;
384	    *cpu_id = pcpu_data->pc_cpuid;
385	    return (0);
386	}
387    }
388
389    return (ESRCH);
390}
391
392static struct resource_list *
393acpi_cpu_get_rlist(device_t dev, device_t child)
394{
395    struct acpi_cpu_device *ad;
396
397    ad = device_get_ivars(child);
398    if (ad == NULL)
399	return (NULL);
400    return (&ad->ad_rl);
401}
402
403static device_t
404acpi_cpu_add_child(device_t dev, int order, const char *name, int unit)
405{
406    struct acpi_cpu_device  *ad;
407    device_t            child;
408
409    if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
410        return (NULL);
411
412    resource_list_init(&ad->ad_rl);
413
414    child = device_add_child_ordered(dev, order, name, unit);
415    if (child != NULL)
416        device_set_ivars(child, ad);
417    return (child);
418}
419
420static int
421acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
422{
423    struct acpi_cpu_softc *sc;
424
425    sc = device_get_softc(dev);
426    switch (index) {
427    case ACPI_IVAR_HANDLE:
428	*result = (uintptr_t)sc->cpu_handle;
429	break;
430    case CPU_IVAR_PCPU:
431	*result = (uintptr_t)sc->cpu_pcpu;
432	break;
433    default:
434	return (ENOENT);
435    }
436    return (0);
437}
438
439static int
440acpi_cpu_shutdown(device_t dev)
441{
442    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
443
444    /* Allow children to shutdown first. */
445    bus_generic_shutdown(dev);
446
447    /* Disable any entry to the idle function. */
448    cpu_cx_count = 0;
449
450    /* Signal and wait for all processors to exit acpi_cpu_idle(). */
451    smp_rendezvous(NULL, NULL, NULL, NULL);
452
453    return_VALUE (0);
454}
455
456static int
457acpi_cpu_throttle_probe(struct acpi_cpu_softc *sc)
458{
459    uint32_t		 duty_end;
460    ACPI_BUFFER		 buf;
461    ACPI_OBJECT		 obj;
462    ACPI_GENERIC_ADDRESS gas;
463    ACPI_STATUS		 status;
464
465    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
466
467    /* Get throttling parameters from the FADT.  0 means not supported. */
468    if (device_get_unit(sc->cpu_dev) == 0) {
469	cpu_smi_cmd = AcpiGbl_FADT->SmiCmd;
470	cpu_pstate_cnt = AcpiGbl_FADT->PstateCnt;
471	cpu_cst_cnt = AcpiGbl_FADT->CstCnt;
472	cpu_duty_offset = AcpiGbl_FADT->DutyOffset;
473	cpu_duty_width = AcpiGbl_FADT->DutyWidth;
474    }
475    if (cpu_duty_width == 0 || (cpu_quirks & CPU_QUIRK_NO_THROTTLE) != 0)
476	return (ENXIO);
477
478    /* Validate the duty offset/width. */
479    duty_end = cpu_duty_offset + cpu_duty_width - 1;
480    if (duty_end > 31) {
481	device_printf(sc->cpu_dev, "CLK_VAL field overflows P_CNT register\n");
482	return (ENXIO);
483    }
484    if (cpu_duty_offset <= 4 && duty_end >= 4) {
485	device_printf(sc->cpu_dev, "CLK_VAL field overlaps THT_EN bit\n");
486	return (ENXIO);
487    }
488
489    /*
490     * If not present, fall back to using the processor's P_BLK to find
491     * the P_CNT register.
492     *
493     * Note that some systems seem to duplicate the P_BLK pointer
494     * across multiple CPUs, so not getting the resource is not fatal.
495     */
496    buf.Pointer = &obj;
497    buf.Length = sizeof(obj);
498    status = AcpiEvaluateObject(sc->cpu_handle, "_PTC", NULL, &buf);
499    if (ACPI_SUCCESS(status)) {
500	if (obj.Buffer.Length < sizeof(ACPI_GENERIC_ADDRESS) + 3) {
501	    device_printf(sc->cpu_dev, "_PTC buffer too small\n");
502	    return (ENXIO);
503	}
504	memcpy(&gas, obj.Buffer.Pointer + 3, sizeof(gas));
505	sc->cpu_p_cnt = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas);
506	if (sc->cpu_p_cnt != NULL) {
507	    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_CNT from _PTC\n",
508			     device_get_unit(sc->cpu_dev)));
509	}
510    }
511
512    /* If _PTC not present or other failure, try the P_BLK. */
513    if (sc->cpu_p_cnt == NULL) {
514	/*
515	 * The spec says P_BLK must be 6 bytes long.  However, some
516	 * systems use it to indicate a fractional set of features
517	 * present so we take anything >= 4.
518	 */
519	if (sc->cpu_p_blk_len < 4)
520	    return (ENXIO);
521	gas.Address = sc->cpu_p_blk;
522	gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
523	gas.RegisterBitWidth = 32;
524	sc->cpu_p_cnt = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas);
525	if (sc->cpu_p_cnt != NULL) {
526	    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_CNT from P_BLK\n",
527			     device_get_unit(sc->cpu_dev)));
528	} else {
529	    device_printf(sc->cpu_dev, "Failed to attach throttling P_CNT\n");
530	    return (ENXIO);
531	}
532    }
533    cpu_rid++;
534
535    return (0);
536}
537
538static int
539acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
540{
541    ACPI_GENERIC_ADDRESS gas;
542    struct acpi_cx	*cx_ptr;
543    int			 error;
544
545    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
546
547    /*
548     * Bus mastering arbitration control is needed to keep caches coherent
549     * while sleeping in C3.  If it's not present but a working flush cache
550     * instruction is present, flush the caches before entering C3 instead.
551     * Otherwise, just disable C3 completely.
552     */
553    if (AcpiGbl_FADT->V1_Pm2CntBlk == 0 || AcpiGbl_FADT->Pm2CntLen == 0) {
554	if (AcpiGbl_FADT->WbInvd && AcpiGbl_FADT->WbInvdFlush == 0) {
555	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
556	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
557		"acpi_cpu%d: no BM control, using flush cache method\n",
558		device_get_unit(sc->cpu_dev)));
559	} else {
560	    cpu_quirks |= CPU_QUIRK_NO_C3;
561	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
562		"acpi_cpu%d: no BM control, C3 not available\n",
563		device_get_unit(sc->cpu_dev)));
564	}
565    }
566
567    /*
568     * First, check for the ACPI 2.0 _CST sleep states object.
569     * If not usable, fall back to the P_BLK's P_LVL2 and P_LVL3.
570     */
571    sc->cpu_cx_count = 0;
572    error = acpi_cpu_cx_cst(sc);
573    if (error != 0) {
574	cx_ptr = sc->cpu_cx_states;
575
576	/* C1 has been required since just after ACPI 1.0 */
577	cx_ptr->type = ACPI_STATE_C1;
578	cx_ptr->trans_lat = 0;
579	cpu_non_c3 = 0;
580	cx_ptr++;
581	sc->cpu_cx_count++;
582
583	/*
584	 * The spec says P_BLK must be 6 bytes long.  However, some systems
585	 * use it to indicate a fractional set of features present so we
586	 * take 5 as C2.  Some may also have a value of 7 to indicate
587	 * another C3 but most use _CST for this (as required) and having
588	 * "only" C1-C3 is not a hardship.
589	 */
590	if (sc->cpu_p_blk_len < 5)
591	    goto done;
592
593	/* Validate and allocate resources for C2 (P_LVL2). */
594	gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
595	gas.RegisterBitWidth = 8;
596	if (AcpiGbl_FADT->Plvl2Lat <= 100) {
597	    gas.Address = sc->cpu_p_blk + 4;
598	    cx_ptr->p_lvlx = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas);
599	    if (cx_ptr->p_lvlx != NULL) {
600		cpu_rid++;
601		cx_ptr->type = ACPI_STATE_C2;
602		cx_ptr->trans_lat = AcpiGbl_FADT->Plvl2Lat;
603		cpu_non_c3 = 1;
604		cx_ptr++;
605		sc->cpu_cx_count++;
606	    }
607	}
608	if (sc->cpu_p_blk_len < 6)
609	    goto done;
610
611	/* Validate and allocate resources for C3 (P_LVL3). */
612	if (AcpiGbl_FADT->Plvl3Lat <= 1000 &&
613	    (cpu_quirks & CPU_QUIRK_NO_C3) == 0) {
614
615	    gas.Address = sc->cpu_p_blk + 5;
616	    cx_ptr->p_lvlx = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas);
617	    if (cx_ptr->p_lvlx != NULL) {
618		cpu_rid++;
619		cx_ptr->type = ACPI_STATE_C3;
620		cx_ptr->trans_lat = AcpiGbl_FADT->Plvl3Lat;
621		cx_ptr++;
622		sc->cpu_cx_count++;
623	    }
624	}
625    }
626
627done:
628    /* If no valid registers were found, don't attach. */
629    if (sc->cpu_cx_count == 0)
630	return (ENXIO);
631
632    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
633    sc->cpu_prev_sleep = 1000000;
634
635    return (0);
636}
637
638/*
639 * Parse a _CST package and set up its Cx states.  Since the _CST object
640 * can change dynamically, our notify handler may call this function
641 * to clean up and probe the new _CST package.
642 */
643static int
644acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
645{
646    struct	 acpi_cx *cx_ptr;
647    ACPI_STATUS	 status;
648    ACPI_BUFFER	 buf;
649    ACPI_OBJECT	*top;
650    ACPI_OBJECT	*pkg;
651    uint32_t	 count;
652    int		 i;
653
654    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
655
656    buf.Pointer = NULL;
657    buf.Length = ACPI_ALLOCATE_BUFFER;
658    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
659    if (ACPI_FAILURE(status))
660	return (ENXIO);
661
662    /* _CST is a package with a count and at least one Cx package. */
663    top = (ACPI_OBJECT *)buf.Pointer;
664    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
665	device_printf(sc->cpu_dev, "Invalid _CST package\n");
666	AcpiOsFree(buf.Pointer);
667	return (ENXIO);
668    }
669    if (count != top->Package.Count - 1) {
670	device_printf(sc->cpu_dev, "Invalid _CST state count (%d != %d)\n",
671	       count, top->Package.Count - 1);
672	count = top->Package.Count - 1;
673    }
674    if (count > MAX_CX_STATES) {
675	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
676	count = MAX_CX_STATES;
677    }
678
679    /* Set up all valid states. */
680    sc->cpu_cx_count = 0;
681    cx_ptr = sc->cpu_cx_states;
682    for (i = 0; i < count; i++) {
683	pkg = &top->Package.Elements[i + 1];
684	if (!ACPI_PKG_VALID(pkg, 4) ||
685	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
686	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
687	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
688
689	    device_printf(sc->cpu_dev, "Skipping invalid Cx state package\n");
690	    continue;
691	}
692
693	/* Validate the state to see if we should use it. */
694	switch (cx_ptr->type) {
695	case ACPI_STATE_C1:
696	    cpu_non_c3 = i;
697	    cx_ptr++;
698	    sc->cpu_cx_count++;
699	    continue;
700	case ACPI_STATE_C2:
701	    if (cx_ptr->trans_lat > 100) {
702		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
703				 "acpi_cpu%d: C2[%d] not available.\n",
704				 device_get_unit(sc->cpu_dev), i));
705		continue;
706	    }
707	    cpu_non_c3 = i;
708	    break;
709	case ACPI_STATE_C3:
710	default:
711	    if (cx_ptr->trans_lat > 1000 ||
712		(cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
713
714		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
715				 "acpi_cpu%d: C3[%d] not available.\n",
716				 device_get_unit(sc->cpu_dev), i));
717		continue;
718	    }
719	    break;
720	}
721
722#ifdef notyet
723	/* Free up any previous register. */
724	if (cx_ptr->p_lvlx != NULL) {
725	    bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
726	    cx_ptr->p_lvlx = NULL;
727	}
728#endif
729
730	/* Allocate the control register for C2 or C3. */
731	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cpu_rid, &cx_ptr->p_lvlx);
732	if (cx_ptr->p_lvlx != NULL) {
733	    cpu_rid++;
734	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
735			     "acpi_cpu%d: Got C%d - %d latency\n",
736			     device_get_unit(sc->cpu_dev), cx_ptr->type,
737			     cx_ptr->trans_lat));
738	    cx_ptr++;
739	    sc->cpu_cx_count++;
740	}
741    }
742    AcpiOsFree(buf.Pointer);
743
744    return (0);
745}
746
747/*
748 * Call this *after* all CPUs have been attached.
749 */
750static void
751acpi_cpu_startup(void *arg)
752{
753    struct acpi_cpu_softc *sc;
754    int count, i;
755
756    /* Get set of CPU devices */
757    devclass_get_devices(cpu_devclass, &cpu_devices, &cpu_ndevices);
758
759    /* Check for quirks via the first CPU device. */
760    sc = device_get_softc(cpu_devices[0]);
761    acpi_cpu_quirks(sc);
762
763    /*
764     * Make sure all the processors' Cx counts match.  We should probably
765     * also check the contents of each.  However, no known systems have
766     * non-matching Cx counts so we'll deal with this later.
767     */
768    count = MAX_CX_STATES;
769    for (i = 0; i < cpu_ndevices; i++) {
770	sc = device_get_softc(cpu_devices[i]);
771	count = min(sc->cpu_cx_count, count);
772    }
773    cpu_cx_count = count;
774
775    /* Perform throttling and Cx final initialization. */
776    sc = device_get_softc(cpu_devices[0]);
777    if (sc->cpu_p_cnt != NULL)
778	acpi_cpu_startup_throttling();
779    if (cpu_cx_count > 0)
780	acpi_cpu_startup_cx();
781}
782
783/*
784 * Takes the ACPI lock to avoid fighting anyone over the SMI command
785 * port.
786 */
787static void
788acpi_cpu_startup_throttling()
789{
790
791    /* If throttling is not usable, don't initialize it. */
792    if (cpu_quirks & CPU_QUIRK_NO_THROTTLE)
793	return;
794
795    /* Initialise throttling states */
796    cpu_throttle_max = CPU_MAX_SPEED;
797    cpu_throttle_state = CPU_MAX_SPEED;
798
799    SYSCTL_ADD_INT(&acpi_cpu_sysctl_ctx,
800		   SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
801		   OID_AUTO, "throttle_max", CTLFLAG_RD,
802		   &cpu_throttle_max, 0, "maximum CPU speed");
803    SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
804		    SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
805		    OID_AUTO, "throttle_state",
806		    CTLTYPE_INT | CTLFLAG_RW, &cpu_throttle_state,
807		    0, acpi_cpu_throttle_sysctl, "I", "current CPU speed");
808
809    /* If ACPI 2.0+, signal platform that we are taking over throttling. */
810    if (cpu_pstate_cnt != 0) {
811	ACPI_LOCK(acpi);
812	AcpiOsWritePort(cpu_smi_cmd, cpu_pstate_cnt, 8);
813	ACPI_UNLOCK(acpi);
814    }
815
816    /* Set initial speed to maximum. */
817    ACPI_SERIAL_BEGIN(cpu);
818    acpi_cpu_throttle_set(cpu_throttle_max);
819    ACPI_SERIAL_END(cpu);
820
821    printf("acpi_cpu: throttling enabled, %d steps (100%% to %d.%d%%), "
822	   "currently %d.%d%%\n", CPU_MAX_SPEED, CPU_SPEED_PRINTABLE(1),
823	   CPU_SPEED_PRINTABLE(cpu_throttle_state));
824}
825
826static void
827acpi_cpu_startup_cx()
828{
829    struct acpi_cpu_softc *sc;
830    struct sbuf sb;
831    int i;
832
833    /*
834     * Set up the list of Cx states, eliminating C3 states by truncating
835     * cpu_cx_count if quirks indicate C3 is not usable.
836     */
837    sc = device_get_softc(cpu_devices[0]);
838    sbuf_new(&sb, cpu_cx_supported, sizeof(cpu_cx_supported), SBUF_FIXEDLEN);
839    for (i = 0; i < cpu_cx_count; i++) {
840	if ((cpu_quirks & CPU_QUIRK_NO_C3) == 0 ||
841	    sc->cpu_cx_states[i].type != ACPI_STATE_C3)
842	    sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
843	else
844	    cpu_cx_count = i;
845    }
846    sbuf_trim(&sb);
847    sbuf_finish(&sb);
848    SYSCTL_ADD_STRING(&acpi_cpu_sysctl_ctx,
849		      SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
850		      OID_AUTO, "cx_supported", CTLFLAG_RD, cpu_cx_supported,
851		      0, "Cx/microsecond values for supported Cx states");
852    SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
853		    SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
854		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
855		    NULL, 0, acpi_cpu_cx_lowest_sysctl, "A",
856		    "lowest Cx sleep state to use");
857    SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
858		    SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
859		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
860		    NULL, 0, acpi_cpu_usage_sysctl, "A",
861		    "percent usage for each Cx state");
862
863#ifdef notyet
864    /* Signal platform that we can handle _CST notification. */
865    if (cpu_cst_cnt != 0) {
866	ACPI_LOCK(acpi);
867	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
868	ACPI_UNLOCK(acpi);
869    }
870#endif
871
872    /* Take over idling from cpu_idle_default(). */
873    cpu_idle_hook = acpi_cpu_idle;
874}
875
876/*
877 * Set CPUs to the new state.
878 *
879 * Must be called with the ACPI lock held.
880 */
881static void
882acpi_cpu_throttle_set(uint32_t speed)
883{
884    struct acpi_cpu_softc	*sc;
885    int				i;
886    uint32_t			p_cnt, clk_val;
887
888    ACPI_SERIAL_ASSERT(cpu);
889
890    /* Iterate over processors */
891    for (i = 0; i < cpu_ndevices; i++) {
892	sc = device_get_softc(cpu_devices[i]);
893	if (sc->cpu_p_cnt == NULL)
894	    continue;
895
896	/* Get the current P_CNT value and disable throttling */
897	p_cnt = CPU_GET_REG(sc->cpu_p_cnt, 4);
898	p_cnt &= ~CPU_P_CNT_THT_EN;
899	CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt);
900
901	/* If we're at maximum speed, that's all */
902	if (speed < CPU_MAX_SPEED) {
903	    /* Mask the old CLK_VAL off and or-in the new value */
904	    clk_val = (CPU_MAX_SPEED - 1) << cpu_duty_offset;
905	    p_cnt &= ~clk_val;
906	    p_cnt |= (speed << cpu_duty_offset);
907
908	    /* Write the new P_CNT value and then enable throttling */
909	    CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt);
910	    p_cnt |= CPU_P_CNT_THT_EN;
911	    CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt);
912	}
913	ACPI_VPRINT(sc->cpu_dev, acpi_device_get_parent_softc(sc->cpu_dev),
914		    "set speed to %d.%d%%\n", CPU_SPEED_PRINTABLE(speed));
915    }
916    cpu_throttle_state = speed;
917}
918
919/*
920 * Idle the CPU in the lowest state possible.  This function is called with
921 * interrupts disabled.  Note that once it re-enables interrupts, a task
922 * switch can occur so do not access shared data (i.e. the softc) after
923 * interrupts are re-enabled.
924 */
925static void
926acpi_cpu_idle()
927{
928    struct	acpi_cpu_softc *sc;
929    struct	acpi_cx *cx_next;
930    uint32_t	start_time, end_time;
931    int		bm_active, cx_next_idx, i;
932
933    /* If disabled, return immediately. */
934    if (cpu_cx_count == 0) {
935	ACPI_ENABLE_IRQS();
936	return;
937    }
938
939    /*
940     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
941     * since there is no ACPI processor object for this CPU.  This occurs
942     * for logical CPUs in the HTT case.
943     */
944    sc = cpu_softc[PCPU_GET(cpuid)];
945    if (sc == NULL) {
946	acpi_cpu_c1();
947	return;
948    }
949
950    /*
951     * If we slept 100 us or more, use the lowest Cx state.  Otherwise,
952     * find the lowest state that has a latency less than or equal to
953     * the length of our last sleep.
954     */
955    cx_next_idx = cpu_cx_lowest;
956    if (sc->cpu_prev_sleep < 100)
957	for (i = cpu_cx_lowest; i >= 0; i--)
958	    if (sc->cpu_cx_states[i].trans_lat <= sc->cpu_prev_sleep) {
959		cx_next_idx = i;
960		break;
961	    }
962
963    /*
964     * Check for bus master activity.  If there was activity, clear
965     * the bit and use the lowest non-C3 state.  Note that the USB
966     * driver polling for new devices keeps this bit set all the
967     * time if USB is loaded.
968     */
969    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
970	AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active,
971	    ACPI_MTX_DO_NOT_LOCK);
972	if (bm_active != 0) {
973	    AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1,
974		ACPI_MTX_DO_NOT_LOCK);
975	    cx_next_idx = min(cx_next_idx, cpu_non_c3);
976	}
977    }
978
979    /* Select the next state and update statistics. */
980    cx_next = &sc->cpu_cx_states[cx_next_idx];
981    cpu_cx_stats[cx_next_idx]++;
982    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
983
984    /*
985     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
986     * calculate the time spent in C1 since the place we wake up is an
987     * ISR.  Assume we slept one quantum and return.
988     */
989    if (cx_next->type == ACPI_STATE_C1) {
990	sc->cpu_prev_sleep = 1000000 / hz;
991	acpi_cpu_c1();
992	return;
993    }
994
995    /*
996     * For C3, disable bus master arbitration and enable bus master wake
997     * if BM control is available, otherwise flush the CPU cache.
998     */
999    if (cx_next->type == ACPI_STATE_C3) {
1000	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1001	    AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK);
1002	    AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1,
1003		ACPI_MTX_DO_NOT_LOCK);
1004	} else
1005	    ACPI_FLUSH_CPU_CACHE();
1006    }
1007
1008    /*
1009     * Read from P_LVLx to enter C2(+), checking time spent asleep.
1010     * Use the ACPI timer for measuring sleep time.  Since we need to
1011     * get the time very close to the CPU start/stop clock logic, this
1012     * is the only reliable time source.
1013     */
1014    AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT->XPmTmrBlk);
1015    CPU_GET_REG(cx_next->p_lvlx, 1);
1016
1017    /*
1018     * Read the end time twice.  Since it may take an arbitrary time
1019     * to enter the idle state, the first read may be executed before
1020     * the processor has stopped.  Doing it again provides enough
1021     * margin that we are certain to have a correct value.
1022     */
1023    AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
1024    AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
1025
1026    /* Enable bus master arbitration and disable bus master wakeup. */
1027    if (cx_next->type == ACPI_STATE_C3 &&
1028	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1029	AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
1030	AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
1031    }
1032
1033    /* Find the actual time asleep in microseconds, minus overhead. */
1034    end_time = acpi_TimerDelta(end_time, start_time);
1035    sc->cpu_prev_sleep = PM_USEC(end_time) - cx_next->trans_lat;
1036    ACPI_ENABLE_IRQS();
1037}
1038
1039/*
1040 * Re-evaluate the _PSS and _CST objects when we are notified that they
1041 * have changed.
1042 *
1043 * XXX Re-evaluation disabled until locking is done.
1044 */
1045static void
1046acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1047{
1048    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1049
1050    switch (notify) {
1051    case ACPI_CPU_NOTIFY_PERF_STATES:
1052	device_printf(sc->cpu_dev, "Performance states changed\n");
1053	/* acpi_cpu_px_available(sc); */
1054	break;
1055    case ACPI_CPU_NOTIFY_CX_STATES:
1056	device_printf(sc->cpu_dev, "Cx states changed\n");
1057	/* acpi_cpu_cx_cst(sc); */
1058	break;
1059    default:
1060	device_printf(sc->cpu_dev, "Unknown notify %#x\n", notify);
1061	break;
1062    }
1063}
1064
1065static int
1066acpi_cpu_quirks(struct acpi_cpu_softc *sc)
1067{
1068    device_t acpi_dev;
1069
1070    /*
1071     * C3 on multiple CPUs requires using the expensive flush cache
1072     * instruction.
1073     */
1074    if (mp_ncpus > 1)
1075	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1076
1077    /* Look for various quirks of the PIIX4 part. */
1078    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1079    if (acpi_dev != NULL) {
1080	switch (pci_get_revid(acpi_dev)) {
1081	/*
1082	 * Disable throttling control on PIIX4 A and B-step.
1083	 * See specification changes #13 ("Manual Throttle Duty Cycle")
1084	 * and #14 ("Enabling and Disabling Manual Throttle"), plus
1085	 * erratum #5 ("STPCLK# Deassertion Time") from the January
1086	 * 2002 PIIX4 specification update.  Note that few (if any)
1087	 * mobile systems ever used this part.
1088	 */
1089	case PCI_REVISION_A_STEP:
1090	case PCI_REVISION_B_STEP:
1091	    cpu_quirks |= CPU_QUIRK_NO_THROTTLE;
1092	    /* FALLTHROUGH */
1093	/*
1094	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1095	 * do not report the BMIDE status to the BM status register and
1096	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1097	 * works around the BMIDE bug by reading the BM status directly
1098	 * but we take the simpler approach of disabling C3 for these
1099	 * parts.
1100	 *
1101	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1102	 * Livelock") from the January 2002 PIIX4 specification update.
1103	 * Applies to all PIIX4 models.
1104	 */
1105	case PCI_REVISION_4E:
1106	case PCI_REVISION_4M:
1107	    cpu_quirks |= CPU_QUIRK_NO_C3;
1108	    break;
1109	default:
1110	    break;
1111	}
1112    }
1113
1114    return (0);
1115}
1116
1117/* Handle changes in the CPU throttling setting. */
1118static int
1119acpi_cpu_throttle_sysctl(SYSCTL_HANDLER_ARGS)
1120{
1121    uint32_t	*argp;
1122    uint32_t	 arg;
1123    int		 error;
1124
1125    argp = (uint32_t *)oidp->oid_arg1;
1126    arg = *argp;
1127    error = sysctl_handle_int(oidp, &arg, 0, req);
1128
1129    /* Error or no new value */
1130    if (error != 0 || req->newptr == NULL)
1131	return (error);
1132    if (arg < 1 || arg > cpu_throttle_max)
1133	return (EINVAL);
1134
1135    /* If throttling changed, notify the BIOS of the new rate. */
1136    ACPI_SERIAL_BEGIN(cpu);
1137    if (*argp != arg) {
1138	*argp = arg;
1139	acpi_cpu_throttle_set(arg);
1140    }
1141    ACPI_SERIAL_END(cpu);
1142
1143    return (0);
1144}
1145
1146static int
1147acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1148{
1149    struct sbuf	 sb;
1150    char	 buf[128];
1151    int		 i;
1152    uintmax_t	 fract, sum, whole;
1153
1154    sum = 0;
1155    for (i = 0; i < cpu_cx_count; i++)
1156	sum += cpu_cx_stats[i];
1157    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1158    for (i = 0; i < cpu_cx_count; i++) {
1159	if (sum > 0) {
1160	    whole = (uintmax_t)cpu_cx_stats[i] * 100;
1161	    fract = (whole % sum) * 100;
1162	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1163		(u_int)(fract / sum));
1164	} else
1165	    sbuf_printf(&sb, "0%% ");
1166    }
1167    sbuf_trim(&sb);
1168    sbuf_finish(&sb);
1169    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1170    sbuf_delete(&sb);
1171
1172    return (0);
1173}
1174
1175static int
1176acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1177{
1178    struct	 acpi_cpu_softc *sc;
1179    char	 state[8];
1180    int		 val, error, i;
1181
1182    sc = device_get_softc(cpu_devices[0]);
1183    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
1184    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1185    if (error != 0 || req->newptr == NULL)
1186	return (error);
1187    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1188	return (EINVAL);
1189    val = (int) strtol(state + 1, NULL, 10) - 1;
1190    if (val < 0 || val > cpu_cx_count - 1)
1191	return (EINVAL);
1192
1193    ACPI_SERIAL_BEGIN(cpu);
1194    cpu_cx_lowest = val;
1195
1196    /* If not disabling, cache the new lowest non-C3 state. */
1197    cpu_non_c3 = 0;
1198    for (i = cpu_cx_lowest; i >= 0; i--) {
1199	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1200	    cpu_non_c3 = i;
1201	    break;
1202	}
1203    }
1204
1205    /* Reset the statistics counters. */
1206    bzero(cpu_cx_stats, sizeof(cpu_cx_stats));
1207    ACPI_SERIAL_END(cpu);
1208
1209    return (0);
1210}
1211