cvmx-uahcx-defs.h revision 259065
1/***********************license start***************
2 * Copyright (c) 2003-2012  Cavium Inc. (support@cavium.com). All rights
3 * reserved.
4 *
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 *   * Redistributions of source code must retain the above copyright
11 *     notice, this list of conditions and the following disclaimer.
12 *
13 *   * Redistributions in binary form must reproduce the above
14 *     copyright notice, this list of conditions and the following
15 *     disclaimer in the documentation and/or other materials provided
16 *     with the distribution.
17
18 *   * Neither the name of Cavium Inc. nor the names of
19 *     its contributors may be used to endorse or promote products
20 *     derived from this software without specific prior written
21 *     permission.
22
23 * This Software, including technical data, may be subject to U.S. export  control
24 * laws, including the U.S. Export Administration Act and its  associated
25 * regulations, and may be subject to export or import  regulations in other
26 * countries.
27
28 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
29 * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
30 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
31 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
32 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
33 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
34 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
35 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
36 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
37 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
38 ***********************license end**************************************/
39
40
41/**
42 * cvmx-uahcx-defs.h
43 *
44 * Configuration and status register (CSR) type definitions for
45 * Octeon uahcx.
46 *
47 * This file is auto generated. Do not edit.
48 *
49 * <hr>$Revision$<hr>
50 *
51 */
52#ifndef __CVMX_UAHCX_DEFS_H__
53#define __CVMX_UAHCX_DEFS_H__
54
55#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
56static inline uint64_t CVMX_UAHCX_EHCI_ASYNCLISTADDR(unsigned long block_id)
57{
58	if (!(
59	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
60	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
61	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
62	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
63	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
64		cvmx_warn("CVMX_UAHCX_EHCI_ASYNCLISTADDR(%lu) is invalid on this chip\n", block_id);
65	return CVMX_ADD_IO_SEG(0x00016F0000000028ull);
66}
67#else
68#define CVMX_UAHCX_EHCI_ASYNCLISTADDR(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000028ull))
69#endif
70#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
71static inline uint64_t CVMX_UAHCX_EHCI_CONFIGFLAG(unsigned long block_id)
72{
73	if (!(
74	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
75	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
76	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
77	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
78	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
79		cvmx_warn("CVMX_UAHCX_EHCI_CONFIGFLAG(%lu) is invalid on this chip\n", block_id);
80	return CVMX_ADD_IO_SEG(0x00016F0000000050ull);
81}
82#else
83#define CVMX_UAHCX_EHCI_CONFIGFLAG(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000050ull))
84#endif
85#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
86static inline uint64_t CVMX_UAHCX_EHCI_CTRLDSSEGMENT(unsigned long block_id)
87{
88	if (!(
89	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
90	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
91	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
92	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
93	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
94		cvmx_warn("CVMX_UAHCX_EHCI_CTRLDSSEGMENT(%lu) is invalid on this chip\n", block_id);
95	return CVMX_ADD_IO_SEG(0x00016F0000000020ull);
96}
97#else
98#define CVMX_UAHCX_EHCI_CTRLDSSEGMENT(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000020ull))
99#endif
100#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
101static inline uint64_t CVMX_UAHCX_EHCI_FRINDEX(unsigned long block_id)
102{
103	if (!(
104	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
105	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
106	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
107	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
108	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
109		cvmx_warn("CVMX_UAHCX_EHCI_FRINDEX(%lu) is invalid on this chip\n", block_id);
110	return CVMX_ADD_IO_SEG(0x00016F000000001Cull);
111}
112#else
113#define CVMX_UAHCX_EHCI_FRINDEX(block_id) (CVMX_ADD_IO_SEG(0x00016F000000001Cull))
114#endif
115#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
116static inline uint64_t CVMX_UAHCX_EHCI_HCCAPBASE(unsigned long block_id)
117{
118	if (!(
119	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
120	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
121	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
122	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
123	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
124		cvmx_warn("CVMX_UAHCX_EHCI_HCCAPBASE(%lu) is invalid on this chip\n", block_id);
125	return CVMX_ADD_IO_SEG(0x00016F0000000000ull);
126}
127#else
128#define CVMX_UAHCX_EHCI_HCCAPBASE(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000000ull))
129#endif
130#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
131static inline uint64_t CVMX_UAHCX_EHCI_HCCPARAMS(unsigned long block_id)
132{
133	if (!(
134	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
135	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
136	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
137	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
138	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
139		cvmx_warn("CVMX_UAHCX_EHCI_HCCPARAMS(%lu) is invalid on this chip\n", block_id);
140	return CVMX_ADD_IO_SEG(0x00016F0000000008ull);
141}
142#else
143#define CVMX_UAHCX_EHCI_HCCPARAMS(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000008ull))
144#endif
145#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
146static inline uint64_t CVMX_UAHCX_EHCI_HCSPARAMS(unsigned long block_id)
147{
148	if (!(
149	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
150	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
151	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
152	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
153	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
154		cvmx_warn("CVMX_UAHCX_EHCI_HCSPARAMS(%lu) is invalid on this chip\n", block_id);
155	return CVMX_ADD_IO_SEG(0x00016F0000000004ull);
156}
157#else
158#define CVMX_UAHCX_EHCI_HCSPARAMS(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000004ull))
159#endif
160#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
161static inline uint64_t CVMX_UAHCX_EHCI_INSNREG00(unsigned long block_id)
162{
163	if (!(
164	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
165	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
166	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
167	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
168	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
169		cvmx_warn("CVMX_UAHCX_EHCI_INSNREG00(%lu) is invalid on this chip\n", block_id);
170	return CVMX_ADD_IO_SEG(0x00016F0000000090ull);
171}
172#else
173#define CVMX_UAHCX_EHCI_INSNREG00(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000090ull))
174#endif
175#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
176static inline uint64_t CVMX_UAHCX_EHCI_INSNREG03(unsigned long block_id)
177{
178	if (!(
179	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
180	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
181	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
182	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
183	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
184		cvmx_warn("CVMX_UAHCX_EHCI_INSNREG03(%lu) is invalid on this chip\n", block_id);
185	return CVMX_ADD_IO_SEG(0x00016F000000009Cull);
186}
187#else
188#define CVMX_UAHCX_EHCI_INSNREG03(block_id) (CVMX_ADD_IO_SEG(0x00016F000000009Cull))
189#endif
190#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
191static inline uint64_t CVMX_UAHCX_EHCI_INSNREG04(unsigned long block_id)
192{
193	if (!(
194	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
195	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
196	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
197	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
198	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
199		cvmx_warn("CVMX_UAHCX_EHCI_INSNREG04(%lu) is invalid on this chip\n", block_id);
200	return CVMX_ADD_IO_SEG(0x00016F00000000A0ull);
201}
202#else
203#define CVMX_UAHCX_EHCI_INSNREG04(block_id) (CVMX_ADD_IO_SEG(0x00016F00000000A0ull))
204#endif
205#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
206static inline uint64_t CVMX_UAHCX_EHCI_INSNREG06(unsigned long block_id)
207{
208	if (!(
209	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
210	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
211	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
212	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
213	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
214		cvmx_warn("CVMX_UAHCX_EHCI_INSNREG06(%lu) is invalid on this chip\n", block_id);
215	return CVMX_ADD_IO_SEG(0x00016F00000000E8ull);
216}
217#else
218#define CVMX_UAHCX_EHCI_INSNREG06(block_id) (CVMX_ADD_IO_SEG(0x00016F00000000E8ull))
219#endif
220#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
221static inline uint64_t CVMX_UAHCX_EHCI_INSNREG07(unsigned long block_id)
222{
223	if (!(
224	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
225	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
226	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
227	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
228	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
229		cvmx_warn("CVMX_UAHCX_EHCI_INSNREG07(%lu) is invalid on this chip\n", block_id);
230	return CVMX_ADD_IO_SEG(0x00016F00000000ECull);
231}
232#else
233#define CVMX_UAHCX_EHCI_INSNREG07(block_id) (CVMX_ADD_IO_SEG(0x00016F00000000ECull))
234#endif
235#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
236static inline uint64_t CVMX_UAHCX_EHCI_PERIODICLISTBASE(unsigned long block_id)
237{
238	if (!(
239	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
240	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
241	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
242	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
243	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
244		cvmx_warn("CVMX_UAHCX_EHCI_PERIODICLISTBASE(%lu) is invalid on this chip\n", block_id);
245	return CVMX_ADD_IO_SEG(0x00016F0000000024ull);
246}
247#else
248#define CVMX_UAHCX_EHCI_PERIODICLISTBASE(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000024ull))
249#endif
250#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
251static inline uint64_t CVMX_UAHCX_EHCI_PORTSCX(unsigned long offset, unsigned long block_id)
252{
253	if (!(
254	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((((offset >= 1) && (offset <= 2))) && ((block_id == 0)))) ||
255	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((((offset >= 1) && (offset <= 2))) && ((block_id == 0)))) ||
256	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((((offset >= 1) && (offset <= 2))) && ((block_id == 0)))) ||
257	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((((offset >= 1) && (offset <= 2))) && ((block_id == 0)))) ||
258	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((((offset >= 1) && (offset <= 2))) && ((block_id == 0))))))
259		cvmx_warn("CVMX_UAHCX_EHCI_PORTSCX(%lu,%lu) is invalid on this chip\n", offset, block_id);
260	return CVMX_ADD_IO_SEG(0x00016F0000000050ull) + (((offset) & 3) + ((block_id) & 0) * 0x0ull) * 4;
261}
262#else
263#define CVMX_UAHCX_EHCI_PORTSCX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0000000050ull) + (((offset) & 3) + ((block_id) & 0) * 0x0ull) * 4)
264#endif
265#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
266static inline uint64_t CVMX_UAHCX_EHCI_USBCMD(unsigned long block_id)
267{
268	if (!(
269	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
270	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
271	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
272	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
273	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
274		cvmx_warn("CVMX_UAHCX_EHCI_USBCMD(%lu) is invalid on this chip\n", block_id);
275	return CVMX_ADD_IO_SEG(0x00016F0000000010ull);
276}
277#else
278#define CVMX_UAHCX_EHCI_USBCMD(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000010ull))
279#endif
280#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
281static inline uint64_t CVMX_UAHCX_EHCI_USBINTR(unsigned long block_id)
282{
283	if (!(
284	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
285	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
286	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
287	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
288	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
289		cvmx_warn("CVMX_UAHCX_EHCI_USBINTR(%lu) is invalid on this chip\n", block_id);
290	return CVMX_ADD_IO_SEG(0x00016F0000000018ull);
291}
292#else
293#define CVMX_UAHCX_EHCI_USBINTR(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000018ull))
294#endif
295#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
296static inline uint64_t CVMX_UAHCX_EHCI_USBSTS(unsigned long block_id)
297{
298	if (!(
299	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
300	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
301	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
302	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
303	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
304		cvmx_warn("CVMX_UAHCX_EHCI_USBSTS(%lu) is invalid on this chip\n", block_id);
305	return CVMX_ADD_IO_SEG(0x00016F0000000014ull);
306}
307#else
308#define CVMX_UAHCX_EHCI_USBSTS(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000014ull))
309#endif
310#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
311static inline uint64_t CVMX_UAHCX_OHCI0_HCBULKCURRENTED(unsigned long block_id)
312{
313	if (!(
314	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
315	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
316	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
317	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
318	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
319		cvmx_warn("CVMX_UAHCX_OHCI0_HCBULKCURRENTED(%lu) is invalid on this chip\n", block_id);
320	return CVMX_ADD_IO_SEG(0x00016F000000042Cull);
321}
322#else
323#define CVMX_UAHCX_OHCI0_HCBULKCURRENTED(block_id) (CVMX_ADD_IO_SEG(0x00016F000000042Cull))
324#endif
325#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
326static inline uint64_t CVMX_UAHCX_OHCI0_HCBULKHEADED(unsigned long block_id)
327{
328	if (!(
329	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
330	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
331	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
332	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
333	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
334		cvmx_warn("CVMX_UAHCX_OHCI0_HCBULKHEADED(%lu) is invalid on this chip\n", block_id);
335	return CVMX_ADD_IO_SEG(0x00016F0000000428ull);
336}
337#else
338#define CVMX_UAHCX_OHCI0_HCBULKHEADED(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000428ull))
339#endif
340#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
341static inline uint64_t CVMX_UAHCX_OHCI0_HCCOMMANDSTATUS(unsigned long block_id)
342{
343	if (!(
344	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
345	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
346	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
347	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
348	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
349		cvmx_warn("CVMX_UAHCX_OHCI0_HCCOMMANDSTATUS(%lu) is invalid on this chip\n", block_id);
350	return CVMX_ADD_IO_SEG(0x00016F0000000408ull);
351}
352#else
353#define CVMX_UAHCX_OHCI0_HCCOMMANDSTATUS(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000408ull))
354#endif
355#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
356static inline uint64_t CVMX_UAHCX_OHCI0_HCCONTROL(unsigned long block_id)
357{
358	if (!(
359	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
360	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
361	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
362	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
363	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
364		cvmx_warn("CVMX_UAHCX_OHCI0_HCCONTROL(%lu) is invalid on this chip\n", block_id);
365	return CVMX_ADD_IO_SEG(0x00016F0000000404ull);
366}
367#else
368#define CVMX_UAHCX_OHCI0_HCCONTROL(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000404ull))
369#endif
370#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
371static inline uint64_t CVMX_UAHCX_OHCI0_HCCONTROLCURRENTED(unsigned long block_id)
372{
373	if (!(
374	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
375	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
376	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
377	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
378	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
379		cvmx_warn("CVMX_UAHCX_OHCI0_HCCONTROLCURRENTED(%lu) is invalid on this chip\n", block_id);
380	return CVMX_ADD_IO_SEG(0x00016F0000000424ull);
381}
382#else
383#define CVMX_UAHCX_OHCI0_HCCONTROLCURRENTED(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000424ull))
384#endif
385#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
386static inline uint64_t CVMX_UAHCX_OHCI0_HCCONTROLHEADED(unsigned long block_id)
387{
388	if (!(
389	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
390	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
391	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
392	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
393	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
394		cvmx_warn("CVMX_UAHCX_OHCI0_HCCONTROLHEADED(%lu) is invalid on this chip\n", block_id);
395	return CVMX_ADD_IO_SEG(0x00016F0000000420ull);
396}
397#else
398#define CVMX_UAHCX_OHCI0_HCCONTROLHEADED(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000420ull))
399#endif
400#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
401static inline uint64_t CVMX_UAHCX_OHCI0_HCDONEHEAD(unsigned long block_id)
402{
403	if (!(
404	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
405	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
406	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
407	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
408	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
409		cvmx_warn("CVMX_UAHCX_OHCI0_HCDONEHEAD(%lu) is invalid on this chip\n", block_id);
410	return CVMX_ADD_IO_SEG(0x00016F0000000430ull);
411}
412#else
413#define CVMX_UAHCX_OHCI0_HCDONEHEAD(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000430ull))
414#endif
415#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
416static inline uint64_t CVMX_UAHCX_OHCI0_HCFMINTERVAL(unsigned long block_id)
417{
418	if (!(
419	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
420	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
421	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
422	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
423	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
424		cvmx_warn("CVMX_UAHCX_OHCI0_HCFMINTERVAL(%lu) is invalid on this chip\n", block_id);
425	return CVMX_ADD_IO_SEG(0x00016F0000000434ull);
426}
427#else
428#define CVMX_UAHCX_OHCI0_HCFMINTERVAL(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000434ull))
429#endif
430#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
431static inline uint64_t CVMX_UAHCX_OHCI0_HCFMNUMBER(unsigned long block_id)
432{
433	if (!(
434	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
435	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
436	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
437	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
438	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
439		cvmx_warn("CVMX_UAHCX_OHCI0_HCFMNUMBER(%lu) is invalid on this chip\n", block_id);
440	return CVMX_ADD_IO_SEG(0x00016F000000043Cull);
441}
442#else
443#define CVMX_UAHCX_OHCI0_HCFMNUMBER(block_id) (CVMX_ADD_IO_SEG(0x00016F000000043Cull))
444#endif
445#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
446static inline uint64_t CVMX_UAHCX_OHCI0_HCFMREMAINING(unsigned long block_id)
447{
448	if (!(
449	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
450	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
451	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
452	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
453	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
454		cvmx_warn("CVMX_UAHCX_OHCI0_HCFMREMAINING(%lu) is invalid on this chip\n", block_id);
455	return CVMX_ADD_IO_SEG(0x00016F0000000438ull);
456}
457#else
458#define CVMX_UAHCX_OHCI0_HCFMREMAINING(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000438ull))
459#endif
460#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
461static inline uint64_t CVMX_UAHCX_OHCI0_HCHCCA(unsigned long block_id)
462{
463	if (!(
464	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
465	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
466	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
467	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
468	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
469		cvmx_warn("CVMX_UAHCX_OHCI0_HCHCCA(%lu) is invalid on this chip\n", block_id);
470	return CVMX_ADD_IO_SEG(0x00016F0000000418ull);
471}
472#else
473#define CVMX_UAHCX_OHCI0_HCHCCA(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000418ull))
474#endif
475#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
476static inline uint64_t CVMX_UAHCX_OHCI0_HCINTERRUPTDISABLE(unsigned long block_id)
477{
478	if (!(
479	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
480	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
481	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
482	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
483	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
484		cvmx_warn("CVMX_UAHCX_OHCI0_HCINTERRUPTDISABLE(%lu) is invalid on this chip\n", block_id);
485	return CVMX_ADD_IO_SEG(0x00016F0000000414ull);
486}
487#else
488#define CVMX_UAHCX_OHCI0_HCINTERRUPTDISABLE(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000414ull))
489#endif
490#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
491static inline uint64_t CVMX_UAHCX_OHCI0_HCINTERRUPTENABLE(unsigned long block_id)
492{
493	if (!(
494	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
495	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
496	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
497	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
498	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
499		cvmx_warn("CVMX_UAHCX_OHCI0_HCINTERRUPTENABLE(%lu) is invalid on this chip\n", block_id);
500	return CVMX_ADD_IO_SEG(0x00016F0000000410ull);
501}
502#else
503#define CVMX_UAHCX_OHCI0_HCINTERRUPTENABLE(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000410ull))
504#endif
505#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
506static inline uint64_t CVMX_UAHCX_OHCI0_HCINTERRUPTSTATUS(unsigned long block_id)
507{
508	if (!(
509	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
510	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
511	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
512	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
513	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
514		cvmx_warn("CVMX_UAHCX_OHCI0_HCINTERRUPTSTATUS(%lu) is invalid on this chip\n", block_id);
515	return CVMX_ADD_IO_SEG(0x00016F000000040Cull);
516}
517#else
518#define CVMX_UAHCX_OHCI0_HCINTERRUPTSTATUS(block_id) (CVMX_ADD_IO_SEG(0x00016F000000040Cull))
519#endif
520#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
521static inline uint64_t CVMX_UAHCX_OHCI0_HCLSTHRESHOLD(unsigned long block_id)
522{
523	if (!(
524	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
525	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
526	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
527	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
528	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
529		cvmx_warn("CVMX_UAHCX_OHCI0_HCLSTHRESHOLD(%lu) is invalid on this chip\n", block_id);
530	return CVMX_ADD_IO_SEG(0x00016F0000000444ull);
531}
532#else
533#define CVMX_UAHCX_OHCI0_HCLSTHRESHOLD(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000444ull))
534#endif
535#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
536static inline uint64_t CVMX_UAHCX_OHCI0_HCPERIODCURRENTED(unsigned long block_id)
537{
538	if (!(
539	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
540	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
541	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
542	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
543	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
544		cvmx_warn("CVMX_UAHCX_OHCI0_HCPERIODCURRENTED(%lu) is invalid on this chip\n", block_id);
545	return CVMX_ADD_IO_SEG(0x00016F000000041Cull);
546}
547#else
548#define CVMX_UAHCX_OHCI0_HCPERIODCURRENTED(block_id) (CVMX_ADD_IO_SEG(0x00016F000000041Cull))
549#endif
550#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
551static inline uint64_t CVMX_UAHCX_OHCI0_HCPERIODICSTART(unsigned long block_id)
552{
553	if (!(
554	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
555	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
556	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
557	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
558	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
559		cvmx_warn("CVMX_UAHCX_OHCI0_HCPERIODICSTART(%lu) is invalid on this chip\n", block_id);
560	return CVMX_ADD_IO_SEG(0x00016F0000000440ull);
561}
562#else
563#define CVMX_UAHCX_OHCI0_HCPERIODICSTART(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000440ull))
564#endif
565#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
566static inline uint64_t CVMX_UAHCX_OHCI0_HCREVISION(unsigned long block_id)
567{
568	if (!(
569	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
570	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
571	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
572	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
573	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
574		cvmx_warn("CVMX_UAHCX_OHCI0_HCREVISION(%lu) is invalid on this chip\n", block_id);
575	return CVMX_ADD_IO_SEG(0x00016F0000000400ull);
576}
577#else
578#define CVMX_UAHCX_OHCI0_HCREVISION(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000400ull))
579#endif
580#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
581static inline uint64_t CVMX_UAHCX_OHCI0_HCRHDESCRIPTORA(unsigned long block_id)
582{
583	if (!(
584	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
585	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
586	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
587	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
588	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
589		cvmx_warn("CVMX_UAHCX_OHCI0_HCRHDESCRIPTORA(%lu) is invalid on this chip\n", block_id);
590	return CVMX_ADD_IO_SEG(0x00016F0000000448ull);
591}
592#else
593#define CVMX_UAHCX_OHCI0_HCRHDESCRIPTORA(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000448ull))
594#endif
595#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
596static inline uint64_t CVMX_UAHCX_OHCI0_HCRHDESCRIPTORB(unsigned long block_id)
597{
598	if (!(
599	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
600	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
601	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
602	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
603	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
604		cvmx_warn("CVMX_UAHCX_OHCI0_HCRHDESCRIPTORB(%lu) is invalid on this chip\n", block_id);
605	return CVMX_ADD_IO_SEG(0x00016F000000044Cull);
606}
607#else
608#define CVMX_UAHCX_OHCI0_HCRHDESCRIPTORB(block_id) (CVMX_ADD_IO_SEG(0x00016F000000044Cull))
609#endif
610#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
611static inline uint64_t CVMX_UAHCX_OHCI0_HCRHPORTSTATUSX(unsigned long offset, unsigned long block_id)
612{
613	if (!(
614	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((((offset >= 1) && (offset <= 2))) && ((block_id == 0)))) ||
615	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((((offset >= 1) && (offset <= 2))) && ((block_id == 0)))) ||
616	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((((offset >= 1) && (offset <= 2))) && ((block_id == 0)))) ||
617	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((((offset >= 1) && (offset <= 2))) && ((block_id == 0)))) ||
618	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((((offset >= 1) && (offset <= 2))) && ((block_id == 0))))))
619		cvmx_warn("CVMX_UAHCX_OHCI0_HCRHPORTSTATUSX(%lu,%lu) is invalid on this chip\n", offset, block_id);
620	return CVMX_ADD_IO_SEG(0x00016F0000000450ull) + (((offset) & 3) + ((block_id) & 0) * 0x0ull) * 4;
621}
622#else
623#define CVMX_UAHCX_OHCI0_HCRHPORTSTATUSX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0000000450ull) + (((offset) & 3) + ((block_id) & 0) * 0x0ull) * 4)
624#endif
625#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
626static inline uint64_t CVMX_UAHCX_OHCI0_HCRHSTATUS(unsigned long block_id)
627{
628	if (!(
629	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
630	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
631	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
632	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
633	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
634		cvmx_warn("CVMX_UAHCX_OHCI0_HCRHSTATUS(%lu) is invalid on this chip\n", block_id);
635	return CVMX_ADD_IO_SEG(0x00016F0000000450ull);
636}
637#else
638#define CVMX_UAHCX_OHCI0_HCRHSTATUS(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000450ull))
639#endif
640#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
641static inline uint64_t CVMX_UAHCX_OHCI0_INSNREG06(unsigned long block_id)
642{
643	if (!(
644	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
645	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
646	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
647	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
648	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
649		cvmx_warn("CVMX_UAHCX_OHCI0_INSNREG06(%lu) is invalid on this chip\n", block_id);
650	return CVMX_ADD_IO_SEG(0x00016F0000000498ull);
651}
652#else
653#define CVMX_UAHCX_OHCI0_INSNREG06(block_id) (CVMX_ADD_IO_SEG(0x00016F0000000498ull))
654#endif
655#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
656static inline uint64_t CVMX_UAHCX_OHCI0_INSNREG07(unsigned long block_id)
657{
658	if (!(
659	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((block_id == 0))) ||
660	      (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))) ||
661	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((block_id == 0))) ||
662	      (OCTEON_IS_MODEL(OCTEON_CN68XX) && ((block_id == 0))) ||
663	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((block_id == 0)))))
664		cvmx_warn("CVMX_UAHCX_OHCI0_INSNREG07(%lu) is invalid on this chip\n", block_id);
665	return CVMX_ADD_IO_SEG(0x00016F000000049Cull);
666}
667#else
668#define CVMX_UAHCX_OHCI0_INSNREG07(block_id) (CVMX_ADD_IO_SEG(0x00016F000000049Cull))
669#endif
670
671/**
672 * cvmx_uahc#_ehci_asynclistaddr
673 *
674 * ASYNCLISTADDR = Current Asynchronous List Address Register
675 *
676 * This 32-bit register contains the address of the next asynchronous queue head to be executed. If the host
677 * controller is in 64-bit mode (as indicated by a one in 64-bit Addressing Capability field in the
678 * HCCPARAMS register), then the most significant 32 bits of every control data structure address comes from
679 * the CTRLDSSEGMENT register (See Section 2.3.5). Bits [4:0] of this register cannot be modified by system
680 * software and will always return a zero when read. The memory structure referenced by this physical memory
681 * pointer is assumed to be 32-byte (cache line) aligned.
682 */
683union cvmx_uahcx_ehci_asynclistaddr {
684	uint32_t u32;
685	struct cvmx_uahcx_ehci_asynclistaddr_s {
686#ifdef __BIG_ENDIAN_BITFIELD
687	uint32_t lpl                          : 27; /**< Link Pointer Low (LPL). These bits correspond to memory address signals [31:5],
688                                                         respectively. This field may only reference a Queue Head (QH). */
689	uint32_t reserved_0_4                 : 5;
690#else
691	uint32_t reserved_0_4                 : 5;
692	uint32_t lpl                          : 27;
693#endif
694	} s;
695	struct cvmx_uahcx_ehci_asynclistaddr_s cn61xx;
696	struct cvmx_uahcx_ehci_asynclistaddr_s cn63xx;
697	struct cvmx_uahcx_ehci_asynclistaddr_s cn63xxp1;
698	struct cvmx_uahcx_ehci_asynclistaddr_s cn66xx;
699	struct cvmx_uahcx_ehci_asynclistaddr_s cn68xx;
700	struct cvmx_uahcx_ehci_asynclistaddr_s cn68xxp1;
701	struct cvmx_uahcx_ehci_asynclistaddr_s cnf71xx;
702};
703typedef union cvmx_uahcx_ehci_asynclistaddr cvmx_uahcx_ehci_asynclistaddr_t;
704
705/**
706 * cvmx_uahc#_ehci_configflag
707 *
708 * CONFIGFLAG = Configure Flag Register
709 * This register is in the auxiliary power well. It is only reset by hardware when the auxiliary power is initially
710 * applied or in response to a host controller reset.
711 */
712union cvmx_uahcx_ehci_configflag {
713	uint32_t u32;
714	struct cvmx_uahcx_ehci_configflag_s {
715#ifdef __BIG_ENDIAN_BITFIELD
716	uint32_t reserved_1_31                : 31;
717	uint32_t cf                           : 1;  /**< Configure Flag (CF) .Host software sets this bit as the last action in
718                                                         its process of configuring the Host Controller (see Section 4.1). This bit controls the
719                                                         default port-routing control logic. Bit values and side-effects are listed below.
720                                                          0b: Port routing control logic default-routes each port to an implementation
721                                                              dependent classic host controller.
722                                                          1b: Port routing control logic default-routes all ports to this host controller. */
723#else
724	uint32_t cf                           : 1;
725	uint32_t reserved_1_31                : 31;
726#endif
727	} s;
728	struct cvmx_uahcx_ehci_configflag_s   cn61xx;
729	struct cvmx_uahcx_ehci_configflag_s   cn63xx;
730	struct cvmx_uahcx_ehci_configflag_s   cn63xxp1;
731	struct cvmx_uahcx_ehci_configflag_s   cn66xx;
732	struct cvmx_uahcx_ehci_configflag_s   cn68xx;
733	struct cvmx_uahcx_ehci_configflag_s   cn68xxp1;
734	struct cvmx_uahcx_ehci_configflag_s   cnf71xx;
735};
736typedef union cvmx_uahcx_ehci_configflag cvmx_uahcx_ehci_configflag_t;
737
738/**
739 * cvmx_uahc#_ehci_ctrldssegment
740 *
741 * CTRLDSSEGMENT = Control Data Structure Segment Register
742 *
743 * This 32-bit register corresponds to the most significant address bits [63:32] for all EHCI data structures. If
744 * the 64-bit Addressing Capability field in HCCPARAMS is a zero, then this register is not used. Software
745 * cannot write to it and a read from this register will return zeros.
746 *
747 * If the 64-bit Addressing Capability field in HCCPARAMS is a one, then this register is used with the link
748 * pointers to construct 64-bit addresses to EHCI control data structures. This register is concatenated with the
749 * link pointer from either the PERIODICLISTBASE, ASYNCLISTADDR, or any control data structure link
750 * field to construct a 64-bit address.
751 *
752 * This register allows the host software to locate all control data structures within the same 4 Gigabyte
753 * memory segment.
754 */
755union cvmx_uahcx_ehci_ctrldssegment {
756	uint32_t u32;
757	struct cvmx_uahcx_ehci_ctrldssegment_s {
758#ifdef __BIG_ENDIAN_BITFIELD
759	uint32_t ctrldsseg                    : 32; /**< Control Data Strucute Semgent Address Bit [63:32] */
760#else
761	uint32_t ctrldsseg                    : 32;
762#endif
763	} s;
764	struct cvmx_uahcx_ehci_ctrldssegment_s cn61xx;
765	struct cvmx_uahcx_ehci_ctrldssegment_s cn63xx;
766	struct cvmx_uahcx_ehci_ctrldssegment_s cn63xxp1;
767	struct cvmx_uahcx_ehci_ctrldssegment_s cn66xx;
768	struct cvmx_uahcx_ehci_ctrldssegment_s cn68xx;
769	struct cvmx_uahcx_ehci_ctrldssegment_s cn68xxp1;
770	struct cvmx_uahcx_ehci_ctrldssegment_s cnf71xx;
771};
772typedef union cvmx_uahcx_ehci_ctrldssegment cvmx_uahcx_ehci_ctrldssegment_t;
773
774/**
775 * cvmx_uahc#_ehci_frindex
776 *
777 * FRINDEX = Frame Index Register
778 * This register is used by the host controller to index into the periodic frame list. The register updates every
779 * 125 microseconds (once each micro-frame). Bits [N:3] are used to select a particular entry in the Periodic
780 * Frame List during periodic schedule execution. The number of bits used for the index depends on the size of
781 * the frame list as set by system software in the Frame List Size field in the USBCMD register.
782 * This register cannot be written unless the Host Controller is in the Halted state as indicated by the
783 * HCHalted bit. A write to this register while the Run/Stop bit is set to a one (USBCMD register) produces
784 * undefined results. Writes to this register also affect the SOF value.
785 */
786union cvmx_uahcx_ehci_frindex {
787	uint32_t u32;
788	struct cvmx_uahcx_ehci_frindex_s {
789#ifdef __BIG_ENDIAN_BITFIELD
790	uint32_t reserved_14_31               : 18;
791	uint32_t fi                           : 14; /**< Frame Index. The value in this register increments at the end of each time frame (e.g.
792                                                         micro-frame). Bits [N:3] are used for the Frame List current index. This means that each
793                                                         location of the frame list is accessed 8 times (frames or micro-frames) before moving to
794                                                         the next index. The following illustrates values of N based on the value of the Frame List
795                                                         Size field in the USBCMD register.
796                                                         USBCMD[Frame List Size] Number Elements N
797                                                            00b (1024) 12
798                                                            01b (512) 11
799                                                            10b (256) 10
800                                                            11b Reserved */
801#else
802	uint32_t fi                           : 14;
803	uint32_t reserved_14_31               : 18;
804#endif
805	} s;
806	struct cvmx_uahcx_ehci_frindex_s      cn61xx;
807	struct cvmx_uahcx_ehci_frindex_s      cn63xx;
808	struct cvmx_uahcx_ehci_frindex_s      cn63xxp1;
809	struct cvmx_uahcx_ehci_frindex_s      cn66xx;
810	struct cvmx_uahcx_ehci_frindex_s      cn68xx;
811	struct cvmx_uahcx_ehci_frindex_s      cn68xxp1;
812	struct cvmx_uahcx_ehci_frindex_s      cnf71xx;
813};
814typedef union cvmx_uahcx_ehci_frindex cvmx_uahcx_ehci_frindex_t;
815
816/**
817 * cvmx_uahc#_ehci_hccapbase
818 *
819 * HCCAPBASE = Host Controller BASE Capability Register
820 *
821 */
822union cvmx_uahcx_ehci_hccapbase {
823	uint32_t u32;
824	struct cvmx_uahcx_ehci_hccapbase_s {
825#ifdef __BIG_ENDIAN_BITFIELD
826	uint32_t hciversion                   : 16; /**< Host Controller Interface Version Number */
827	uint32_t reserved_8_15                : 8;
828	uint32_t caplength                    : 8;  /**< Capabitlity Registers Length */
829#else
830	uint32_t caplength                    : 8;
831	uint32_t reserved_8_15                : 8;
832	uint32_t hciversion                   : 16;
833#endif
834	} s;
835	struct cvmx_uahcx_ehci_hccapbase_s    cn61xx;
836	struct cvmx_uahcx_ehci_hccapbase_s    cn63xx;
837	struct cvmx_uahcx_ehci_hccapbase_s    cn63xxp1;
838	struct cvmx_uahcx_ehci_hccapbase_s    cn66xx;
839	struct cvmx_uahcx_ehci_hccapbase_s    cn68xx;
840	struct cvmx_uahcx_ehci_hccapbase_s    cn68xxp1;
841	struct cvmx_uahcx_ehci_hccapbase_s    cnf71xx;
842};
843typedef union cvmx_uahcx_ehci_hccapbase cvmx_uahcx_ehci_hccapbase_t;
844
845/**
846 * cvmx_uahc#_ehci_hccparams
847 *
848 * HCCPARAMS = Host Controller Capability Parameters
849 * Multiple Mode control (time-base bit functionality), addressing capability
850 */
851union cvmx_uahcx_ehci_hccparams {
852	uint32_t u32;
853	struct cvmx_uahcx_ehci_hccparams_s {
854#ifdef __BIG_ENDIAN_BITFIELD
855	uint32_t reserved_16_31               : 16;
856	uint32_t eecp                         : 8;  /**< EHCI Extended Capabilities Pointer. Default = Implementation Dependent.
857                                                         This optional field indicates the existence of a capabilities list. A value of 00h indicates
858                                                         no extended capabilities are implemented. A non-zero value in this register indicates the
859                                                         offset in PCI configuration space of the first EHCI extended capability. The pointer value
860                                                         must be 40h or greater if implemented to maintain the consistency of the PCI header
861                                                         defined for this class of device. */
862	uint32_t ist                          : 4;  /**< Isochronous Scheduling Threshold. Default = implementation dependent. This field
863                                                         indicates, relative to the current position of the executing host controller, where software
864                                                         can reliably update the isochronous schedule. When bit [7] is zero, the value of the least
865                                                         significant 3 bits indicates the number of micro-frames a host controller can hold a set of
866                                                         isochronous data structures (one or more) before flushing the state. When bit [7] is a
867                                                         one, then host software assumes the host controller may cache an isochronous data
868                                                         structure for an entire frame. Refer to Section 4.7.2.1 for details on how software uses
869                                                         this information for scheduling isochronous transfers. */
870	uint32_t reserved_3_3                 : 1;
871	uint32_t aspc                         : 1;  /**< Asynchronous Schedule Park Capability. Default = Implementation dependent. If this
872                                                         bit is set to a one, then the host controller supports the park feature for high-speed
873                                                         queue heads in the Asynchronous Schedule. The feature can be disabled or enabled
874                                                         and set to a specific level by using the Asynchronous Schedule Park Mode Enable and
875                                                         Asynchronous Schedule Park Mode Count fields in the USBCMD register. */
876	uint32_t pflf                         : 1;  /**< Programmable Frame List Flag. Default = Implementation dependent. If this bit is set
877                                                         to a zero, then system software must use a frame list length of 1024 elements with this
878                                                         host controller. The USBCMD register Frame List Size field is a read-only register and
879                                                         should be set to zero.
880                                                         If set to a one, then system software can specify and use a smaller frame list and
881                                                         configure the host controller via the USBCMD register Frame List Size field. The frame
882                                                         list must always be aligned on a 4K page boundary. This requirement ensures that the
883                                                         frame list is always physically contiguous. */
884	uint32_t ac64                         : 1;  /**< 64-bit Addressing Capability1 . This field documents the addressing range capability of
885                                                          this implementation. The value of this field determines whether software should use the
886                                                          data structures defined in Section 3 (32-bit) or those defined in Appendix B (64-bit).
887                                                          Values for this field have the following interpretation:
888                                                         - 0: data structures using 32-bit address memory pointers
889                                                         - 1: data structures using 64-bit address memory pointers */
890#else
891	uint32_t ac64                         : 1;
892	uint32_t pflf                         : 1;
893	uint32_t aspc                         : 1;
894	uint32_t reserved_3_3                 : 1;
895	uint32_t ist                          : 4;
896	uint32_t eecp                         : 8;
897	uint32_t reserved_16_31               : 16;
898#endif
899	} s;
900	struct cvmx_uahcx_ehci_hccparams_s    cn61xx;
901	struct cvmx_uahcx_ehci_hccparams_s    cn63xx;
902	struct cvmx_uahcx_ehci_hccparams_s    cn63xxp1;
903	struct cvmx_uahcx_ehci_hccparams_s    cn66xx;
904	struct cvmx_uahcx_ehci_hccparams_s    cn68xx;
905	struct cvmx_uahcx_ehci_hccparams_s    cn68xxp1;
906	struct cvmx_uahcx_ehci_hccparams_s    cnf71xx;
907};
908typedef union cvmx_uahcx_ehci_hccparams cvmx_uahcx_ehci_hccparams_t;
909
910/**
911 * cvmx_uahc#_ehci_hcsparams
912 *
913 * HCSPARAMS = Host Controller Structural Parameters
914 * This is a set of fields that are structural parameters: Number of downstream ports, etc.
915 */
916union cvmx_uahcx_ehci_hcsparams {
917	uint32_t u32;
918	struct cvmx_uahcx_ehci_hcsparams_s {
919#ifdef __BIG_ENDIAN_BITFIELD
920	uint32_t reserved_24_31               : 8;
921	uint32_t dpn                          : 4;  /**< Debug Port Number. Optional. This register identifies which of the host controller ports
922                                                         is the debug port. The value is the port number (one-based) of the debug port. A nonzero
923                                                         value in this field indicates the presence of a debug port. The value in this register
924                                                         must not be greater than N_PORTS (see below). */
925	uint32_t reserved_17_19               : 3;
926	uint32_t p_indicator                  : 1;  /**< Port Indicator. This bit indicates whether the ports support port
927                                                         indicator control. When this bit is a one, the port status and control
928                                                         registers include a read/writeable field for controlling the state of
929                                                         the port indicator. */
930	uint32_t n_cc                         : 4;  /**< Number of Companion Controller. This field indicates the number of
931                                                         companion controllers associated with this USB 2.0 host controller.
932                                                         A zero in this field indicates there are no companion host controllers.
933                                                         Port-ownership hand-off is not supported. Only high-speed devices are
934                                                         supported on the host controller root ports.
935                                                         A value larger than zero in this field indicates there are companion USB 1.1 host
936                                                         controller(s). Port-ownership hand-offs are supported. High, Full-and Low-speed
937                                                         devices are supported on the host controller root ports. */
938	uint32_t n_pcc                        : 4;  /**< Number of Ports per Companion Controller (N_PCC). This field indicates
939                                                         the number of ports supported per companion host controller. It is used to
940                                                         indicate the port routing  configuration to system software. */
941	uint32_t prr                          : 1;  /**< Port Routing Rules. This field indicates the method used by this implementation for
942                                                         how all ports are mapped to companion controllers. The value of this field has
943                                                         the following interpretation:
944                                                         0 The first N_PCC ports are routed to the lowest numbered function
945                                                           companion host controller, the next N_PCC port are routed to the next
946                                                           lowest function companion controller, and so on.
947                                                         1 The port routing is explicitly enumerated by the first N_PORTS elements
948                                                           of the HCSP-PORTROUTE array. */
949	uint32_t reserved_5_6                 : 2;
950	uint32_t ppc                          : 1;  /**< Port Power Control. This field indicates whether the host controller
951                                                         implementation includes port power control. A one in this bit indicates the ports have
952                                                         port power switches. A zero in this bit indicates the port do not have port power
953                                                         switches. The value of this field affects the functionality of the Port Power field
954                                                         in each port status and control register (see Section 2.3.8). */
955	uint32_t n_ports                      : 4;  /**< This field specifies the number of physical downstream ports implemented
956                                                         on this host controller. The value of this field determines how many port registers are
957                                                         addressable in the Operational Register Space (see Table 2-8). Valid values are in the
958                                                         range of 1H to FH. A zero in this field is undefined. */
959#else
960	uint32_t n_ports                      : 4;
961	uint32_t ppc                          : 1;
962	uint32_t reserved_5_6                 : 2;
963	uint32_t prr                          : 1;
964	uint32_t n_pcc                        : 4;
965	uint32_t n_cc                         : 4;
966	uint32_t p_indicator                  : 1;
967	uint32_t reserved_17_19               : 3;
968	uint32_t dpn                          : 4;
969	uint32_t reserved_24_31               : 8;
970#endif
971	} s;
972	struct cvmx_uahcx_ehci_hcsparams_s    cn61xx;
973	struct cvmx_uahcx_ehci_hcsparams_s    cn63xx;
974	struct cvmx_uahcx_ehci_hcsparams_s    cn63xxp1;
975	struct cvmx_uahcx_ehci_hcsparams_s    cn66xx;
976	struct cvmx_uahcx_ehci_hcsparams_s    cn68xx;
977	struct cvmx_uahcx_ehci_hcsparams_s    cn68xxp1;
978	struct cvmx_uahcx_ehci_hcsparams_s    cnf71xx;
979};
980typedef union cvmx_uahcx_ehci_hcsparams cvmx_uahcx_ehci_hcsparams_t;
981
982/**
983 * cvmx_uahc#_ehci_insnreg00
984 *
985 * EHCI_INSNREG00 = EHCI Programmable Microframe Base Value Register (Synopsys Speicific)
986 * This register allows you to change the microframe length value (default is microframe SOF = 125 s) to reduce the simulation time.
987 */
988union cvmx_uahcx_ehci_insnreg00 {
989	uint32_t u32;
990	struct cvmx_uahcx_ehci_insnreg00_s {
991#ifdef __BIG_ENDIAN_BITFIELD
992	uint32_t reserved_14_31               : 18;
993	uint32_t mfmc                         : 13; /**< For byte interface (8-bits), <13:1> is used as the 1-microframe counter.
994                                                         For word interface (16_bits> <12:1> is used as the 1-microframe counter with word
995                                                           interface (16-bits). */
996	uint32_t en                           : 1;  /**< Writing 1b1 enables this register.
997                                                         Note: Do not enable this register for the gate-level netlist */
998#else
999	uint32_t en                           : 1;
1000	uint32_t mfmc                         : 13;
1001	uint32_t reserved_14_31               : 18;
1002#endif
1003	} s;
1004	struct cvmx_uahcx_ehci_insnreg00_s    cn61xx;
1005	struct cvmx_uahcx_ehci_insnreg00_s    cn63xx;
1006	struct cvmx_uahcx_ehci_insnreg00_s    cn63xxp1;
1007	struct cvmx_uahcx_ehci_insnreg00_s    cn66xx;
1008	struct cvmx_uahcx_ehci_insnreg00_s    cn68xx;
1009	struct cvmx_uahcx_ehci_insnreg00_s    cn68xxp1;
1010	struct cvmx_uahcx_ehci_insnreg00_s    cnf71xx;
1011};
1012typedef union cvmx_uahcx_ehci_insnreg00 cvmx_uahcx_ehci_insnreg00_t;
1013
1014/**
1015 * cvmx_uahc#_ehci_insnreg03
1016 *
1017 * EHCI_INSNREG03 = EHCI Timing Adjust Register (Synopsys Speicific)
1018 * This register allows you to change the timing of Phy Tx turnaround delay etc.
1019 */
1020union cvmx_uahcx_ehci_insnreg03 {
1021	uint32_t u32;
1022	struct cvmx_uahcx_ehci_insnreg03_s {
1023#ifdef __BIG_ENDIAN_BITFIELD
1024	uint32_t reserved_13_31               : 19;
1025	uint32_t txtx_tadao                   : 3;  /**< Tx-Tx turnaround Delay Add on. This field specifies the extra delays in phy_clks to
1026                                                         be added to the "Transmit to Transmit turnaround delay" value maintained in the core.
1027                                                         The default value of this register field is 0. This default value of 0 is sufficient
1028                                                         for most PHYs. But for some PHYs which puts wait states during the token packet, it
1029                                                         may be required to program a value greater than 0 to meet the transmit to transmit
1030                                                         minimum turnaround time. The recommendation to use the default value of 0 and change
1031                                                         it only if there is an issue with minimum transmit-to- transmit turnaround time. This
1032                                                         value should be programmed during core initialization and should not be changed afterwards. */
1033	uint32_t reserved_9_9                 : 1;
1034	uint32_t ta_off                       : 8;  /**< Time-Available Offset. This value indicates the additional number of bytes to be
1035                                                         accommodated for the time-available calculation. The USB traffic on the bus can be started
1036                                                         only when sufficient time is available to complete the packet within the EOF1 point. Refer
1037                                                         to the USB 2.0 specification for details of the EOF1 point. This time-available
1038                                                         calculation is done in the hardware, and can be further offset by programming a value in
1039                                                         this location.
1040                                                         Note: Time-available calculation is added for future flexibility. The application is not
1041                                                         required to program this field by default. */
1042	uint32_t reserved_0_0                 : 1;
1043#else
1044	uint32_t reserved_0_0                 : 1;
1045	uint32_t ta_off                       : 8;
1046	uint32_t reserved_9_9                 : 1;
1047	uint32_t txtx_tadao                   : 3;
1048	uint32_t reserved_13_31               : 19;
1049#endif
1050	} s;
1051	struct cvmx_uahcx_ehci_insnreg03_s    cn61xx;
1052	struct cvmx_uahcx_ehci_insnreg03_s    cn63xx;
1053	struct cvmx_uahcx_ehci_insnreg03_s    cn63xxp1;
1054	struct cvmx_uahcx_ehci_insnreg03_s    cn66xx;
1055	struct cvmx_uahcx_ehci_insnreg03_s    cn68xx;
1056	struct cvmx_uahcx_ehci_insnreg03_s    cn68xxp1;
1057	struct cvmx_uahcx_ehci_insnreg03_s    cnf71xx;
1058};
1059typedef union cvmx_uahcx_ehci_insnreg03 cvmx_uahcx_ehci_insnreg03_t;
1060
1061/**
1062 * cvmx_uahc#_ehci_insnreg04
1063 *
1064 * EHCI_INSNREG04 = EHCI Debug Register (Synopsys Speicific)
1065 * This register is used only for debug purposes.
1066 */
1067union cvmx_uahcx_ehci_insnreg04 {
1068	uint32_t u32;
1069	struct cvmx_uahcx_ehci_insnreg04_s {
1070#ifdef __BIG_ENDIAN_BITFIELD
1071	uint32_t reserved_6_31                : 26;
1072	uint32_t auto_dis                     : 1;  /**< Automatic feature disable.
1073                                                          1'b0: 0 by default, the automatic feature is enabled. The Suspend signal is deasserted
1074                                                                (logic level 1'b1) when run/stop is reset by software, but the hchalted bit is not
1075                                                                yet set.
1076                                                          1'b1: Disables the automatic feature, which takes all ports out of suspend when software
1077                                                                clears the run/stop bit. This is for backward compatibility.
1078                                                         This bit has an added functionality in release 2.80a and later. For systems where the host
1079                                                         is halted without waking up all ports out of suspend, the port can become stuck because
1080                                                         the PHYCLK is not running when the halt is programmed. To avoid this, the DWC H20AHB host
1081                                                         core automatically pulls ports out of suspend when the host is halted by software. This bit
1082                                                         is used to disable this automatic function. */
1083	uint32_t nakrf_dis                    : 1;  /**< NAK Reload Fix Disable.
1084                                                         1b0: NAK reload fix enabled.
1085                                                         1b1: NAK reload fix disabled. (Incorrect NAK reload transition at the end of a microframe
1086                                                              for backward compatibility with Release 2.40c. For more information see the USB 2.0
1087                                                              Host-AHB Release Notes. */
1088	uint32_t reserved_3_3                 : 1;
1089	uint32_t pesd                         : 1;  /**< Scales down port enumeration time.
1090                                                          1'b1: scale down enabled
1091                                                          1'b0:  scale downd disabled
1092                                                         This is for simulation only. */
1093	uint32_t hcp_fw                       : 1;  /**< HCCPARAMS Field Writeable.
1094                                                         1'b1: The HCCPARAMS register's bits 17, 15:4, and 2:0 become writable.
1095                                                         1'b0: The HCCPARAMS register's bits 17, 15:4, and 2:0 are not writable. */
1096	uint32_t hcp_rw                       : 1;  /**< HCCPARAMS Reigster Writeable.
1097                                                         1'b1: The HCCPARAMS register becomes writable.
1098                                                         1'b0: The HCCPARAMS register is not writable. */
1099#else
1100	uint32_t hcp_rw                       : 1;
1101	uint32_t hcp_fw                       : 1;
1102	uint32_t pesd                         : 1;
1103	uint32_t reserved_3_3                 : 1;
1104	uint32_t nakrf_dis                    : 1;
1105	uint32_t auto_dis                     : 1;
1106	uint32_t reserved_6_31                : 26;
1107#endif
1108	} s;
1109	struct cvmx_uahcx_ehci_insnreg04_s    cn61xx;
1110	struct cvmx_uahcx_ehci_insnreg04_s    cn63xx;
1111	struct cvmx_uahcx_ehci_insnreg04_s    cn63xxp1;
1112	struct cvmx_uahcx_ehci_insnreg04_s    cn66xx;
1113	struct cvmx_uahcx_ehci_insnreg04_s    cn68xx;
1114	struct cvmx_uahcx_ehci_insnreg04_s    cn68xxp1;
1115	struct cvmx_uahcx_ehci_insnreg04_s    cnf71xx;
1116};
1117typedef union cvmx_uahcx_ehci_insnreg04 cvmx_uahcx_ehci_insnreg04_t;
1118
1119/**
1120 * cvmx_uahc#_ehci_insnreg06
1121 *
1122 * EHCI_INSNREG06 = EHCI  AHB Error Status Register (Synopsys Speicific)
1123 * This register contains AHB Error Status.
1124 */
1125union cvmx_uahcx_ehci_insnreg06 {
1126	uint32_t u32;
1127	struct cvmx_uahcx_ehci_insnreg06_s {
1128#ifdef __BIG_ENDIAN_BITFIELD
1129	uint32_t vld                          : 1;  /**< AHB Error Captured. Indicator that an AHB error was encountered and values were captured.
1130                                                         To clear this field the application must write a 0 to it. */
1131	uint32_t reserved_0_30                : 31;
1132#else
1133	uint32_t reserved_0_30                : 31;
1134	uint32_t vld                          : 1;
1135#endif
1136	} s;
1137	struct cvmx_uahcx_ehci_insnreg06_s    cn61xx;
1138	struct cvmx_uahcx_ehci_insnreg06_s    cn63xx;
1139	struct cvmx_uahcx_ehci_insnreg06_s    cn63xxp1;
1140	struct cvmx_uahcx_ehci_insnreg06_s    cn66xx;
1141	struct cvmx_uahcx_ehci_insnreg06_s    cn68xx;
1142	struct cvmx_uahcx_ehci_insnreg06_s    cn68xxp1;
1143	struct cvmx_uahcx_ehci_insnreg06_s    cnf71xx;
1144};
1145typedef union cvmx_uahcx_ehci_insnreg06 cvmx_uahcx_ehci_insnreg06_t;
1146
1147/**
1148 * cvmx_uahc#_ehci_insnreg07
1149 *
1150 * EHCI_INSNREG07 = EHCI  AHB Error Address Register (Synopsys Speicific)
1151 * This register contains AHB Error Status.
1152 */
1153union cvmx_uahcx_ehci_insnreg07 {
1154	uint32_t u32;
1155	struct cvmx_uahcx_ehci_insnreg07_s {
1156#ifdef __BIG_ENDIAN_BITFIELD
1157	uint32_t err_addr                     : 32; /**< AHB Master Error Address. AHB address of the control phase at which the AHB error occurred */
1158#else
1159	uint32_t err_addr                     : 32;
1160#endif
1161	} s;
1162	struct cvmx_uahcx_ehci_insnreg07_s    cn61xx;
1163	struct cvmx_uahcx_ehci_insnreg07_s    cn63xx;
1164	struct cvmx_uahcx_ehci_insnreg07_s    cn63xxp1;
1165	struct cvmx_uahcx_ehci_insnreg07_s    cn66xx;
1166	struct cvmx_uahcx_ehci_insnreg07_s    cn68xx;
1167	struct cvmx_uahcx_ehci_insnreg07_s    cn68xxp1;
1168	struct cvmx_uahcx_ehci_insnreg07_s    cnf71xx;
1169};
1170typedef union cvmx_uahcx_ehci_insnreg07 cvmx_uahcx_ehci_insnreg07_t;
1171
1172/**
1173 * cvmx_uahc#_ehci_periodiclistbase
1174 *
1175 * PERIODICLISTBASE = Periodic Frame List Base Address Register
1176 *
1177 * This 32-bit register contains the beginning address of the Periodic Frame List in the system memory. If the
1178 * host controller is in 64-bit mode (as indicated by a one in the 64-bit Addressing Capability field in the
1179 * HCCSPARAMS register), then the most significant 32 bits of every control data structure address comes
1180 * from the CTRLDSSEGMENT register (see Section 2.3.5). System software loads this register prior to
1181 * starting the schedule execution by the Host Controller (see 4.1). The memory structure referenced by this
1182 * physical memory pointer is assumed to be 4-Kbyte aligned. The contents of this register are combined with
1183 * the Frame Index Register (FRINDEX) to enable the Host Controller to step through the Periodic Frame List
1184 * in sequence.
1185 */
1186union cvmx_uahcx_ehci_periodiclistbase {
1187	uint32_t u32;
1188	struct cvmx_uahcx_ehci_periodiclistbase_s {
1189#ifdef __BIG_ENDIAN_BITFIELD
1190	uint32_t baddr                        : 20; /**< Base Address (Low). These bits correspond to memory address signals [31:12],respectively. */
1191	uint32_t reserved_0_11                : 12;
1192#else
1193	uint32_t reserved_0_11                : 12;
1194	uint32_t baddr                        : 20;
1195#endif
1196	} s;
1197	struct cvmx_uahcx_ehci_periodiclistbase_s cn61xx;
1198	struct cvmx_uahcx_ehci_periodiclistbase_s cn63xx;
1199	struct cvmx_uahcx_ehci_periodiclistbase_s cn63xxp1;
1200	struct cvmx_uahcx_ehci_periodiclistbase_s cn66xx;
1201	struct cvmx_uahcx_ehci_periodiclistbase_s cn68xx;
1202	struct cvmx_uahcx_ehci_periodiclistbase_s cn68xxp1;
1203	struct cvmx_uahcx_ehci_periodiclistbase_s cnf71xx;
1204};
1205typedef union cvmx_uahcx_ehci_periodiclistbase cvmx_uahcx_ehci_periodiclistbase_t;
1206
1207/**
1208 * cvmx_uahc#_ehci_portsc#
1209 *
1210 * PORTSCX = Port X Status and Control Register
1211 * Default: 00002000h (w/PPC set to one); 00003000h (w/PPC set to a zero)
1212 */
1213union cvmx_uahcx_ehci_portscx {
1214	uint32_t u32;
1215	struct cvmx_uahcx_ehci_portscx_s {
1216#ifdef __BIG_ENDIAN_BITFIELD
1217	uint32_t reserved_23_31               : 9;
1218	uint32_t wkoc_e                       : 1;  /**< Wake on Over-current Enable.Writing this bit to a
1219                                                         one enables the port to be sensitive to over-current conditions as wake-up events.
1220                                                         This field is zero if Port Power is zero. */
1221	uint32_t wkdscnnt_e                   : 1;  /**< Wake on Disconnect Enable. Writing this bit to a one enables the port to be
1222                                                         sensitive to device disconnects as wake-up events.
1223                                                         This field is zero if Port Power is zero. */
1224	uint32_t wkcnnt_e                     : 1;  /**< Wake on Connect Enable. Writing this bit to a one enables the port to be
1225                                                         sensitive to device connects as wake-up events.
1226                                                         This field is zero if Port Power is zero. */
1227	uint32_t ptc                          : 4;  /**< Port Test Control. When this field is zero, the port is NOT
1228                                                         operating in a test mode. A non-zero value indicates that it is operating
1229                                                         in test mode and the specific test mode is indicated by the specific value.
1230                                                         The encoding of the test mode bits are (0110b - 1111b are reserved):
1231                                                         Bits Test Mode
1232                                                          0000b Test mode not enabled
1233                                                          0001b Test J_STATE
1234                                                          0010b Test K_STATE
1235                                                          0011b Test SE0_NAK
1236                                                          0100b Test Packet
1237                                                          0101b Test FORCE_ENABLE */
1238	uint32_t pic                          : 2;  /**< Port Indicator Control. Writing to these bits has no effect if the
1239                                                         P_INDICATOR bit in the HCSPARAMS register is a zero. If P_INDICATOR bit is a one,
1240                                                         then the bit encodings are:
1241                                                         Bit Value Meaning
1242                                                          00b Port indicators are off
1243                                                          01b Amber
1244                                                          10b Green
1245                                                          11b Undefined
1246                                                         This field is zero if Port Power is zero. */
1247	uint32_t po                           : 1;  /**< Port Owner.This bit unconditionally goes to a 0b when the
1248                                                         Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit
1249                                                         unconditionally goes to 1b whenever the Configured bit is zero.
1250                                                         System software uses this field to release ownership of the port to a selected host
1251                                                         controller (in the event that the attached device is not a high-speed device). Software
1252                                                         writes a one to this bit when the attached device is not a high-speed device. A one in
1253                                                         this bit means that a companion host controller owns and controls the port. */
1254	uint32_t pp                           : 1;  /**< Port Power. The function of this bit depends on the value of the Port
1255                                                         Power Control (PPC) field in the HCSPARAMS register. The behavior is as follows:
1256                                                         PPC PP    Operation
1257                                                          0b 1b    RO  - Host controller does not have port power control switches.
1258                                                                         Each port is hard-wired to power.
1259                                                          1b 1b/0b R/W - Host controller has port power control switches. This bit
1260                                                                         represents the current setting of the switch (0 = off, 1 = on). When
1261                                                                         power is not available on a port (i.e. PP equals a 0), the port is
1262                                                                         nonfunctional  and will not report attaches, detaches, etc.
1263                                                         When an over-current condition is detected on a powered port and PPC is a one, the PP
1264                                                         bit in each affected port may be transitioned by the host controller from a 1 to 0
1265                                                         (removing power from the port). */
1266	uint32_t lsts                         : 2;  /**< Line Status.These bits reflect the current logical levels of the D+ (bit 11) and D(bit 10)
1267                                                          signal lines. These bits are used for detection of low-speed USB devices prior to
1268                                                          the port reset and enable sequence. This field is valid only when the port enable bit is
1269                                                          zero and the current connect status bit is set to a one.
1270                                                          The encoding of the bits are:
1271                                                           Bits[11:10] USB State   Interpretation
1272                                                           00b         SE0         Not Low-speed device, perform EHCI reset
1273                                                           10b         J-state     Not Low-speed device, perform EHCI reset
1274                                                           01b         K-state     Low-speed device, release ownership of port
1275                                                           11b         Undefined   Not Low-speed device, perform EHCI reset.
1276                                                         This value of this field is undefined if Port Power is zero. */
1277	uint32_t reserved_9_9                 : 1;
1278	uint32_t prst                         : 1;  /**< Port Reset.1=Port is in Reset. 0=Port is not in Reset. Default = 0. When
1279                                                         software writes a one to this bit (from a zero), the bus reset sequence as defined in the
1280                                                         USB Specification Revision 2.0 is started. Software writes a zero to this bit to terminate
1281                                                         the bus reset sequence. Software must keep this bit at a one long enough to ensure the
1282                                                         reset sequence, as specified in the USB Specification Revision 2.0, completes. Note:
1283                                                         when software writes this bit to a one, it must also write a zero to the Port Enable bit.
1284                                                         Note that when software writes a zero to this bit there may be a delay before the bit
1285                                                         status changes to a zero. The bit status will not read as a zero until after the reset has
1286                                                         completed. If the port is in high-speed mode after reset is complete, the host controller
1287                                                         will automatically enable this port (e.g. set the Port Enable bit to a one). A host controller
1288                                                         must terminate the reset and stabilize the state of the port within 2 milliseconds of
1289                                                         software transitioning this bit from a one to a zero. For example: if the port detects that
1290                                                         the attached device is high-speed during reset, then the host controller must have the
1291                                                         port in the enabled state within 2ms of software writing this bit to a zero.
1292                                                         The HCHalted bit in the USBSTS register should be a zero before software attempts to
1293                                                         use this bit. The host controller may hold Port Reset asserted to a one when the
1294                                                         HCHalted bit is a one.
1295                                                         This field is zero if Port Power is zero. */
1296	uint32_t spd                          : 1;  /**< Suspend. 1=Port in suspend state. 0=Port not in suspend state. Default = 0. Port
1297                                                         Enabled Bit and Suspend bit of this register define the port states as follows:
1298                                                         Bits [Port Enabled, Suspend]     Port State
1299                                                                      0X                  Disable
1300                                                                      10                  Enable
1301                                                                      11                  Suspend
1302                                                         When in suspend state, downstream propagation of data is blocked on this port, except
1303                                                         for port reset. The blocking occurs at the end of the current transaction, if a transaction
1304                                                         was in progress when this bit was written to 1. In the suspend state, the port is sensitive
1305                                                         to resume detection. Note that the bit status does not change until the port is
1306                                                         suspended and that there may be a delay in suspending a port if there is a transaction
1307                                                         currently in progress on the USB.
1308                                                         A write of zero to this bit is ignored by the host controller. The host controller will
1309                                                         unconditionally set this bit to a zero when:
1310                                                         . Software sets the Force Port Resume bit to a zero (from a one).
1311                                                         . Software sets the Port Reset bit to a one (from a zero).
1312                                                         If host software sets this bit to a one when the port is not enabled (i.e. Port enabled bit is
1313                                                         a zero) the results are undefined.
1314                                                         This field is zero if Port Power is zero. */
1315	uint32_t fpr                          : 1;  /**< Force Port Resume.
1316                                                         1= Resume detected/driven on port. 0=No resume (Kstate)
1317                                                         detected/driven on port. Default = 0. This functionality defined for manipulating
1318                                                         this bit depends on the value of the Suspend bit. For example, if the port is not
1319                                                         suspended (Suspend and Enabled bits are a one) and software transitions this bit to a
1320                                                         one, then the effects on the bus are undefined.
1321                                                         Software sets this bit to a 1 to drive resume signaling. The Host Controller sets this bit to
1322                                                         a 1 if a J-to-K transition is detected while the port is in the Suspend state. When this bit
1323                                                         transitions to a one because a J-to-K transition is detected, the Port Change Detect bit in
1324                                                         the USBSTS register is also set to a one. If software sets this bit to a one, the host
1325                                                         controller must not set the Port Change Detect bit.
1326                                                         Note that when the EHCI controller owns the port, the resume sequence follows the
1327                                                         defined sequence documented in the USB Specification Revision 2.0. The resume
1328                                                         signaling (Full-speed 'K') is driven on the port as long as this bit remains a one. Software
1329                                                         must appropriately time the Resume and set this bit to a zero when the appropriate
1330                                                         amount of time has elapsed. Writing a zero (from one) causes the port to return to high-
1331                                                         speed mode (forcing the bus below the port into a high-speed idle). This bit will remain a
1332                                                         one until the port has switched to the high-speed idle. The host controller must complete
1333                                                         this transition within 2 milliseconds of software setting this bit to a zero.
1334                                                         This field is zero if Port Power is zero. */
1335	uint32_t occ                          : 1;  /**< Over-current Change. 1=This bit gets set to a one when there is a change to Over-current Active.
1336                                                         Software clears this bit by writing a one to this bit position. */
1337	uint32_t oca                          : 1;  /**< Over-current Active. 1=This port currently has an over-current condition. 0=This port does not
1338                                                         have an over-current condition. This bit will automatically transition from a one to a zero when
1339                                                         the over current condition is removed. */
1340	uint32_t pedc                         : 1;  /**< Port Enable/Disable Change. 1=Port enabled/disabled status has changed.
1341                                                         0=No change. Default = 0. For the root hub, this bit gets set to a one only when a port is
1342                                                               disabled due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of
1343                                                         the USB Specification for the definition of a Port Error). Software clears this bit by writing
1344                                                         a 1 to it.
1345                                                         This field is zero if Port Power is zero. */
1346	uint32_t ped                          : 1;  /**< Port Enabled/Disabled. 1=Enable. 0=Disable. Ports can only be
1347                                                         enabled by the host controller as a part of the reset and enable. Software cannot enable
1348                                                         a port by writing a one to this field. The host controller will only set this bit to a one when
1349                                                         the reset sequence determines that the attached device is a high-speed device.
1350                                                         Ports can be disabled by either a fault condition (disconnect event or other fault
1351                                                         condition) or by host software. Note that the bit status does not change until the port
1352                                                         state actually changes. There may be a delay in disabling or enabling a port due to other
1353                                                         host controller and bus events. See Section 4.2 for full details on port reset and enable.
1354                                                         When the port is disabled (0b) downstream propagation of data is blocked on this port,
1355                                                         except for reset.
1356                                                         This field is zero if Port Power is zero. */
1357	uint32_t csc                          : 1;  /**< Connect Status Change. 1=Change in Current Connect Status. 0=No change. Indicates a change
1358                                                         has occurred in the port's Current Connect Status. The host controller sets this bit for all
1359                                                         changes to the port device connect status, even if system software has not cleared an existing
1360                                                         connect status change. For example, the insertion status changes twice before system software
1361                                                         has cleared the changed condition, hub hardware will be setting an already-set bit
1362                                                         (i.e., the bit will remain set). Software sets this bit to 0 by writing a 1 to it.
1363                                                         This field is zero if Port Power is zero. */
1364	uint32_t ccs                          : 1;  /**< Current Connect Status. 1=Device is present on port. 0=No device is present.
1365                                                         This value reflects the current state of the port, and may not correspond
1366                                                         directly to the event that caused the Connect Status Change bit (Bit 1) to be set.
1367                                                         This field is zero if Port Power is zero. */
1368#else
1369	uint32_t ccs                          : 1;
1370	uint32_t csc                          : 1;
1371	uint32_t ped                          : 1;
1372	uint32_t pedc                         : 1;
1373	uint32_t oca                          : 1;
1374	uint32_t occ                          : 1;
1375	uint32_t fpr                          : 1;
1376	uint32_t spd                          : 1;
1377	uint32_t prst                         : 1;
1378	uint32_t reserved_9_9                 : 1;
1379	uint32_t lsts                         : 2;
1380	uint32_t pp                           : 1;
1381	uint32_t po                           : 1;
1382	uint32_t pic                          : 2;
1383	uint32_t ptc                          : 4;
1384	uint32_t wkcnnt_e                     : 1;
1385	uint32_t wkdscnnt_e                   : 1;
1386	uint32_t wkoc_e                       : 1;
1387	uint32_t reserved_23_31               : 9;
1388#endif
1389	} s;
1390	struct cvmx_uahcx_ehci_portscx_s      cn61xx;
1391	struct cvmx_uahcx_ehci_portscx_s      cn63xx;
1392	struct cvmx_uahcx_ehci_portscx_s      cn63xxp1;
1393	struct cvmx_uahcx_ehci_portscx_s      cn66xx;
1394	struct cvmx_uahcx_ehci_portscx_s      cn68xx;
1395	struct cvmx_uahcx_ehci_portscx_s      cn68xxp1;
1396	struct cvmx_uahcx_ehci_portscx_s      cnf71xx;
1397};
1398typedef union cvmx_uahcx_ehci_portscx cvmx_uahcx_ehci_portscx_t;
1399
1400/**
1401 * cvmx_uahc#_ehci_usbcmd
1402 *
1403 * USBCMD = USB Command Register
1404 * The Command Register indicates the command to be executed by the serial bus host controller. Writing to the register causes a command to be executed.
1405 */
1406union cvmx_uahcx_ehci_usbcmd {
1407	uint32_t u32;
1408	struct cvmx_uahcx_ehci_usbcmd_s {
1409#ifdef __BIG_ENDIAN_BITFIELD
1410	uint32_t reserved_24_31               : 8;
1411	uint32_t itc                          : 8;  /**< Interrupt Threshold Control. This field is used by system software
1412                                                         to select the maximum rate at which the host controller will issue interrupts. The only
1413                                                         valid values are defined below. If software writes an invalid value to this register, the
1414                                                         results are undefined. Value Maximum Interrupt Interval
1415                                                           00h Reserved
1416                                                           01h 1 micro-frame
1417                                                           02h 2 micro-frames
1418                                                           04h 4 micro-frames
1419                                                           08h 8 micro-frames (default, equates to 1 ms)
1420                                                           10h 16 micro-frames (2 ms)
1421                                                           20h 32 micro-frames (4 ms)
1422                                                           40h 64 micro-frames (8 ms) */
1423	uint32_t reserved_12_15               : 4;
1424	uint32_t aspm_en                      : 1;  /**< Asynchronous Schedule Park Mode Enable. */
1425	uint32_t reserved_10_10               : 1;
1426	uint32_t aspmc                        : 2;  /**< Asynchronous Schedule Park Mode Count. */
1427	uint32_t lhcr                         : 1;  /**< Light Host Controller Reset */
1428	uint32_t iaa_db                       : 1;  /**< Interrupt on Async Advance Doorbell.This bit is used as a doorbell by
1429                                                         software to tell the host controller to issue an interrupt the next time it advances
1430                                                         asynchronous schedule. Software must write a 1 to this bit to ring the doorbell.
1431                                                         When the host controller has evicted all appropriate cached schedule state, it sets the
1432                                                         Interrupt on Async Advance status bit in the USBSTS register. If the Interrupt on Async
1433                                                         Advance Enable bit in the USBINTR register is a one then the host controller will assert
1434                                                         an interrupt at the next interrupt threshold. */
1435	uint32_t as_en                        : 1;  /**< Asynchronous Schedule Enable .This bit controls whether the host
1436                                                         controller skips processing the Asynchronous Schedule. Values mean:
1437                                                          - 0: Do not process the Asynchronous Schedule
1438                                                          - 1: Use the ASYNCLISTADDR register to access the Asynchronous Schedule. */
1439	uint32_t ps_en                        : 1;  /**< Periodic Schedule Enable. This bit controls whether the host
1440                                                         controller skips processing the Periodic Schedule. Values mean:
1441                                                            - 0: Do not process the Periodic Schedule
1442                                                            - 1: Use the PERIODICLISTBASE register to access the Periodic Schedule. */
1443	uint32_t fls                          : 2;  /**< Frame List Size. This field is R/W only if Programmable
1444                                                         Frame List Flag in the HCCPARAMS registers is set to a one. This field specifies the
1445                                                         size of the frame list. The size the frame list controls which bits in the Frame Index
1446                                                         Register should be used for the Frame List Current index. Values mean:
1447                                                              00b: 1024 elements (4096 bytes) Default value
1448                                                              01b: 512 elements  (2048 bytes)
1449                                                              10b: 256 elements  (1024 bytes) - for resource-constrained environments
1450                                                              11b: Reserved */
1451	uint32_t hcreset                      : 1;  /**< Host Controller Reset (HCRESET). This control bit is used by software to reset
1452                                                         the host controller. The effects of this on Root Hub registers are similar to a Chip
1453                                                         Hardware Reset. When software writes a one to this bit, the Host Controller resets
1454                                                         its internal pipelines, timers, counters, state machines, etc. to their initial
1455                                                         value. Any transaction currently in progress on USB is immediately terminated.
1456                                                         A USB reset is not driven on downstream ports.
1457                                                         This bit is set to zero by the Host Controller when the reset process is complete. Software can not
1458                                                         terminate the reset process early by writing zero to this register.
1459                                                         Software should not set this bit to a one when the HCHalted bit in the USBSTS register is a zero.
1460                                                         Attempting to reset an activtely running host controller will result in undefined behavior. */
1461	uint32_t rs                           : 1;  /**< Run/Stop (RS).
1462                                                           1=Run. 0=Stop.
1463                                                         When set to a 1, the Host Controller proceeds with execution of the schedule.
1464                                                         The Host Controller continues execution as long as this bit is set to a 1.
1465                                                         When this bit is set to 0, the Host Controller completes the current and any
1466                                                         actively pipelined transactions on the USB and then halts. The Host
1467                                                         Controller must halt within 16 micro-frames after software clears the Run bit. The HC
1468                                                         Halted bit in the status register indicates when the Host Controller has finished its
1469                                                         pending pipelined transactions and has entered the stopped state. Software must not
1470                                                         write a one to this field unless the host controller is in the Halted state (i.e. HCHalted in
1471                                                         the USBSTS register is a one). Doing so will yield undefined results. */
1472#else
1473	uint32_t rs                           : 1;
1474	uint32_t hcreset                      : 1;
1475	uint32_t fls                          : 2;
1476	uint32_t ps_en                        : 1;
1477	uint32_t as_en                        : 1;
1478	uint32_t iaa_db                       : 1;
1479	uint32_t lhcr                         : 1;
1480	uint32_t aspmc                        : 2;
1481	uint32_t reserved_10_10               : 1;
1482	uint32_t aspm_en                      : 1;
1483	uint32_t reserved_12_15               : 4;
1484	uint32_t itc                          : 8;
1485	uint32_t reserved_24_31               : 8;
1486#endif
1487	} s;
1488	struct cvmx_uahcx_ehci_usbcmd_s       cn61xx;
1489	struct cvmx_uahcx_ehci_usbcmd_s       cn63xx;
1490	struct cvmx_uahcx_ehci_usbcmd_s       cn63xxp1;
1491	struct cvmx_uahcx_ehci_usbcmd_s       cn66xx;
1492	struct cvmx_uahcx_ehci_usbcmd_s       cn68xx;
1493	struct cvmx_uahcx_ehci_usbcmd_s       cn68xxp1;
1494	struct cvmx_uahcx_ehci_usbcmd_s       cnf71xx;
1495};
1496typedef union cvmx_uahcx_ehci_usbcmd cvmx_uahcx_ehci_usbcmd_t;
1497
1498/**
1499 * cvmx_uahc#_ehci_usbintr
1500 *
1501 * USBINTR = USB Interrupt Enable Register
1502 * This register enables and disables reporting of the corresponding interrupt to the software. When a bit is set
1503 * and the corresponding interrupt is active, an interrupt is generated to the host. Interrupt sources that are
1504 * disabled in this register still appear in the USBSTS to allow the software to poll for events.
1505 * Each interrupt enable bit description indicates whether it is dependent on the interrupt threshold mechanism.
1506 * Note: for all enable register bits, 1= Enabled, 0= Disabled
1507 */
1508union cvmx_uahcx_ehci_usbintr {
1509	uint32_t u32;
1510	struct cvmx_uahcx_ehci_usbintr_s {
1511#ifdef __BIG_ENDIAN_BITFIELD
1512	uint32_t reserved_6_31                : 26;
1513	uint32_t ioaa_en                      : 1;  /**< Interrupt on Async Advance Enable When this bit is a one, and the Interrupt on
1514                                                         Async Advance bit in the USBSTS register is a one, the host controller will issue an
1515                                                         interrupt at the next interrupt threshold. The interrupt is acknowledged by software
1516                                                         clearing the Interrupt on Async Advance bit. */
1517	uint32_t hserr_en                     : 1;  /**< Host System Error Enable When this bit is a one, and the Host System
1518                                                         Error Status bit in the USBSTS register is a one, the host controller will issue an
1519                                                         interrupt. The interrupt is acknowledged by software clearing the Host System Error bit. */
1520	uint32_t flro_en                      : 1;  /**< Frame List Rollover Enable. When this bit is a one, and the Frame List
1521                                                         Rollover bit in the USBSTS register is a one, the host controller will issue an
1522                                                         interrupt. The interrupt is acknowledged by software clearing the Frame List Rollover bit. */
1523	uint32_t pci_en                       : 1;  /**< Port Change Interrupt Enable. When this bit is a one, and the Port Change Detect bit in
1524                                                         the USBSTS register is a one, the host controller will issue an interrupt.
1525                                                         The interrupt is acknowledged by software clearing the Port Change Detect bit. */
1526	uint32_t usberrint_en                 : 1;  /**< USB Error Interrupt Enable. When this bit is a one, and the USBERRINT
1527                                                         bit in the USBSTS register is a one, the host controller will issue an interrupt at the next
1528                                                         interrupt threshold. The interrupt is acknowledged by software clearing the USBERRINT bit. */
1529	uint32_t usbint_en                    : 1;  /**< USB Interrupt Enable. When this bit is a one, and the USBINT bit in the USBSTS register
1530                                                         is a one, the host controller will issue an interrupt at the next interrupt threshold.
1531                                                         The interrupt is acknowledged by software clearing the USBINT bit. */
1532#else
1533	uint32_t usbint_en                    : 1;
1534	uint32_t usberrint_en                 : 1;
1535	uint32_t pci_en                       : 1;
1536	uint32_t flro_en                      : 1;
1537	uint32_t hserr_en                     : 1;
1538	uint32_t ioaa_en                      : 1;
1539	uint32_t reserved_6_31                : 26;
1540#endif
1541	} s;
1542	struct cvmx_uahcx_ehci_usbintr_s      cn61xx;
1543	struct cvmx_uahcx_ehci_usbintr_s      cn63xx;
1544	struct cvmx_uahcx_ehci_usbintr_s      cn63xxp1;
1545	struct cvmx_uahcx_ehci_usbintr_s      cn66xx;
1546	struct cvmx_uahcx_ehci_usbintr_s      cn68xx;
1547	struct cvmx_uahcx_ehci_usbintr_s      cn68xxp1;
1548	struct cvmx_uahcx_ehci_usbintr_s      cnf71xx;
1549};
1550typedef union cvmx_uahcx_ehci_usbintr cvmx_uahcx_ehci_usbintr_t;
1551
1552/**
1553 * cvmx_uahc#_ehci_usbsts
1554 *
1555 * USBSTS = USB Status Register
1556 * This register indicates pending interrupts and various states of the Host Controller. The status resulting from
1557 * a transaction on the serial bus is not indicated in this register. Software sets a bit to 0 in this register by
1558 * writing a 1 to it.
1559 */
1560union cvmx_uahcx_ehci_usbsts {
1561	uint32_t u32;
1562	struct cvmx_uahcx_ehci_usbsts_s {
1563#ifdef __BIG_ENDIAN_BITFIELD
1564	uint32_t reserved_16_31               : 16;
1565	uint32_t ass                          : 1;  /**< Asynchronous Schedule Status. The bit reports the current real
1566                                                         status of the Asynchronous Schedule. If this bit is a zero then the status of the
1567                                                         Asynchronous Schedule is disabled. If this bit is a one then the status of the
1568                                                         Asynchronous Schedule is enabled. The Host Controller is not required to immediately
1569                                                         disable or enable the Asynchronous Schedule when software transitions the
1570                                                         Asynchronous Schedule Enable bit in the USBCMD register. When this bit and the
1571                                                         Asynchronous Schedule Enable bit are the same value, the Asynchronous Schedule is
1572                                                         either enabled (1) or disabled (0). */
1573	uint32_t pss                          : 1;  /**< Periodic Schedule Status. The bit reports the current real status of
1574                                                         the Periodic Schedule. If this bit is a zero then the status of the Periodic
1575                                                         Schedule is disabled. If this bit is a one then the status of the Periodic Schedule
1576                                                         is enabled. The Host Controller is not required to immediately disable or enable the
1577                                                         Periodic Schedule when software transitions the Periodic Schedule Enable bit in
1578                                                         the USBCMD register. When this bit and the Periodic Schedule Enable bit are the
1579                                                         same value, the Periodic Schedule is either enabled (1) or disabled (0). */
1580	uint32_t reclm                        : 1;  /**< Reclamation.This is a read-only status bit, which is used to detect an
1581                                                         empty asynchronous schedule. */
1582	uint32_t hchtd                        : 1;  /**< HCHalted. This bit is a zero whenever the Run/Stop bit is a one. The
1583                                                         Host Controller sets this bit to one after it has stopped executing as a result of the
1584                                                         Run/Stop bit being set to 0, either by software or by the Host Controller hardware (e.g.
1585                                                         internal error). */
1586	uint32_t reserved_6_11                : 6;
1587	uint32_t ioaa                         : 1;  /**< Interrupt on Async Advance. System software can force the host
1588                                                         controller to issue an interrupt the next time the host controller advances the
1589                                                         asynchronous schedule by writing a one to the Interrupt on Async Advance Doorbell bit
1590                                                         in the USBCMD register. This status bit indicates the assertion of that interrupt source. */
1591	uint32_t hsyserr                      : 1;  /**< Host System Error. The Host Controller sets this bit to 1 when a serious error
1592                                                         occurs during a host system access involving the Host Controller module. */
1593	uint32_t flro                         : 1;  /**< Frame List Rollover. The Host Controller sets this bit to a one when the
1594                                                         Frame List Index rolls over from its maximum value to zero. The exact value at
1595                                                         which the rollover occurs depends on the frame list size. For example, if
1596                                                         the frame list size (as programmed in the Frame List Size field of the USBCMD register)
1597                                                         is 1024, the Frame Index Register rolls over every time FRINDEX[13] toggles. Similarly,
1598                                                         if the size is 512, the Host Controller sets this bit to a one every time FRINDEX[12]
1599                                                         toggles. */
1600	uint32_t pcd                          : 1;  /**< Port Change Detect. The Host Controller sets this bit to a one when any port
1601                                                         for which the Port Owner bit is set to zero (see Section 2.3.9) has a change bit transition
1602                                                         from a zero to a one or a Force Port Resume bit transition from a zero to a one as a
1603                                                         result of a J-K transition detected on a suspended port. This bit will also be set as a
1604                                                         result of the Connect Status Change being set to a one after system software has
1605                                                         relinquished ownership of a connected port by writing a one to a port's Port Owner bit. */
1606	uint32_t usberrint                    : 1;  /**< USB Error Interrupt. The Host Controller sets this bit to 1 when completion of a USB
1607                                                         transaction results in an error condition (e.g., error counter underflow). If the TD on
1608                                                         which the error interrupt occurred also had its IOC bit set, both this bit and USBINT
1609                                                         bit are set. */
1610	uint32_t usbint                       : 1;  /**< USB Interrupt. The Host Controller sets this bit to 1 on the completion of a USB
1611                                                         transaction, which results in the retirement of a Transfer Descriptor that had its
1612                                                         IOC bit set. The Host Controller also sets this bit to 1 when a short packet is
1613                                                         detected (actual number of bytes received was less than the expected number of bytes). */
1614#else
1615	uint32_t usbint                       : 1;
1616	uint32_t usberrint                    : 1;
1617	uint32_t pcd                          : 1;
1618	uint32_t flro                         : 1;
1619	uint32_t hsyserr                      : 1;
1620	uint32_t ioaa                         : 1;
1621	uint32_t reserved_6_11                : 6;
1622	uint32_t hchtd                        : 1;
1623	uint32_t reclm                        : 1;
1624	uint32_t pss                          : 1;
1625	uint32_t ass                          : 1;
1626	uint32_t reserved_16_31               : 16;
1627#endif
1628	} s;
1629	struct cvmx_uahcx_ehci_usbsts_s       cn61xx;
1630	struct cvmx_uahcx_ehci_usbsts_s       cn63xx;
1631	struct cvmx_uahcx_ehci_usbsts_s       cn63xxp1;
1632	struct cvmx_uahcx_ehci_usbsts_s       cn66xx;
1633	struct cvmx_uahcx_ehci_usbsts_s       cn68xx;
1634	struct cvmx_uahcx_ehci_usbsts_s       cn68xxp1;
1635	struct cvmx_uahcx_ehci_usbsts_s       cnf71xx;
1636};
1637typedef union cvmx_uahcx_ehci_usbsts cvmx_uahcx_ehci_usbsts_t;
1638
1639/**
1640 * cvmx_uahc#_ohci0_hcbulkcurrented
1641 *
1642 * HCBULKCURRENTED = Host Controller Bulk Current ED Register
1643 *
1644 * The HcBulkCurrentED register contains the physical address of the current endpoint of the Bulk list. As the Bulk list will be served in a round-robin
1645 * fashion, the endpoints will be ordered according to their insertion to the list.
1646 */
1647union cvmx_uahcx_ohci0_hcbulkcurrented {
1648	uint32_t u32;
1649	struct cvmx_uahcx_ohci0_hcbulkcurrented_s {
1650#ifdef __BIG_ENDIAN_BITFIELD
1651	uint32_t bced                         : 28; /**< BulkCurrentED. This is advanced to the next ED after the HC has served the
1652                                                         present one. HC continues processing the list from where it left off in the
1653                                                         last Frame. When it reaches the end of the Bulk list, HC checks the
1654                                                         ControlListFilled of HcControl. If set, it copies the content of HcBulkHeadED
1655                                                         to HcBulkCurrentED and clears the bit. If it is not set, it does nothing.
1656                                                         HCD is only allowed to modify this register when the BulkListEnable of
1657                                                         HcControl is cleared. When set, the HCD only reads the instantaneous value of
1658                                                         this register. This is initially set to zero to indicate the end of the Bulk
1659                                                         list. */
1660	uint32_t reserved_0_3                 : 4;
1661#else
1662	uint32_t reserved_0_3                 : 4;
1663	uint32_t bced                         : 28;
1664#endif
1665	} s;
1666	struct cvmx_uahcx_ohci0_hcbulkcurrented_s cn61xx;
1667	struct cvmx_uahcx_ohci0_hcbulkcurrented_s cn63xx;
1668	struct cvmx_uahcx_ohci0_hcbulkcurrented_s cn63xxp1;
1669	struct cvmx_uahcx_ohci0_hcbulkcurrented_s cn66xx;
1670	struct cvmx_uahcx_ohci0_hcbulkcurrented_s cn68xx;
1671	struct cvmx_uahcx_ohci0_hcbulkcurrented_s cn68xxp1;
1672	struct cvmx_uahcx_ohci0_hcbulkcurrented_s cnf71xx;
1673};
1674typedef union cvmx_uahcx_ohci0_hcbulkcurrented cvmx_uahcx_ohci0_hcbulkcurrented_t;
1675
1676/**
1677 * cvmx_uahc#_ohci0_hcbulkheaded
1678 *
1679 * HCBULKHEADED = Host Controller Bulk Head ED Register
1680 *
1681 * The HcBulkHeadED register contains the physical address of the first Endpoint Descriptor of the Bulk list.
1682 */
1683union cvmx_uahcx_ohci0_hcbulkheaded {
1684	uint32_t u32;
1685	struct cvmx_uahcx_ohci0_hcbulkheaded_s {
1686#ifdef __BIG_ENDIAN_BITFIELD
1687	uint32_t bhed                         : 28; /**< BulkHeadED. HC traverses the Bulk list starting with the HcBulkHeadED
1688                                                         pointer. The content is loaded from HCCA during the initialization of HC. */
1689	uint32_t reserved_0_3                 : 4;
1690#else
1691	uint32_t reserved_0_3                 : 4;
1692	uint32_t bhed                         : 28;
1693#endif
1694	} s;
1695	struct cvmx_uahcx_ohci0_hcbulkheaded_s cn61xx;
1696	struct cvmx_uahcx_ohci0_hcbulkheaded_s cn63xx;
1697	struct cvmx_uahcx_ohci0_hcbulkheaded_s cn63xxp1;
1698	struct cvmx_uahcx_ohci0_hcbulkheaded_s cn66xx;
1699	struct cvmx_uahcx_ohci0_hcbulkheaded_s cn68xx;
1700	struct cvmx_uahcx_ohci0_hcbulkheaded_s cn68xxp1;
1701	struct cvmx_uahcx_ohci0_hcbulkheaded_s cnf71xx;
1702};
1703typedef union cvmx_uahcx_ohci0_hcbulkheaded cvmx_uahcx_ohci0_hcbulkheaded_t;
1704
1705/**
1706 * cvmx_uahc#_ohci0_hccommandstatus
1707 *
1708 * HCCOMMANDSTATUS = Host Controller Command Status Register
1709 *
1710 * The HcCommandStatus register is used by the Host Controller to receive commands issued by the Host Controller Driver, as well as reflecting the
1711 * current status of the Host Controller. To the Host Controller Driver, it appears to be a "write to set" register. The Host Controller must ensure
1712 * that bits written as '1' become set in the register while bits written as '0' remain unchanged in the register. The Host Controller Driver
1713 * may issue multiple distinct commands to the Host Controller without concern for corrupting previously issued commands. The Host Controller Driver
1714 * has normal read access to all bits.
1715 * The SchedulingOverrunCount field indicates the number of frames with which the Host Controller has detected the scheduling overrun error. This
1716 * occurs when the Periodic list does not complete before EOF. When a scheduling overrun error is detected, the Host Controller increments the counter
1717 * and sets the SchedulingOverrun field in the HcInterruptStatus register.
1718 */
1719union cvmx_uahcx_ohci0_hccommandstatus {
1720	uint32_t u32;
1721	struct cvmx_uahcx_ohci0_hccommandstatus_s {
1722#ifdef __BIG_ENDIAN_BITFIELD
1723	uint32_t reserved_18_31               : 14;
1724	uint32_t soc                          : 2;  /**< SchedulingOverrunCount. These bits are incremented on each scheduling overrun
1725                                                         error. It is initialized to 00b and wraps around at 11b. This will be
1726                                                         incremented when a scheduling overrun is detected even if SchedulingOverrun
1727                                                         in HcInterruptStatus has already been set. This is used by HCD to monitor
1728                                                         any persistent scheduling problems. */
1729	uint32_t reserved_4_15                : 12;
1730	uint32_t ocr                          : 1;  /**< OwnershipChangeRequest. This bit is set by an OS HCD to request a change of
1731                                                         control of the HC. When set HC will set the OwnershipChange field in
1732                                                         HcInterruptStatus. After the changeover, this bit is cleared and remains so
1733                                                         until the next request from OS HCD. */
1734	uint32_t blf                          : 1;  /**< BulkListFilled This bit is used to indicate whether there are any TDs on the
1735                                                         Bulk list. It is set by HCD whenever it adds a TD to an ED in the Bulk list.
1736                                                         When HC begins to process the head of the Bulk list, it checks BF. As long
1737                                                         as BulkListFilled is 0, HC will not start processing the Bulk list. If
1738                                                         BulkListFilled is 1, HC will start processing the Bulk list and will set BF
1739                                                         to 0. If HC finds a TD on the list, then HC will set BulkListFilled to 1
1740                                                         causing the Bulk list processing to continue. If no TD is found on the Bulk
1741                                                         list,and if HCD does not set BulkListFilled, then BulkListFilled will still
1742                                                         be 0 when HC completes processing the Bulk list and Bulk list processing will
1743                                                         stop. */
1744	uint32_t clf                          : 1;  /**< ControlListFilled. This bit is used to indicate whether there are any TDs
1745                                                         on the Control list. It is set by HCD whenever it adds a TD to an ED in the
1746                                                         Control list. When HC begins to process the head of the Control list, it
1747                                                         checks CLF. As long as ControlListFilled is 0, HC will not start processing
1748                                                         the Control list. If CF is 1, HC will start processing the Control list and
1749                                                         will set ControlListFilled to 0. If HC finds a TD on the list, then HC will
1750                                                         set ControlListFilled to 1 causing the Control list processing to continue.
1751                                                         If no TD is found on the Control list, and if the HCD does not set
1752                                                         ControlListFilled, then ControlListFilled will still be 0 when HC completes
1753                                                         processing the Control list and Control list processing will stop. */
1754	uint32_t hcr                          : 1;  /**< HostControllerReset. This bit is set by HCD to initiate a software reset of
1755                                                         HC. Regardless of the functional state of HC, it moves to the USBSUSPEND
1756                                                         state in which most of the operational registers are reset except those
1757                                                         stated otherwise; e.g., the InterruptRouting field of HcControl, and no
1758                                                         Host bus accesses are allowed. This bit is cleared by HC upon the
1759                                                         completion of the reset operation. The reset operation must be completed
1760                                                         within 10 ms. This bit, when set, should not cause a reset to the Root Hub
1761                                                         and no subsequent reset signaling should be asserted to its downstream ports. */
1762#else
1763	uint32_t hcr                          : 1;
1764	uint32_t clf                          : 1;
1765	uint32_t blf                          : 1;
1766	uint32_t ocr                          : 1;
1767	uint32_t reserved_4_15                : 12;
1768	uint32_t soc                          : 2;
1769	uint32_t reserved_18_31               : 14;
1770#endif
1771	} s;
1772	struct cvmx_uahcx_ohci0_hccommandstatus_s cn61xx;
1773	struct cvmx_uahcx_ohci0_hccommandstatus_s cn63xx;
1774	struct cvmx_uahcx_ohci0_hccommandstatus_s cn63xxp1;
1775	struct cvmx_uahcx_ohci0_hccommandstatus_s cn66xx;
1776	struct cvmx_uahcx_ohci0_hccommandstatus_s cn68xx;
1777	struct cvmx_uahcx_ohci0_hccommandstatus_s cn68xxp1;
1778	struct cvmx_uahcx_ohci0_hccommandstatus_s cnf71xx;
1779};
1780typedef union cvmx_uahcx_ohci0_hccommandstatus cvmx_uahcx_ohci0_hccommandstatus_t;
1781
1782/**
1783 * cvmx_uahc#_ohci0_hccontrol
1784 *
1785 * HCCONTROL = Host Controller Control Register
1786 *
1787 * The HcControl register defines the operating modes for the Host Controller. Most of the fields in this register are modified only by the Host Controller
1788 * Driver, except HostControllerFunctionalState and RemoteWakeupConnected.
1789 */
1790union cvmx_uahcx_ohci0_hccontrol {
1791	uint32_t u32;
1792	struct cvmx_uahcx_ohci0_hccontrol_s {
1793#ifdef __BIG_ENDIAN_BITFIELD
1794	uint32_t reserved_11_31               : 21;
1795	uint32_t rwe                          : 1;  /**< RemoteWakeupEnable. This bit is used by HCD to enable or disable the remote wakeup
1796                                                         feature upon the detection of upstream resume signaling. When this bit is set and
1797                                                         the ResumeDetected bit in HcInterruptStatus is set, a remote wakeup is signaled
1798                                                         to the host system. Setting this bit has no impact on the generation of hardware
1799                                                         interrupt. */
1800	uint32_t rwc                          : 1;  /**< RemoteWakeupConnected.This bit indicates whether HC supports remote wakeup signaling.
1801                                                         If remote wakeup is supported and used by the system it is the responsibility of
1802                                                         system firmware to set this bit during POST. HC clears the bit upon a hardware reset
1803                                                         but does not alter it upon a software reset. Remote wakeup signaling of the host
1804                                                         system is host-bus-specific and is not described in this specification. */
1805	uint32_t ir                           : 1;  /**< InterruptRouting
1806                                                         This bit determines the routing of interrupts generated by events registered in
1807                                                         HcInterruptStatus. If clear, all interrupts are routed to the normal host bus
1808                                                         interrupt mechanism. If set, interrupts are routed to the System Management
1809                                                         Interrupt. HCD clears this bit upon a hardware reset, but it does not alter
1810                                                         this bit upon a software reset. HCD uses this bit as a tag to indicate the
1811                                                         ownership of HC. */
1812	uint32_t hcfs                         : 2;  /**< HostControllerFunctionalState for USB
1813                                                          00b: USBRESET
1814                                                          01b: USBRESUME
1815                                                          10b: USBOPERATIONAL
1816                                                          11b: USBSUSPEND
1817                                                         A transition to USBOPERATIONAL from another state causes SOF generation to begin
1818                                                         1 ms later. HCD may determine whether HC has begun sending SOFs by reading the
1819                                                         StartofFrame field of HcInterruptStatus.
1820                                                         This field may be changed by HC only when in the USBSUSPEND state. HC may move from
1821                                                         the USBSUSPEND state to the USBRESUME state after detecting the resume signaling
1822                                                         from a downstream port.
1823                                                         HC enters USBSUSPEND after a software reset, whereas it enters USBRESET after a
1824                                                         hardware reset. The latter also resets the Root Hub and asserts subsequent reset
1825                                                         signaling to downstream ports. */
1826	uint32_t ble                          : 1;  /**< BulkListEnable. This bit is set to enable the processing of the Bulk list in the
1827                                                         next Frame. If cleared by HCD, processing of the Bulk list does not occur after
1828                                                         the next SOF. HC checks this bit whenever it determines to process the list. When
1829                                                         disabled, HCD may modify the list. If HcBulkCurrentED is pointing to an ED to be
1830                                                         removed, HCD must advance the pointer by updating HcBulkCurrentED before re-enabling
1831                                                         processing of the list. */
1832	uint32_t cle                          : 1;  /**< ControlListEnable. This bit is set to enable the processing of the Control list in
1833                                                         the next Frame. If cleared by HCD, processing of the Control list does not occur
1834                                                         after the next SOF. HC must check this bit whenever it determines to process the
1835                                                         list. When disabled, HCD may modify the list. If HcControlCurrentED is pointing to
1836                                                         an ED to be removed, HCD must advance the pointer by updating HcControlCurrentED
1837                                                         before re-enabling processing of the list. */
1838	uint32_t ie                           : 1;  /**< IsochronousEnable This bit is used by HCD to enable/disable processing of
1839                                                         isochronous EDs. While processing the periodic list in a Frame, HC checks the
1840                                                         status of this bit when it finds an Isochronous ED (F=1). If set (enabled), HC
1841                                                         continues processing the EDs. If cleared (disabled), HC halts processing of the
1842                                                         periodic list (which now contains only isochronous EDs) and begins processing the
1843                                                         Bulk/Control lists. Setting this bit is guaranteed to take effect in the next
1844                                                         Frame (not the current Frame). */
1845	uint32_t ple                          : 1;  /**< PeriodicListEnable. This bit is set to enable the processing of the periodic list
1846                                                         in the next Frame. If cleared by HCD, processing of the periodic list does not
1847                                                         occur after the next SOF. HC must check this bit before it starts processing
1848                                                         the list. */
1849	uint32_t cbsr                         : 2;  /**< ControlBulkServiceRatio. This specifies the service ratio between Control and
1850                                                         Bulk EDs. Before processing any of the nonperiodic lists, HC must compare the
1851                                                         ratio specified with its internal count on how many nonempty Control EDs have
1852                                                         been processed, in determining whether to continue serving another Control ED
1853                                                         or switching to Bulk EDs. The internal count will be retained when crossing
1854                                                         the frame boundary. In case of reset, HCD is responsible for restoring this
1855                                                         value.
1856
1857                                                           CBSR   No. of Control EDs Over Bulk EDs Served
1858                                                            0             1:1
1859                                                            1             2:1
1860                                                            2             3:1
1861                                                            3             4:1 */
1862#else
1863	uint32_t cbsr                         : 2;
1864	uint32_t ple                          : 1;
1865	uint32_t ie                           : 1;
1866	uint32_t cle                          : 1;
1867	uint32_t ble                          : 1;
1868	uint32_t hcfs                         : 2;
1869	uint32_t ir                           : 1;
1870	uint32_t rwc                          : 1;
1871	uint32_t rwe                          : 1;
1872	uint32_t reserved_11_31               : 21;
1873#endif
1874	} s;
1875	struct cvmx_uahcx_ohci0_hccontrol_s   cn61xx;
1876	struct cvmx_uahcx_ohci0_hccontrol_s   cn63xx;
1877	struct cvmx_uahcx_ohci0_hccontrol_s   cn63xxp1;
1878	struct cvmx_uahcx_ohci0_hccontrol_s   cn66xx;
1879	struct cvmx_uahcx_ohci0_hccontrol_s   cn68xx;
1880	struct cvmx_uahcx_ohci0_hccontrol_s   cn68xxp1;
1881	struct cvmx_uahcx_ohci0_hccontrol_s   cnf71xx;
1882};
1883typedef union cvmx_uahcx_ohci0_hccontrol cvmx_uahcx_ohci0_hccontrol_t;
1884
1885/**
1886 * cvmx_uahc#_ohci0_hccontrolcurrented
1887 *
1888 * HCCONTROLCURRENTED = Host Controller Control Current ED Register
1889 *
1890 * The HcControlCurrentED register contains the physical address of the current Endpoint Descriptor of the Control list.
1891 */
1892union cvmx_uahcx_ohci0_hccontrolcurrented {
1893	uint32_t u32;
1894	struct cvmx_uahcx_ohci0_hccontrolcurrented_s {
1895#ifdef __BIG_ENDIAN_BITFIELD
1896	uint32_t cced                         : 28; /**< ControlCurrentED. This pointer is advanced to the next ED after serving the
1897                                                         present one. HC will continue processing the list from where it left off in
1898                                                         the last Frame. When it reaches the end of the Control list, HC checks the
1899                                                         ControlListFilled of in HcCommandStatus. If set, it copies the content of
1900                                                         HcControlHeadED to HcControlCurrentED and clears the bit. If not set, it
1901                                                         does nothing. HCD is allowed to modify this register only when the
1902                                                         ControlListEnable of HcControl is cleared. When set, HCD only reads the
1903                                                         instantaneous value of this register. Initially, this is set to zero to
1904                                                         indicate the end of the Control list. */
1905	uint32_t reserved_0_3                 : 4;
1906#else
1907	uint32_t reserved_0_3                 : 4;
1908	uint32_t cced                         : 28;
1909#endif
1910	} s;
1911	struct cvmx_uahcx_ohci0_hccontrolcurrented_s cn61xx;
1912	struct cvmx_uahcx_ohci0_hccontrolcurrented_s cn63xx;
1913	struct cvmx_uahcx_ohci0_hccontrolcurrented_s cn63xxp1;
1914	struct cvmx_uahcx_ohci0_hccontrolcurrented_s cn66xx;
1915	struct cvmx_uahcx_ohci0_hccontrolcurrented_s cn68xx;
1916	struct cvmx_uahcx_ohci0_hccontrolcurrented_s cn68xxp1;
1917	struct cvmx_uahcx_ohci0_hccontrolcurrented_s cnf71xx;
1918};
1919typedef union cvmx_uahcx_ohci0_hccontrolcurrented cvmx_uahcx_ohci0_hccontrolcurrented_t;
1920
1921/**
1922 * cvmx_uahc#_ohci0_hccontrolheaded
1923 *
1924 * HCCONTROLHEADED = Host Controller Control Head ED Register
1925 *
1926 * The HcControlHeadED register contains the physical address of the first Endpoint Descriptor of the Control list.
1927 */
1928union cvmx_uahcx_ohci0_hccontrolheaded {
1929	uint32_t u32;
1930	struct cvmx_uahcx_ohci0_hccontrolheaded_s {
1931#ifdef __BIG_ENDIAN_BITFIELD
1932	uint32_t ched                         : 28; /**< ControlHeadED. HC traverses the Control list starting with the HcControlHeadED
1933                                                         pointer. The content is loaded from HCCA during the initialization of HC. */
1934	uint32_t reserved_0_3                 : 4;
1935#else
1936	uint32_t reserved_0_3                 : 4;
1937	uint32_t ched                         : 28;
1938#endif
1939	} s;
1940	struct cvmx_uahcx_ohci0_hccontrolheaded_s cn61xx;
1941	struct cvmx_uahcx_ohci0_hccontrolheaded_s cn63xx;
1942	struct cvmx_uahcx_ohci0_hccontrolheaded_s cn63xxp1;
1943	struct cvmx_uahcx_ohci0_hccontrolheaded_s cn66xx;
1944	struct cvmx_uahcx_ohci0_hccontrolheaded_s cn68xx;
1945	struct cvmx_uahcx_ohci0_hccontrolheaded_s cn68xxp1;
1946	struct cvmx_uahcx_ohci0_hccontrolheaded_s cnf71xx;
1947};
1948typedef union cvmx_uahcx_ohci0_hccontrolheaded cvmx_uahcx_ohci0_hccontrolheaded_t;
1949
1950/**
1951 * cvmx_uahc#_ohci0_hcdonehead
1952 *
1953 * HCDONEHEAD = Host Controller Done Head Register
1954 *
1955 * The HcDoneHead register contains the physical address of the last completed Transfer Descriptor that was added to the Done queue. In normal operation,
1956 * the Host Controller Driver should not need to read this register as its content is periodically written to the HCCA.
1957 */
1958union cvmx_uahcx_ohci0_hcdonehead {
1959	uint32_t u32;
1960	struct cvmx_uahcx_ohci0_hcdonehead_s {
1961#ifdef __BIG_ENDIAN_BITFIELD
1962	uint32_t dh                           : 28; /**< DoneHead. When a TD is completed, HC writes the content of HcDoneHead to the
1963                                                         NextTD field of the TD. HC then overwrites the content of HcDoneHead with the
1964                                                         address of this TD. This is set to zero whenever HC writes the content of
1965                                                         this register to HCCA. It also sets the WritebackDoneHead of HcInterruptStatus. */
1966	uint32_t reserved_0_3                 : 4;
1967#else
1968	uint32_t reserved_0_3                 : 4;
1969	uint32_t dh                           : 28;
1970#endif
1971	} s;
1972	struct cvmx_uahcx_ohci0_hcdonehead_s  cn61xx;
1973	struct cvmx_uahcx_ohci0_hcdonehead_s  cn63xx;
1974	struct cvmx_uahcx_ohci0_hcdonehead_s  cn63xxp1;
1975	struct cvmx_uahcx_ohci0_hcdonehead_s  cn66xx;
1976	struct cvmx_uahcx_ohci0_hcdonehead_s  cn68xx;
1977	struct cvmx_uahcx_ohci0_hcdonehead_s  cn68xxp1;
1978	struct cvmx_uahcx_ohci0_hcdonehead_s  cnf71xx;
1979};
1980typedef union cvmx_uahcx_ohci0_hcdonehead cvmx_uahcx_ohci0_hcdonehead_t;
1981
1982/**
1983 * cvmx_uahc#_ohci0_hcfminterval
1984 *
1985 * HCFMINTERVAL = Host Controller Frame Interval Register
1986 *
1987 * The HcFmInterval register contains a 14-bit value which indicates the bit time interval in a Frame, (i.e., between two consecutive SOFs), and a 15-bit value
1988 * indicating the Full Speed maximum packet size that the Host Controller may transmit or receive without causing scheduling overrun. The Host Controller Driver
1989 * may carry out minor adjustment on the FrameInterval by writing a new value over the present one at each SOF. This provides the programmability necessary for
1990 * the Host Controller to synchronize with an external clocking resource and to adjust any unknown local clock offset.
1991 */
1992union cvmx_uahcx_ohci0_hcfminterval {
1993	uint32_t u32;
1994	struct cvmx_uahcx_ohci0_hcfminterval_s {
1995#ifdef __BIG_ENDIAN_BITFIELD
1996	uint32_t fit                          : 1;  /**< FrameIntervalToggle. HCD toggles this bit whenever it loads a new value to
1997                                                         FrameInterval. */
1998	uint32_t fsmps                        : 15; /**< FSLargestDataPacket. This field specifies a value which is loaded into the
1999                                                         Largest Data Packet Counter at the beginning of each frame. The counter value
2000                                                         represents the largest amount of data in bits which can be sent or received by
2001                                                         the HC in a single transaction at any given time without causing scheduling
2002                                                         overrun. The field value is calculated by the HCD. */
2003	uint32_t reserved_14_15               : 2;
2004	uint32_t fi                           : 14; /**< FrameInterval. This specifies the interval between two consecutive SOFs in bit
2005                                                         times. The nominal value is set to be 11,999. HCD should store the current
2006                                                         value of this field before resetting HC. By setting the HostControllerReset
2007                                                         field of HcCommandStatus as this will cause the HC to reset this field to its
2008                                                         nominal value. HCD may choose to restore the stored value upon the completion
2009                                                         of the Reset sequence. */
2010#else
2011	uint32_t fi                           : 14;
2012	uint32_t reserved_14_15               : 2;
2013	uint32_t fsmps                        : 15;
2014	uint32_t fit                          : 1;
2015#endif
2016	} s;
2017	struct cvmx_uahcx_ohci0_hcfminterval_s cn61xx;
2018	struct cvmx_uahcx_ohci0_hcfminterval_s cn63xx;
2019	struct cvmx_uahcx_ohci0_hcfminterval_s cn63xxp1;
2020	struct cvmx_uahcx_ohci0_hcfminterval_s cn66xx;
2021	struct cvmx_uahcx_ohci0_hcfminterval_s cn68xx;
2022	struct cvmx_uahcx_ohci0_hcfminterval_s cn68xxp1;
2023	struct cvmx_uahcx_ohci0_hcfminterval_s cnf71xx;
2024};
2025typedef union cvmx_uahcx_ohci0_hcfminterval cvmx_uahcx_ohci0_hcfminterval_t;
2026
2027/**
2028 * cvmx_uahc#_ohci0_hcfmnumber
2029 *
2030 * HCFMNUMBER = Host Cotroller Frame Number Register
2031 *
2032 * The HcFmNumber register is a 16-bit counter. It provides a timing reference among events happening in the Host Controller and the Host Controller Driver.
2033 * The Host Controller Driver may use the 16-bit value specified in this register and generate a 32-bit frame number without requiring frequent access to
2034 * the register.
2035 */
2036union cvmx_uahcx_ohci0_hcfmnumber {
2037	uint32_t u32;
2038	struct cvmx_uahcx_ohci0_hcfmnumber_s {
2039#ifdef __BIG_ENDIAN_BITFIELD
2040	uint32_t reserved_16_31               : 16;
2041	uint32_t fn                           : 16; /**< FrameNumber. This is incremented when HcFmRemaining is re-loaded. It will be
2042                                                         rolled over to 0h after ffffh. When entering the USBOPERATIONAL state,
2043                                                         this will be incremented automatically. The content will be written to HCCA
2044                                                         after HC has incremented the FrameNumber at each frame boundary and sent a
2045                                                         SOF but before HC reads the first ED in that Frame. After writing to HCCA,
2046                                                         HC will set the StartofFrame in HcInterruptStatus. */
2047#else
2048	uint32_t fn                           : 16;
2049	uint32_t reserved_16_31               : 16;
2050#endif
2051	} s;
2052	struct cvmx_uahcx_ohci0_hcfmnumber_s  cn61xx;
2053	struct cvmx_uahcx_ohci0_hcfmnumber_s  cn63xx;
2054	struct cvmx_uahcx_ohci0_hcfmnumber_s  cn63xxp1;
2055	struct cvmx_uahcx_ohci0_hcfmnumber_s  cn66xx;
2056	struct cvmx_uahcx_ohci0_hcfmnumber_s  cn68xx;
2057	struct cvmx_uahcx_ohci0_hcfmnumber_s  cn68xxp1;
2058	struct cvmx_uahcx_ohci0_hcfmnumber_s  cnf71xx;
2059};
2060typedef union cvmx_uahcx_ohci0_hcfmnumber cvmx_uahcx_ohci0_hcfmnumber_t;
2061
2062/**
2063 * cvmx_uahc#_ohci0_hcfmremaining
2064 *
2065 * HCFMREMAINING = Host Controller Frame Remaining Register
2066 * The HcFmRemaining register is a 14-bit down counter showing the bit time remaining in the current Frame.
2067 */
2068union cvmx_uahcx_ohci0_hcfmremaining {
2069	uint32_t u32;
2070	struct cvmx_uahcx_ohci0_hcfmremaining_s {
2071#ifdef __BIG_ENDIAN_BITFIELD
2072	uint32_t frt                          : 1;  /**< FrameRemainingToggle. This bit is loaded from the FrameIntervalToggle field
2073                                                         of HcFmInterval whenever FrameRemaining reaches 0. This bit is used by HCD
2074                                                         for the synchronization between FrameInterval and FrameRemaining. */
2075	uint32_t reserved_14_30               : 17;
2076	uint32_t fr                           : 14; /**< FrameRemaining. This counter is decremented at each bit time. When it
2077                                                         reaches zero, it is reset by loading the FrameInterval value specified in
2078                                                         HcFmInterval at the next bit time boundary. When entering the USBOPERATIONAL
2079                                                         state, HC re-loads the content with the FrameInterval of HcFmInterval and uses
2080                                                         the updated value from the next SOF. */
2081#else
2082	uint32_t fr                           : 14;
2083	uint32_t reserved_14_30               : 17;
2084	uint32_t frt                          : 1;
2085#endif
2086	} s;
2087	struct cvmx_uahcx_ohci0_hcfmremaining_s cn61xx;
2088	struct cvmx_uahcx_ohci0_hcfmremaining_s cn63xx;
2089	struct cvmx_uahcx_ohci0_hcfmremaining_s cn63xxp1;
2090	struct cvmx_uahcx_ohci0_hcfmremaining_s cn66xx;
2091	struct cvmx_uahcx_ohci0_hcfmremaining_s cn68xx;
2092	struct cvmx_uahcx_ohci0_hcfmremaining_s cn68xxp1;
2093	struct cvmx_uahcx_ohci0_hcfmremaining_s cnf71xx;
2094};
2095typedef union cvmx_uahcx_ohci0_hcfmremaining cvmx_uahcx_ohci0_hcfmremaining_t;
2096
2097/**
2098 * cvmx_uahc#_ohci0_hchcca
2099 *
2100 * HCHCCA =  Host Controller Host Controller Communication Area Register
2101 *
2102 * The HcHCCA register contains the physical address of the Host Controller Communication Area. The Host Controller Driver determines the alignment restrictions
2103 * by writing all 1s to HcHCCA and reading the content of HcHCCA. The alignment is evaluated by examining the number of zeroes in the lower order bits. The
2104 * minimum alignment is 256 bytes; therefore, bits 0 through 7 must always return '0' when read. Detailed description can be found in Chapter 4. This area
2105 * is used to hold the control structures and the Interrupt table that are accessed by both the Host Controller and the Host Controller Driver.
2106 */
2107union cvmx_uahcx_ohci0_hchcca {
2108	uint32_t u32;
2109	struct cvmx_uahcx_ohci0_hchcca_s {
2110#ifdef __BIG_ENDIAN_BITFIELD
2111	uint32_t hcca                         : 24; /**< This is the base address (bits [31:8]) of the Host Controller Communication Area. */
2112	uint32_t reserved_0_7                 : 8;
2113#else
2114	uint32_t reserved_0_7                 : 8;
2115	uint32_t hcca                         : 24;
2116#endif
2117	} s;
2118	struct cvmx_uahcx_ohci0_hchcca_s      cn61xx;
2119	struct cvmx_uahcx_ohci0_hchcca_s      cn63xx;
2120	struct cvmx_uahcx_ohci0_hchcca_s      cn63xxp1;
2121	struct cvmx_uahcx_ohci0_hchcca_s      cn66xx;
2122	struct cvmx_uahcx_ohci0_hchcca_s      cn68xx;
2123	struct cvmx_uahcx_ohci0_hchcca_s      cn68xxp1;
2124	struct cvmx_uahcx_ohci0_hchcca_s      cnf71xx;
2125};
2126typedef union cvmx_uahcx_ohci0_hchcca cvmx_uahcx_ohci0_hchcca_t;
2127
2128/**
2129 * cvmx_uahc#_ohci0_hcinterruptdisable
2130 *
2131 * HCINTERRUPTDISABLE = Host Controller InterruptDisable Register
2132 *
2133 * Each disable bit in the HcInterruptDisable register corresponds to an associated interrupt bit in the HcInterruptStatus register. The HcInterruptDisable
2134 * register is coupled with the HcInterruptEnable register. Thus, writing a '1' to a bit in this register clears the corresponding bit in the HcInterruptEnable
2135 * register, whereas writing a '0' to a bit in this register leaves the corresponding bit in the HcInterruptEnable register unchanged. On read, the current
2136 * value of the HcInterruptEnable register is returned.
2137 */
2138union cvmx_uahcx_ohci0_hcinterruptdisable {
2139	uint32_t u32;
2140	struct cvmx_uahcx_ohci0_hcinterruptdisable_s {
2141#ifdef __BIG_ENDIAN_BITFIELD
2142	uint32_t mie                          : 1;  /**< A '0' written to this field is ignored by HC.
2143                                                         A '1' written to this field disables interrupt generation due to events
2144                                                         specified in the other bits of this register. This field is set after a
2145                                                         hardware or software reset. */
2146	uint32_t oc                           : 1;  /**< 0 - Ignore; 1 - Disable interrupt generation due to Ownership Change. */
2147	uint32_t reserved_7_29                : 23;
2148	uint32_t rhsc                         : 1;  /**< 0 - Ignore; 1 - Disable interrupt generation due to Root Hub Status Change. */
2149	uint32_t fno                          : 1;  /**< 0 - Ignore; 1 - Disable interrupt generation due to Frame Number Overflow. */
2150	uint32_t ue                           : 1;  /**< 0 - Ignore; 1 - Disable interrupt generation due to Unrecoverable Error. */
2151	uint32_t rd                           : 1;  /**< 0 - Ignore; 1 - Disable interrupt generation due to Resume Detect. */
2152	uint32_t sf                           : 1;  /**< 0 - Ignore; 1 - Disable interrupt generation due to Start of Frame. */
2153	uint32_t wdh                          : 1;  /**< 0 - Ignore; 1 - Disable interrupt generation due to HcDoneHead Writeback. */
2154	uint32_t so                           : 1;  /**< 0 - Ignore; 1 - Disable interrupt generation due to Scheduling Overrun. */
2155#else
2156	uint32_t so                           : 1;
2157	uint32_t wdh                          : 1;
2158	uint32_t sf                           : 1;
2159	uint32_t rd                           : 1;
2160	uint32_t ue                           : 1;
2161	uint32_t fno                          : 1;
2162	uint32_t rhsc                         : 1;
2163	uint32_t reserved_7_29                : 23;
2164	uint32_t oc                           : 1;
2165	uint32_t mie                          : 1;
2166#endif
2167	} s;
2168	struct cvmx_uahcx_ohci0_hcinterruptdisable_s cn61xx;
2169	struct cvmx_uahcx_ohci0_hcinterruptdisable_s cn63xx;
2170	struct cvmx_uahcx_ohci0_hcinterruptdisable_s cn63xxp1;
2171	struct cvmx_uahcx_ohci0_hcinterruptdisable_s cn66xx;
2172	struct cvmx_uahcx_ohci0_hcinterruptdisable_s cn68xx;
2173	struct cvmx_uahcx_ohci0_hcinterruptdisable_s cn68xxp1;
2174	struct cvmx_uahcx_ohci0_hcinterruptdisable_s cnf71xx;
2175};
2176typedef union cvmx_uahcx_ohci0_hcinterruptdisable cvmx_uahcx_ohci0_hcinterruptdisable_t;
2177
2178/**
2179 * cvmx_uahc#_ohci0_hcinterruptenable
2180 *
2181 * HCINTERRUPTENABLE = Host Controller InterruptEnable Register
2182 *
2183 * Each enable bit in the HcInterruptEnable register corresponds to an associated interrupt bit in the HcInterruptStatus register. The HcInterruptEnable
2184 * register is used to control which events generate a hardware interrupt. When a bit is set in the HcInterruptStatus register AND the corresponding bit
2185 * in the HcInterruptEnable register is set AND the MasterInterruptEnable bit is set, then a hardware interrupt is requested on the host bus.
2186 * Writing a '1' to a bit in this register sets the corresponding bit, whereas writing a '0' to a bit in this register leaves the corresponding bit
2187 * unchanged. On read, the current value of this register is returned.
2188 */
2189union cvmx_uahcx_ohci0_hcinterruptenable {
2190	uint32_t u32;
2191	struct cvmx_uahcx_ohci0_hcinterruptenable_s {
2192#ifdef __BIG_ENDIAN_BITFIELD
2193	uint32_t mie                          : 1;  /**< A '0' written to this field is ignored by HC.
2194                                                         A '1' written to this field enables interrupt generation due to events
2195                                                         specified in the other bits of this register. This is used by HCD as a Master
2196                                                         Interrupt Enable. */
2197	uint32_t oc                           : 1;  /**< 0 - Ignore; 1 - Enable interrupt generation due to Ownership Change. */
2198	uint32_t reserved_7_29                : 23;
2199	uint32_t rhsc                         : 1;  /**< 0 - Ignore; 1 - Enable interrupt generation due to Root Hub Status Change. */
2200	uint32_t fno                          : 1;  /**< 0 - Ignore; 1 - Enable interrupt generation due to Frame Number Overflow. */
2201	uint32_t ue                           : 1;  /**< 0 - Ignore; 1 - Enable interrupt generation due to Unrecoverable Error. */
2202	uint32_t rd                           : 1;  /**< 0 - Ignore; 1 - Enable interrupt generation due to Resume Detect. */
2203	uint32_t sf                           : 1;  /**< 0 - Ignore; 1 - Enable interrupt generation due to Start of Frame. */
2204	uint32_t wdh                          : 1;  /**< 0 - Ignore; 1 - Enable interrupt generation due to HcDoneHead Writeback. */
2205	uint32_t so                           : 1;  /**< 0 - Ignore; 1 - Enable interrupt generation due to Scheduling Overrun. */
2206#else
2207	uint32_t so                           : 1;
2208	uint32_t wdh                          : 1;
2209	uint32_t sf                           : 1;
2210	uint32_t rd                           : 1;
2211	uint32_t ue                           : 1;
2212	uint32_t fno                          : 1;
2213	uint32_t rhsc                         : 1;
2214	uint32_t reserved_7_29                : 23;
2215	uint32_t oc                           : 1;
2216	uint32_t mie                          : 1;
2217#endif
2218	} s;
2219	struct cvmx_uahcx_ohci0_hcinterruptenable_s cn61xx;
2220	struct cvmx_uahcx_ohci0_hcinterruptenable_s cn63xx;
2221	struct cvmx_uahcx_ohci0_hcinterruptenable_s cn63xxp1;
2222	struct cvmx_uahcx_ohci0_hcinterruptenable_s cn66xx;
2223	struct cvmx_uahcx_ohci0_hcinterruptenable_s cn68xx;
2224	struct cvmx_uahcx_ohci0_hcinterruptenable_s cn68xxp1;
2225	struct cvmx_uahcx_ohci0_hcinterruptenable_s cnf71xx;
2226};
2227typedef union cvmx_uahcx_ohci0_hcinterruptenable cvmx_uahcx_ohci0_hcinterruptenable_t;
2228
2229/**
2230 * cvmx_uahc#_ohci0_hcinterruptstatus
2231 *
2232 * HCINTERRUPTSTATUS = Host Controller InterruptStatus Register
2233 *
2234 * This register provides status on various events that cause hardware interrupts. When an event occurs, Host Controller sets the corresponding bit
2235 * in this register. When a bit becomes set, a hardware interrupt is generated if the interrupt is enabled in the HcInterruptEnable register
2236 * and the MasterInterruptEnable bit is set. The Host Controller Driver may clear specific bits in this register by writing '1' to bit positions
2237 * to be cleared. The Host Controller Driver may not set any of these bits. The Host Controller will never clear the bit.
2238 */
2239union cvmx_uahcx_ohci0_hcinterruptstatus {
2240	uint32_t u32;
2241	struct cvmx_uahcx_ohci0_hcinterruptstatus_s {
2242#ifdef __BIG_ENDIAN_BITFIELD
2243	uint32_t reserved_31_31               : 1;
2244	uint32_t oc                           : 1;  /**< OwnershipChange. This bit is set by HC when HCD sets the OwnershipChangeRequest
2245                                                         field in HcCommandStatus. This event, when unmasked, will always generate an
2246                                                         System Management Interrupt (SMI) immediately. This bit is tied to 0b when the
2247                                                         SMI pin is not implemented. */
2248	uint32_t reserved_7_29                : 23;
2249	uint32_t rhsc                         : 1;  /**< RootHubStatusChange. This bit is set when the content of HcRhStatus or the
2250                                                         content of any of HcRhPortStatus[NumberofDownstreamPort] has changed. */
2251	uint32_t fno                          : 1;  /**< FrameNumberOverflow. This bit is set when the MSb of HcFmNumber (bit 15)
2252                                                         changes value, from 0 to 1 or from 1 to 0, and after HccaFrameNumber has been
2253                                                         updated. */
2254	uint32_t ue                           : 1;  /**< UnrecoverableError. This bit is set when HC detects a system error not related
2255                                                         to USB. HC should not proceed with any processing nor signaling before the
2256                                                         system error has been corrected. HCD clears this bit after HC has been reset. */
2257	uint32_t rd                           : 1;  /**< ResumeDetected. This bit is set when HC detects that a device on the USB is
2258                                                          asserting resume signaling. It is the transition from no resume signaling to
2259                                                         resume signaling causing this bit to be set. This bit is not set when HCD
2260                                                         sets the USBRESUME state. */
2261	uint32_t sf                           : 1;  /**< StartofFrame. This bit is set by HC at each start of a frame and after the
2262                                                         update of HccaFrameNumber. HC also generates a SOF token at the same time. */
2263	uint32_t wdh                          : 1;  /**< WritebackDoneHead. This bit is set immediately after HC has written
2264                                                         HcDoneHead to HccaDoneHead. Further updates of the HccaDoneHead will not
2265                                                         occur until this bit has been cleared. HCD should only clear this bit after
2266                                                         it has saved the content of HccaDoneHead. */
2267	uint32_t so                           : 1;  /**< SchedulingOverrun. This bit is set when the USB schedule for the current
2268                                                         Frame overruns and after the update of HccaFrameNumber. A scheduling overrun
2269                                                         will also cause the SchedulingOverrunCount of HcCommandStatus to be
2270                                                         incremented. */
2271#else
2272	uint32_t so                           : 1;
2273	uint32_t wdh                          : 1;
2274	uint32_t sf                           : 1;
2275	uint32_t rd                           : 1;
2276	uint32_t ue                           : 1;
2277	uint32_t fno                          : 1;
2278	uint32_t rhsc                         : 1;
2279	uint32_t reserved_7_29                : 23;
2280	uint32_t oc                           : 1;
2281	uint32_t reserved_31_31               : 1;
2282#endif
2283	} s;
2284	struct cvmx_uahcx_ohci0_hcinterruptstatus_s cn61xx;
2285	struct cvmx_uahcx_ohci0_hcinterruptstatus_s cn63xx;
2286	struct cvmx_uahcx_ohci0_hcinterruptstatus_s cn63xxp1;
2287	struct cvmx_uahcx_ohci0_hcinterruptstatus_s cn66xx;
2288	struct cvmx_uahcx_ohci0_hcinterruptstatus_s cn68xx;
2289	struct cvmx_uahcx_ohci0_hcinterruptstatus_s cn68xxp1;
2290	struct cvmx_uahcx_ohci0_hcinterruptstatus_s cnf71xx;
2291};
2292typedef union cvmx_uahcx_ohci0_hcinterruptstatus cvmx_uahcx_ohci0_hcinterruptstatus_t;
2293
2294/**
2295 * cvmx_uahc#_ohci0_hclsthreshold
2296 *
2297 * HCLSTHRESHOLD = Host Controller LS Threshold Register
2298 *
2299 * The HcLSThreshold register contains an 11-bit value used by the Host Controller to determine whether to commit to the transfer of a maximum of 8-byte
2300 * LS packet before EOF. Neither the Host Controller nor the Host Controller Driver are allowed to change this value.
2301 */
2302union cvmx_uahcx_ohci0_hclsthreshold {
2303	uint32_t u32;
2304	struct cvmx_uahcx_ohci0_hclsthreshold_s {
2305#ifdef __BIG_ENDIAN_BITFIELD
2306	uint32_t reserved_12_31               : 20;
2307	uint32_t lst                          : 12; /**< LSThreshold
2308                                                         This field contains a value which is compared to the FrameRemaining field
2309                                                         prior to initiating a Low Speed transaction. The transaction is started only
2310                                                         if FrameRemaining >= this field. The value is calculated by HCD
2311                                                         with the consideration of transmission and setup overhead. */
2312#else
2313	uint32_t lst                          : 12;
2314	uint32_t reserved_12_31               : 20;
2315#endif
2316	} s;
2317	struct cvmx_uahcx_ohci0_hclsthreshold_s cn61xx;
2318	struct cvmx_uahcx_ohci0_hclsthreshold_s cn63xx;
2319	struct cvmx_uahcx_ohci0_hclsthreshold_s cn63xxp1;
2320	struct cvmx_uahcx_ohci0_hclsthreshold_s cn66xx;
2321	struct cvmx_uahcx_ohci0_hclsthreshold_s cn68xx;
2322	struct cvmx_uahcx_ohci0_hclsthreshold_s cn68xxp1;
2323	struct cvmx_uahcx_ohci0_hclsthreshold_s cnf71xx;
2324};
2325typedef union cvmx_uahcx_ohci0_hclsthreshold cvmx_uahcx_ohci0_hclsthreshold_t;
2326
2327/**
2328 * cvmx_uahc#_ohci0_hcperiodcurrented
2329 *
2330 * HCPERIODCURRENTED = Host Controller Period Current ED Register
2331 *
2332 * The HcPeriodCurrentED register contains the physical address of the current Isochronous or Interrupt Endpoint Descriptor.
2333 */
2334union cvmx_uahcx_ohci0_hcperiodcurrented {
2335	uint32_t u32;
2336	struct cvmx_uahcx_ohci0_hcperiodcurrented_s {
2337#ifdef __BIG_ENDIAN_BITFIELD
2338	uint32_t pced                         : 28; /**< PeriodCurrentED. This is used by HC to point to the head of one of the
2339                                                         Periodic lists which will be processed in the current Frame. The content of
2340                                                         this register is updated by HC after a periodic ED has been processed. HCD
2341                                                         may read the content in determining which ED is currently being processed
2342                                                         at the time of reading. */
2343	uint32_t reserved_0_3                 : 4;
2344#else
2345	uint32_t reserved_0_3                 : 4;
2346	uint32_t pced                         : 28;
2347#endif
2348	} s;
2349	struct cvmx_uahcx_ohci0_hcperiodcurrented_s cn61xx;
2350	struct cvmx_uahcx_ohci0_hcperiodcurrented_s cn63xx;
2351	struct cvmx_uahcx_ohci0_hcperiodcurrented_s cn63xxp1;
2352	struct cvmx_uahcx_ohci0_hcperiodcurrented_s cn66xx;
2353	struct cvmx_uahcx_ohci0_hcperiodcurrented_s cn68xx;
2354	struct cvmx_uahcx_ohci0_hcperiodcurrented_s cn68xxp1;
2355	struct cvmx_uahcx_ohci0_hcperiodcurrented_s cnf71xx;
2356};
2357typedef union cvmx_uahcx_ohci0_hcperiodcurrented cvmx_uahcx_ohci0_hcperiodcurrented_t;
2358
2359/**
2360 * cvmx_uahc#_ohci0_hcperiodicstart
2361 *
2362 * HCPERIODICSTART = Host Controller Periodic Start Register
2363 *
2364 * The HcPeriodicStart register has a 14-bit programmable value which determines when is the earliest time HC should start processing the periodic list.
2365 */
2366union cvmx_uahcx_ohci0_hcperiodicstart {
2367	uint32_t u32;
2368	struct cvmx_uahcx_ohci0_hcperiodicstart_s {
2369#ifdef __BIG_ENDIAN_BITFIELD
2370	uint32_t reserved_14_31               : 18;
2371	uint32_t ps                           : 14; /**< PeriodicStart After a hardware reset, this field is cleared. This is then set
2372                                                         by HCD during the HC initialization. The value is calculated roughly as 10%
2373                                                         off from HcFmInterval.. A typical value will be 3E67h. When HcFmRemaining
2374                                                         reaches the value specified, processing of the periodic lists will have
2375                                                         priority over Control/Bulk processing. HC will therefore start processing
2376                                                         the Interrupt list after completing the current Control or Bulk transaction
2377                                                         that is in progress. */
2378#else
2379	uint32_t ps                           : 14;
2380	uint32_t reserved_14_31               : 18;
2381#endif
2382	} s;
2383	struct cvmx_uahcx_ohci0_hcperiodicstart_s cn61xx;
2384	struct cvmx_uahcx_ohci0_hcperiodicstart_s cn63xx;
2385	struct cvmx_uahcx_ohci0_hcperiodicstart_s cn63xxp1;
2386	struct cvmx_uahcx_ohci0_hcperiodicstart_s cn66xx;
2387	struct cvmx_uahcx_ohci0_hcperiodicstart_s cn68xx;
2388	struct cvmx_uahcx_ohci0_hcperiodicstart_s cn68xxp1;
2389	struct cvmx_uahcx_ohci0_hcperiodicstart_s cnf71xx;
2390};
2391typedef union cvmx_uahcx_ohci0_hcperiodicstart cvmx_uahcx_ohci0_hcperiodicstart_t;
2392
2393/**
2394 * cvmx_uahc#_ohci0_hcrevision
2395 *
2396 * HCREVISION = Host Controller Revision Register
2397 *
2398 */
2399union cvmx_uahcx_ohci0_hcrevision {
2400	uint32_t u32;
2401	struct cvmx_uahcx_ohci0_hcrevision_s {
2402#ifdef __BIG_ENDIAN_BITFIELD
2403	uint32_t reserved_8_31                : 24;
2404	uint32_t rev                          : 8;  /**< Revision This read-only field contains the BCD representation of the version
2405                                                         of the HCI specification that is implemented by this HC. For example, a value
2406                                                         of 11h corresponds to version 1.1. All of the HC implementations that are
2407                                                         compliant with this specification will have a value of 10h. */
2408#else
2409	uint32_t rev                          : 8;
2410	uint32_t reserved_8_31                : 24;
2411#endif
2412	} s;
2413	struct cvmx_uahcx_ohci0_hcrevision_s  cn61xx;
2414	struct cvmx_uahcx_ohci0_hcrevision_s  cn63xx;
2415	struct cvmx_uahcx_ohci0_hcrevision_s  cn63xxp1;
2416	struct cvmx_uahcx_ohci0_hcrevision_s  cn66xx;
2417	struct cvmx_uahcx_ohci0_hcrevision_s  cn68xx;
2418	struct cvmx_uahcx_ohci0_hcrevision_s  cn68xxp1;
2419	struct cvmx_uahcx_ohci0_hcrevision_s  cnf71xx;
2420};
2421typedef union cvmx_uahcx_ohci0_hcrevision cvmx_uahcx_ohci0_hcrevision_t;
2422
2423/**
2424 * cvmx_uahc#_ohci0_hcrhdescriptora
2425 *
2426 * HCRHDESCRIPTORA = Host Controller Root Hub DescriptorA Register
2427 *
2428 * The HcRhDescriptorA register is the first register of two describing the characteristics of the Root Hub. Reset values are implementation-specific.
2429 * The descriptor length (11), descriptor type (0x29), and hub controller current (0) fields of the hub Class Descriptor are emulated by the HCD. All
2430 * other fields are located in the HcRhDescriptorA and HcRhDescriptorB registers.
2431 */
2432union cvmx_uahcx_ohci0_hcrhdescriptora {
2433	uint32_t u32;
2434	struct cvmx_uahcx_ohci0_hcrhdescriptora_s {
2435#ifdef __BIG_ENDIAN_BITFIELD
2436	uint32_t potpgt                       : 8;  /**< PowerOnToPowerGoodTime. This byte specifies the duration HCD has to wait before
2437                                                         accessing a powered-on port of the Root Hub. It is implementation-specific. The
2438                                                         unit of time is 2 ms. The duration is calculated as POTPGT * 2 ms. */
2439	uint32_t reserved_13_23               : 11;
2440	uint32_t nocp                         : 1;  /**< NoOverCurrentProtection. This bit describes how the overcurrent status for the
2441                                                         Root Hub ports are reported. When this bit is cleared, the
2442                                                         OverCurrentProtectionMode field specifies global or per-port reporting.
2443                                                         - 0: Over-current status is reported  collectively for all downstream ports
2444                                                         - 1: No overcurrent protection supported */
2445	uint32_t ocpm                         : 1;  /**< OverCurrentProtectionMode. This bit describes how the overcurrent status for
2446                                                         the Root Hub ports are reported. At reset, this fields should reflect the same
2447                                                         mode as PowerSwitchingMode. This field is valid only if the
2448                                                         NoOverCurrentProtection field is cleared. 0: over-current status is reported
2449                                                         collectively for all downstream ports 1: over-current status is reported on a
2450                                                         per-port basis */
2451	uint32_t dt                           : 1;  /**< DeviceType. This bit specifies that the Root Hub is not a compound device. The
2452                                                         Root Hub is not permitted to be a compound device. This field should always
2453                                                         read/write 0. */
2454	uint32_t psm                          : 1;  /**< PowerSwitchingMode. This bit is used to specify how the power switching of
2455                                                         the Root Hub ports is controlled. It is implementation-specific. This field
2456                                                         is only valid if the NoPowerSwitching field is cleared. 0: all ports are
2457                                                         powered at the same time. 1: each port is powered individually.  This mode
2458                                                         allows port power to be controlled by either the global switch or per-port
2459                                                         switching. If the PortPowerControlMask bit is set, the port responds only
2460                                                         to port power commands (Set/ClearPortPower). If the port mask is cleared,
2461                                                         then the port is controlled only by the global power switch
2462                                                         (Set/ClearGlobalPower). */
2463	uint32_t nps                          : 1;  /**< NoPowerSwitching These bits are used to specify whether power switching is
2464                                                         supported or port are always powered. It is implementation-specific. When
2465                                                         this bit is cleared, the PowerSwitchingMode specifies global or per-port
2466                                                         switching.
2467                                                          - 0: Ports are power switched
2468                                                          - 1: Ports are always powered on when the HC is powered on */
2469	uint32_t ndp                          : 8;  /**< NumberDownstreamPorts. These bits specify the number of downstream ports
2470                                                         supported by the Root Hub. It is implementation-specific. The minimum number
2471                                                         of ports is 1. The maximum number of ports supported by OpenHCI is 15. */
2472#else
2473	uint32_t ndp                          : 8;
2474	uint32_t nps                          : 1;
2475	uint32_t psm                          : 1;
2476	uint32_t dt                           : 1;
2477	uint32_t ocpm                         : 1;
2478	uint32_t nocp                         : 1;
2479	uint32_t reserved_13_23               : 11;
2480	uint32_t potpgt                       : 8;
2481#endif
2482	} s;
2483	struct cvmx_uahcx_ohci0_hcrhdescriptora_s cn61xx;
2484	struct cvmx_uahcx_ohci0_hcrhdescriptora_s cn63xx;
2485	struct cvmx_uahcx_ohci0_hcrhdescriptora_s cn63xxp1;
2486	struct cvmx_uahcx_ohci0_hcrhdescriptora_s cn66xx;
2487	struct cvmx_uahcx_ohci0_hcrhdescriptora_s cn68xx;
2488	struct cvmx_uahcx_ohci0_hcrhdescriptora_s cn68xxp1;
2489	struct cvmx_uahcx_ohci0_hcrhdescriptora_s cnf71xx;
2490};
2491typedef union cvmx_uahcx_ohci0_hcrhdescriptora cvmx_uahcx_ohci0_hcrhdescriptora_t;
2492
2493/**
2494 * cvmx_uahc#_ohci0_hcrhdescriptorb
2495 *
2496 * HCRHDESCRIPTORB = Host Controller Root Hub DescriptorB Register
2497 *
2498 * The HcRhDescriptorB register is the second register of two describing the characteristics of the Root Hub. These fields are written during
2499 * initialization to correspond with the system implementation. Reset values are implementation-specific.
2500 */
2501union cvmx_uahcx_ohci0_hcrhdescriptorb {
2502	uint32_t u32;
2503	struct cvmx_uahcx_ohci0_hcrhdescriptorb_s {
2504#ifdef __BIG_ENDIAN_BITFIELD
2505	uint32_t ppcm                         : 16; /**< PortPowerControlMask.
2506                                                         Each bit indicates if a port is affected by a global power control command
2507                                                         when PowerSwitchingMode is set. When set, the port's power state is only
2508                                                         affected by per-port power control (Set/ClearPortPower). When cleared, the
2509                                                         port is controlled by the global power switch (Set/ClearGlobalPower). If
2510                                                         the device is configured to global switching mode (PowerSwitchingMode=0),
2511                                                         this field is not valid.
2512                                                            bit 0: Reserved
2513                                                            bit 1: Ganged-power mask on Port \#1
2514                                                            bit 2: Ganged-power mask on Port \#2
2515                                                            - ...
2516                                                            bit15: Ganged-power mask on Port \#15 */
2517	uint32_t dr                           : 16; /**< DeviceRemovable.
2518                                                         Each bit is dedicated to a port of the Root Hub. When cleared,the attached
2519                                                         device is removable. When set, the attached device is not removable.
2520                                                             bit 0: Reserved
2521                                                             bit 1: Device attached to Port \#1
2522                                                             bit 2: Device attached to Port \#2
2523                                                             - ...
2524                                                             bit15: Device attached to Port \#15 */
2525#else
2526	uint32_t dr                           : 16;
2527	uint32_t ppcm                         : 16;
2528#endif
2529	} s;
2530	struct cvmx_uahcx_ohci0_hcrhdescriptorb_s cn61xx;
2531	struct cvmx_uahcx_ohci0_hcrhdescriptorb_s cn63xx;
2532	struct cvmx_uahcx_ohci0_hcrhdescriptorb_s cn63xxp1;
2533	struct cvmx_uahcx_ohci0_hcrhdescriptorb_s cn66xx;
2534	struct cvmx_uahcx_ohci0_hcrhdescriptorb_s cn68xx;
2535	struct cvmx_uahcx_ohci0_hcrhdescriptorb_s cn68xxp1;
2536	struct cvmx_uahcx_ohci0_hcrhdescriptorb_s cnf71xx;
2537};
2538typedef union cvmx_uahcx_ohci0_hcrhdescriptorb cvmx_uahcx_ohci0_hcrhdescriptorb_t;
2539
2540/**
2541 * cvmx_uahc#_ohci0_hcrhportstatus#
2542 *
2543 * HCRHPORTSTATUSX = Host Controller Root Hub Port X Status Registers
2544 *
2545 * The HcRhPortStatus[1:NDP] register is used to control and report port events on a per-port basis. NumberDownstreamPorts represents the number
2546 * of HcRhPortStatus registers that are implemented in hardware. The lower word is used to reflect the port status, whereas the upper word reflects
2547 * the status change bits. Some status bits are implemented with special write behavior (see below). If a transaction (token through handshake) is
2548 * in progress when a write to change port status occurs, the resulting port status change must be postponed until the transaction completes.
2549 * Reserved bits should always be written '0'.
2550 */
2551union cvmx_uahcx_ohci0_hcrhportstatusx {
2552	uint32_t u32;
2553	struct cvmx_uahcx_ohci0_hcrhportstatusx_s {
2554#ifdef __BIG_ENDIAN_BITFIELD
2555	uint32_t reserved_21_31               : 11;
2556	uint32_t prsc                         : 1;  /**< PortResetStatusChange. This bit is set at the end of the 10-ms port reset
2557                                                         signal. The HCD writes a '1' to clear this bit. Writing a '0' has no effect.
2558                                                            0 = port reset is not complete
2559                                                            1 = port reset is complete */
2560	uint32_t ocic                         : 1;  /**< PortOverCurrentIndicatorChange. This bit is valid only if overcurrent
2561                                                         conditions are reported on a per-port basis. This bit is set when Root Hub
2562                                                         changes the PortOverCurrentIndicator bit. The HCD writes a '1' to clear this
2563                                                         bit. Writing a  '0'  has no effect.
2564                                                            0 = no change in PortOverCurrentIndicator
2565                                                            1 = PortOverCurrentIndicator has changed */
2566	uint32_t pssc                         : 1;  /**< PortSuspendStatusChange. This bit is set when the full resume sequence has
2567                                                         been completed. This sequence includes the 20-s resume pulse, LS EOP, and
2568                                                         3-ms resychronization delay.
2569                                                         The HCD writes a '1' to clear this bit. Writing a '0' has no effect. This
2570                                                         bit is also cleared when ResetStatusChange is set.
2571                                                            0 = resume is not completed
2572                                                            1 = resume completed */
2573	uint32_t pesc                         : 1;  /**< PortEnableStatusChange. This bit is set when hardware events cause the
2574                                                         PortEnableStatus bit to be cleared. Changes from HCD writes do not set this
2575                                                         bit. The HCD writes a '1' to clear this bit. Writing a '0' has no effect.
2576                                                           0 = no change in PortEnableStatus
2577                                                           1 = change in PortEnableStatus */
2578	uint32_t csc                          : 1;  /**< ConnectStatusChange. This bit is set whenever a connect or disconnect event
2579                                                         occurs. The HCD writes a '1' to clear this bit. Writing a '0' has no
2580                                                         effect. If CurrentConnectStatus is cleared when a SetPortReset,SetPortEnable,
2581                                                         or SetPortSuspend write occurs, this bit is set to force the driver to
2582                                                         re-evaluate the connection status since these writes should not occur if the
2583                                                         port is disconnected.
2584                                                           0 = no change in CurrentConnectStatus
2585                                                           1 = change in CurrentConnectStatus
2586                                                         Note: If the DeviceRemovable[NDP] bit is set, this bit is set only after a
2587                                                          Root Hub reset to inform the system that the device is attached. Description */
2588	uint32_t reserved_10_15               : 6;
2589	uint32_t lsda                         : 1;  /**< (read) LowSpeedDeviceAttached. This bit indicates the speed of the device
2590                                                              attached to this port. When set, a Low Speed device is attached to this
2591                                                              port. When clear, a Full Speed device is attached to this port. This
2592                                                              field is valid only when the CurrentConnectStatus is set.
2593                                                                 0 = full speed device attached
2594                                                                 1 = low speed device attached
2595                                                         (write) ClearPortPower. The HCD clears the PortPowerStatus bit by writing a
2596                                                              '1' to this bit. Writing a '0' has no effect. */
2597	uint32_t pps                          : 1;  /**< (read) PortPowerStatus. This bit reflects the port's power status, regardless
2598                                                             of the type of power switching implemented. This bit is cleared if an
2599                                                             overcurrent condition is detected. HCD sets this bit by writing
2600                                                             SetPortPower or SetGlobalPower. HCD clears this bit by writing
2601                                                             ClearPortPower or ClearGlobalPower. Which power control switches are
2602                                                             enabled is determined by PowerSwitchingMode and PortPortControlMask[NDP].
2603                                                             In global switching mode (PowerSwitchingMode=0), only Set/ClearGlobalPower
2604                                                               controls this bit. In per-port power switching (PowerSwitchingMode=1),
2605                                                               if the PortPowerControlMask[NDP] bit for the port is set, only
2606                                                               Set/ClearPortPower commands are enabled. If the mask is not set, only
2607                                                               Set/ClearGlobalPower commands are enabled. When port power is disabled,
2608                                                               CurrentConnectStatus, PortEnableStatus, PortSuspendStatus, and
2609                                                               PortResetStatus should be reset.
2610                                                                  0 = port power is off
2611                                                                  1 = port power is on
2612                                                         (write) SetPortPower. The HCD writes a '1' to set the PortPowerStatus bit.
2613                                                               Writing a '0' has no effect. Note: This bit is always reads '1'
2614                                                               if power switching is not supported. */
2615	uint32_t reserved_5_7                 : 3;
2616	uint32_t prs                          : 1;  /**< (read) PortResetStatus. When this bit is set by a write to SetPortReset, port
2617                                                               reset signaling is asserted. When reset is completed, this bit is
2618                                                               cleared when PortResetStatusChange is set. This bit cannot be set if
2619                                                               CurrentConnectStatus is cleared.
2620                                                                  0 = port reset signal is not active
2621                                                               1 = port reset signal is active
2622                                                         (write) SetPortReset. The HCD sets the port reset signaling by writing a '1'
2623                                                               to this bit. Writing a '0'has no effect. If CurrentConnectStatus is
2624                                                               cleared, this write does not set PortResetStatus, but instead sets
2625                                                               ConnectStatusChange. This informs the driver that it attempted to reset
2626                                                               a disconnected port. Description */
2627	uint32_t poci                         : 1;  /**< (read) PortOverCurrentIndicator. This bit is only valid when the Root Hub is
2628                                                                configured in such a way that overcurrent conditions are reported on a
2629                                                                per-port basis. If per-port overcurrent reporting is not supported, this
2630                                                                bit is set to 0. If cleared, all power operations are normal for this
2631                                                                port. If set, an overcurrent condition exists on this port. This bit
2632                                                                always reflects the overcurrent input signal
2633                                                                  0 = no overcurrent condition.
2634                                                                  1 = overcurrent condition detected.
2635                                                         (write) ClearSuspendStatus. The HCD writes a '1' to initiate a resume.
2636                                                                 Writing  a '0' has no effect. A resume is initiated only if
2637                                                                 PortSuspendStatus is set. */
2638	uint32_t pss                          : 1;  /**< (read) PortSuspendStatus. This bit indicates the port is suspended or in the
2639                                                              resume sequence. It is set by a SetSuspendState write and cleared when
2640                                                              PortSuspendStatusChange is set at the end of the resume interval. This
2641                                                              bit cannot be set if CurrentConnectStatus is cleared. This bit is also
2642                                                              cleared when PortResetStatusChange is set at the end of the port reset
2643                                                              or when the HC is placed in the USBRESUME state. If an upstream resume is
2644                                                              in progress, it should propagate to the HC.
2645                                                                 0 = port is not suspended
2646                                                                 1 = port is suspended
2647                                                         (write) SetPortSuspend. The HCD sets the PortSuspendStatus bit by writing a
2648                                                              '1' to this bit. Writing a '0' has no effect. If CurrentConnectStatus
2649                                                                is cleared, this write does not set PortSuspendStatus; instead it sets
2650                                                                ConnectStatusChange.This informs the driver that it attempted to suspend
2651                                                                a disconnected port. */
2652	uint32_t pes                          : 1;  /**< (read) PortEnableStatus. This bit indicates whether the port is enabled or
2653                                                              disabled. The Root Hub may clear this bit when an overcurrent condition,
2654                                                              disconnect event, switched-off power, or operational bus error such
2655                                                              as babble is detected. This change also causes PortEnabledStatusChange
2656                                                              to be set. HCD sets this bit by writing SetPortEnable and clears it by
2657                                                              writing ClearPortEnable. This bit cannot be set when CurrentConnectStatus
2658                                                              is cleared. This bit is also set, if not already, at the completion of a
2659                                                              port reset when ResetStatusChange is set or port suspend when
2660                                                              SuspendStatusChange is set.
2661                                                                0 = port is disabled
2662                                                                1 = port is enabled
2663                                                         (write) SetPortEnable. The HCD sets PortEnableStatus by writing a '1'.
2664                                                              Writing a '0' has no effect. If CurrentConnectStatus is cleared, this
2665                                                              write does not set PortEnableStatus, but instead sets ConnectStatusChange.
2666                                                              This informs the driver that it attempted to enable a disconnected port. */
2667	uint32_t ccs                          : 1;  /**< (read) CurrentConnectStatus. This bit reflects the current state of the
2668                                                               downstream port.
2669                                                                 0 = no device connected
2670                                                                 1 = device connected
2671                                                         (write) ClearPortEnable.
2672                                                                The HCD writes a '1' to this bit to clear the PortEnableStatus bit.
2673                                                                Writing a '0' has no effect. The CurrentConnectStatus is not
2674                                                                affected by any write.
2675                                                          Note: This bit is always read '1b' when the attached device is
2676                                                                nonremovable (DeviceRemoveable[NDP]). */
2677#else
2678	uint32_t ccs                          : 1;
2679	uint32_t pes                          : 1;
2680	uint32_t pss                          : 1;
2681	uint32_t poci                         : 1;
2682	uint32_t prs                          : 1;
2683	uint32_t reserved_5_7                 : 3;
2684	uint32_t pps                          : 1;
2685	uint32_t lsda                         : 1;
2686	uint32_t reserved_10_15               : 6;
2687	uint32_t csc                          : 1;
2688	uint32_t pesc                         : 1;
2689	uint32_t pssc                         : 1;
2690	uint32_t ocic                         : 1;
2691	uint32_t prsc                         : 1;
2692	uint32_t reserved_21_31               : 11;
2693#endif
2694	} s;
2695	struct cvmx_uahcx_ohci0_hcrhportstatusx_s cn61xx;
2696	struct cvmx_uahcx_ohci0_hcrhportstatusx_s cn63xx;
2697	struct cvmx_uahcx_ohci0_hcrhportstatusx_s cn63xxp1;
2698	struct cvmx_uahcx_ohci0_hcrhportstatusx_s cn66xx;
2699	struct cvmx_uahcx_ohci0_hcrhportstatusx_s cn68xx;
2700	struct cvmx_uahcx_ohci0_hcrhportstatusx_s cn68xxp1;
2701	struct cvmx_uahcx_ohci0_hcrhportstatusx_s cnf71xx;
2702};
2703typedef union cvmx_uahcx_ohci0_hcrhportstatusx cvmx_uahcx_ohci0_hcrhportstatusx_t;
2704
2705/**
2706 * cvmx_uahc#_ohci0_hcrhstatus
2707 *
2708 * HCRHSTATUS = Host Controller Root Hub Status Register
2709 *
2710 * The HcRhStatus register is divided into two parts. The lower word of a Dword represents the Hub Status field and the upper word represents the Hub
2711 * Status Change field. Reserved bits should always be written '0'.
2712 */
2713union cvmx_uahcx_ohci0_hcrhstatus {
2714	uint32_t u32;
2715	struct cvmx_uahcx_ohci0_hcrhstatus_s {
2716#ifdef __BIG_ENDIAN_BITFIELD
2717	uint32_t crwe                         : 1;  /**< (write) ClearRemoteWakeupEnable Writing a '1' clears DeviceRemoveWakeupEnable.
2718                                                         Writing a '0' has no effect. */
2719	uint32_t reserved_18_30               : 13;
2720	uint32_t ccic                         : 1;  /**< OverCurrentIndicatorChange. This bit is set by hardware when a change has
2721                                                         occurred to the OCI field of this register. The HCD clears this bit by
2722                                                         writing a '1'. Writing a '0' has no effect. */
2723	uint32_t lpsc                         : 1;  /**< (read) LocalPowerStatusChange. The Root Hub does not support the local power
2724                                                                status feature; thus, this bit is always read as '0'.
2725                                                         (write) SetGlobalPower In global power mode (PowerSwitchingMode=0), This bit
2726                                                                 is written to '1' to turn on power to all ports (clear PortPowerStatus).
2727                                                                 In per-port power mode, it sets PortPowerStatus only on ports whose
2728                                                                 PortPowerControlMask bit is not set. Writing a '0' has no effect. */
2729	uint32_t drwe                         : 1;  /**< (read) DeviceRemoteWakeupEnable. This bit enables a ConnectStatusChange bit as
2730                                                                a resume event, causing a USBSUSPEND to USBRESUME state transition and
2731                                                                setting the ResumeDetected interrupt. 0 = ConnectStatusChange is not a
2732                                                                remote wakeup event. 1 = ConnectStatusChange is a remote wakeup event.
2733                                                         (write) SetRemoteWakeupEnable Writing a '1' sets DeviceRemoveWakeupEnable.
2734                                                                 Writing a '0' has no effect. */
2735	uint32_t reserved_2_14                : 13;
2736	uint32_t oci                          : 1;  /**< OverCurrentIndicator. This bit reports overcurrent conditions when the global
2737                                                         reporting is implemented. When set, an overcurrent condition exists. When
2738                                                         cleared, all power operations are normal. If per-port overcurrent protection
2739                                                         is implemented this bit is always '0' */
2740	uint32_t lps                          : 1;  /**< (read)  LocalPowerStatus. The Root Hub does not support the local power status
2741                                                                 feature; thus, this bit is always read as '0.
2742                                                         (write) ClearGlobalPower. In global power mode (PowerSwitchingMode=0), This
2743                                                                 bit is written to '1' to turn off power to all ports
2744                                                                 (clear PortPowerStatus). In per-port power mode, it clears
2745                                                                 PortPowerStatus only on ports whose PortPowerControlMask bit is not
2746                                                                 set. Writing a '0' has no effect. Description */
2747#else
2748	uint32_t lps                          : 1;
2749	uint32_t oci                          : 1;
2750	uint32_t reserved_2_14                : 13;
2751	uint32_t drwe                         : 1;
2752	uint32_t lpsc                         : 1;
2753	uint32_t ccic                         : 1;
2754	uint32_t reserved_18_30               : 13;
2755	uint32_t crwe                         : 1;
2756#endif
2757	} s;
2758	struct cvmx_uahcx_ohci0_hcrhstatus_s  cn61xx;
2759	struct cvmx_uahcx_ohci0_hcrhstatus_s  cn63xx;
2760	struct cvmx_uahcx_ohci0_hcrhstatus_s  cn63xxp1;
2761	struct cvmx_uahcx_ohci0_hcrhstatus_s  cn66xx;
2762	struct cvmx_uahcx_ohci0_hcrhstatus_s  cn68xx;
2763	struct cvmx_uahcx_ohci0_hcrhstatus_s  cn68xxp1;
2764	struct cvmx_uahcx_ohci0_hcrhstatus_s  cnf71xx;
2765};
2766typedef union cvmx_uahcx_ohci0_hcrhstatus cvmx_uahcx_ohci0_hcrhstatus_t;
2767
2768/**
2769 * cvmx_uahc#_ohci0_insnreg06
2770 *
2771 * OHCI0_INSNREG06 = OHCI  AHB Error Status Register (Synopsys Speicific)
2772 *
2773 * This register contains AHB Error Status.
2774 */
2775union cvmx_uahcx_ohci0_insnreg06 {
2776	uint32_t u32;
2777	struct cvmx_uahcx_ohci0_insnreg06_s {
2778#ifdef __BIG_ENDIAN_BITFIELD
2779	uint32_t vld                          : 1;  /**< AHB Error Captured. Indicator that an AHB error was encountered and values were captured.
2780                                                         To clear this field the application must write a 0 to it. */
2781	uint32_t reserved_0_30                : 31;
2782#else
2783	uint32_t reserved_0_30                : 31;
2784	uint32_t vld                          : 1;
2785#endif
2786	} s;
2787	struct cvmx_uahcx_ohci0_insnreg06_s   cn61xx;
2788	struct cvmx_uahcx_ohci0_insnreg06_s   cn63xx;
2789	struct cvmx_uahcx_ohci0_insnreg06_s   cn63xxp1;
2790	struct cvmx_uahcx_ohci0_insnreg06_s   cn66xx;
2791	struct cvmx_uahcx_ohci0_insnreg06_s   cn68xx;
2792	struct cvmx_uahcx_ohci0_insnreg06_s   cn68xxp1;
2793	struct cvmx_uahcx_ohci0_insnreg06_s   cnf71xx;
2794};
2795typedef union cvmx_uahcx_ohci0_insnreg06 cvmx_uahcx_ohci0_insnreg06_t;
2796
2797/**
2798 * cvmx_uahc#_ohci0_insnreg07
2799 *
2800 * OHCI0_INSNREG07 = OHCI  AHB Error Address Register (Synopsys Speicific)
2801 *
2802 * This register contains AHB Error Status.
2803 */
2804union cvmx_uahcx_ohci0_insnreg07 {
2805	uint32_t u32;
2806	struct cvmx_uahcx_ohci0_insnreg07_s {
2807#ifdef __BIG_ENDIAN_BITFIELD
2808	uint32_t err_addr                     : 32; /**< AHB Master Error Address. AHB address of the control phase at which the AHB error occurred */
2809#else
2810	uint32_t err_addr                     : 32;
2811#endif
2812	} s;
2813	struct cvmx_uahcx_ohci0_insnreg07_s   cn61xx;
2814	struct cvmx_uahcx_ohci0_insnreg07_s   cn63xx;
2815	struct cvmx_uahcx_ohci0_insnreg07_s   cn63xxp1;
2816	struct cvmx_uahcx_ohci0_insnreg07_s   cn66xx;
2817	struct cvmx_uahcx_ohci0_insnreg07_s   cn68xx;
2818	struct cvmx_uahcx_ohci0_insnreg07_s   cn68xxp1;
2819	struct cvmx_uahcx_ohci0_insnreg07_s   cnf71xx;
2820};
2821typedef union cvmx_uahcx_ohci0_insnreg07 cvmx_uahcx_ohci0_insnreg07_t;
2822
2823#endif
2824