cvmx-spxx-defs.h revision 215976
1/***********************license start***************
2 * Copyright (c) 2003-2010  Cavium Networks (support@cavium.com). All rights
3 * reserved.
4 *
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 *   * Redistributions of source code must retain the above copyright
11 *     notice, this list of conditions and the following disclaimer.
12 *
13 *   * Redistributions in binary form must reproduce the above
14 *     copyright notice, this list of conditions and the following
15 *     disclaimer in the documentation and/or other materials provided
16 *     with the distribution.
17
18 *   * Neither the name of Cavium Networks nor the names of
19 *     its contributors may be used to endorse or promote products
20 *     derived from this software without specific prior written
21 *     permission.
22
23 * This Software, including technical data, may be subject to U.S. export  control
24 * laws, including the U.S. Export Administration Act and its  associated
25 * regulations, and may be subject to export or import  regulations in other
26 * countries.
27
28 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
29 * AND WITH ALL FAULTS AND CAVIUM  NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
30 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
31 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
32 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
33 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
34 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
35 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
36 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
37 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
38 ***********************license end**************************************/
39
40
41/**
42 * cvmx-spxx-defs.h
43 *
44 * Configuration and status register (CSR) type definitions for
45 * Octeon spxx.
46 *
47 * This file is auto generated. Do not edit.
48 *
49 * <hr>$Revision$<hr>
50 *
51 */
52#ifndef __CVMX_SPXX_TYPEDEFS_H__
53#define __CVMX_SPXX_TYPEDEFS_H__
54
55#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
56static inline uint64_t CVMX_SPXX_BCKPRS_CNT(unsigned long block_id)
57{
58	if (!(
59	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
60	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
61		cvmx_warn("CVMX_SPXX_BCKPRS_CNT(%lu) is invalid on this chip\n", block_id);
62	return CVMX_ADD_IO_SEG(0x0001180090000340ull) + ((block_id) & 1) * 0x8000000ull;
63}
64#else
65#define CVMX_SPXX_BCKPRS_CNT(block_id) (CVMX_ADD_IO_SEG(0x0001180090000340ull) + ((block_id) & 1) * 0x8000000ull)
66#endif
67#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
68static inline uint64_t CVMX_SPXX_BIST_STAT(unsigned long block_id)
69{
70	if (!(
71	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
72	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
73		cvmx_warn("CVMX_SPXX_BIST_STAT(%lu) is invalid on this chip\n", block_id);
74	return CVMX_ADD_IO_SEG(0x00011800900007F8ull) + ((block_id) & 1) * 0x8000000ull;
75}
76#else
77#define CVMX_SPXX_BIST_STAT(block_id) (CVMX_ADD_IO_SEG(0x00011800900007F8ull) + ((block_id) & 1) * 0x8000000ull)
78#endif
79#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
80static inline uint64_t CVMX_SPXX_CLK_CTL(unsigned long block_id)
81{
82	if (!(
83	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
84	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
85		cvmx_warn("CVMX_SPXX_CLK_CTL(%lu) is invalid on this chip\n", block_id);
86	return CVMX_ADD_IO_SEG(0x0001180090000348ull) + ((block_id) & 1) * 0x8000000ull;
87}
88#else
89#define CVMX_SPXX_CLK_CTL(block_id) (CVMX_ADD_IO_SEG(0x0001180090000348ull) + ((block_id) & 1) * 0x8000000ull)
90#endif
91#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
92static inline uint64_t CVMX_SPXX_CLK_STAT(unsigned long block_id)
93{
94	if (!(
95	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
96	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
97		cvmx_warn("CVMX_SPXX_CLK_STAT(%lu) is invalid on this chip\n", block_id);
98	return CVMX_ADD_IO_SEG(0x0001180090000350ull) + ((block_id) & 1) * 0x8000000ull;
99}
100#else
101#define CVMX_SPXX_CLK_STAT(block_id) (CVMX_ADD_IO_SEG(0x0001180090000350ull) + ((block_id) & 1) * 0x8000000ull)
102#endif
103#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
104static inline uint64_t CVMX_SPXX_DBG_DESKEW_CTL(unsigned long block_id)
105{
106	if (!(
107	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
108	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
109		cvmx_warn("CVMX_SPXX_DBG_DESKEW_CTL(%lu) is invalid on this chip\n", block_id);
110	return CVMX_ADD_IO_SEG(0x0001180090000368ull) + ((block_id) & 1) * 0x8000000ull;
111}
112#else
113#define CVMX_SPXX_DBG_DESKEW_CTL(block_id) (CVMX_ADD_IO_SEG(0x0001180090000368ull) + ((block_id) & 1) * 0x8000000ull)
114#endif
115#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
116static inline uint64_t CVMX_SPXX_DBG_DESKEW_STATE(unsigned long block_id)
117{
118	if (!(
119	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
120	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
121		cvmx_warn("CVMX_SPXX_DBG_DESKEW_STATE(%lu) is invalid on this chip\n", block_id);
122	return CVMX_ADD_IO_SEG(0x0001180090000370ull) + ((block_id) & 1) * 0x8000000ull;
123}
124#else
125#define CVMX_SPXX_DBG_DESKEW_STATE(block_id) (CVMX_ADD_IO_SEG(0x0001180090000370ull) + ((block_id) & 1) * 0x8000000ull)
126#endif
127#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
128static inline uint64_t CVMX_SPXX_DRV_CTL(unsigned long block_id)
129{
130	if (!(
131	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
132	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
133		cvmx_warn("CVMX_SPXX_DRV_CTL(%lu) is invalid on this chip\n", block_id);
134	return CVMX_ADD_IO_SEG(0x0001180090000358ull) + ((block_id) & 1) * 0x8000000ull;
135}
136#else
137#define CVMX_SPXX_DRV_CTL(block_id) (CVMX_ADD_IO_SEG(0x0001180090000358ull) + ((block_id) & 1) * 0x8000000ull)
138#endif
139#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
140static inline uint64_t CVMX_SPXX_ERR_CTL(unsigned long block_id)
141{
142	if (!(
143	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
144	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
145		cvmx_warn("CVMX_SPXX_ERR_CTL(%lu) is invalid on this chip\n", block_id);
146	return CVMX_ADD_IO_SEG(0x0001180090000320ull) + ((block_id) & 1) * 0x8000000ull;
147}
148#else
149#define CVMX_SPXX_ERR_CTL(block_id) (CVMX_ADD_IO_SEG(0x0001180090000320ull) + ((block_id) & 1) * 0x8000000ull)
150#endif
151#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
152static inline uint64_t CVMX_SPXX_INT_DAT(unsigned long block_id)
153{
154	if (!(
155	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
156	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
157		cvmx_warn("CVMX_SPXX_INT_DAT(%lu) is invalid on this chip\n", block_id);
158	return CVMX_ADD_IO_SEG(0x0001180090000318ull) + ((block_id) & 1) * 0x8000000ull;
159}
160#else
161#define CVMX_SPXX_INT_DAT(block_id) (CVMX_ADD_IO_SEG(0x0001180090000318ull) + ((block_id) & 1) * 0x8000000ull)
162#endif
163#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
164static inline uint64_t CVMX_SPXX_INT_MSK(unsigned long block_id)
165{
166	if (!(
167	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
168	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
169		cvmx_warn("CVMX_SPXX_INT_MSK(%lu) is invalid on this chip\n", block_id);
170	return CVMX_ADD_IO_SEG(0x0001180090000308ull) + ((block_id) & 1) * 0x8000000ull;
171}
172#else
173#define CVMX_SPXX_INT_MSK(block_id) (CVMX_ADD_IO_SEG(0x0001180090000308ull) + ((block_id) & 1) * 0x8000000ull)
174#endif
175#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
176static inline uint64_t CVMX_SPXX_INT_REG(unsigned long block_id)
177{
178	if (!(
179	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
180	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
181		cvmx_warn("CVMX_SPXX_INT_REG(%lu) is invalid on this chip\n", block_id);
182	return CVMX_ADD_IO_SEG(0x0001180090000300ull) + ((block_id) & 1) * 0x8000000ull;
183}
184#else
185#define CVMX_SPXX_INT_REG(block_id) (CVMX_ADD_IO_SEG(0x0001180090000300ull) + ((block_id) & 1) * 0x8000000ull)
186#endif
187#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
188static inline uint64_t CVMX_SPXX_INT_SYNC(unsigned long block_id)
189{
190	if (!(
191	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
192	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
193		cvmx_warn("CVMX_SPXX_INT_SYNC(%lu) is invalid on this chip\n", block_id);
194	return CVMX_ADD_IO_SEG(0x0001180090000310ull) + ((block_id) & 1) * 0x8000000ull;
195}
196#else
197#define CVMX_SPXX_INT_SYNC(block_id) (CVMX_ADD_IO_SEG(0x0001180090000310ull) + ((block_id) & 1) * 0x8000000ull)
198#endif
199#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
200static inline uint64_t CVMX_SPXX_TPA_ACC(unsigned long block_id)
201{
202	if (!(
203	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
204	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
205		cvmx_warn("CVMX_SPXX_TPA_ACC(%lu) is invalid on this chip\n", block_id);
206	return CVMX_ADD_IO_SEG(0x0001180090000338ull) + ((block_id) & 1) * 0x8000000ull;
207}
208#else
209#define CVMX_SPXX_TPA_ACC(block_id) (CVMX_ADD_IO_SEG(0x0001180090000338ull) + ((block_id) & 1) * 0x8000000ull)
210#endif
211#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
212static inline uint64_t CVMX_SPXX_TPA_MAX(unsigned long block_id)
213{
214	if (!(
215	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
216	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
217		cvmx_warn("CVMX_SPXX_TPA_MAX(%lu) is invalid on this chip\n", block_id);
218	return CVMX_ADD_IO_SEG(0x0001180090000330ull) + ((block_id) & 1) * 0x8000000ull;
219}
220#else
221#define CVMX_SPXX_TPA_MAX(block_id) (CVMX_ADD_IO_SEG(0x0001180090000330ull) + ((block_id) & 1) * 0x8000000ull)
222#endif
223#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
224static inline uint64_t CVMX_SPXX_TPA_SEL(unsigned long block_id)
225{
226	if (!(
227	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
228	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
229		cvmx_warn("CVMX_SPXX_TPA_SEL(%lu) is invalid on this chip\n", block_id);
230	return CVMX_ADD_IO_SEG(0x0001180090000328ull) + ((block_id) & 1) * 0x8000000ull;
231}
232#else
233#define CVMX_SPXX_TPA_SEL(block_id) (CVMX_ADD_IO_SEG(0x0001180090000328ull) + ((block_id) & 1) * 0x8000000ull)
234#endif
235#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
236static inline uint64_t CVMX_SPXX_TRN4_CTL(unsigned long block_id)
237{
238	if (!(
239	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((block_id <= 1))) ||
240	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((block_id <= 1)))))
241		cvmx_warn("CVMX_SPXX_TRN4_CTL(%lu) is invalid on this chip\n", block_id);
242	return CVMX_ADD_IO_SEG(0x0001180090000360ull) + ((block_id) & 1) * 0x8000000ull;
243}
244#else
245#define CVMX_SPXX_TRN4_CTL(block_id) (CVMX_ADD_IO_SEG(0x0001180090000360ull) + ((block_id) & 1) * 0x8000000ull)
246#endif
247
248/**
249 * cvmx_spx#_bckprs_cnt
250 */
251union cvmx_spxx_bckprs_cnt
252{
253	uint64_t u64;
254	struct cvmx_spxx_bckprs_cnt_s
255	{
256#if __BYTE_ORDER == __BIG_ENDIAN
257	uint64_t reserved_32_63               : 32;
258	uint64_t cnt                          : 32; /**< Counts the number of core clock cycles in which
259                                                         the SPI-4.2 receiver receives data once the TPA
260                                                         for a particular port has been deasserted. The
261                                                         desired port to watch can be selected with the
262                                                         SPX_TPA_SEL[PRTSEL] field. CNT can be cleared by
263                                                         writing all 1s to it. */
264#else
265	uint64_t cnt                          : 32;
266	uint64_t reserved_32_63               : 32;
267#endif
268	} s;
269	struct cvmx_spxx_bckprs_cnt_s         cn38xx;
270	struct cvmx_spxx_bckprs_cnt_s         cn38xxp2;
271	struct cvmx_spxx_bckprs_cnt_s         cn58xx;
272	struct cvmx_spxx_bckprs_cnt_s         cn58xxp1;
273};
274typedef union cvmx_spxx_bckprs_cnt cvmx_spxx_bckprs_cnt_t;
275
276/**
277 * cvmx_spx#_bist_stat
278 *
279 * Notes:
280 * Bist results encoding
281 * - 0: good (or bist in progress/never run)
282 * - 1: bad
283 */
284union cvmx_spxx_bist_stat
285{
286	uint64_t u64;
287	struct cvmx_spxx_bist_stat_s
288	{
289#if __BYTE_ORDER == __BIG_ENDIAN
290	uint64_t reserved_3_63                : 61;
291	uint64_t stat2                        : 1;  /**< Bist Results/No Repair (Tx calendar table)
292                                                         (spx.stx.cal.calendar) */
293	uint64_t stat1                        : 1;  /**< Bist Results/No Repair (Rx calendar table)
294                                                         (spx.srx.spi4.cal.calendar) */
295	uint64_t stat0                        : 1;  /**< Bist Results/No Repair (Spi4 receive datapath FIFO)
296                                                         (spx.srx.spi4.dat.dpr) */
297#else
298	uint64_t stat0                        : 1;
299	uint64_t stat1                        : 1;
300	uint64_t stat2                        : 1;
301	uint64_t reserved_3_63                : 61;
302#endif
303	} s;
304	struct cvmx_spxx_bist_stat_s          cn38xx;
305	struct cvmx_spxx_bist_stat_s          cn38xxp2;
306	struct cvmx_spxx_bist_stat_s          cn58xx;
307	struct cvmx_spxx_bist_stat_s          cn58xxp1;
308};
309typedef union cvmx_spxx_bist_stat cvmx_spxx_bist_stat_t;
310
311/**
312 * cvmx_spx#_clk_ctl
313 *
314 * Notes:
315 * * SRXDLCK
316 *   When asserted, this bit locks the Spi4 receive DLLs.  This bit also
317 *   acts as the Spi4 receiver reset and must be asserted before the
318 *   training sequences are used to initialize the interface.  This bit
319 *   only applies to the receiver interface.
320 *
321 * * RCVTRN
322 *   Once the SRXDLCK bit is asserted and the DLLs have locked and the
323 *   system has been programmed, software should assert this bit in order
324 *   to start looking for valid training sequence and synchronize the
325 *   interface. This bit only applies to the receiver interface.
326 *
327 * * DRPTRN
328 *   The Spi4 receiver can either convert training packets into NOPs or
329 *   drop them entirely.  Dropping ticks allows the interface to deskew
330 *   periodically if the dclk and eclk ratios are close. This bit only
331 *   applies to the receiver interface.
332 *
333 * * SNDTRN
334 *   When software sets this bit, it indicates that the Spi4 transmit
335 *   interface has been setup and has seen the calendare status.  Once the
336 *   transmitter begins sending training data, the receiving device is free
337 *   to start traversing the calendar table to synch the link.
338 *
339 * * STATRCV
340 *   This bit determines which status clock edge to sample the status
341 *   channel in Spi4 mode.  Since the status channel is in the opposite
342 *   direction to the datapath, the STATRCV actually effects the
343 *   transmitter/TX block.
344 *
345 * * STATDRV
346 *   This bit determines which status clock edge to drive the status
347 *   channel in Spi4 mode.  Since the status channel is in the opposite
348 *   direction to the datapath, the STATDRV actually effects the
349 *   receiver/RX block.
350 *
351 * * RUNBIST
352 *   RUNBIST will beginning BIST/BISR in all the SPX compilied memories.
353 *   These memories are...
354 *
355 *       * spx.srx.spi4.dat.dpr        // FIFO Spi4 to IMX
356 *       * spx.stx.cal.calendar        // Spi4 TX calendar table
357 *       * spx.srx.spi4.cal.calendar   // Spi4 RX calendar table
358 *
359 *   RUNBIST must never be asserted when the interface is enabled.
360 *   Furthmore, setting RUNBIST at any other time is destructive and can
361 *   cause data and configuration corruption.  The entire interface must be
362 *   reconfigured when this bit is set.
363 *
364 * * CLKDLY
365 *   CLKDLY should be kept at its reset value during normal operation.  This
366 *   register controls the SPI4.2 static clock positioning which normally only is
367 *   set to the non-reset value in quarter clocking schemes.  In this mode, the
368 *   delay window is not large enough for slow clock freq, therefore clock and
369 *   data must be statically positioned with CSRs.  By changing the clock position
370 *   relative to the data bits, we give the system a wider window.
371 *
372 * * SEETRN
373 *   In systems in which no training data is sent to N2 or N2 cannot
374 *   correctly sample the training data, software may pulse this bit by
375 *   writing a '1' followed by a '0' in order to correctly set the
376 *   receivers state.  The receive data bus should be idle at this time
377 *   (only NOPs on the bus).  If N2 cannot see at least on training
378 *   sequence, the data bus will not send any data to the core.  The
379 *   interface will hang.
380 */
381union cvmx_spxx_clk_ctl
382{
383	uint64_t u64;
384	struct cvmx_spxx_clk_ctl_s
385	{
386#if __BYTE_ORDER == __BIG_ENDIAN
387	uint64_t reserved_17_63               : 47;
388	uint64_t seetrn                       : 1;  /**< Force the Spi4 receive into seeing a traing
389                                                         sequence */
390	uint64_t reserved_12_15               : 4;
391	uint64_t clkdly                       : 5;  /**< Set the spx__clkdly lines to this value to
392                                                         control the delay on the incoming dclk
393                                                         (spx__clkdly) */
394	uint64_t runbist                      : 1;  /**< Write this bit to begin BIST testing in SPX */
395	uint64_t statdrv                      : 1;  /**< Spi4 status channel drive mode
396                                                         - 1: Drive STAT on posedge of SCLK
397                                                         - 0: Drive STAT on negedge of SCLK */
398	uint64_t statrcv                      : 1;  /**< Spi4 status channel sample mode
399                                                         - 1: Sample STAT on posedge of SCLK
400                                                         - 0: Sample STAT on negedge of SCLK */
401	uint64_t sndtrn                       : 1;  /**< Start sending training patterns on the Spi4
402                                                         Tx Interface */
403	uint64_t drptrn                       : 1;  /**< Drop blocks of training packets */
404	uint64_t rcvtrn                       : 1;  /**< Write this bit once the DLL is locked to sync
405                                                         on the training seqeunce */
406	uint64_t srxdlck                      : 1;  /**< Write this bit to lock the Spi4 receive DLL */
407#else
408	uint64_t srxdlck                      : 1;
409	uint64_t rcvtrn                       : 1;
410	uint64_t drptrn                       : 1;
411	uint64_t sndtrn                       : 1;
412	uint64_t statrcv                      : 1;
413	uint64_t statdrv                      : 1;
414	uint64_t runbist                      : 1;
415	uint64_t clkdly                       : 5;
416	uint64_t reserved_12_15               : 4;
417	uint64_t seetrn                       : 1;
418	uint64_t reserved_17_63               : 47;
419#endif
420	} s;
421	struct cvmx_spxx_clk_ctl_s            cn38xx;
422	struct cvmx_spxx_clk_ctl_s            cn38xxp2;
423	struct cvmx_spxx_clk_ctl_s            cn58xx;
424	struct cvmx_spxx_clk_ctl_s            cn58xxp1;
425};
426typedef union cvmx_spxx_clk_ctl cvmx_spxx_clk_ctl_t;
427
428/**
429 * cvmx_spx#_clk_stat
430 */
431union cvmx_spxx_clk_stat
432{
433	uint64_t u64;
434	struct cvmx_spxx_clk_stat_s
435	{
436#if __BYTE_ORDER == __BIG_ENDIAN
437	uint64_t reserved_11_63               : 53;
438	uint64_t stxcal                       : 1;  /**< The transistion from Sync to Calendar on status
439                                                         channel */
440	uint64_t reserved_9_9                 : 1;
441	uint64_t srxtrn                       : 1;  /**< Saw a good data training sequence */
442	uint64_t s4clk1                       : 1;  /**< Saw '1' on Spi4 transmit status forward clk input */
443	uint64_t s4clk0                       : 1;  /**< Saw '0' on Spi4 transmit status forward clk input */
444	uint64_t d4clk1                       : 1;  /**< Saw '1' on Spi4 receive data forward clk input */
445	uint64_t d4clk0                       : 1;  /**< Saw '0' on Spi4 receive data forward clk input */
446	uint64_t reserved_0_3                 : 4;
447#else
448	uint64_t reserved_0_3                 : 4;
449	uint64_t d4clk0                       : 1;
450	uint64_t d4clk1                       : 1;
451	uint64_t s4clk0                       : 1;
452	uint64_t s4clk1                       : 1;
453	uint64_t srxtrn                       : 1;
454	uint64_t reserved_9_9                 : 1;
455	uint64_t stxcal                       : 1;
456	uint64_t reserved_11_63               : 53;
457#endif
458	} s;
459	struct cvmx_spxx_clk_stat_s           cn38xx;
460	struct cvmx_spxx_clk_stat_s           cn38xxp2;
461	struct cvmx_spxx_clk_stat_s           cn58xx;
462	struct cvmx_spxx_clk_stat_s           cn58xxp1;
463};
464typedef union cvmx_spxx_clk_stat cvmx_spxx_clk_stat_t;
465
466/**
467 * cvmx_spx#_dbg_deskew_ctl
468 *
469 * Notes:
470 * These bits are meant as a backdoor to control Spi4 per-bit deskew.  See
471 * that Spec for more details.
472 *
473 *   The basic idea is to allow software to disable the auto-deskew widgets
474 *   and make any adjustments by hand.  These steps should only be taken
475 *   once the RCVTRN bit is set and before any real traffic is sent on the
476 *   Spi4 bus.  Great care should be taken when messing with these bits as
477 *   improper programmings can cause catestrophic or intermitent problems.
478 *
479 *   The params we have to test are the MUX tap selects and the XCV delay
480 *   tap selects.
481 *
482 *   For the muxes, we can set each tap to a random value and then read
483 *   back the taps.  To write...
484 *
485 *    SPXX_DBG_DESKEW_CTL[BITSEL]   = bit to set
486 *    SPXX_DBG_DESKEW_CTL[OFFSET]   = mux tap value (2-bits)
487 *    SPXX_DBG_DESKEW_CTL[MUX]      = go bit
488 *
489 *   Notice this can all happen with a single CSR write.  To read, first
490 *   set the bit you to look at with the SPXX_DBG_DESKEW_CTL[BITSEL], then
491 *   simply read SPXX_DBG_DESKEW_STATE[MUXSEL]...
492 *
493 *    SPXX_DBG_DESKEW_CTL[BITSEL]   = bit to set
494 *    SPXX_DBG_DESKEW_STATE[MUXSEL] = 2-bit value
495 *
496 *   For the xcv delay taps, the CSR controls increment and decrement the
497 *   5-bit count value in the XCV.  This is a saturating counter, so it
498 *   will not wrap when decrementing below zero or incrementing above 31.
499 *
500 *   To write...
501 *
502 *    SPXX_DBG_DESKEW_CTL[BITSEL]   = bit to set
503 *    SPXX_DBG_DESKEW_CTL[OFFSET]   = tap value increment or decrement amount (5-bits)
504 *    SPXX_DBG_DESKEW_CTL[INC|DEC]  = go bit
505 *
506 *   These values are copied in SPX, so that they can be read back by
507 *   software by a similar mechanism to the MUX selects...
508 *
509 *    SPXX_DBG_DESKEW_CTL[BITSEL]   = bit to set
510 *    SPXX_DBG_DESKEW_STATE[OFFSET] = 5-bit value
511 *
512 *   In addition, there is a reset bit that sets all the state back to the
513 *   default/starting value of 0x10.
514 *
515 *    SPXX_DBG_DESKEW_CTL[CLRDLY]   = 1
516 *
517 * SINGLE STEP TRAINING MODE (WILMA)
518 *     Debug feature that will enable the user to single-step the debug
519 *     logic to watch initial movement and trends by putting the training
520 *     machine in single step mode.
521 *
522 * * SPX*_DBG_DESKEW_CTL[SSTEP]
523 *        This will put the training control logic into single step mode.  We
524 *        will not deskew in this scenario and will require the TX device to
525 *        send continuous training sequences.
526 *
527 *        It is required that SRX*_COM_CTL[INF_EN] be clear so that suspect
528 *        data does not flow into the chip.
529 *
530 *        Deasserting SPX*_DBG_DESKEW_CTL[SSTEP] will attempt to deskew as per
531 *        the normal definition.  Single step mode is for debug only.  Special
532 *        care must be given to correctly deskew the interface if normal
533 *        operation is desired.
534 *
535 * * SPX*_DBG_DESKEW_CTL[SSTEP_GO]
536 *        Each write of '1' to SSTEP_GO will go through a single training
537 *        iteration and will perform...
538 *
539 *        - DLL update, if SPX*_DBG_DESKEW_CTL[DLLDIS] is clear
540 *        - coarse update, if SPX*_TRN4_CTL[MUX_EN] is set
541 *        - single fine update, if SPX*_TRN4_CTL[MACRO_EN] is set and an edge
542 *       was detected after walked +/- SPX*_TRN4_CTL[MAXDIST] taps.
543 *
544 *        Writes to this register have no effect if the interface is not in
545 *        SSTEP mode (SPX*_DBG_DESKEW_CTL[SSTEP]).
546 *
547 *        The WILMA mode will be cleared at the final state transition, so
548 *        that software can set SPX*_DBG_DESKEW_CTL[SSTEP] and
549 *        SPX*_DBG_DESKEW_CTL[SSTEP_GO] before setting SPX*_CLK_CTL[RCVTRN]
550 *        and the machine will go through the initial iteration and stop -
551 *        waiting for another SPX*_DBG_DESKEW_CTL[SSTEP_GO] or an interface
552 *        enable.
553 *
554 * * SPX*_DBG_DESKEW_CTL[FALL8]
555 *   Determines how many pattern matches are required during training
556 *   operations to fallout of training and begin processing the normal data
557 *   stream.  The default value is 10 pattern matches.  The pattern that is
558 *   used is dependent on the SPX*_DBG_DESKEW_CTL[FALLNOP] CSR which
559 *   determines between non-training packets (the default) and NOPs.
560 *
561 * * SPX*_DBG_DESKEW_CTL[FALLNOP]
562 *   Determines the pattern that is required during training operations to
563 *   fallout of training and begin processing the normal data stream.  The
564 *   default value is to match against non-training data.  Setting this
565 *   bit, changes the behavior to watch for NOPs packet instead.
566 *
567 *   This bit should not be changed dynamically while the link is
568 *   operational.
569 */
570union cvmx_spxx_dbg_deskew_ctl
571{
572	uint64_t u64;
573	struct cvmx_spxx_dbg_deskew_ctl_s
574	{
575#if __BYTE_ORDER == __BIG_ENDIAN
576	uint64_t reserved_30_63               : 34;
577	uint64_t fallnop                      : 1;  /**< Training fallout on NOP matches instead of
578                                                         non-training matches.
579                                                         (spx_csr__spi4_fallout_nop) */
580	uint64_t fall8                        : 1;  /**< Training fallout at 8 pattern matches instead of 10
581                                                         (spx_csr__spi4_fallout_8_match) */
582	uint64_t reserved_26_27               : 2;
583	uint64_t sstep_go                     : 1;  /**< Single Step Training Sequence
584                                                         (spx_csr__spi4_single_step_go) */
585	uint64_t sstep                        : 1;  /**< Single Step Training Mode
586                                                         (spx_csr__spi4_single_step_mode) */
587	uint64_t reserved_22_23               : 2;
588	uint64_t clrdly                       : 1;  /**< Resets the offset control in the XCV
589                                                         (spx_csr__spi4_dll_clr_dly) */
590	uint64_t dec                          : 1;  /**< Decrement the offset by OFFSET for the Spi4
591                                                         bit selected by BITSEL
592                                                         (spx_csr__spi4_dbg_trn_dec) */
593	uint64_t inc                          : 1;  /**< Increment the offset by OFFSET for the Spi4
594                                                         bit selected by BITSEL
595                                                         (spx_csr__spi4_dbg_trn_inc) */
596	uint64_t mux                          : 1;  /**< Set the mux select tap for the Spi4 bit
597                                                         selected by BITSEL
598                                                         (spx_csr__spi4_dbg_trn_mux) */
599	uint64_t offset                       : 5;  /**< Adds or subtracts (Based on INC or DEC) the
600                                                         offset to Spi4 bit BITSEL.
601                                                         (spx_csr__spi4_dbg_trn_offset) */
602	uint64_t bitsel                       : 5;  /**< Select the Spi4 CTL or DAT bit
603                                                         15-0 : Spi4 DAT[15:0]
604                                                         16   : Spi4 CTL
605                                                         - 31-17: Invalid
606                                                         (spx_csr__spi4_dbg_trn_bitsel) */
607	uint64_t offdly                       : 6;  /**< Set the spx__offset lines to this value when
608                                                         not in macro sequence
609                                                         (spx_csr__spi4_mac_offdly) */
610	uint64_t dllfrc                       : 1;  /**< Force the Spi4 RX DLL to update
611                                                         (spx_csr__spi4_dll_force) */
612	uint64_t dlldis                       : 1;  /**< Disable sending the update signal to the Spi4
613                                                         RX DLL when set
614                                                         (spx_csr__spi4_dll_trn_en) */
615#else
616	uint64_t dlldis                       : 1;
617	uint64_t dllfrc                       : 1;
618	uint64_t offdly                       : 6;
619	uint64_t bitsel                       : 5;
620	uint64_t offset                       : 5;
621	uint64_t mux                          : 1;
622	uint64_t inc                          : 1;
623	uint64_t dec                          : 1;
624	uint64_t clrdly                       : 1;
625	uint64_t reserved_22_23               : 2;
626	uint64_t sstep                        : 1;
627	uint64_t sstep_go                     : 1;
628	uint64_t reserved_26_27               : 2;
629	uint64_t fall8                        : 1;
630	uint64_t fallnop                      : 1;
631	uint64_t reserved_30_63               : 34;
632#endif
633	} s;
634	struct cvmx_spxx_dbg_deskew_ctl_s     cn38xx;
635	struct cvmx_spxx_dbg_deskew_ctl_s     cn38xxp2;
636	struct cvmx_spxx_dbg_deskew_ctl_s     cn58xx;
637	struct cvmx_spxx_dbg_deskew_ctl_s     cn58xxp1;
638};
639typedef union cvmx_spxx_dbg_deskew_ctl cvmx_spxx_dbg_deskew_ctl_t;
640
641/**
642 * cvmx_spx#_dbg_deskew_state
643 *
644 * Notes:
645 * These bits are meant as a backdoor to control Spi4 per-bit deskew.  See
646 * that Spec for more details.
647 */
648union cvmx_spxx_dbg_deskew_state
649{
650	uint64_t u64;
651	struct cvmx_spxx_dbg_deskew_state_s
652	{
653#if __BYTE_ORDER == __BIG_ENDIAN
654	uint64_t reserved_9_63                : 55;
655	uint64_t testres                      : 1;  /**< Training Test Mode Result
656                                                         (srx_spi4__test_mode_result) */
657	uint64_t unxterm                      : 1;  /**< Unexpected training terminiation
658                                                         (srx_spi4__top_unxexp_trn_term) */
659	uint64_t muxsel                       : 2;  /**< The mux select value of the bit selected by
660                                                         SPX_DBG_DESKEW_CTL[BITSEL]
661                                                         (srx_spi4__trn_mux_sel) */
662	uint64_t offset                       : 5;  /**< The counter value of the bit selected by
663                                                         SPX_DBG_DESKEW_CTL[BITSEL]
664                                                         (srx_spi4__xcv_tap_select) */
665#else
666	uint64_t offset                       : 5;
667	uint64_t muxsel                       : 2;
668	uint64_t unxterm                      : 1;
669	uint64_t testres                      : 1;
670	uint64_t reserved_9_63                : 55;
671#endif
672	} s;
673	struct cvmx_spxx_dbg_deskew_state_s   cn38xx;
674	struct cvmx_spxx_dbg_deskew_state_s   cn38xxp2;
675	struct cvmx_spxx_dbg_deskew_state_s   cn58xx;
676	struct cvmx_spxx_dbg_deskew_state_s   cn58xxp1;
677};
678typedef union cvmx_spxx_dbg_deskew_state cvmx_spxx_dbg_deskew_state_t;
679
680/**
681 * cvmx_spx#_drv_ctl
682 *
683 * Notes:
684 * These bits all come from Duke - he will provide documentation and
685 * explanation.  I'll just butcher it.
686 */
687union cvmx_spxx_drv_ctl
688{
689	uint64_t u64;
690	struct cvmx_spxx_drv_ctl_s
691	{
692#if __BYTE_ORDER == __BIG_ENDIAN
693	uint64_t reserved_0_63                : 64;
694#else
695	uint64_t reserved_0_63                : 64;
696#endif
697	} s;
698	struct cvmx_spxx_drv_ctl_cn38xx
699	{
700#if __BYTE_ORDER == __BIG_ENDIAN
701	uint64_t reserved_16_63               : 48;
702	uint64_t stx4ncmp                     : 4;  /**< Duke (spx__spi4_tx_nctl_comp) */
703	uint64_t stx4pcmp                     : 4;  /**< Duke (spx__spi4_tx_pctl_comp) */
704	uint64_t srx4cmp                      : 8;  /**< Duke (spx__spi4_rx_rctl_comp) */
705#else
706	uint64_t srx4cmp                      : 8;
707	uint64_t stx4pcmp                     : 4;
708	uint64_t stx4ncmp                     : 4;
709	uint64_t reserved_16_63               : 48;
710#endif
711	} cn38xx;
712	struct cvmx_spxx_drv_ctl_cn38xx       cn38xxp2;
713	struct cvmx_spxx_drv_ctl_cn58xx
714	{
715#if __BYTE_ORDER == __BIG_ENDIAN
716	uint64_t reserved_24_63               : 40;
717	uint64_t stx4ncmp                     : 4;  /**< Duke (spx__spi4_tx_nctl_comp) */
718	uint64_t stx4pcmp                     : 4;  /**< Duke (spx__spi4_tx_pctl_comp) */
719	uint64_t reserved_10_15               : 6;
720	uint64_t srx4cmp                      : 10; /**< Duke (spx__spi4_rx_rctl_comp) */
721#else
722	uint64_t srx4cmp                      : 10;
723	uint64_t reserved_10_15               : 6;
724	uint64_t stx4pcmp                     : 4;
725	uint64_t stx4ncmp                     : 4;
726	uint64_t reserved_24_63               : 40;
727#endif
728	} cn58xx;
729	struct cvmx_spxx_drv_ctl_cn58xx       cn58xxp1;
730};
731typedef union cvmx_spxx_drv_ctl cvmx_spxx_drv_ctl_t;
732
733/**
734 * cvmx_spx#_err_ctl
735 *
736 * SPX_ERR_CTL - Spi error control register
737 *
738 *
739 * Notes:
740 * * DIPPAY, DIPCLS, PRTNXA
741 * These bits control whether or not the packet's ERR bit is set when any of
742 * the these error is detected.  If the corresponding error's bit is clear,
743 * the packet ERR will be set.  If the error bit is set, the SPX will simply
744 * pass through the ERR bit without modifying it in anyway - the error bit
745 * may or may not have been set by the transmitter device.
746 */
747union cvmx_spxx_err_ctl
748{
749	uint64_t u64;
750	struct cvmx_spxx_err_ctl_s
751	{
752#if __BYTE_ORDER == __BIG_ENDIAN
753	uint64_t reserved_9_63                : 55;
754	uint64_t prtnxa                       : 1;  /**< Spi4 - set the ERR bit on packets in which the
755                                                         port is out-of-range */
756	uint64_t dipcls                       : 1;  /**< Spi4 DIPERR on closing control words cause the
757                                                         ERR bit to be set */
758	uint64_t dippay                       : 1;  /**< Spi4 DIPERR on payload control words cause the
759                                                         ERR bit to be set */
760	uint64_t reserved_4_5                 : 2;
761	uint64_t errcnt                       : 4;  /**< Number of Dip4 errors before bringing down the
762                                                         interface */
763#else
764	uint64_t errcnt                       : 4;
765	uint64_t reserved_4_5                 : 2;
766	uint64_t dippay                       : 1;
767	uint64_t dipcls                       : 1;
768	uint64_t prtnxa                       : 1;
769	uint64_t reserved_9_63                : 55;
770#endif
771	} s;
772	struct cvmx_spxx_err_ctl_s            cn38xx;
773	struct cvmx_spxx_err_ctl_s            cn38xxp2;
774	struct cvmx_spxx_err_ctl_s            cn58xx;
775	struct cvmx_spxx_err_ctl_s            cn58xxp1;
776};
777typedef union cvmx_spxx_err_ctl cvmx_spxx_err_ctl_t;
778
779/**
780 * cvmx_spx#_int_dat
781 *
782 * SPX_INT_DAT - Interrupt Data Register
783 *
784 *
785 * Notes:
786 * Note: The SPX_INT_DAT[MUL] bit is set when multiple errors have been
787 * detected that would set any of the data fields: PRT, RSVOP, and CALBNK.
788 *
789 * The following errors will cause MUL to assert for PRT conflicts.
790 * - ABNORM
791 * - APERR
792 * - DPERR
793 *
794 * The following errors will cause MUL to assert for RSVOP conflicts.
795 * - RSVERR
796 *
797 * The following errors will cause MUL to assert for CALBNK conflicts.
798 * - CALERR
799 *
800 * The following errors will cause MUL to assert if multiple interrupts are
801 * asserted.
802 * - TPAOVR
803 *
804 * The MUL bit will be cleared once all outstanding errors have been
805 * cleared by software (not just MUL errors - all errors).
806 */
807union cvmx_spxx_int_dat
808{
809	uint64_t u64;
810	struct cvmx_spxx_int_dat_s
811	{
812#if __BYTE_ORDER == __BIG_ENDIAN
813	uint64_t reserved_32_63               : 32;
814	uint64_t mul                          : 1;  /**< Multiple errors have occured */
815	uint64_t reserved_14_30               : 17;
816	uint64_t calbnk                       : 2;  /**< Spi4 Calendar table parity error bank */
817	uint64_t rsvop                        : 4;  /**< Spi4 reserved control word */
818	uint64_t prt                          : 8;  /**< Port associated with error */
819#else
820	uint64_t prt                          : 8;
821	uint64_t rsvop                        : 4;
822	uint64_t calbnk                       : 2;
823	uint64_t reserved_14_30               : 17;
824	uint64_t mul                          : 1;
825	uint64_t reserved_32_63               : 32;
826#endif
827	} s;
828	struct cvmx_spxx_int_dat_s            cn38xx;
829	struct cvmx_spxx_int_dat_s            cn38xxp2;
830	struct cvmx_spxx_int_dat_s            cn58xx;
831	struct cvmx_spxx_int_dat_s            cn58xxp1;
832};
833typedef union cvmx_spxx_int_dat cvmx_spxx_int_dat_t;
834
835/**
836 * cvmx_spx#_int_msk
837 *
838 * SPX_INT_MSK - Interrupt Mask Register
839 *
840 */
841union cvmx_spxx_int_msk
842{
843	uint64_t u64;
844	struct cvmx_spxx_int_msk_s
845	{
846#if __BYTE_ORDER == __BIG_ENDIAN
847	uint64_t reserved_12_63               : 52;
848	uint64_t calerr                       : 1;  /**< Spi4 Calendar table parity error */
849	uint64_t syncerr                      : 1;  /**< Consecutive Spi4 DIP4 errors have exceeded
850                                                         SPX_ERR_CTL[ERRCNT] */
851	uint64_t diperr                       : 1;  /**< Spi4 DIP4 error */
852	uint64_t tpaovr                       : 1;  /**< Selected port has hit TPA overflow */
853	uint64_t rsverr                       : 1;  /**< Spi4 reserved control word detected */
854	uint64_t drwnng                       : 1;  /**< Spi4 receive FIFO drowning/overflow */
855	uint64_t clserr                       : 1;  /**< Spi4 packet closed on non-16B alignment without EOP */
856	uint64_t spiovr                       : 1;  /**< Spi async FIFO overflow (Spi3 or Spi4) */
857	uint64_t reserved_2_3                 : 2;
858	uint64_t abnorm                       : 1;  /**< Abnormal packet termination (ERR bit) */
859	uint64_t prtnxa                       : 1;  /**< Port out of range */
860#else
861	uint64_t prtnxa                       : 1;
862	uint64_t abnorm                       : 1;
863	uint64_t reserved_2_3                 : 2;
864	uint64_t spiovr                       : 1;
865	uint64_t clserr                       : 1;
866	uint64_t drwnng                       : 1;
867	uint64_t rsverr                       : 1;
868	uint64_t tpaovr                       : 1;
869	uint64_t diperr                       : 1;
870	uint64_t syncerr                      : 1;
871	uint64_t calerr                       : 1;
872	uint64_t reserved_12_63               : 52;
873#endif
874	} s;
875	struct cvmx_spxx_int_msk_s            cn38xx;
876	struct cvmx_spxx_int_msk_s            cn38xxp2;
877	struct cvmx_spxx_int_msk_s            cn58xx;
878	struct cvmx_spxx_int_msk_s            cn58xxp1;
879};
880typedef union cvmx_spxx_int_msk cvmx_spxx_int_msk_t;
881
882/**
883 * cvmx_spx#_int_reg
884 *
885 * SPX_INT_REG - Interrupt Register
886 *
887 *
888 * Notes:
889 * * PRTNXA
890 *   This error indicates that the port on the Spi bus was not a valid port
891 *   for the system.  Spi4 accesses occur on payload control bit-times. The
892 *   SRX can be configured with the exact number of ports available (by
893 *   SRX_COM_CTL[PRTS] register).  Any Spi access to anthing outside the range
894 *   of 0 .. (SRX_COM_CTL[PRTS] - 1) is considered an error.  The offending
895 *   port is logged in SPX_INT_DAT[PRT] if there are no pending interrupts in
896 *   SPX_INT_REG that require SPX_INT_DAT[PRT].
897 *
898 *   SRX will not drop the packet with the bogus port address.  Instead, the
899 *   port will be mapped into the supported port range.  The remapped address
900 *   in simply...
901 *
902 *            Address = [ interfaceId, ADR[3:0] ]
903 *
904 *   If the SPX detects that a PRTNXA error has occured, the packet will
905 *   have its ERR bit set (or'ed in with the ERR bit from the transmitter)
906 *   if the SPX_ERR_CTL[PRTNXA] bit is clear.
907 *
908 *   In Spi4 mode, SPX will generate an interrupt for every 8B data burst
909 *   associated with the invalid address.  The SPX_INT_DAT[MUL] bit will never
910 *   be set.
911 *
912 * * ABNORM
913 *   This bit simply indicates that a given packet had abnormal terminiation.
914 *   In Spi4 mode, this means that packet completed with an EOPS[1:0] code of
915 *   2'b01.  This error can also be thought of as the application specific
916 *   error (as mentioned in the Spi4 spec).  The offending port is logged in
917 *   SPX_INT_DAT[PRT] if there are no pending interrupts in SPX_INT_REG that
918 *   require SPX_INT_DAT[PRT].
919 *
920 *   The ABNORM error is only raised when the ERR bit that comes from the
921 *   Spi interface is set.  It will never assert if any internal condition
922 *   causes the ERR bit to assert (e.g. PRTNXA or DPERR).
923 *
924 * * SPIOVR
925 *   This error indicates that the FIFOs that manage the async crossing from
926 *   the Spi clocks to the core clock domains have overflowed.  This is a
927 *   fatal error and can cause much data/control corruption since ticks will
928 *   be dropped and reordered.  This is purely a function of clock ratios and
929 *   correct system ratios should make this an impossible condition.
930 *
931 * * CLSERR
932 *   This is a Spi4 error that indicates that a given data transfer burst
933 *   that did not terminate with an EOP, did not end with the 16B alignment
934 *   as per the Spi4 spec.  The offending port cannot be logged since the
935 *   block does not know the streamm terminated until the port switches.
936 *   At that time, that packet has already been pushed down the pipe.
937 *
938 *   The CLSERR bit does not actually check the Spi4 burst - just how data
939 *   is accumulated for the downstream logic.  Bursts that are separted by
940 *   idles or training will still be merged into accumulated transfers and
941 *   will not fire the CLSERR condition.  The checker is really checking
942 *   non-8B aligned, non-EOP data ticks that are sent downstream.  These
943 *   ticks are what will really mess up the core.
944 *
945 *   This is an expensive fix, so we'll probably let it ride.  We never
946 *   claim to check Spi4 protocol anyway.
947 *
948 * * DRWNNG
949 *   This error indicates that the Spi4 FIFO that services the GMX has
950 *   overflowed.  Like the SPIOVR error condition, correct system ratios
951 *   should make this an impossible condition.
952 *
953 * * RSVERR
954 *   This Spi4 error indicates that the Spi4 receiver has seen a reserve
955 *   control packet.  A reserve control packet is an invalid combiniation
956 *   of bits on DAT[15:12].  Basically this is DAT[15] == 1'b0 and DAT[12]
957 *   == 1'b1 (an SOP without a payload command).  The RSVERR indicates an
958 *   error has occured and SPX_INT_DAT[RSVOP] holds the first reserved
959 *   opcode and will be set if there are no pending interrupts in
960 *   SPX_INT_REG that require SPX_INT_DAT[RSVOP].
961 *
962 * * TPAOVR
963 *   This bit indicates that the TPA Watcher has flagged an event.  See the
964 *   TPA Watcher for a more detailed discussion.
965 *
966 * * DIPERR
967 *   This bit indicates that the Spi4 receiver has encountered a DIP4
968 *   miscompare on the datapath.  A DIPERR can occur in an IDLE or a
969 *   control word that frames a data burst.  If the DIPERR occurs on a
970 *   framing word there are three cases.
971 *
972 *   1) DIPERR occurs at the end of a data burst.  The previous packet is
973 *      marked with the ERR bit to be processed later if
974 *      SPX_ERR_CTL[DIPCLS] is clear.
975 *   2) DIPERR occurs on a payload word.  The subsequent packet is marked
976 *      with the ERR bit to be processed later if SPX_ERR_CTL[DIPPAY] is
977 *      clear.
978 *   3) DIPERR occurs on a control word that closes on packet and is a
979 *      payload for another packet.  In this case, both packets will have
980 *      their ERR bit marked depending on the respective values of
981 *      SPX_ERR_CTL[DIPCLS] and SPX_ERR_CTL[DIPPAY] as discussed above.
982 *
983 * * SYNCERR
984 *   This bit indicates that the Spi4 receiver has encountered
985 *   SPX_ERR_CTL[ERRCNT] consecutive Spi4 DIP4 errors and the interface
986 *   should be synched.
987 *
988 * * CALERR
989 *   This bit indicates that the Spi4 calendar table encountered a parity
990 *   error.  This error bit is associated with the calendar table on the RX
991 *   interface - the interface that receives the Spi databus.  Parity errors
992 *   can occur during normal operation when the calendar table is constantly
993 *   being read for the port information, or during initialization time, when
994 *   the user has access.  Since the calendar table is split into two banks,
995 *   SPX_INT_DAT[CALBNK] indicates which banks have taken a parity error.
996 *   CALBNK[1] indicates the error occured in the upper bank, while CALBNK[0]
997 *   indicates that the error occured in the lower bank.  SPX_INT_DAT[CALBNK]
998 *   will be set if there are no pending interrupts in SPX_INT_REG that
999 *   require SPX_INT_DAT[CALBNK].
1000 *
1001 * * SPF
1002 *   This bit indicates that a Spi fatal error has occurred.  A fatal error
1003 *   is defined as any error condition for which the corresponding
1004 *   SPX_INT_SYNC bit is set.  Therefore, conservative systems can halt the
1005 *   interface on any error condition although this is not strictly
1006 *   necessary.  Some error are much more fatal in nature than others.
1007 *
1008 *   PRTNXA, SPIOVR, CLSERR, DRWNNG, DIPERR, CALERR, and SYNCERR are examples
1009 *   of fatal error for different reasons - usually because multiple port
1010 *   streams could be effected.  ABNORM, RSVERR, and TPAOVR are conditions
1011 *   that are contained to a single packet which allows the interface to drop
1012 *   a single packet and remain up and stable.
1013 */
1014union cvmx_spxx_int_reg
1015{
1016	uint64_t u64;
1017	struct cvmx_spxx_int_reg_s
1018	{
1019#if __BYTE_ORDER == __BIG_ENDIAN
1020	uint64_t reserved_32_63               : 32;
1021	uint64_t spf                          : 1;  /**< Spi interface down */
1022	uint64_t reserved_12_30               : 19;
1023	uint64_t calerr                       : 1;  /**< Spi4 Calendar table parity error */
1024	uint64_t syncerr                      : 1;  /**< Consecutive Spi4 DIP4 errors have exceeded
1025                                                         SPX_ERR_CTL[ERRCNT] */
1026	uint64_t diperr                       : 1;  /**< Spi4 DIP4 error */
1027	uint64_t tpaovr                       : 1;  /**< Selected port has hit TPA overflow */
1028	uint64_t rsverr                       : 1;  /**< Spi4 reserved control word detected */
1029	uint64_t drwnng                       : 1;  /**< Spi4 receive FIFO drowning/overflow */
1030	uint64_t clserr                       : 1;  /**< Spi4 packet closed on non-16B alignment without EOP */
1031	uint64_t spiovr                       : 1;  /**< Spi async FIFO overflow */
1032	uint64_t reserved_2_3                 : 2;
1033	uint64_t abnorm                       : 1;  /**< Abnormal packet termination (ERR bit) */
1034	uint64_t prtnxa                       : 1;  /**< Port out of range */
1035#else
1036	uint64_t prtnxa                       : 1;
1037	uint64_t abnorm                       : 1;
1038	uint64_t reserved_2_3                 : 2;
1039	uint64_t spiovr                       : 1;
1040	uint64_t clserr                       : 1;
1041	uint64_t drwnng                       : 1;
1042	uint64_t rsverr                       : 1;
1043	uint64_t tpaovr                       : 1;
1044	uint64_t diperr                       : 1;
1045	uint64_t syncerr                      : 1;
1046	uint64_t calerr                       : 1;
1047	uint64_t reserved_12_30               : 19;
1048	uint64_t spf                          : 1;
1049	uint64_t reserved_32_63               : 32;
1050#endif
1051	} s;
1052	struct cvmx_spxx_int_reg_s            cn38xx;
1053	struct cvmx_spxx_int_reg_s            cn38xxp2;
1054	struct cvmx_spxx_int_reg_s            cn58xx;
1055	struct cvmx_spxx_int_reg_s            cn58xxp1;
1056};
1057typedef union cvmx_spxx_int_reg cvmx_spxx_int_reg_t;
1058
1059/**
1060 * cvmx_spx#_int_sync
1061 *
1062 * SPX_INT_SYNC - Interrupt Sync Register
1063 *
1064 *
1065 * Notes:
1066 * This mask set indicates which exception condition should cause the
1067 * SPX_INT_REG[SPF] bit to assert
1068 *
1069 * It is recommended that software set the PRTNXA, SPIOVR, CLSERR, DRWNNG,
1070 * DIPERR, CALERR, and SYNCERR errors as synchronization events.  Software is
1071 * free to synchronize the bus on other conditions, but this is the minimum
1072 * recommended set.
1073 */
1074union cvmx_spxx_int_sync
1075{
1076	uint64_t u64;
1077	struct cvmx_spxx_int_sync_s
1078	{
1079#if __BYTE_ORDER == __BIG_ENDIAN
1080	uint64_t reserved_12_63               : 52;
1081	uint64_t calerr                       : 1;  /**< Spi4 Calendar table parity error */
1082	uint64_t syncerr                      : 1;  /**< Consecutive Spi4 DIP4 errors have exceeded
1083                                                         SPX_ERR_CTL[ERRCNT] */
1084	uint64_t diperr                       : 1;  /**< Spi4 DIP4 error */
1085	uint64_t tpaovr                       : 1;  /**< Selected port has hit TPA overflow */
1086	uint64_t rsverr                       : 1;  /**< Spi4 reserved control word detected */
1087	uint64_t drwnng                       : 1;  /**< Spi4 receive FIFO drowning/overflow */
1088	uint64_t clserr                       : 1;  /**< Spi4 packet closed on non-16B alignment without EOP */
1089	uint64_t spiovr                       : 1;  /**< Spi async FIFO overflow (Spi3 or Spi4) */
1090	uint64_t reserved_2_3                 : 2;
1091	uint64_t abnorm                       : 1;  /**< Abnormal packet termination (ERR bit) */
1092	uint64_t prtnxa                       : 1;  /**< Port out of range */
1093#else
1094	uint64_t prtnxa                       : 1;
1095	uint64_t abnorm                       : 1;
1096	uint64_t reserved_2_3                 : 2;
1097	uint64_t spiovr                       : 1;
1098	uint64_t clserr                       : 1;
1099	uint64_t drwnng                       : 1;
1100	uint64_t rsverr                       : 1;
1101	uint64_t tpaovr                       : 1;
1102	uint64_t diperr                       : 1;
1103	uint64_t syncerr                      : 1;
1104	uint64_t calerr                       : 1;
1105	uint64_t reserved_12_63               : 52;
1106#endif
1107	} s;
1108	struct cvmx_spxx_int_sync_s           cn38xx;
1109	struct cvmx_spxx_int_sync_s           cn38xxp2;
1110	struct cvmx_spxx_int_sync_s           cn58xx;
1111	struct cvmx_spxx_int_sync_s           cn58xxp1;
1112};
1113typedef union cvmx_spxx_int_sync cvmx_spxx_int_sync_t;
1114
1115/**
1116 * cvmx_spx#_tpa_acc
1117 *
1118 * SPX_TPA_ACC - TPA watcher byte accumulator
1119 *
1120 *
1121 * Notes:
1122 * This field allows the user to access the TPA watcher accumulator counter.
1123 * This register reflects the number of bytes sent to IMX once the port
1124 * specified by SPX_TPA_SEL[PRTSEL] has lost its TPA.  The SPX_INT_REG[TPAOVR]
1125 * bit is asserted when CNT >= SPX_TPA_MAX[MAX].  The CNT will continue to
1126 * increment until the TPA for the port is asserted.  At that point the CNT
1127 * value is frozen until software clears the interrupt bit.
1128 */
1129union cvmx_spxx_tpa_acc
1130{
1131	uint64_t u64;
1132	struct cvmx_spxx_tpa_acc_s
1133	{
1134#if __BYTE_ORDER == __BIG_ENDIAN
1135	uint64_t reserved_32_63               : 32;
1136	uint64_t cnt                          : 32; /**< TPA watcher accumulate count */
1137#else
1138	uint64_t cnt                          : 32;
1139	uint64_t reserved_32_63               : 32;
1140#endif
1141	} s;
1142	struct cvmx_spxx_tpa_acc_s            cn38xx;
1143	struct cvmx_spxx_tpa_acc_s            cn38xxp2;
1144	struct cvmx_spxx_tpa_acc_s            cn58xx;
1145	struct cvmx_spxx_tpa_acc_s            cn58xxp1;
1146};
1147typedef union cvmx_spxx_tpa_acc cvmx_spxx_tpa_acc_t;
1148
1149/**
1150 * cvmx_spx#_tpa_max
1151 *
1152 * SPX_TPA_MAX - TPA watcher assertion threshold
1153 *
1154 *
1155 * Notes:
1156 * The TPA watcher has the ability to notify the system with an interrupt when
1157 * too much data has been received on loss of TPA.  The user sets the
1158 * SPX_TPA_MAX[MAX] register and when the watcher has accumulated that many
1159 * ticks, then the interrupt is conditionally raised (based on interrupt mask
1160 * bits).  This feature will be disabled if the programmed count is zero.
1161 */
1162union cvmx_spxx_tpa_max
1163{
1164	uint64_t u64;
1165	struct cvmx_spxx_tpa_max_s
1166	{
1167#if __BYTE_ORDER == __BIG_ENDIAN
1168	uint64_t reserved_32_63               : 32;
1169	uint64_t max                          : 32; /**< TPA watcher TPA threshold */
1170#else
1171	uint64_t max                          : 32;
1172	uint64_t reserved_32_63               : 32;
1173#endif
1174	} s;
1175	struct cvmx_spxx_tpa_max_s            cn38xx;
1176	struct cvmx_spxx_tpa_max_s            cn38xxp2;
1177	struct cvmx_spxx_tpa_max_s            cn58xx;
1178	struct cvmx_spxx_tpa_max_s            cn58xxp1;
1179};
1180typedef union cvmx_spxx_tpa_max cvmx_spxx_tpa_max_t;
1181
1182/**
1183 * cvmx_spx#_tpa_sel
1184 *
1185 * SPX_TPA_SEL - TPA watcher port selector
1186 *
1187 *
1188 * Notes:
1189 * The TPA Watcher is primarily a debug vehicle used to help initial bringup
1190 * of a system.  The TPA watcher counts bytes that roll in from the Spi
1191 * interface.  The user programs the Spi port to watch using
1192 * SPX_TPA_SEL[PRTSEL].  Once the TPA is deasserted for that port, the watcher
1193 * begins to count the data ticks that have been delivered to the inbound
1194 * datapath (and eventually to the IOB).  The result is that we can derive
1195 * turn-around times of the other device by watching how much data was sent
1196 * after a loss of TPA through the SPX_TPA_ACC[CNT] register.  An optional
1197 * interrupt may be raised as well.  See SPX_TPA_MAX for further information.
1198 *
1199 * TPA's can be deasserted for a number of reasons...
1200 *
1201 * 1) IPD indicates backpressure
1202 * 2) The GMX inbound FIFO is filling up and should BP
1203 * 3) User has out an override on the TPA wires
1204 */
1205union cvmx_spxx_tpa_sel
1206{
1207	uint64_t u64;
1208	struct cvmx_spxx_tpa_sel_s
1209	{
1210#if __BYTE_ORDER == __BIG_ENDIAN
1211	uint64_t reserved_4_63                : 60;
1212	uint64_t prtsel                       : 4;  /**< TPA watcher port select */
1213#else
1214	uint64_t prtsel                       : 4;
1215	uint64_t reserved_4_63                : 60;
1216#endif
1217	} s;
1218	struct cvmx_spxx_tpa_sel_s            cn38xx;
1219	struct cvmx_spxx_tpa_sel_s            cn38xxp2;
1220	struct cvmx_spxx_tpa_sel_s            cn58xx;
1221	struct cvmx_spxx_tpa_sel_s            cn58xxp1;
1222};
1223typedef union cvmx_spxx_tpa_sel cvmx_spxx_tpa_sel_t;
1224
1225/**
1226 * cvmx_spx#_trn4_ctl
1227 *
1228 * Notes:
1229 * These bits are controls for the Spi4 RX bit deskew logic.  See that Spec
1230 * for further details.
1231 *
1232 * * BOOT_BIT
1233 *   On the initial training synchronization sequence, the hardware has the
1234 *   BOOT_BIT set which means that it will continueously perform macro
1235 *   operations.  Once the BOOT_BIT is cleared, the macro machine will finish
1236 *   the macro operation is working on and then return to the idle state.
1237 *   Subsequent training sequences will only go through a single macro
1238 *   operation in order to do slight deskews.
1239 *
1240 * * JITTER
1241 *   Minimum value is 1.  This parameter must be set for Spi4 mode using
1242 *   auto-bit deskew.  Regardless of the original intent, this field must be
1243 *   set non-zero for deskew to function correctly.
1244 *
1245 *   The thought is the JITTER range is no longer required since the macro
1246 *   machine was enhanced to understand about edge direction.  Originally
1247 *   these bits were intended to compensate for clock jitter.
1248 *
1249 *   dly:    this is the intrinsic delay of each delay element
1250 *              tap currently, it is 70ps-110ps.
1251 *   jitter: amount of jitter we expect in the system (~200ps)
1252 *   j:      number of taps to account for jitter
1253 *
1254 *   j = ((jitter / dly) + 1)
1255 *
1256 * * TRNTEST
1257 *   This mode is used to test systems to make sure that the bit deskew
1258 *   parameters have been correctly setup.  After configuration, software can
1259 *   set the TRNTEST mode bit.  This should be done before SRX_COM_CTL[ST_EN]
1260 *   is set such that we can be sure that the TX device is simply sending
1261 *   continuous training patterns.
1262 *
1263 *   The test mode samples every incoming bit-time and makes sure that it is
1264 *   either a training control or a training data packet.  If any other data
1265 *   is observed, then SPX_DBG_DESKEW_STATE[TESTRES] will assert signaling a
1266 *   test failure.
1267 *
1268 *   Software must clear TRNTEST before training is terminated.
1269 *
1270 * * Example Spi4 RX init flow...
1271 *
1272 * 1) set the CLKDLY lines (SPXX_CLK_CTL[CLKDLY])
1273 *    - these bits must be set before the DLL can successfully lock
1274 *
1275 * 2) set the SRXDLCK (SPXX_CLK_CTL[SRXDLCK])
1276 *    - this is the DLL lock bit which also acts as a block reset
1277 *
1278 * 3) wait for the DLLs lock
1279 *
1280 * 4) set any desired fields in SPXX_DBG_DESKEW_CTL
1281 *    - This register has only one field that most users will care about.
1282 *      When set, DLLDIS will disable sending update pulses to the Spi4 RX
1283 *      DLLs.  This pulse allows the DLL to adjust to clock variations over
1284 *      time.  In general, it is desired behavior.
1285 *
1286 * 5) set fields in SPXX_TRN4_CTL
1287 *    - These fields deal with the MUX training sequence
1288 *      * MUX_EN
1289 *        This is the enable bit for the mux select.  The MUX select will
1290 *        run in the training sequence between the DLL and the Macro
1291 *        sequence when enabled.  Once the MUX selects are selected, the
1292 *        entire macro sequence must be rerun.  The expectation is that
1293 *        this is only run at boot time and this is bit cleared at/around
1294 *        step \#8.
1295 *    - These fields deal with the Macro training sequence
1296 *      * MACRO_EN
1297 *        This is the enable bit for the macro sequence.  Macro sequences
1298 *        will run after the DLL and MUX training sequences.  Each macro
1299 *        sequence can move the offset by one value.
1300 *      * MAXDIST
1301 *        This is how far we will search for an edge.  Example...
1302 *
1303 *           dly:    this is the intrinsic delay of each delay element
1304 *                   tap currently, it is 70ps-110ps.
1305 *           U:      bit time period in time units.
1306 *
1307 *           MAXDIST = MIN(16, ((bit_time / 2) / dly)
1308 *
1309 *           Each MAXDIST iteration consists of an edge detect in the early
1310 *           and late (+/-) directions in an attempt to center the data.  This
1311 *           requires two training transistions, the control/data and
1312 *           data/control transistions which comprise a training sequence.
1313 *           Therefore, the number of training sequences required for a single
1314 *           macro operation is simply MAXDIST.
1315 *
1316 * 6) set the RCVTRN go bit (SPXX_CLK_CTL[RCVTRN])
1317 *    - this bit synchs on the first valid complete training cycle and
1318 *      starts to process the training packets
1319 *
1320 * 6b) This is where software could manually set the controls as opposed to
1321 *     letting the hardware do it.  See the SPXX_DBG_DESKEW_CTL register
1322 *        description for more detail.
1323 *
1324 * 7) the TX device must continue to send training packets for the initial
1325 *    time period.
1326 *    - this can be determined by...
1327 *
1328 *      DLL: one training sequence for the DLL adjustment (regardless of enable/disable)
1329 *      MUX: one training sequence for the Flop MUX taps (regardless of enable/disable)
1330 *      INIT_SEQUENCES: max number of taps that we must move
1331 *
1332 *         INIT_SEQUENCES = MIN(16, ((bit_time / 2) / dly))
1333 *
1334 *         INIT_TRN = DLL + MUX + ROUNDUP((INIT_SEQUENCES * (MAXDIST + 2)))
1335 *
1336 *
1337 *    - software can either wait a fixed amount of time based on the clock
1338 *      frequencies or poll the SPXX_CLK_STAT[SRXTRN] register.  Each
1339 *      assertion of SRXTRN means that at least one training sequence has
1340 *      been received.  Software can poll, clear, and repeat on this bit to
1341 *      eventually count all required transistions.
1342 *
1343 *      int cnt = 0;
1344 *      while (cnt < INIT_TRN) [
1345 *             if (SPXX_CLK_STAT[SRXTRN]) [
1346 *                cnt++;
1347 *                SPXX_CLK_STAT[SRXTRN] = 0;
1348 *             ]
1349 *      ]
1350 *
1351 *   - subsequent training sequences will normally move the taps only
1352 *     one position, so the ALPHA equation becomes...
1353 *
1354 *     MAC   = (MAXDIST == 0) ? 1 : ROUNDUP((1 * (MAXDIST + 2))) + 1
1355 *
1356 *        ALPHA = DLL + MUX + MAC
1357 *
1358 *     ergo, MAXDIST simplifies to...
1359 *
1360 *        ALPHA = (MAXDIST == 0) ? 3 : MAXDIST + 5
1361 *
1362 *        DLL and MUX and MAC will always require at least a training sequence
1363 *        each - even if disabled.  If the macro sequence is enabled, an
1364 *        additional training sequenece at the end is necessary.  The extra
1365 *        sequence allows for all training state to be cleared before resuming
1366 *        normal operation.
1367 *
1368 * 8) after the recevier gets enough training sequences in order to achieve
1369 *    deskew lock, set SPXX_TRN4_CTL[CLR_BOOT]
1370 *    - this disables the continuous macro sequences and puts into into one
1371 *      macro sequnence per training operation
1372 *    - optionally, the machine can choose to fall out of training if
1373 *      enough NOPs follow the training operation (require at least 32 NOPs
1374 *      to follow the training sequence).
1375 *
1376 *    There must be at least MAXDIST + 3 training sequences after the
1377 *    SPXX_TRN4_CTL[CLR_BOOT] is set or sufficient NOPs from the TX device.
1378 *
1379 * 9) the TX device continues to send training sequences until the RX
1380 *    device sends a calendar transistion.  This is controlled by
1381 *    SRXX_COM_CTL[ST_EN].  Other restrictions require other Spi parameters
1382 *    (e.g. the calendar table) to be setup before this bit can be enabled.
1383 *    Once the entire interface is properly programmed, software writes
1384 *    SRXX_COM_CTL[INF_EN].  At this point, the Spi4 packets will begin to
1385 *    be sent into the N2K core and processed by the chip.
1386 */
1387union cvmx_spxx_trn4_ctl
1388{
1389	uint64_t u64;
1390	struct cvmx_spxx_trn4_ctl_s
1391	{
1392#if __BYTE_ORDER == __BIG_ENDIAN
1393	uint64_t reserved_13_63               : 51;
1394	uint64_t trntest                      : 1;  /**< Training Test Mode
1395                                                         This bit is only for initial bringup
1396                                                         (spx_csr__spi4_trn_test_mode) */
1397	uint64_t jitter                       : 3;  /**< Accounts for jitter when the macro sequence is
1398                                                         locking.  The value is how many consecutive
1399                                                         transititions before declaring en edge.  Minimum
1400                                                         value is 1.  This parameter must be set for Spi4
1401                                                         mode using auto-bit deskew.
1402                                                         (spx_csr__spi4_mac_jitter) */
1403	uint64_t clr_boot                     : 1;  /**< Clear the macro boot sequence mode bit
1404                                                         (spx_csr__spi4_mac_clr_boot) */
1405	uint64_t set_boot                     : 1;  /**< Enable the macro boot sequence mode bit
1406                                                         (spx_csr__spi4_mac_set_boot) */
1407	uint64_t maxdist                      : 5;  /**< This field defines how far from center the
1408                                                         deskew logic will search in a single macro
1409                                                          sequence (spx_csr__spi4_mac_iters) */
1410	uint64_t macro_en                     : 1;  /**< Allow the macro sequence to center the sample
1411                                                         point in the data window through hardware
1412                                                         (spx_csr__spi4_mac_trn_en) */
1413	uint64_t mux_en                       : 1;  /**< Enable the hardware machine that selects the
1414                                                         proper coarse FLOP selects
1415                                                         (spx_csr__spi4_mux_trn_en) */
1416#else
1417	uint64_t mux_en                       : 1;
1418	uint64_t macro_en                     : 1;
1419	uint64_t maxdist                      : 5;
1420	uint64_t set_boot                     : 1;
1421	uint64_t clr_boot                     : 1;
1422	uint64_t jitter                       : 3;
1423	uint64_t trntest                      : 1;
1424	uint64_t reserved_13_63               : 51;
1425#endif
1426	} s;
1427	struct cvmx_spxx_trn4_ctl_s           cn38xx;
1428	struct cvmx_spxx_trn4_ctl_s           cn38xxp2;
1429	struct cvmx_spxx_trn4_ctl_s           cn58xx;
1430	struct cvmx_spxx_trn4_ctl_s           cn58xxp1;
1431};
1432typedef union cvmx_spxx_trn4_ctl cvmx_spxx_trn4_ctl_t;
1433
1434#endif
1435