cvmx-nand.h revision 210284
1/***********************license start***************
2 *  Copyright (c) 2003-2008 Cavium Networks (support@cavium.com). All rights
3 *  reserved.
4 *
5 *
6 *  Redistribution and use in source and binary forms, with or without
7 *  modification, are permitted provided that the following conditions are
8 *  met:
9 *
10 *      * Redistributions of source code must retain the above copyright
11 *        notice, this list of conditions and the following disclaimer.
12 *
13 *      * Redistributions in binary form must reproduce the above
14 *        copyright notice, this list of conditions and the following
15 *        disclaimer in the documentation and/or other materials provided
16 *        with the distribution.
17 *
18 *      * Neither the name of Cavium Networks nor the names of
19 *        its contributors may be used to endorse or promote products
20 *        derived from this software without specific prior written
21 *        permission.
22 *
23 *  TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
24 *  AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS
25 *  OR WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH
26 *  RESPECT TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
27 *  REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
28 *  DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
29 *  OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
30 *  PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET
31 *  POSSESSION OR CORRESPONDENCE TO DESCRIPTION.  THE ENTIRE RISK ARISING OUT
32 *  OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
33 *
34 *
35 *  For any questions regarding licensing please contact marketing@caviumnetworks.com
36 *
37 ***********************license end**************************************/
38
39
40
41
42
43
44/**
45 * @file
46 *
47 * This header defines the CVMX interface to the NAND flash controller. The
48 * basic operations common to all NAND devices are supported by this API, but
49 * many more advanced functions are not support. The low level hardware supports
50 * all types of transactions, but this API only implements the must commonly
51 * used operations. This API performs no locking, so it is the responsibility of
52 * the caller to make sure only one thread of execution is accessing the NAND
53 * controller at a time. Most applications should not use this API directly but
54 * instead use a flash logical layer supplied through a secondary system. For
55 * example, the Linux MTD layer provides a driver for running JFFS2 on top of
56 * NAND flash.
57 *
58 * <h2>Selecting the NAND Chip</h2>
59 *
60 * Octeon's NAND controller assumes a single NAND chip is connected to a boot
61 * bus chip select. Throughout this API, NAND chips are referred to by the chip
62 * select they are connected to (0-7). Chip select 0 will only be a NAND chip
63 * when you are booting from NAND flash.
64 *
65 * <h2>NAND Addressing</h2>
66 *
67 * Various functions in cvmx-nand use addresses to index into NAND flash. All
68 * functions us a uniform address translation scheme to map the passed address
69 * into a NAND block, page, and column. In NAND flash a page represents the
70 * basic unit of reads and writes. Each page contains a power of two number of
71 * bytes and some number of extra out of band (OOB) bytes. A fixed number of
72 * pages fit into each NAND block. Here is the mapping of bits in the cvmx-nand
73 * address to the NAND hardware:
74 * <pre>
75 * 63     56      48      40      32      24      16       8      0
76 * +-------+-------+-------+-------+-------+-------+-------+------+
77 * |                                 64 bit cvmx-nand nand_address|
78 * +------------------------------------------------+----+--------+
79 * |                                          block |page| column |
80 * +-------+-------+-------+-------+-------+--------+----+--------+
81 * 63     56      48      40      32      24      16       8      0
82 * </pre>
83 * Basically the block, page, and column addresses are packet together. Before
84 * being sent out the NAND pins for addressing the column is padded out to an
85 * even number of bytes. This means that column address are 2 bytes, or 2
86 * address cycles, for page sizes between 512 and 65536 bytes. Page sizes
87 * between 128KB and 16MB would use 3 column address cycles. NAND device
88 * normally either have 32 or 64 pages per block, needing either 5 or 6 address
89 * bits respectively. This means you have 10 bits for block address using 4
90 * address cycles, or 18 for 5 address cycles. Using the cvmx-nand addressing
91 * scheme, it is not possible to directly index the OOB data. Instead you can
92 * access it by reading or writing more data than the normal page size would
93 * allow. Logically the OOB data is appended onto the the page data. For
94 * example, this means that a read of 65 bytes from a column address of 0x7ff
95 * would yield byte 2047 of the page and then 64 bytes of OOB data.
96 *
97 * <hr>$Revision: 35726 $<hr>
98 */
99
100#ifndef __CVMX_NAND_H__
101#define __CVMX_NAND_H__
102
103#ifdef	__cplusplus
104extern "C" {
105#endif
106
107
108/* Block size for boot ECC */
109#define CVMX_NAND_BOOT_ECC_BLOCK_SIZE    (256)
110/* ECC bytes for each block */
111#define CVMX_NAND_BOOT_ECC_ECC_SIZE      (8)
112
113/**
114 * Flags to be passed to the initialize function
115 */
116typedef enum
117{
118    CVMX_NAND_INITIALIZE_FLAGS_16BIT = 1<<0,
119    CVMX_NAND_INITIALIZE_FLAGS_DONT_PROBE = 1<<1,
120    CVMX_NAND_INITIALIZE_FLAGS_DEBUG = 1<<15,
121} cvmx_nand_initialize_flags_t;
122
123/**
124 * Return codes from NAND functions
125 */
126typedef enum
127{
128    CVMX_NAND_SUCCESS = 0,
129    CVMX_NAND_NO_MEMORY = -1,
130    CVMX_NAND_BUSY = -2,
131    CVMX_NAND_INVALID_PARAM = -3,
132    CVMX_NAND_TIMEOUT = -4,
133} cvmx_nand_status_t;
134
135/**
136 * NAND NOP command definition
137 */
138typedef struct
139{
140    uint64_t reserved_64_127    : 64;
141    uint64_t reserved_4_63      : 60;
142    uint64_t zero               : 4;
143} cvmx_nand_cmd_nop_t;
144
145/**
146 * NAND SET_TM_PAR command definition
147 */
148typedef struct
149{
150    uint64_t reserved_64_127    : 64;
151    uint64_t tim_par7           : 8;
152    uint64_t tim_par6           : 8;
153    uint64_t tim_par5           : 8;
154    uint64_t tim_par4           : 8;
155    uint64_t tim_par3           : 8;
156    uint64_t tim_par2           : 8;
157    uint64_t tim_par1           : 8;
158    uint64_t tim_mult           : 4;
159    uint64_t one                : 4;
160} cvmx_nand_cmd_set_tm_par_t;
161
162/**
163 * NAND WAIT command definition
164 */
165typedef struct
166{
167    uint64_t reserved_64_127    : 64;
168    uint64_t reserved_11_63     : 53;
169    uint64_t n                  : 3;
170    uint64_t reserved_5_7       : 3;
171    uint64_t r_b                : 1;
172    uint64_t two                : 4;
173} cvmx_nand_cmd_wait_t;
174
175/**
176 * NAND CHIP_EN command definition
177 */
178typedef struct
179{
180    uint64_t reserved_64_127    : 64;
181    uint64_t reserved_10_63     : 54;
182    uint64_t width              : 2;
183    uint64_t one                : 1;
184    uint64_t chip               : 3;
185    uint64_t three              : 4;
186} cvmx_nand_cmd_chip_en_t;
187
188/**
189 * NAND CHIP_DIS command definition
190 */
191typedef struct
192{
193    uint64_t reserved_64_127    : 64;
194    uint64_t reserved_4_63      : 60;
195    uint64_t three              : 4;
196} cvmx_nand_cmd_chip_dis_t;
197
198/**
199 * NAND CLE command definition
200 */
201typedef struct
202{
203    uint64_t reserved_64_127    : 64;
204    uint64_t reserved_25_63     : 39;
205    uint64_t clen3              : 3;
206    uint64_t clen2              : 3;
207    uint64_t clen1              : 3;
208    uint64_t cmd_data           : 8;
209    uint64_t reserved_4_7       : 4;
210    uint64_t four               : 4;
211} cvmx_nand_cmd_cle_t;
212
213/**
214 * NAND ALE command definition
215 */
216typedef struct
217{
218    uint64_t reserved_96_127    : 32;
219    uint64_t adr_bytes_h        : 32;
220    uint64_t adr_bytes_l        : 32;
221    uint64_t reserved_28_31     : 4;
222    uint64_t alen4              : 3;
223    uint64_t alen3              : 3;
224    uint64_t alen2              : 3;
225    uint64_t alen1              : 3;
226    uint64_t reserved_12_15     : 4;
227    uint64_t adr_byte_num       : 4;
228    uint64_t reserved_4_7       : 4;
229    uint64_t five               : 4;
230} cvmx_nand_cmd_ale_t;
231
232/**
233 * NAND WR command definition
234 */
235typedef struct
236{
237    uint64_t reserved_64_127    : 64;
238    uint64_t reserved_31_63     : 34;
239    uint64_t wrn2               : 3;
240    uint64_t wrn1               : 3;
241    uint64_t reserved_20_24     : 4;
242    uint64_t data_bytes         : 16;
243    uint64_t eight              : 4;
244} cvmx_nand_cmd_wr_t;
245
246/**
247 * NAND RD command definition
248 */
249typedef struct
250{
251    uint64_t reserved_64_127    : 64;
252    uint64_t reserved_32_63     : 32;
253    uint64_t rdn4               : 3;
254    uint64_t rdn3               : 3;
255    uint64_t rdn2               : 3;
256    uint64_t rdn1               : 3;
257    uint64_t data_bytes         : 16;
258    uint64_t nine               : 4;
259} cvmx_nand_cmd_rd_t;
260
261/**
262 * NAND RD_EDO command definition
263 */
264typedef struct
265{
266    uint64_t reserved_64_127    : 64;
267    uint64_t reserved_32_63     : 32;
268    uint64_t rdn4               : 3;
269    uint64_t rdn3               : 3;
270    uint64_t rdn2               : 3;
271    uint64_t rdn1               : 3;
272    uint64_t data_bytes         : 16;
273    uint64_t ten                : 4;
274} cvmx_nand_cmd_rd_edo_t;
275
276/**
277 * NAND WAIT_STATUS command definition
278 */
279typedef struct
280{
281    uint64_t rdn4               : 3;
282    uint64_t rdn3               : 3;
283    uint64_t rdn2               : 3;
284    uint64_t rdn1               : 3;
285    uint64_t comp_byte          : 8;
286    uint64_t and_mask           : 8;
287    uint64_t nine               : 4;
288    uint64_t reserved_28_95     : 64;
289    uint64_t clen4              : 3;
290    uint64_t clen3              : 3;
291    uint64_t clen2              : 3;
292    uint64_t clen1              : 3;
293    uint64_t data               : 8;
294    uint64_t reserved_4_7       : 4;
295    uint64_t eleven             : 4;
296} cvmx_nand_cmd_wait_status_t;
297
298/**
299 * NAND WAIT_STATUS_ALE command definition
300 */
301typedef struct
302{
303    uint64_t rdn4               : 3;
304    uint64_t rdn3               : 3;
305    uint64_t rdn2               : 3;
306    uint64_t rdn1               : 3;
307    uint64_t comp_byte          : 8;
308    uint64_t and_mask           : 8;
309    uint64_t nine               : 4;
310    uint64_t adr_bytes          : 32;
311    uint64_t reserved_60_63     : 4;
312    uint64_t alen4              : 3;
313    uint64_t alen3              : 3;
314    uint64_t alen2              : 3;
315    uint64_t alen1              : 3;
316    uint64_t reserved_44_47     : 4;
317    uint64_t adr_byte_num       : 4;
318    uint64_t five               : 4;
319    uint64_t reserved_25_31     : 7;
320    uint64_t clen3              : 3;
321    uint64_t clen2              : 3;
322    uint64_t clen1              : 3;
323    uint64_t data               : 8;
324    uint64_t reserved_4_7       : 4;
325    uint64_t eleven             : 4;
326} cvmx_nand_cmd_wait_status_ale_t;
327
328/**
329 * NAND BUS_ACQ command definition
330 */
331typedef struct
332{
333    uint64_t reserved_64_127    : 64;
334    uint64_t reserved_8_63      : 56;
335    uint64_t one                : 4;
336    uint64_t fifteen            : 4;
337} cvmx_nand_cmd_bus_acq_t;
338
339/**
340 * NAND BUS_REL command definition
341 */
342typedef struct
343{
344    uint64_t reserved_64_127    : 64;
345    uint64_t reserved_8_63      : 56;
346    uint64_t zero               : 4;
347    uint64_t fifteen            : 4;
348} cvmx_nand_cmd_bus_rel_t;
349
350/**
351 * NAND command union of all possible commands
352 */
353typedef union
354{
355    uint64_t u64[2];
356    cvmx_nand_cmd_nop_t             nop;
357    cvmx_nand_cmd_set_tm_par_t      set_tm_par;
358    cvmx_nand_cmd_wait_t            wait;
359    cvmx_nand_cmd_chip_en_t         chip_en;
360    cvmx_nand_cmd_chip_dis_t        chip_dis;
361    cvmx_nand_cmd_cle_t             cle;
362    cvmx_nand_cmd_ale_t             ale;
363    cvmx_nand_cmd_rd_t              rd;
364    cvmx_nand_cmd_rd_edo_t          rd_edo;
365    cvmx_nand_cmd_wr_t              wr;
366    cvmx_nand_cmd_wait_status_t     wait_status;
367    cvmx_nand_cmd_wait_status_ale_t wait_status_ale;
368    cvmx_nand_cmd_bus_acq_t         bus_acq;
369    cvmx_nand_cmd_bus_rel_t         bus_rel;
370    struct
371    {
372        uint64_t reserved_64_127: 64;
373        uint64_t reserved_4_63  : 60;
374        uint64_t op_code        : 4;
375    } s;
376} cvmx_nand_cmd_t;
377
378
379typedef struct __attribute__ ((packed))
380{
381    char onfi[4];                   /**< Bytes 0-3: The ASCII characters 'O', 'N', 'F', 'I' */
382    uint16_t revision_number;       /**< Bytes 4-5: ONFI revision number
383                                        - 2-15 Reserved (0)
384                                        - 1    1 = supports ONFI version 1.0
385                                        - 0    Reserved (0) */
386    uint16_t features;              /**< Bytes 6-7: Features supported
387                                        - 5-15    Reserved (0)
388                                        - 4       1 = supports odd to even page Copyback
389                                        - 3       1 = supports interleaved operations
390                                        - 2       1 = supports non-sequential page programming
391                                        - 1       1 = supports multiple LUN operations
392                                        - 0       1 = supports 16-bit data bus width */
393    uint16_t optional_commands;     /**< Bytes 8-9: Optional commands supported
394                                        - 6-15   Reserved (0)
395                                        - 5      1 = supports Read Unique ID
396                                        - 4      1 = supports Copyback
397                                        - 3      1 = supports Read Status Enhanced
398                                        - 2      1 = supports Get Features and Set Features
399                                        - 1      1 = supports Read Cache commands
400                                        - 0      1 = supports Page Cache Program command */
401    uint8_t reserved_10_31[22];     /**< Bytes 10-31: Reserved */
402
403    char manufacturer[12];          /**< Bytes 32-43: Device manufacturer (12 ASCII characters) */
404    char model[20];                 /**< Bytes 40-63: Device model (20 ASCII characters) */
405    uint8_t jedec_id;               /**< Byte 64: JEDEC manufacturer ID */
406    uint16_t date_code;             /**< Byte 65-66: Date code */
407    uint8_t reserved_67_79[13];     /**< Bytes 67-79: Reserved */
408
409    uint32_t page_data_bytes;       /**< Bytes 80-83: Number of data bytes per page */
410    uint16_t page_spare_bytes;      /**< Bytes 84-85: Number of spare bytes per page */
411    uint32_t partial_page_data_bytes; /**< Bytes 86-89: Number of data bytes per partial page */
412    uint16_t partial_page_spare_bytes; /**< Bytes 90-91: Number of spare bytes per partial page */
413    uint32_t pages_per_block;       /**< Bytes 92-95: Number of pages per block */
414    uint32_t blocks_per_lun;        /**< Bytes 96-99: Number of blocks per logical unit (LUN) */
415    uint8_t number_lun;             /**< Byte 100: Number of logical units (LUNs) */
416    uint8_t address_cycles;         /**< Byte 101: Number of address cycles
417                                        - 4-7     Column address cycles
418                                        - 0-3     Row address cycles */
419    uint8_t bits_per_cell;          /**< Byte 102: Number of bits per cell */
420    uint16_t bad_block_per_lun;     /**< Bytes 103-104: Bad blocks maximum per LUN */
421    uint16_t block_endurance;       /**< Bytes 105-106: Block endurance */
422    uint8_t good_blocks;            /**< Byte 107: Guaranteed valid blocks at beginning of target */
423    uint16_t good_block_endurance;  /**< Bytes 108-109: Block endurance for guaranteed valid blocks */
424    uint8_t programs_per_page;      /**< Byte 110: Number of programs per page */
425    uint8_t partial_program_attrib; /**< Byte 111: Partial programming attributes
426                                        - 5-7    Reserved
427                                        - 4      1 = partial page layout is partial page data followed by partial page spare
428                                        - 1-3    Reserved
429                                        - 0      1 = partial page programming has constraints */
430    uint8_t bits_ecc;               /**< Byte 112: Number of bits ECC correctability */
431    uint8_t interleaved_address_bits;   /**< Byte 113: Number of interleaved address bits
432                                            - 4-7    Reserved (0)
433                                            - 0-3    Number of interleaved address bits */
434    uint8_t interleaved_attrib;     /**< Byte 114: Interleaved operation attributes
435                                        - 4-7    Reserved (0)
436                                        - 3      Address restrictions for program cache
437                                        - 2      1 = program cache supported
438                                        - 1      1 = no block address restrictions
439                                        - 0      Overlapped / concurrent interleaving support */
440    uint8_t reserved_115_127[13];   /**< Bytes 115-127: Reserved (0) */
441
442    uint8_t pin_capacitance;        /**< Byte 128: I/O pin capacitance */
443    uint16_t timing_mode;           /**< Byte 129-130: Timing mode support
444                                        - 6-15   Reserved (0)
445                                        - 5      1 = supports timing mode 5
446                                        - 4      1 = supports timing mode 4
447                                        - 3      1 = supports timing mode 3
448                                        - 2      1 = supports timing mode 2
449                                        - 1      1 = supports timing mode 1
450                                        - 0      1 = supports timing mode 0, shall be 1 */
451    uint16_t cache_timing_mode;     /**< Byte 131-132: Program cache timing mode support
452                                        - 6-15   Reserved (0)
453                                        - 5      1 = supports timing mode 5
454                                        - 4      1 = supports timing mode 4
455                                        - 3      1 = supports timing mode 3
456                                        - 2      1 = supports timing mode 2
457                                        - 1      1 = supports timing mode 1
458                                        - 0      1 = supports timing mode 0 */
459    uint16_t t_prog;                /**< Byte 133-134: Maximum page program time (us) */
460    uint16_t t_bers;                /**< Byte 135-136: Maximum block erase time (us) */
461    uint16_t t_r;                   /**< Byte 137-148: Maximum page read time (us) */
462    uint16_t t_ccs;                 /**< Byte 139-140: Minimum change column setup time (ns) */
463    uint8_t reserved_141_163[23];   /**< Byte 141-163: Reserved (0) */
464
465    uint16_t vendor_revision;       /**< Byte 164-165: Vendor specific Revision number */
466    uint8_t vendor_specific[88];    /**< Byte 166-253: Vendor specific */
467    uint16_t crc;                   /**< Byte 254-255: Integrity CRC */
468} cvmx_nand_onfi_param_page_t;
469
470
471/**
472 * Called to initialize the NAND controller for use. Note that
473 * you must be running out of L2 or memory and not NAND before
474 * calling this function.
475 *
476 * @param flags  Optional initialization flags
477 * @param active_chips
478 *               Each bit in this parameter represents a chip select that might
479 *               contain NAND flash. Any chip select present in this bitmask may
480 *               be connected to NAND. It is normally safe to pass 0xff here and
481 *               let the API probe all 8 chip selects.
482 *
483 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
484 */
485extern cvmx_nand_status_t cvmx_nand_initialize(cvmx_nand_initialize_flags_t flags, int active_chips);
486
487
488/**
489 * Call to shutdown the NAND controller after all transactions
490 * are done. In most setups this will never be called.
491 *
492 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
493 */
494extern cvmx_nand_status_t cvmx_nand_shutdown(void);
495
496
497/**
498 * Returns a bitmask representing the chip selects that are
499 * connected to NAND chips. This can be called after the
500 * initialize to determine the actual number of NAND chips
501 * found. Each bit in the response coresponds to a chip select.
502 *
503 * @return Zero if no NAND chips were found. Otherwise a bit is set for
504 *         each chip select (1<<chip).
505 */
506extern int cvmx_nand_get_active_chips(void);
507
508
509/**
510 * Override the timing parameters for a NAND chip
511 *
512 * @param chip     Chip select to override
513 * @param tim_mult
514 * @param tim_par
515 * @param clen
516 * @param alen
517 * @param rdn
518 * @param wrn
519 *
520 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
521 */
522extern cvmx_nand_status_t cvmx_nand_set_timing(int chip, int tim_mult, int tim_par[7], int clen[4], int alen[4], int rdn[4], int wrn[2]);
523
524
525/**
526 * Submit a command to the NAND command queue. Generally this
527 * will not be used directly. Instead most programs will use the other
528 * higher level NAND functions.
529 *
530 * @param cmd    Command to submit
531 *
532 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
533 */
534extern cvmx_nand_status_t cvmx_nand_submit(cvmx_nand_cmd_t cmd);
535
536/**
537 * Read a page from NAND. If the buffer has room, the out of band
538 * data will be included.
539 *
540 * @param chip   Chip select for NAND flash
541 * @param nand_address
542 *               Location in NAND to read. See description in file comment
543 * @param buffer_address
544 *               Physical address to store the result at
545 * @param buffer_length
546 *               Number of bytes to read
547 *
548 * @return Bytes read on success, a negative cvmx_nand_status_t error code on failure
549 */
550extern int cvmx_nand_page_read(int chip, uint64_t nand_address, uint64_t buffer_address, int buffer_length);
551
552/**
553 * Write a page to NAND. The buffer must contain the entire page
554 * including the out of band data.
555 *
556 * @param chip   Chip select for NAND flash
557 * @param nand_address
558 *               Location in NAND to write. See description in file comment
559 * @param buffer_address
560 *               Physical address to read the data from
561 *
562 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
563 */
564extern cvmx_nand_status_t cvmx_nand_page_write(int chip, uint64_t nand_address, uint64_t buffer_address);
565
566/**
567 * Erase a NAND block. A single block contains multiple pages.
568 *
569 * @param chip   Chip select for NAND flash
570 * @param nand_address
571 *               Location in NAND to erase. See description in file comment
572 *
573 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
574 */
575extern cvmx_nand_status_t cvmx_nand_block_erase(int chip, uint64_t nand_address);
576
577/**
578 * Read the NAND ID information
579 *
580 * @param chip   Chip select for NAND flash
581 * @param nand_address
582 *               NAND address to read ID from. Usually this is either 0x0 or 0x20.
583 * @param buffer_address
584 *               Physical address to store data in
585 * @param buffer_length
586 *               Length of the buffer. Usually this is 4 bytes
587 *
588 * @return Bytes read on success, a negative cvmx_nand_status_t error code on failure
589 */
590extern int cvmx_nand_read_id(int chip, uint64_t nand_address, uint64_t buffer_address, int buffer_length);
591
592/**
593 * Read the NAND parameter page
594 *
595 * @param chip   Chip select for NAND flash
596 * @param buffer_address
597 *               Physical address to store data in
598 * @param buffer_length
599 *               Length of the buffer. Usually this is 4 bytes
600 *
601 * @return Bytes read on success, a negative cvmx_nand_status_t error code on failure
602 */
603extern int cvmx_nand_read_param_page(int chip, uint64_t buffer_address, int buffer_length);
604
605/**
606 * Get the status of the NAND flash
607 *
608 * @param chip   Chip select for NAND flash
609 *
610 * @return NAND status or a negative cvmx_nand_status_t error code on failure
611 */
612extern int cvmx_nand_get_status(int chip);
613
614/**
615 * Get the page size, excluding out of band data. This  function
616 * will return zero for chip selects not connected to NAND.
617 *
618 * @param chip   Chip select for NAND flash
619 *
620 * @return Page size in bytes or a negative cvmx_nand_status_t error code on failure
621 */
622extern int cvmx_nand_get_page_size(int chip);
623
624/**
625 * Get the OOB size.
626 *
627 * @param chip   Chip select for NAND flash
628 *
629 * @return OOB in bytes or a negative cvmx_nand_status_t error code on failure
630 */
631extern int cvmx_nand_get_oob_size(int chip);
632
633/**
634 * Get the number of pages per NAND block
635 *
636 * @param chip   Chip select for NAND flash
637 *
638 * @return Numboer of pages in each block or a negative cvmx_nand_status_t error code on failure
639 */
640extern int cvmx_nand_get_pages_per_block(int chip);
641
642/**
643 * Get the number of blocks in the NAND flash
644 *
645 * @param chip   Chip select for NAND flash
646 *
647 * @return Number of blocks or a negative cvmx_nand_status_t error code on failure
648 */
649extern int cvmx_nand_get_blocks(int chip);
650
651/**
652 * Reset the NAND flash
653 *
654 * @param chip   Chip select for NAND flash
655 *
656 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
657 */
658extern cvmx_nand_status_t cvmx_nand_reset(int chip);
659
660/**
661 * This function computes the Octeon specific ECC data used by the NAND boot
662 * feature.
663 *
664 * @param block  pointer to 256 bytes of data
665 * @param eccp   pointer to where 8 bytes of ECC data will be stored
666 */
667extern void cvmx_nand_compute_boot_ecc(unsigned char *block, unsigned char *eccp);
668
669
670extern int cvmx_nand_correct_boot_ecc(uint8_t *block);
671#ifdef	__cplusplus
672}
673#endif
674
675#endif /* __CVMX_NAND_H__ */
676