avl.h revision 185029
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#ifndef	_AVL_H
27#define	_AVL_H
28
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31/*
32 * This is a private header file.  Applications should not directly include
33 * this file.
34 */
35
36#ifdef	__cplusplus
37extern "C" {
38#endif
39
40#include <sys/types.h>
41#include <sys/avl_impl.h>
42
43/*
44 * This is a generic implemenatation of AVL trees for use in the Solaris kernel.
45 * The interfaces provide an efficient way of implementing an ordered set of
46 * data structures.
47 *
48 * AVL trees provide an alternative to using an ordered linked list. Using AVL
49 * trees will usually be faster, however they requires more storage. An ordered
50 * linked list in general requires 2 pointers in each data structure. The
51 * AVL tree implementation uses 3 pointers. The following chart gives the
52 * approximate performance of operations with the different approaches:
53 *
54 *	Operation	 Link List	AVL tree
55 *	---------	 --------	--------
56 *	lookup		   O(n)		O(log(n))
57 *
58 *	insert 1 node	 constant	constant
59 *
60 *	delete 1 node	 constant	between constant and O(log(n))
61 *
62 *	delete all nodes   O(n)		O(n)
63 *
64 *	visit the next
65 *	or prev node	 constant	between constant and O(log(n))
66 *
67 *
68 * The data structure nodes are anchored at an "avl_tree_t" (the equivalent
69 * of a list header) and the individual nodes will have a field of
70 * type "avl_node_t" (corresponding to list pointers).
71 *
72 * The type "avl_index_t" is used to indicate a position in the list for
73 * certain calls.
74 *
75 * The usage scenario is generally:
76 *
77 * 1. Create the list/tree with: avl_create()
78 *
79 * followed by any mixture of:
80 *
81 * 2a. Insert nodes with: avl_add(), or avl_find() and avl_insert()
82 *
83 * 2b. Visited elements with:
84 *	 avl_first() - returns the lowest valued node
85 *	 avl_last() - returns the highest valued node
86 *	 AVL_NEXT() - given a node go to next higher one
87 *	 AVL_PREV() - given a node go to previous lower one
88 *
89 * 2c.  Find the node with the closest value either less than or greater
90 *	than a given value with avl_nearest().
91 *
92 * 2d. Remove individual nodes from the list/tree with avl_remove().
93 *
94 * and finally when the list is being destroyed
95 *
96 * 3. Use avl_destroy_nodes() to quickly process/free up any remaining nodes.
97 *    Note that once you use avl_destroy_nodes(), you can no longer
98 *    use any routine except avl_destroy_nodes() and avl_destoy().
99 *
100 * 4. Use avl_destroy() to destroy the AVL tree itself.
101 *
102 * Any locking for multiple thread access is up to the user to provide, just
103 * as is needed for any linked list implementation.
104 */
105
106
107/*
108 * Type used for the root of the AVL tree.
109 */
110typedef struct avl_tree avl_tree_t;
111
112/*
113 * The data nodes in the AVL tree must have a field of this type.
114 */
115typedef struct avl_node avl_node_t;
116
117/*
118 * An opaque type used to locate a position in the tree where a node
119 * would be inserted.
120 */
121typedef uintptr_t avl_index_t;
122
123
124/*
125 * Direction constants used for avl_nearest().
126 */
127#define	AVL_BEFORE	(0)
128#define	AVL_AFTER	(1)
129
130
131/*
132 * Prototypes
133 *
134 * Where not otherwise mentioned, "void *" arguments are a pointer to the
135 * user data structure which must contain a field of type avl_node_t.
136 *
137 * Also assume the user data structures looks like:
138 *	stuct my_type {
139 *		...
140 *		avl_node_t	my_link;
141 *		...
142 *	};
143 */
144
145/*
146 * Initialize an AVL tree. Arguments are:
147 *
148 * tree   - the tree to be initialized
149 * compar - function to compare two nodes, it must return exactly: -1, 0, or +1
150 *          -1 for <, 0 for ==, and +1 for >
151 * size   - the value of sizeof(struct my_type)
152 * offset - the value of OFFSETOF(struct my_type, my_link)
153 */
154extern void avl_create(avl_tree_t *tree,
155	int (*compar) (const void *, const void *), size_t size, size_t offset);
156
157
158/*
159 * Find a node with a matching value in the tree. Returns the matching node
160 * found. If not found, it returns NULL and then if "where" is not NULL it sets
161 * "where" for use with avl_insert() or avl_nearest().
162 *
163 * node   - node that has the value being looked for
164 * where  - position for use with avl_nearest() or avl_insert(), may be NULL
165 */
166extern void *avl_find(avl_tree_t *tree, void *node, avl_index_t *where);
167
168/*
169 * Insert a node into the tree.
170 *
171 * node   - the node to insert
172 * where  - position as returned from avl_find()
173 */
174extern void avl_insert(avl_tree_t *tree, void *node, avl_index_t where);
175
176/*
177 * Insert "new_data" in "tree" in the given "direction" either after
178 * or before the data "here".
179 *
180 * This might be usefull for avl clients caching recently accessed
181 * data to avoid doing avl_find() again for insertion.
182 *
183 * new_data	- new data to insert
184 * here		- existing node in "tree"
185 * direction	- either AVL_AFTER or AVL_BEFORE the data "here".
186 */
187extern void avl_insert_here(avl_tree_t *tree, void *new_data, void *here,
188    int direction);
189
190
191/*
192 * Return the first or last valued node in the tree. Will return NULL
193 * if the tree is empty.
194 *
195 */
196extern void *avl_first(avl_tree_t *tree);
197extern void *avl_last(avl_tree_t *tree);
198
199
200/*
201 * Return the next or previous valued node in the tree.
202 * AVL_NEXT() will return NULL if at the last node.
203 * AVL_PREV() will return NULL if at the first node.
204 *
205 * node   - the node from which the next or previous node is found
206 */
207#define	AVL_NEXT(tree, node)	avl_walk(tree, node, AVL_AFTER)
208#define	AVL_PREV(tree, node)	avl_walk(tree, node, AVL_BEFORE)
209
210
211/*
212 * Find the node with the nearest value either greater or less than
213 * the value from a previous avl_find(). Returns the node or NULL if
214 * there isn't a matching one.
215 *
216 * where     - position as returned from avl_find()
217 * direction - either AVL_BEFORE or AVL_AFTER
218 *
219 * EXAMPLE get the greatest node that is less than a given value:
220 *
221 *	avl_tree_t *tree;
222 *	struct my_data look_for_value = {....};
223 *	struct my_data *node;
224 *	struct my_data *less;
225 *	avl_index_t where;
226 *
227 *	node = avl_find(tree, &look_for_value, &where);
228 *	if (node != NULL)
229 *		less = AVL_PREV(tree, node);
230 *	else
231 *		less = avl_nearest(tree, where, AVL_BEFORE);
232 */
233extern void *avl_nearest(avl_tree_t *tree, avl_index_t where, int direction);
234
235
236/*
237 * Add a single node to the tree.
238 * The node must not be in the tree, and it must not
239 * compare equal to any other node already in the tree.
240 *
241 * node   - the node to add
242 */
243extern void avl_add(avl_tree_t *tree, void *node);
244
245
246/*
247 * Remove a single node from the tree.  The node must be in the tree.
248 *
249 * node   - the node to remove
250 */
251extern void avl_remove(avl_tree_t *tree, void *node);
252
253/*
254 * Reinsert a node only if its order has changed relative to its nearest
255 * neighbors. To optimize performance avl_update_lt() checks only the previous
256 * node and avl_update_gt() checks only the next node. Use avl_update_lt() and
257 * avl_update_gt() only if you know the direction in which the order of the
258 * node may change.
259 */
260extern boolean_t avl_update(avl_tree_t *, void *);
261extern boolean_t avl_update_lt(avl_tree_t *, void *);
262extern boolean_t avl_update_gt(avl_tree_t *, void *);
263
264/*
265 * Return the number of nodes in the tree
266 */
267extern ulong_t avl_numnodes(avl_tree_t *tree);
268
269/*
270 * Return B_TRUE if there are zero nodes in the tree, B_FALSE otherwise.
271 */
272extern boolean_t avl_is_empty(avl_tree_t *tree);
273
274/*
275 * Used to destroy any remaining nodes in a tree. The cookie argument should
276 * be initialized to NULL before the first call. Returns a node that has been
277 * removed from the tree and may be free()'d. Returns NULL when the tree is
278 * empty.
279 *
280 * Once you call avl_destroy_nodes(), you can only continuing calling it and
281 * finally avl_destroy(). No other AVL routines will be valid.
282 *
283 * cookie - a "void *" used to save state between calls to avl_destroy_nodes()
284 *
285 * EXAMPLE:
286 *	avl_tree_t *tree;
287 *	struct my_data *node;
288 *	void *cookie;
289 *
290 *	cookie = NULL;
291 *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
292 *		free(node);
293 *	avl_destroy(tree);
294 */
295extern void *avl_destroy_nodes(avl_tree_t *tree, void **cookie);
296
297
298/*
299 * Final destroy of an AVL tree. Arguments are:
300 *
301 * tree   - the empty tree to destroy
302 */
303extern void avl_destroy(avl_tree_t *tree);
304
305
306
307#ifdef	__cplusplus
308}
309#endif
310
311#endif	/* _AVL_H */
312