zfs_znode.c revision 211932
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/* Portions Copyright 2007 Jeremy Teo */
27
28#ifdef _KERNEL
29#include <sys/types.h>
30#include <sys/param.h>
31#include <sys/time.h>
32#include <sys/systm.h>
33#include <sys/sysmacros.h>
34#include <sys/resource.h>
35#include <sys/mntent.h>
36#include <sys/u8_textprep.h>
37#include <sys/dsl_dataset.h>
38#include <sys/vfs.h>
39#include <sys/vnode.h>
40#include <sys/file.h>
41#include <sys/kmem.h>
42#include <sys/errno.h>
43#include <sys/unistd.h>
44#include <sys/atomic.h>
45#include <sys/zfs_dir.h>
46#include <sys/zfs_acl.h>
47#include <sys/zfs_ioctl.h>
48#include <sys/zfs_rlock.h>
49#include <sys/zfs_fuid.h>
50#include <sys/fs/zfs.h>
51#include <sys/kidmap.h>
52#endif /* _KERNEL */
53
54#include <sys/dmu.h>
55#include <sys/refcount.h>
56#include <sys/stat.h>
57#include <sys/zap.h>
58#include <sys/zfs_znode.h>
59#include <sys/refcount.h>
60
61#include "zfs_prop.h"
62
63/* Used by fstat(1). */
64SYSCTL_INT(_debug_sizeof, OID_AUTO, znode, CTLFLAG_RD, 0, sizeof(znode_t),
65    "sizeof(znode_t)");
66
67/*
68 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
69 * turned on when DEBUG is also defined.
70 */
71#ifdef	DEBUG
72#define	ZNODE_STATS
73#endif	/* DEBUG */
74
75#ifdef	ZNODE_STATS
76#define	ZNODE_STAT_ADD(stat)			((stat)++)
77#else
78#define	ZNODE_STAT_ADD(stat)			/* nothing */
79#endif	/* ZNODE_STATS */
80
81#define	POINTER_IS_VALID(p)	(!((uintptr_t)(p) & 0x3))
82#define	POINTER_INVALIDATE(pp)	(*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1))
83
84/*
85 * Functions needed for userland (ie: libzpool) are not put under
86 * #ifdef_KERNEL; the rest of the functions have dependencies
87 * (such as VFS logic) that will not compile easily in userland.
88 */
89#ifdef _KERNEL
90/*
91 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
92 * be freed before it can be safely accessed.
93 */
94krwlock_t zfsvfs_lock;
95
96static kmem_cache_t *znode_cache = NULL;
97
98/*ARGSUSED*/
99static void
100znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
101{
102#if 1	/* XXXPJD: From OpenSolaris. */
103	/*
104	 * We should never drop all dbuf refs without first clearing
105	 * the eviction callback.
106	 */
107	panic("evicting znode %p\n", user_ptr);
108#else	/* XXXPJD */
109	znode_t *zp = user_ptr;
110	vnode_t *vp;
111
112	mutex_enter(&zp->z_lock);
113	zp->z_dbuf = NULL;
114	vp = ZTOV(zp);
115	if (vp == NULL) {
116		mutex_exit(&zp->z_lock);
117		zfs_znode_free(zp);
118	} else if (vp->v_count == 0) {
119		zp->z_vnode = NULL;
120		vhold(vp);
121		mutex_exit(&zp->z_lock);
122		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
123		vrecycle(vp, curthread);
124		VOP_UNLOCK(vp, 0);
125		vdrop(vp);
126		zfs_znode_free(zp);
127	} else {
128		mutex_exit(&zp->z_lock);
129	}
130#endif
131}
132
133extern struct vop_vector zfs_vnodeops;
134extern struct vop_vector zfs_fifoops;
135extern struct vop_vector zfs_shareops;
136
137/*
138 * XXX: We cannot use this function as a cache constructor, because
139 *      there is one global cache for all file systems and we need
140 *      to pass vfsp here, which is not possible, because argument
141 *      'cdrarg' is defined at kmem_cache_create() time.
142 */
143static int
144zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
145{
146	znode_t *zp = buf;
147	vnode_t *vp;
148	vfs_t *vfsp = arg;
149	int error;
150
151	POINTER_INVALIDATE(&zp->z_zfsvfs);
152	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
153
154	if (vfsp != NULL) {
155		error = getnewvnode("zfs", vfsp, &zfs_vnodeops, &vp);
156		if (error != 0 && (kmflags & KM_NOSLEEP))
157			return (-1);
158		ASSERT(error == 0);
159		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
160		zp->z_vnode = vp;
161		vp->v_data = (caddr_t)zp;
162		VN_LOCK_AREC(vp);
163	} else {
164		zp->z_vnode = NULL;
165	}
166
167	list_link_init(&zp->z_link_node);
168
169	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
170	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
171	rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
172	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
173
174	mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
175	avl_create(&zp->z_range_avl, zfs_range_compare,
176	    sizeof (rl_t), offsetof(rl_t, r_node));
177
178	zp->z_dbuf = NULL;
179	zp->z_dirlocks = NULL;
180	zp->z_acl_cached = NULL;
181	return (0);
182}
183
184/*ARGSUSED*/
185static void
186zfs_znode_cache_destructor(void *buf, void *arg)
187{
188	znode_t *zp = buf;
189
190	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
191	ASSERT(ZTOV(zp) == NULL);
192	vn_free(ZTOV(zp));
193	ASSERT(!list_link_active(&zp->z_link_node));
194	mutex_destroy(&zp->z_lock);
195	rw_destroy(&zp->z_parent_lock);
196	rw_destroy(&zp->z_name_lock);
197	mutex_destroy(&zp->z_acl_lock);
198	avl_destroy(&zp->z_range_avl);
199	mutex_destroy(&zp->z_range_lock);
200
201	ASSERT(zp->z_dbuf == NULL);
202	ASSERT(zp->z_dirlocks == NULL);
203	ASSERT(zp->z_acl_cached == NULL);
204}
205
206#ifdef	ZNODE_STATS
207static struct {
208	uint64_t zms_zfsvfs_invalid;
209	uint64_t zms_zfsvfs_recheck1;
210	uint64_t zms_zfsvfs_unmounted;
211	uint64_t zms_zfsvfs_recheck2;
212	uint64_t zms_obj_held;
213	uint64_t zms_vnode_locked;
214	uint64_t zms_not_only_dnlc;
215} znode_move_stats;
216#endif	/* ZNODE_STATS */
217
218#if defined(sun)
219static void
220zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
221{
222	vnode_t *vp;
223
224	/* Copy fields. */
225	nzp->z_zfsvfs = ozp->z_zfsvfs;
226
227	/* Swap vnodes. */
228	vp = nzp->z_vnode;
229	nzp->z_vnode = ozp->z_vnode;
230	ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
231	ZTOV(ozp)->v_data = ozp;
232	ZTOV(nzp)->v_data = nzp;
233
234	nzp->z_id = ozp->z_id;
235	ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
236	ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
237	nzp->z_unlinked = ozp->z_unlinked;
238	nzp->z_atime_dirty = ozp->z_atime_dirty;
239	nzp->z_zn_prefetch = ozp->z_zn_prefetch;
240	nzp->z_blksz = ozp->z_blksz;
241	nzp->z_seq = ozp->z_seq;
242	nzp->z_mapcnt = ozp->z_mapcnt;
243	nzp->z_last_itx = ozp->z_last_itx;
244	nzp->z_gen = ozp->z_gen;
245	nzp->z_sync_cnt = ozp->z_sync_cnt;
246	nzp->z_phys = ozp->z_phys;
247	nzp->z_dbuf = ozp->z_dbuf;
248
249	/*
250	 * Since this is just an idle znode and kmem is already dealing with
251	 * memory pressure, release any cached ACL.
252	 */
253	if (ozp->z_acl_cached) {
254		zfs_acl_free(ozp->z_acl_cached);
255		ozp->z_acl_cached = NULL;
256	}
257
258	/* Update back pointers. */
259	(void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys,
260	    znode_evict_error);
261
262	/*
263	 * Invalidate the original znode by clearing fields that provide a
264	 * pointer back to the znode. Set the low bit of the vfs pointer to
265	 * ensure that zfs_znode_move() recognizes the znode as invalid in any
266	 * subsequent callback.
267	 */
268	ozp->z_dbuf = NULL;
269	POINTER_INVALIDATE(&ozp->z_zfsvfs);
270}
271
272/*ARGSUSED*/
273static kmem_cbrc_t
274zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
275{
276	znode_t *ozp = buf, *nzp = newbuf;
277	zfsvfs_t *zfsvfs;
278	vnode_t *vp;
279
280	/*
281	 * The znode is on the file system's list of known znodes if the vfs
282	 * pointer is valid. We set the low bit of the vfs pointer when freeing
283	 * the znode to invalidate it, and the memory patterns written by kmem
284	 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
285	 * created znode sets the vfs pointer last of all to indicate that the
286	 * znode is known and in a valid state to be moved by this function.
287	 */
288	zfsvfs = ozp->z_zfsvfs;
289	if (!POINTER_IS_VALID(zfsvfs)) {
290		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
291		return (KMEM_CBRC_DONT_KNOW);
292	}
293
294	/*
295	 * Close a small window in which it's possible that the filesystem could
296	 * be unmounted and freed, and zfsvfs, though valid in the previous
297	 * statement, could point to unrelated memory by the time we try to
298	 * prevent the filesystem from being unmounted.
299	 */
300	rw_enter(&zfsvfs_lock, RW_WRITER);
301	if (zfsvfs != ozp->z_zfsvfs) {
302		rw_exit(&zfsvfs_lock);
303		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
304		return (KMEM_CBRC_DONT_KNOW);
305	}
306
307	/*
308	 * If the znode is still valid, then so is the file system. We know that
309	 * no valid file system can be freed while we hold zfsvfs_lock, so we
310	 * can safely ensure that the filesystem is not and will not be
311	 * unmounted. The next statement is equivalent to ZFS_ENTER().
312	 */
313	rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
314	if (zfsvfs->z_unmounted) {
315		ZFS_EXIT(zfsvfs);
316		rw_exit(&zfsvfs_lock);
317		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
318		return (KMEM_CBRC_DONT_KNOW);
319	}
320	rw_exit(&zfsvfs_lock);
321
322	mutex_enter(&zfsvfs->z_znodes_lock);
323	/*
324	 * Recheck the vfs pointer in case the znode was removed just before
325	 * acquiring the lock.
326	 */
327	if (zfsvfs != ozp->z_zfsvfs) {
328		mutex_exit(&zfsvfs->z_znodes_lock);
329		ZFS_EXIT(zfsvfs);
330		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
331		return (KMEM_CBRC_DONT_KNOW);
332	}
333
334	/*
335	 * At this point we know that as long as we hold z_znodes_lock, the
336	 * znode cannot be freed and fields within the znode can be safely
337	 * accessed. Now, prevent a race with zfs_zget().
338	 */
339	if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
340		mutex_exit(&zfsvfs->z_znodes_lock);
341		ZFS_EXIT(zfsvfs);
342		ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
343		return (KMEM_CBRC_LATER);
344	}
345
346	vp = ZTOV(ozp);
347	if (mutex_tryenter(&vp->v_lock) == 0) {
348		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
349		mutex_exit(&zfsvfs->z_znodes_lock);
350		ZFS_EXIT(zfsvfs);
351		ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
352		return (KMEM_CBRC_LATER);
353	}
354
355	/* Only move znodes that are referenced _only_ by the DNLC. */
356	if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
357		mutex_exit(&vp->v_lock);
358		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
359		mutex_exit(&zfsvfs->z_znodes_lock);
360		ZFS_EXIT(zfsvfs);
361		ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
362		return (KMEM_CBRC_LATER);
363	}
364
365	/*
366	 * The znode is known and in a valid state to move. We're holding the
367	 * locks needed to execute the critical section.
368	 */
369	zfs_znode_move_impl(ozp, nzp);
370	mutex_exit(&vp->v_lock);
371	ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
372
373	list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
374	mutex_exit(&zfsvfs->z_znodes_lock);
375	ZFS_EXIT(zfsvfs);
376
377	return (KMEM_CBRC_YES);
378}
379#endif /* sun */
380
381void
382zfs_znode_init(void)
383{
384	/*
385	 * Initialize zcache
386	 */
387	rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
388	ASSERT(znode_cache == NULL);
389	znode_cache = kmem_cache_create("zfs_znode_cache",
390	    sizeof (znode_t), 0, /* zfs_znode_cache_constructor */ NULL,
391	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
392#if defined(sun)
393	kmem_cache_set_move(znode_cache, zfs_znode_move);
394#endif
395}
396
397void
398zfs_znode_fini(void)
399{
400	/*
401	 * Cleanup zcache
402	 */
403	if (znode_cache)
404		kmem_cache_destroy(znode_cache);
405	znode_cache = NULL;
406	rw_destroy(&zfsvfs_lock);
407}
408
409int
410zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
411{
412	zfs_acl_ids_t acl_ids;
413	vattr_t vattr;
414	znode_t *sharezp;
415	vnode_t *vp, vnode;
416	znode_t *zp;
417	int error;
418
419	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
420	vattr.va_type = VDIR;
421	vattr.va_mode = S_IFDIR|0555;
422	vattr.va_uid = crgetuid(kcred);
423	vattr.va_gid = crgetgid(kcred);
424
425	sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
426	zfs_znode_cache_constructor(sharezp, zfsvfs->z_parent->z_vfs, 0);
427	sharezp->z_unlinked = 0;
428	sharezp->z_atime_dirty = 0;
429	sharezp->z_zfsvfs = zfsvfs;
430
431	sharezp->z_vnode = &vnode;
432	vnode.v_data = sharezp;
433
434	vp = ZTOV(sharezp);
435	vp->v_type = VDIR;
436
437	VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
438	    kcred, NULL, &acl_ids));
439	zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE,
440	    &zp, 0, &acl_ids);
441	ASSERT3P(zp, ==, sharezp);
442	POINTER_INVALIDATE(&sharezp->z_zfsvfs);
443	error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
444	    ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
445	zfsvfs->z_shares_dir = sharezp->z_id;
446
447	zfs_acl_ids_free(&acl_ids);
448	ZTOV(sharezp)->v_data = NULL;
449	ZTOV(sharezp)->v_count = 0;
450	ZTOV(sharezp)->v_holdcnt = 0;
451	zp->z_vnode = NULL;
452	sharezp->z_vnode = NULL;
453	dmu_buf_rele(sharezp->z_dbuf, NULL);
454	sharezp->z_dbuf = NULL;
455	kmem_cache_free(znode_cache, sharezp);
456
457	return (error);
458}
459
460/*
461 * define a couple of values we need available
462 * for both 64 and 32 bit environments.
463 */
464#ifndef NBITSMINOR64
465#define	NBITSMINOR64	32
466#endif
467#ifndef MAXMAJ64
468#define	MAXMAJ64	0xffffffffUL
469#endif
470#ifndef	MAXMIN64
471#define	MAXMIN64	0xffffffffUL
472#endif
473
474/*
475 * Create special expldev for ZFS private use.
476 * Can't use standard expldev since it doesn't do
477 * what we want.  The standard expldev() takes a
478 * dev32_t in LP64 and expands it to a long dev_t.
479 * We need an interface that takes a dev32_t in ILP32
480 * and expands it to a long dev_t.
481 */
482static uint64_t
483zfs_expldev(dev_t dev)
484{
485	return (((uint64_t)major(dev) << NBITSMINOR64) | minor(dev));
486}
487/*
488 * Special cmpldev for ZFS private use.
489 * Can't use standard cmpldev since it takes
490 * a long dev_t and compresses it to dev32_t in
491 * LP64.  We need to do a compaction of a long dev_t
492 * to a dev32_t in ILP32.
493 */
494dev_t
495zfs_cmpldev(uint64_t dev)
496{
497	return (makedev((dev >> NBITSMINOR64), (dev & MAXMIN64)));
498}
499
500static void
501zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db)
502{
503	znode_t		*nzp;
504
505	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
506	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
507
508	mutex_enter(&zp->z_lock);
509
510	ASSERT(zp->z_dbuf == NULL);
511	ASSERT(zp->z_acl_cached == NULL);
512	zp->z_dbuf = db;
513	nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error);
514
515	/*
516	 * there should be no
517	 * concurrent zgets on this object.
518	 */
519	if (nzp != NULL)
520		panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db);
521
522	/*
523	 * Slap on VROOT if we are the root znode
524	 */
525	if (zp->z_id == zfsvfs->z_root)
526		ZTOV(zp)->v_flag |= VROOT;
527
528	mutex_exit(&zp->z_lock);
529	vn_exists(ZTOV(zp));
530}
531
532void
533zfs_znode_dmu_fini(znode_t *zp)
534{
535	dmu_buf_t *db = zp->z_dbuf;
536	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
537	    zp->z_unlinked ||
538	    RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
539	ASSERT(zp->z_dbuf != NULL);
540	zp->z_dbuf = NULL;
541	VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL));
542	dmu_buf_rele(db, NULL);
543}
544
545/*
546 * Construct a new znode/vnode and intialize.
547 *
548 * This does not do a call to dmu_set_user() that is
549 * up to the caller to do, in case you don't want to
550 * return the znode
551 */
552static znode_t *
553zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz)
554{
555	znode_t	*zp;
556	vnode_t *vp;
557
558	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
559	zfs_znode_cache_constructor(zp, zfsvfs->z_parent->z_vfs, 0);
560
561	ASSERT(zp->z_dirlocks == NULL);
562	ASSERT(zp->z_dbuf == NULL);
563	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
564
565	/*
566	 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
567	 * the zfs_znode_move() callback.
568	 */
569	zp->z_phys = NULL;
570	zp->z_unlinked = 0;
571	zp->z_atime_dirty = 0;
572	zp->z_mapcnt = 0;
573	zp->z_last_itx = 0;
574	zp->z_id = db->db_object;
575	zp->z_blksz = blksz;
576	zp->z_seq = 0x7A4653;
577	zp->z_sync_cnt = 0;
578
579	vp = ZTOV(zp);
580#ifdef TODO
581	vn_reinit(vp);
582#endif
583
584	zfs_znode_dmu_init(zfsvfs, zp, db);
585
586	zp->z_gen = zp->z_phys->zp_gen;
587
588#if 0
589	if (vp == NULL)
590		return (zp);
591#endif
592
593	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
594	switch (vp->v_type) {
595	case VDIR:
596		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
597		break;
598	case VFIFO:
599		vp->v_op = &zfs_fifoops;
600		break;
601        case VREG:
602		if (zp->z_phys->zp_parent == zfsvfs->z_shares_dir) {
603			vp->v_op = &zfs_shareops;
604		}
605		break;
606	}
607	if (vp->v_type != VFIFO)
608		VN_LOCK_ASHARE(vp);
609
610	mutex_enter(&zfsvfs->z_znodes_lock);
611	list_insert_tail(&zfsvfs->z_all_znodes, zp);
612	membar_producer();
613	/*
614	 * Everything else must be valid before assigning z_zfsvfs makes the
615	 * znode eligible for zfs_znode_move().
616	 */
617	zp->z_zfsvfs = zfsvfs;
618	mutex_exit(&zfsvfs->z_znodes_lock);
619
620	VFS_HOLD(zfsvfs->z_vfs);
621	return (zp);
622}
623
624/*
625 * Create a new DMU object to hold a zfs znode.
626 *
627 *	IN:	dzp	- parent directory for new znode
628 *		vap	- file attributes for new znode
629 *		tx	- dmu transaction id for zap operations
630 *		cr	- credentials of caller
631 *		flag	- flags:
632 *			  IS_ROOT_NODE	- new object will be root
633 *			  IS_XATTR	- new object is an attribute
634 *		bonuslen - length of bonus buffer
635 *		setaclp  - File/Dir initial ACL
636 *		fuidp	 - Tracks fuid allocation.
637 *
638 *	OUT:	zpp	- allocated znode
639 *
640 */
641void
642zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
643    uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids)
644{
645	dmu_buf_t	*db;
646	znode_phys_t	*pzp;
647	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
648	timestruc_t	now;
649	uint64_t	gen, obj;
650	int		err;
651
652	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
653
654	if (zfsvfs->z_replay) {
655		obj = vap->va_nodeid;
656		now = vap->va_ctime;		/* see zfs_replay_create() */
657		gen = vap->va_nblocks;		/* ditto */
658	} else {
659		obj = 0;
660		gethrestime(&now);
661		gen = dmu_tx_get_txg(tx);
662	}
663
664	/*
665	 * Create a new DMU object.
666	 */
667	/*
668	 * There's currently no mechanism for pre-reading the blocks that will
669	 * be to needed allocate a new object, so we accept the small chance
670	 * that there will be an i/o error and we will fail one of the
671	 * assertions below.
672	 */
673	if (vap->va_type == VDIR) {
674		if (zfsvfs->z_replay) {
675			err = zap_create_claim_norm(zfsvfs->z_os, obj,
676			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
677			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
678			ASSERT3U(err, ==, 0);
679		} else {
680			obj = zap_create_norm(zfsvfs->z_os,
681			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
682			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
683		}
684	} else {
685		if (zfsvfs->z_replay) {
686			err = dmu_object_claim(zfsvfs->z_os, obj,
687			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
688			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
689			ASSERT3U(err, ==, 0);
690		} else {
691			obj = dmu_object_alloc(zfsvfs->z_os,
692			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
693			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
694		}
695	}
696
697	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
698	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db));
699	dmu_buf_will_dirty(db, tx);
700
701	/*
702	 * Initialize the znode physical data to zero.
703	 */
704	ASSERT(db->db_size >= sizeof (znode_phys_t));
705	bzero(db->db_data, db->db_size);
706	pzp = db->db_data;
707
708	/*
709	 * If this is the root, fix up the half-initialized parent pointer
710	 * to reference the just-allocated physical data area.
711	 */
712	if (flag & IS_ROOT_NODE) {
713		dzp->z_dbuf = db;
714		dzp->z_phys = pzp;
715		dzp->z_id = obj;
716	}
717
718	/*
719	 * If parent is an xattr, so am I.
720	 */
721	if (dzp->z_phys->zp_flags & ZFS_XATTR)
722		flag |= IS_XATTR;
723
724	if (vap->va_type == VBLK || vap->va_type == VCHR) {
725		pzp->zp_rdev = zfs_expldev(vap->va_rdev);
726	}
727
728	if (zfsvfs->z_use_fuids)
729		pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
730
731	if (vap->va_type == VDIR) {
732		pzp->zp_size = 2;		/* contents ("." and "..") */
733		pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
734	}
735
736	pzp->zp_parent = dzp->z_id;
737	if (flag & IS_XATTR)
738		pzp->zp_flags |= ZFS_XATTR;
739
740	pzp->zp_gen = gen;
741
742	ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
743	ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
744
745	if (vap->va_mask & AT_ATIME) {
746		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
747	} else {
748		ZFS_TIME_ENCODE(&now, pzp->zp_atime);
749	}
750
751	if (vap->va_mask & AT_MTIME) {
752		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
753	} else {
754		ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
755	}
756
757	pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
758	if (!(flag & IS_ROOT_NODE)) {
759		*zpp = zfs_znode_alloc(zfsvfs, db, 0);
760	} else {
761		/*
762		 * If we are creating the root node, the "parent" we
763		 * passed in is the znode for the root.
764		 */
765		*zpp = dzp;
766	}
767	pzp->zp_uid = acl_ids->z_fuid;
768	pzp->zp_gid = acl_ids->z_fgid;
769	pzp->zp_mode = acl_ids->z_mode;
770	VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
771	if (vap->va_mask & AT_XVATTR)
772		zfs_xvattr_set(*zpp, (xvattr_t *)vap);
773	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
774	if (!(flag & IS_ROOT_NODE)) {
775		vnode_t *vp;
776
777		vp = ZTOV(*zpp);
778		vp->v_vflag |= VV_FORCEINSMQ;
779		err = insmntque(vp, zfsvfs->z_vfs);
780		vp->v_vflag &= ~VV_FORCEINSMQ;
781		KASSERT(err == 0, ("insmntque() failed: error %d", err));
782	}
783}
784
785void
786zfs_xvattr_set(znode_t *zp, xvattr_t *xvap)
787{
788	xoptattr_t *xoap;
789
790	xoap = xva_getxoptattr(xvap);
791	ASSERT(xoap);
792
793	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
794		ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime);
795		XVA_SET_RTN(xvap, XAT_CREATETIME);
796	}
797	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
798		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly);
799		XVA_SET_RTN(xvap, XAT_READONLY);
800	}
801	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
802		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden);
803		XVA_SET_RTN(xvap, XAT_HIDDEN);
804	}
805	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
806		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system);
807		XVA_SET_RTN(xvap, XAT_SYSTEM);
808	}
809	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
810		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive);
811		XVA_SET_RTN(xvap, XAT_ARCHIVE);
812	}
813	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
814		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable);
815		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
816	}
817	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
818		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink);
819		XVA_SET_RTN(xvap, XAT_NOUNLINK);
820	}
821	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
822		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly);
823		XVA_SET_RTN(xvap, XAT_APPENDONLY);
824	}
825	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
826		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump);
827		XVA_SET_RTN(xvap, XAT_NODUMP);
828	}
829	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
830		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque);
831		XVA_SET_RTN(xvap, XAT_OPAQUE);
832	}
833	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
834		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
835		    xoap->xoa_av_quarantined);
836		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
837	}
838	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
839		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified);
840		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
841	}
842	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
843		(void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp,
844		    sizeof (xoap->xoa_av_scanstamp));
845		zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP;
846		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
847	}
848}
849
850int
851zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
852{
853	dmu_object_info_t doi;
854	dmu_buf_t	*db;
855	znode_t		*zp;
856	vnode_t		*vp;
857	int err, first = 1;
858
859	*zpp = NULL;
860again:
861	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
862
863	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
864	if (err) {
865		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
866		return (err);
867	}
868
869	dmu_object_info_from_db(db, &doi);
870	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
871	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
872		dmu_buf_rele(db, NULL);
873		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
874		return (EINVAL);
875	}
876
877	zp = dmu_buf_get_user(db);
878	if (zp != NULL) {
879		mutex_enter(&zp->z_lock);
880
881		/*
882		 * Since we do immediate eviction of the z_dbuf, we
883		 * should never find a dbuf with a znode that doesn't
884		 * know about the dbuf.
885		 */
886		ASSERT3P(zp->z_dbuf, ==, db);
887		ASSERT3U(zp->z_id, ==, obj_num);
888		if (zp->z_unlinked) {
889			err = ENOENT;
890		} else {
891			int dying = 0;
892
893			vp = ZTOV(zp);
894			if (vp == NULL)
895				dying = 1;
896			else {
897				VN_HOLD(vp);
898				if ((vp->v_iflag & VI_DOOMED) != 0) {
899					dying = 1;
900					/*
901					 * Don't VN_RELE() vnode here, because
902					 * it can call vn_lock() which creates
903					 * LOR between vnode lock and znode
904					 * lock. We will VN_RELE() the vnode
905					 * after droping znode lock.
906					 */
907				}
908			}
909			if (dying) {
910				if (first) {
911					ZFS_LOG(1, "dying znode detected (zp=%p)", zp);
912					first = 0;
913				}
914				/*
915				 * znode is dying so we can't reuse it, we must
916				 * wait until destruction is completed.
917				 */
918				dmu_buf_rele(db, NULL);
919				mutex_exit(&zp->z_lock);
920				ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
921				if (vp != NULL)
922					VN_RELE(vp);
923				tsleep(zp, 0, "zcollide", 1);
924				goto again;
925			}
926			*zpp = zp;
927			err = 0;
928		}
929		dmu_buf_rele(db, NULL);
930		mutex_exit(&zp->z_lock);
931		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
932		return (err);
933	}
934
935	/*
936	 * Not found create new znode/vnode
937	 * but only if file exists.
938	 *
939	 * There is a small window where zfs_vget() could
940	 * find this object while a file create is still in
941	 * progress.  Since a gen number can never be zero
942	 * we will check that to determine if its an allocated
943	 * file.
944	 */
945
946	if (((znode_phys_t *)db->db_data)->zp_gen != 0) {
947		zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size);
948		*zpp = zp;
949		vp = ZTOV(zp);
950		vp->v_vflag |= VV_FORCEINSMQ;
951		err = insmntque(vp, zfsvfs->z_vfs);
952		vp->v_vflag &= ~VV_FORCEINSMQ;
953		KASSERT(err == 0, ("insmntque() failed: error %d", err));
954		VOP_UNLOCK(vp, 0);
955		err = 0;
956	} else {
957		dmu_buf_rele(db, NULL);
958		err = ENOENT;
959	}
960	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
961	return (err);
962}
963
964int
965zfs_rezget(znode_t *zp)
966{
967	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
968	dmu_object_info_t doi;
969	dmu_buf_t *db;
970	uint64_t obj_num = zp->z_id;
971	int err;
972
973	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
974
975	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
976	if (err) {
977		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
978		return (err);
979	}
980
981	dmu_object_info_from_db(db, &doi);
982	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
983	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
984		dmu_buf_rele(db, NULL);
985		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
986		return (EINVAL);
987	}
988
989	if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) {
990		dmu_buf_rele(db, NULL);
991		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
992		return (EIO);
993	}
994
995	mutex_enter(&zp->z_acl_lock);
996	if (zp->z_acl_cached) {
997		zfs_acl_free(zp->z_acl_cached);
998		zp->z_acl_cached = NULL;
999	}
1000	mutex_exit(&zp->z_acl_lock);
1001
1002	zfs_znode_dmu_init(zfsvfs, zp, db);
1003	zp->z_unlinked = (zp->z_phys->zp_links == 0);
1004	zp->z_blksz = doi.doi_data_block_size;
1005
1006	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1007
1008	return (0);
1009}
1010
1011void
1012zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1013{
1014	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1015	objset_t *os = zfsvfs->z_os;
1016	uint64_t obj = zp->z_id;
1017	uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
1018
1019	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1020	if (acl_obj)
1021		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1022	VERIFY(0 == dmu_object_free(os, obj, tx));
1023	zfs_znode_dmu_fini(zp);
1024	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1025	zfs_znode_free(zp);
1026}
1027
1028void
1029zfs_zinactive(znode_t *zp)
1030{
1031	vnode_t	*vp = ZTOV(zp);
1032	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1033	uint64_t z_id = zp->z_id;
1034	int vfslocked;
1035
1036	ASSERT(zp->z_dbuf && zp->z_phys);
1037
1038	/*
1039	 * Don't allow a zfs_zget() while were trying to release this znode
1040	 */
1041	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1042
1043	mutex_enter(&zp->z_lock);
1044	VI_LOCK(vp);
1045	if (vp->v_count > 0) {
1046		/*
1047		 * If the hold count is greater than zero, somebody has
1048		 * obtained a new reference on this znode while we were
1049		 * processing it here, so we are done.
1050		 */
1051		VI_UNLOCK(vp);
1052		mutex_exit(&zp->z_lock);
1053		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1054		return;
1055	}
1056	VI_UNLOCK(vp);
1057
1058	/*
1059	 * If this was the last reference to a file with no links,
1060	 * remove the file from the file system.
1061	 */
1062	if (zp->z_unlinked) {
1063		mutex_exit(&zp->z_lock);
1064		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1065		ASSERT(vp->v_count == 0);
1066		vrecycle(vp, curthread);
1067		vfslocked = VFS_LOCK_GIANT(zfsvfs->z_vfs);
1068		zfs_rmnode(zp);
1069		VFS_UNLOCK_GIANT(vfslocked);
1070		return;
1071	}
1072	mutex_exit(&zp->z_lock);
1073	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1074}
1075
1076void
1077zfs_znode_free(znode_t *zp)
1078{
1079	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1080
1081	ASSERT(ZTOV(zp) == NULL);
1082	mutex_enter(&zfsvfs->z_znodes_lock);
1083	POINTER_INVALIDATE(&zp->z_zfsvfs);
1084	list_remove(&zfsvfs->z_all_znodes, zp);
1085	mutex_exit(&zfsvfs->z_znodes_lock);
1086
1087	if (zp->z_acl_cached) {
1088		zfs_acl_free(zp->z_acl_cached);
1089		zp->z_acl_cached = NULL;
1090	}
1091
1092	kmem_cache_free(znode_cache, zp);
1093
1094	VFS_RELE(zfsvfs->z_vfs);
1095}
1096
1097void
1098zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1099{
1100	timestruc_t	now;
1101
1102	ASSERT(MUTEX_HELD(&zp->z_lock));
1103
1104	gethrestime(&now);
1105
1106	if (tx) {
1107		dmu_buf_will_dirty(zp->z_dbuf, tx);
1108		zp->z_atime_dirty = 0;
1109		zp->z_seq++;
1110	} else {
1111		zp->z_atime_dirty = 1;
1112	}
1113
1114	if (flag & AT_ATIME)
1115		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
1116
1117	if (flag & AT_MTIME) {
1118		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
1119		if (zp->z_zfsvfs->z_use_fuids)
1120			zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED);
1121	}
1122
1123	if (flag & AT_CTIME) {
1124		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
1125		if (zp->z_zfsvfs->z_use_fuids)
1126			zp->z_phys->zp_flags |= ZFS_ARCHIVE;
1127	}
1128}
1129
1130/*
1131 * Update the requested znode timestamps with the current time.
1132 * If we are in a transaction, then go ahead and mark the znode
1133 * dirty in the transaction so the timestamps will go to disk.
1134 * Otherwise, we will get pushed next time the znode is updated
1135 * in a transaction, or when this znode eventually goes inactive.
1136 *
1137 * Why is this OK?
1138 *  1 - Only the ACCESS time is ever updated outside of a transaction.
1139 *  2 - Multiple consecutive updates will be collapsed into a single
1140 *	znode update by the transaction grouping semantics of the DMU.
1141 */
1142void
1143zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1144{
1145	mutex_enter(&zp->z_lock);
1146	zfs_time_stamper_locked(zp, flag, tx);
1147	mutex_exit(&zp->z_lock);
1148}
1149
1150/*
1151 * Grow the block size for a file.
1152 *
1153 *	IN:	zp	- znode of file to free data in.
1154 *		size	- requested block size
1155 *		tx	- open transaction.
1156 *
1157 * NOTE: this function assumes that the znode is write locked.
1158 */
1159void
1160zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1161{
1162	int		error;
1163	u_longlong_t	dummy;
1164
1165	if (size <= zp->z_blksz)
1166		return;
1167	/*
1168	 * If the file size is already greater than the current blocksize,
1169	 * we will not grow.  If there is more than one block in a file,
1170	 * the blocksize cannot change.
1171	 */
1172	if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
1173		return;
1174
1175	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1176	    size, 0, tx);
1177	if (error == ENOTSUP)
1178		return;
1179	ASSERT3U(error, ==, 0);
1180
1181	/* What blocksize did we actually get? */
1182	dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
1183}
1184
1185/*
1186 * Increase the file length
1187 *
1188 *	IN:	zp	- znode of file to free data in.
1189 *		end	- new end-of-file
1190 *
1191 * 	RETURN:	0 if success
1192 *		error code if failure
1193 */
1194static int
1195zfs_extend(znode_t *zp, uint64_t end)
1196{
1197	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1198	dmu_tx_t *tx;
1199	rl_t *rl;
1200	uint64_t newblksz;
1201	int error;
1202
1203	/*
1204	 * We will change zp_size, lock the whole file.
1205	 */
1206	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1207
1208	/*
1209	 * Nothing to do if file already at desired length.
1210	 */
1211	if (end <= zp->z_phys->zp_size) {
1212		zfs_range_unlock(rl);
1213		return (0);
1214	}
1215top:
1216	tx = dmu_tx_create(zfsvfs->z_os);
1217	dmu_tx_hold_bonus(tx, zp->z_id);
1218	if (end > zp->z_blksz &&
1219	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1220		/*
1221		 * We are growing the file past the current block size.
1222		 */
1223		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1224			ASSERT(!ISP2(zp->z_blksz));
1225			newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1226		} else {
1227			newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1228		}
1229		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1230	} else {
1231		newblksz = 0;
1232	}
1233
1234	error = dmu_tx_assign(tx, TXG_NOWAIT);
1235	if (error) {
1236		if (error == ERESTART) {
1237			dmu_tx_wait(tx);
1238			dmu_tx_abort(tx);
1239			goto top;
1240		}
1241		dmu_tx_abort(tx);
1242		zfs_range_unlock(rl);
1243		return (error);
1244	}
1245	dmu_buf_will_dirty(zp->z_dbuf, tx);
1246
1247	if (newblksz)
1248		zfs_grow_blocksize(zp, newblksz, tx);
1249
1250	zp->z_phys->zp_size = end;
1251
1252	zfs_range_unlock(rl);
1253
1254	dmu_tx_commit(tx);
1255
1256	vnode_pager_setsize(ZTOV(zp), end);
1257
1258	return (0);
1259}
1260
1261/*
1262 * Free space in a file.
1263 *
1264 *	IN:	zp	- znode of file to free data in.
1265 *		off	- start of section to free.
1266 *		len	- length of section to free.
1267 *
1268 * 	RETURN:	0 if success
1269 *		error code if failure
1270 */
1271static int
1272zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1273{
1274	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1275	rl_t *rl;
1276	int error;
1277
1278	/*
1279	 * Lock the range being freed.
1280	 */
1281	rl = zfs_range_lock(zp, off, len, RL_WRITER);
1282
1283	/*
1284	 * Nothing to do if file already at desired length.
1285	 */
1286	if (off >= zp->z_phys->zp_size) {
1287		zfs_range_unlock(rl);
1288		return (0);
1289	}
1290
1291	if (off + len > zp->z_phys->zp_size)
1292		len = zp->z_phys->zp_size - off;
1293
1294	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1295
1296	if (error == 0) {
1297		/*
1298		 * In FreeBSD we cannot free block in the middle of a file,
1299		 * but only at the end of a file.
1300		 */
1301		vnode_pager_setsize(ZTOV(zp), off);
1302	}
1303
1304	zfs_range_unlock(rl);
1305
1306	return (error);
1307}
1308
1309/*
1310 * Truncate a file
1311 *
1312 *	IN:	zp	- znode of file to free data in.
1313 *		end	- new end-of-file.
1314 *
1315 * 	RETURN:	0 if success
1316 *		error code if failure
1317 */
1318static int
1319zfs_trunc(znode_t *zp, uint64_t end)
1320{
1321	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1322	vnode_t *vp = ZTOV(zp);
1323	dmu_tx_t *tx;
1324	rl_t *rl;
1325	int error;
1326
1327	/*
1328	 * We will change zp_size, lock the whole file.
1329	 */
1330	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1331
1332	/*
1333	 * Nothing to do if file already at desired length.
1334	 */
1335	if (end >= zp->z_phys->zp_size) {
1336		zfs_range_unlock(rl);
1337		return (0);
1338	}
1339
1340	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,  -1);
1341	if (error) {
1342		zfs_range_unlock(rl);
1343		return (error);
1344	}
1345top:
1346	tx = dmu_tx_create(zfsvfs->z_os);
1347	dmu_tx_hold_bonus(tx, zp->z_id);
1348	error = dmu_tx_assign(tx, TXG_NOWAIT);
1349	if (error) {
1350		if (error == ERESTART) {
1351			dmu_tx_wait(tx);
1352			dmu_tx_abort(tx);
1353			goto top;
1354		}
1355		dmu_tx_abort(tx);
1356		zfs_range_unlock(rl);
1357		return (error);
1358	}
1359	dmu_buf_will_dirty(zp->z_dbuf, tx);
1360
1361	zp->z_phys->zp_size = end;
1362
1363	dmu_tx_commit(tx);
1364
1365	/*
1366	 * Clear any mapped pages in the truncated region.  This has to
1367	 * happen outside of the transaction to avoid the possibility of
1368	 * a deadlock with someone trying to push a page that we are
1369	 * about to invalidate.
1370	 */
1371	vnode_pager_setsize(vp, end);
1372
1373	zfs_range_unlock(rl);
1374
1375	return (0);
1376}
1377
1378/*
1379 * Free space in a file
1380 *
1381 *	IN:	zp	- znode of file to free data in.
1382 *		off	- start of range
1383 *		len	- end of range (0 => EOF)
1384 *		flag	- current file open mode flags.
1385 *		log	- TRUE if this action should be logged
1386 *
1387 * 	RETURN:	0 if success
1388 *		error code if failure
1389 */
1390int
1391zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1392{
1393	vnode_t *vp = ZTOV(zp);
1394	dmu_tx_t *tx;
1395	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1396	zilog_t *zilog = zfsvfs->z_log;
1397	int error;
1398
1399	if (off > zp->z_phys->zp_size) {
1400		error =  zfs_extend(zp, off+len);
1401		if (error == 0 && log)
1402			goto log;
1403		else
1404			return (error);
1405	}
1406
1407	if (len == 0) {
1408		error = zfs_trunc(zp, off);
1409	} else {
1410		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1411		    off + len > zp->z_phys->zp_size)
1412			error = zfs_extend(zp, off+len);
1413	}
1414	if (error || !log)
1415		return (error);
1416log:
1417	tx = dmu_tx_create(zfsvfs->z_os);
1418	dmu_tx_hold_bonus(tx, zp->z_id);
1419	error = dmu_tx_assign(tx, TXG_NOWAIT);
1420	if (error) {
1421		if (error == ERESTART) {
1422			dmu_tx_wait(tx);
1423			dmu_tx_abort(tx);
1424			goto log;
1425		}
1426		dmu_tx_abort(tx);
1427		return (error);
1428	}
1429
1430	zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1431	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1432
1433	dmu_tx_commit(tx);
1434	return (0);
1435}
1436
1437void
1438zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1439{
1440	zfsvfs_t	zfsvfs;
1441	uint64_t	moid, obj, version;
1442	uint64_t	sense = ZFS_CASE_SENSITIVE;
1443	uint64_t	norm = 0;
1444	nvpair_t	*elem;
1445	int		error;
1446	int		i;
1447	znode_t		*rootzp = NULL;
1448	vnode_t		vnode;
1449	vattr_t		vattr;
1450	znode_t		*zp;
1451	zfs_acl_ids_t	acl_ids;
1452
1453	/*
1454	 * First attempt to create master node.
1455	 */
1456	/*
1457	 * In an empty objset, there are no blocks to read and thus
1458	 * there can be no i/o errors (which we assert below).
1459	 */
1460	moid = MASTER_NODE_OBJ;
1461	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1462	    DMU_OT_NONE, 0, tx);
1463	ASSERT(error == 0);
1464
1465	/*
1466	 * Set starting attributes.
1467	 */
1468	if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_USERSPACE)
1469		version = ZPL_VERSION;
1470	else if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID)
1471		version = ZPL_VERSION_USERSPACE - 1;
1472	else
1473		version = ZPL_VERSION_FUID - 1;
1474	elem = NULL;
1475	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1476		/* For the moment we expect all zpl props to be uint64_ts */
1477		uint64_t val;
1478		char *name;
1479
1480		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1481		VERIFY(nvpair_value_uint64(elem, &val) == 0);
1482		name = nvpair_name(elem);
1483		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1484			if (val < version)
1485				version = val;
1486		} else {
1487			error = zap_update(os, moid, name, 8, 1, &val, tx);
1488		}
1489		ASSERT(error == 0);
1490		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1491			norm = val;
1492		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1493			sense = val;
1494	}
1495	ASSERT(version != 0);
1496	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1497
1498	/*
1499	 * Create a delete queue.
1500	 */
1501	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1502
1503	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1504	ASSERT(error == 0);
1505
1506	/*
1507	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1508	 * to allow zfs_mknode to work.
1509	 */
1510	VATTR_NULL(&vattr);
1511	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1512	vattr.va_type = VDIR;
1513	vattr.va_mode = S_IFDIR|0755;
1514	vattr.va_uid = crgetuid(cr);
1515	vattr.va_gid = crgetgid(cr);
1516
1517	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1518	zfs_znode_cache_constructor(rootzp, NULL, 0);
1519	rootzp->z_unlinked = 0;
1520	rootzp->z_atime_dirty = 0;
1521
1522	vnode.v_type = VDIR;
1523	vnode.v_data = rootzp;
1524	rootzp->z_vnode = &vnode;
1525
1526	bzero(&zfsvfs, sizeof (zfsvfs_t));
1527
1528	zfsvfs.z_os = os;
1529	zfsvfs.z_parent = &zfsvfs;
1530	zfsvfs.z_version = version;
1531	zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1532	zfsvfs.z_norm = norm;
1533	/*
1534	 * Fold case on file systems that are always or sometimes case
1535	 * insensitive.
1536	 */
1537	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1538		zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1539
1540	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1541	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1542	    offsetof(znode_t, z_link_node));
1543
1544	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1545		mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1546
1547	ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1548	rootzp->z_zfsvfs = &zfsvfs;
1549	VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1550	    cr, NULL, &acl_ids));
1551	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids);
1552	ASSERT3P(zp, ==, rootzp);
1553	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1554	ASSERT(error == 0);
1555	zfs_acl_ids_free(&acl_ids);
1556	POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1557
1558	dmu_buf_rele(rootzp->z_dbuf, NULL);
1559	rootzp->z_dbuf = NULL;
1560	rootzp->z_vnode = NULL;
1561	kmem_cache_free(znode_cache, rootzp);
1562
1563	/*
1564	 * Create shares directory
1565	 */
1566
1567	error = zfs_create_share_dir(&zfsvfs, tx);
1568
1569	ASSERT(error == 0);
1570
1571	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1572		mutex_destroy(&zfsvfs.z_hold_mtx[i]);
1573}
1574
1575#endif /* _KERNEL */
1576/*
1577 * Given an object number, return its parent object number and whether
1578 * or not the object is an extended attribute directory.
1579 */
1580static int
1581zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir)
1582{
1583	dmu_buf_t *db;
1584	dmu_object_info_t doi;
1585	znode_phys_t *zp;
1586	int error;
1587
1588	if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0)
1589		return (error);
1590
1591	dmu_object_info_from_db(db, &doi);
1592	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
1593	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
1594		dmu_buf_rele(db, FTAG);
1595		return (EINVAL);
1596	}
1597
1598	zp = db->db_data;
1599	*pobjp = zp->zp_parent;
1600	*is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) &&
1601	    S_ISDIR(zp->zp_mode);
1602	dmu_buf_rele(db, FTAG);
1603
1604	return (0);
1605}
1606
1607int
1608zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
1609{
1610	char *path = buf + len - 1;
1611	int error;
1612
1613	*path = '\0';
1614
1615	for (;;) {
1616		uint64_t pobj;
1617		char component[MAXNAMELEN + 2];
1618		size_t complen;
1619		int is_xattrdir;
1620
1621		if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
1622		    &is_xattrdir)) != 0)
1623			break;
1624
1625		if (pobj == obj) {
1626			if (path[0] != '/')
1627				*--path = '/';
1628			break;
1629		}
1630
1631		component[0] = '/';
1632		if (is_xattrdir) {
1633			(void) sprintf(component + 1, "<xattrdir>");
1634		} else {
1635			error = zap_value_search(osp, pobj, obj,
1636			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
1637			if (error != 0)
1638				break;
1639		}
1640
1641		complen = strlen(component);
1642		path -= complen;
1643		ASSERT(path >= buf);
1644		bcopy(component, path, complen);
1645		obj = pobj;
1646	}
1647
1648	if (error == 0)
1649		(void) memmove(buf, path, buf + len - path);
1650	return (error);
1651}
1652