zfs_dir.c revision 208131
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/types.h>
27#include <sys/param.h>
28#include <sys/time.h>
29#include <sys/systm.h>
30#include <sys/sysmacros.h>
31#include <sys/resource.h>
32#include <sys/vfs.h>
33#include <sys/vnode.h>
34#include <sys/file.h>
35#include <sys/kmem.h>
36#include <sys/uio.h>
37#include <sys/cmn_err.h>
38#include <sys/errno.h>
39#include <sys/stat.h>
40#include <sys/unistd.h>
41#include <sys/sunddi.h>
42#include <sys/random.h>
43#include <sys/policy.h>
44#include <sys/kcondvar.h>
45#include <sys/callb.h>
46#include <sys/smp.h>
47#include <sys/zfs_dir.h>
48#include <sys/zfs_acl.h>
49#include <sys/fs/zfs.h>
50#include <sys/zap.h>
51#include <sys/dmu.h>
52#include <sys/atomic.h>
53#include <sys/zfs_ctldir.h>
54#include <sys/zfs_fuid.h>
55#include <sys/dnlc.h>
56#include <sys/extdirent.h>
57
58/*
59 * zfs_match_find() is used by zfs_dirent_lock() to peform zap lookups
60 * of names after deciding which is the appropriate lookup interface.
61 */
62static int
63zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, char *name, boolean_t exact,
64    boolean_t update, int *deflags, pathname_t *rpnp, uint64_t *zoid)
65{
66	int error;
67
68	if (zfsvfs->z_norm) {
69		matchtype_t mt = MT_FIRST;
70		boolean_t conflict = B_FALSE;
71		size_t bufsz = 0;
72		char *buf = NULL;
73
74		if (rpnp) {
75			buf = rpnp->pn_buf;
76			bufsz = rpnp->pn_bufsize;
77		}
78		if (exact)
79			mt = MT_EXACT;
80		/*
81		 * In the non-mixed case we only expect there would ever
82		 * be one match, but we need to use the normalizing lookup.
83		 */
84		error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1,
85		    zoid, mt, buf, bufsz, &conflict);
86		if (!error && deflags)
87			*deflags = conflict ? ED_CASE_CONFLICT : 0;
88	} else {
89		error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid);
90	}
91	*zoid = ZFS_DIRENT_OBJ(*zoid);
92
93	if (error == ENOENT && update)
94		dnlc_update(ZTOV(dzp), name, DNLC_NO_VNODE);
95
96	return (error);
97}
98
99/*
100 * Lock a directory entry.  A dirlock on <dzp, name> protects that name
101 * in dzp's directory zap object.  As long as you hold a dirlock, you can
102 * assume two things: (1) dzp cannot be reaped, and (2) no other thread
103 * can change the zap entry for (i.e. link or unlink) this name.
104 *
105 * Input arguments:
106 *	dzp	- znode for directory
107 *	name	- name of entry to lock
108 *	flag	- ZNEW: if the entry already exists, fail with EEXIST.
109 *		  ZEXISTS: if the entry does not exist, fail with ENOENT.
110 *		  ZSHARED: allow concurrent access with other ZSHARED callers.
111 *		  ZXATTR: we want dzp's xattr directory
112 *		  ZCILOOK: On a mixed sensitivity file system,
113 *			   this lookup should be case-insensitive.
114 *		  ZCIEXACT: On a purely case-insensitive file system,
115 *			    this lookup should be case-sensitive.
116 *		  ZRENAMING: we are locking for renaming, force narrow locks
117 *		  ZHAVELOCK: Don't grab the z_name_lock for this call. The
118 *			     current thread already holds it.
119 *
120 * Output arguments:
121 *	zpp	- pointer to the znode for the entry (NULL if there isn't one)
122 *	dlpp	- pointer to the dirlock for this entry (NULL on error)
123 *      direntflags - (case-insensitive lookup only)
124 *		flags if multiple case-sensitive matches exist in directory
125 *      realpnp     - (case-insensitive lookup only)
126 *		actual name matched within the directory
127 *
128 * Return value: 0 on success or errno on failure.
129 *
130 * NOTE: Always checks for, and rejects, '.' and '..'.
131 * NOTE: For case-insensitive file systems we take wide locks (see below),
132 *	 but return znode pointers to a single match.
133 */
134int
135zfs_dirent_lock(zfs_dirlock_t **dlpp, znode_t *dzp, char *name, znode_t **zpp,
136    int flag, int *direntflags, pathname_t *realpnp)
137{
138	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
139	zfs_dirlock_t	*dl;
140	boolean_t	update;
141	boolean_t	exact;
142	uint64_t	zoid;
143	vnode_t		*vp = NULL;
144	int		error = 0;
145	int		cmpflags;
146
147	*zpp = NULL;
148	*dlpp = NULL;
149
150	/*
151	 * Verify that we are not trying to lock '.', '..', or '.zfs'
152	 */
153	if (name[0] == '.' &&
154	    (name[1] == '\0' || (name[1] == '.' && name[2] == '\0')) ||
155	    zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0)
156		return (EEXIST);
157
158	/*
159	 * Case sensitivity and normalization preferences are set when
160	 * the file system is created.  These are stored in the
161	 * zfsvfs->z_case and zfsvfs->z_norm fields.  These choices
162	 * affect what vnodes can be cached in the DNLC, how we
163	 * perform zap lookups, and the "width" of our dirlocks.
164	 *
165	 * A normal dirlock locks a single name.  Note that with
166	 * normalization a name can be composed multiple ways, but
167	 * when normalized, these names all compare equal.  A wide
168	 * dirlock locks multiple names.  We need these when the file
169	 * system is supporting mixed-mode access.  It is sometimes
170	 * necessary to lock all case permutations of file name at
171	 * once so that simultaneous case-insensitive/case-sensitive
172	 * behaves as rationally as possible.
173	 */
174
175	/*
176	 * Decide if exact matches should be requested when performing
177	 * a zap lookup on file systems supporting case-insensitive
178	 * access.
179	 */
180	exact =
181	    ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE) && (flag & ZCIEXACT)) ||
182	    ((zfsvfs->z_case == ZFS_CASE_MIXED) && !(flag & ZCILOOK));
183
184	/*
185	 * Only look in or update the DNLC if we are looking for the
186	 * name on a file system that does not require normalization
187	 * or case folding.  We can also look there if we happen to be
188	 * on a non-normalizing, mixed sensitivity file system IF we
189	 * are looking for the exact name.
190	 *
191	 * Maybe can add TO-UPPERed version of name to dnlc in ci-only
192	 * case for performance improvement?
193	 */
194	update = !zfsvfs->z_norm ||
195	    ((zfsvfs->z_case == ZFS_CASE_MIXED) &&
196	    !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER) && !(flag & ZCILOOK));
197
198	/*
199	 * ZRENAMING indicates we are in a situation where we should
200	 * take narrow locks regardless of the file system's
201	 * preferences for normalizing and case folding.  This will
202	 * prevent us deadlocking trying to grab the same wide lock
203	 * twice if the two names happen to be case-insensitive
204	 * matches.
205	 */
206	if (flag & ZRENAMING)
207		cmpflags = 0;
208	else
209		cmpflags = zfsvfs->z_norm;
210
211	/*
212	 * Wait until there are no locks on this name.
213	 *
214	 * Don't grab the the lock if it is already held. However, cannot
215	 * have both ZSHARED and ZHAVELOCK together.
216	 */
217	ASSERT(!(flag & ZSHARED) || !(flag & ZHAVELOCK));
218	if (!(flag & ZHAVELOCK))
219		rw_enter(&dzp->z_name_lock, RW_READER);
220
221	mutex_enter(&dzp->z_lock);
222	for (;;) {
223		if (dzp->z_unlinked) {
224			mutex_exit(&dzp->z_lock);
225			if (!(flag & ZHAVELOCK))
226				rw_exit(&dzp->z_name_lock);
227			return (ENOENT);
228		}
229		for (dl = dzp->z_dirlocks; dl != NULL; dl = dl->dl_next) {
230			if ((u8_strcmp(name, dl->dl_name, 0, cmpflags,
231			    U8_UNICODE_LATEST, &error) == 0) || error != 0)
232				break;
233		}
234		if (error != 0) {
235			mutex_exit(&dzp->z_lock);
236			if (!(flag & ZHAVELOCK))
237				rw_exit(&dzp->z_name_lock);
238			return (ENOENT);
239		}
240		if (dl == NULL)	{
241			/*
242			 * Allocate a new dirlock and add it to the list.
243			 */
244			dl = kmem_alloc(sizeof (zfs_dirlock_t), KM_SLEEP);
245			cv_init(&dl->dl_cv, NULL, CV_DEFAULT, NULL);
246			dl->dl_name = name;
247			dl->dl_sharecnt = 0;
248			dl->dl_namelock = 0;
249			dl->dl_namesize = 0;
250			dl->dl_dzp = dzp;
251			dl->dl_next = dzp->z_dirlocks;
252			dzp->z_dirlocks = dl;
253			break;
254		}
255		if ((flag & ZSHARED) && dl->dl_sharecnt != 0)
256			break;
257		cv_wait(&dl->dl_cv, &dzp->z_lock);
258	}
259
260	/*
261	 * If the z_name_lock was NOT held for this dirlock record it.
262	 */
263	if (flag & ZHAVELOCK)
264		dl->dl_namelock = 1;
265
266	if ((flag & ZSHARED) && ++dl->dl_sharecnt > 1 && dl->dl_namesize == 0) {
267		/*
268		 * We're the second shared reference to dl.  Make a copy of
269		 * dl_name in case the first thread goes away before we do.
270		 * Note that we initialize the new name before storing its
271		 * pointer into dl_name, because the first thread may load
272		 * dl->dl_name at any time.  He'll either see the old value,
273		 * which is his, or the new shared copy; either is OK.
274		 */
275		dl->dl_namesize = strlen(dl->dl_name) + 1;
276		name = kmem_alloc(dl->dl_namesize, KM_SLEEP);
277		bcopy(dl->dl_name, name, dl->dl_namesize);
278		dl->dl_name = name;
279	}
280
281	mutex_exit(&dzp->z_lock);
282
283	/*
284	 * We have a dirlock on the name.  (Note that it is the dirlock,
285	 * not the dzp's z_lock, that protects the name in the zap object.)
286	 * See if there's an object by this name; if so, put a hold on it.
287	 */
288	if (flag & ZXATTR) {
289		zoid = dzp->z_phys->zp_xattr;
290		error = (zoid == 0 ? ENOENT : 0);
291	} else {
292		if (update)
293			vp = dnlc_lookup(ZTOV(dzp), name);
294		if (vp == DNLC_NO_VNODE) {
295			VN_RELE(vp);
296			error = ENOENT;
297		} else if (vp) {
298			if (flag & ZNEW) {
299				zfs_dirent_unlock(dl);
300				VN_RELE(vp);
301				return (EEXIST);
302			}
303			*dlpp = dl;
304			*zpp = VTOZ(vp);
305			return (0);
306		} else {
307			error = zfs_match_find(zfsvfs, dzp, name, exact,
308			    update, direntflags, realpnp, &zoid);
309		}
310	}
311	if (error) {
312		if (error != ENOENT || (flag & ZEXISTS)) {
313			zfs_dirent_unlock(dl);
314			return (error);
315		}
316	} else {
317		if (flag & ZNEW) {
318			zfs_dirent_unlock(dl);
319			return (EEXIST);
320		}
321		error = zfs_zget(zfsvfs, zoid, zpp);
322		if (error) {
323			zfs_dirent_unlock(dl);
324			return (error);
325		}
326		if (!(flag & ZXATTR) && update)
327			dnlc_update(ZTOV(dzp), name, ZTOV(*zpp));
328	}
329
330	*dlpp = dl;
331
332	return (0);
333}
334
335/*
336 * Unlock this directory entry and wake anyone who was waiting for it.
337 */
338void
339zfs_dirent_unlock(zfs_dirlock_t *dl)
340{
341	znode_t *dzp = dl->dl_dzp;
342	zfs_dirlock_t **prev_dl, *cur_dl;
343
344	mutex_enter(&dzp->z_lock);
345
346	if (!dl->dl_namelock)
347		rw_exit(&dzp->z_name_lock);
348
349	if (dl->dl_sharecnt > 1) {
350		dl->dl_sharecnt--;
351		mutex_exit(&dzp->z_lock);
352		return;
353	}
354	prev_dl = &dzp->z_dirlocks;
355	while ((cur_dl = *prev_dl) != dl)
356		prev_dl = &cur_dl->dl_next;
357	*prev_dl = dl->dl_next;
358	cv_broadcast(&dl->dl_cv);
359	mutex_exit(&dzp->z_lock);
360
361	if (dl->dl_namesize != 0)
362		kmem_free(dl->dl_name, dl->dl_namesize);
363	cv_destroy(&dl->dl_cv);
364	kmem_free(dl, sizeof (*dl));
365}
366
367/*
368 * Look up an entry in a directory.
369 *
370 * NOTE: '.' and '..' are handled as special cases because
371 *	no directory entries are actually stored for them.  If this is
372 *	the root of a filesystem, then '.zfs' is also treated as a
373 *	special pseudo-directory.
374 */
375int
376zfs_dirlook(znode_t *dzp, char *name, vnode_t **vpp, int flags,
377    int *deflg, pathname_t *rpnp)
378{
379	zfs_dirlock_t *dl;
380	znode_t *zp;
381	int error = 0;
382
383	if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) {
384		*vpp = ZTOV(dzp);
385		VN_HOLD(*vpp);
386	} else if (name[0] == '.' && name[1] == '.' && name[2] == 0) {
387		zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
388		/*
389		 * If we are a snapshot mounted under .zfs, return
390		 * the vp for the snapshot directory.
391		 */
392		if (dzp->z_phys->zp_parent == dzp->z_id &&
393		    zfsvfs->z_parent != zfsvfs) {
394			error = zfsctl_root_lookup(zfsvfs->z_parent->z_ctldir,
395			    "snapshot", vpp, NULL, 0, NULL, kcred,
396			    NULL, NULL, NULL);
397			return (error);
398		}
399		rw_enter(&dzp->z_parent_lock, RW_READER);
400		error = zfs_zget(zfsvfs, dzp->z_phys->zp_parent, &zp);
401		if (error == 0)
402			*vpp = ZTOV(zp);
403		rw_exit(&dzp->z_parent_lock);
404	} else if (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) {
405		*vpp = zfsctl_root(dzp);
406	} else {
407		int zf;
408
409		zf = ZEXISTS | ZSHARED;
410		if (flags & FIGNORECASE)
411			zf |= ZCILOOK;
412
413		error = zfs_dirent_lock(&dl, dzp, name, &zp, zf, deflg, rpnp);
414		if (error == 0) {
415			*vpp = ZTOV(zp);
416			zfs_dirent_unlock(dl);
417			dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */
418		}
419		rpnp = NULL;
420	}
421
422	if ((flags & FIGNORECASE) && rpnp && !error)
423		(void) strlcpy(rpnp->pn_buf, name, rpnp->pn_bufsize);
424
425	return (error);
426}
427
428/*
429 * unlinked Set (formerly known as the "delete queue") Error Handling
430 *
431 * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we
432 * don't specify the name of the entry that we will be manipulating.  We
433 * also fib and say that we won't be adding any new entries to the
434 * unlinked set, even though we might (this is to lower the minimum file
435 * size that can be deleted in a full filesystem).  So on the small
436 * chance that the nlink list is using a fat zap (ie. has more than
437 * 2000 entries), we *may* not pre-read a block that's needed.
438 * Therefore it is remotely possible for some of the assertions
439 * regarding the unlinked set below to fail due to i/o error.  On a
440 * nondebug system, this will result in the space being leaked.
441 */
442void
443zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx)
444{
445	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
446
447	ASSERT(zp->z_unlinked);
448	ASSERT3U(zp->z_phys->zp_links, ==, 0);
449
450	VERIFY3U(0, ==,
451	    zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
452}
453
454/*
455 * Clean up any znodes that had no links when we either crashed or
456 * (force) umounted the file system.
457 */
458void
459zfs_unlinked_drain(zfsvfs_t *zfsvfs)
460{
461	zap_cursor_t	zc;
462	zap_attribute_t zap;
463	dmu_object_info_t doi;
464	znode_t		*zp;
465	int		error;
466
467	/*
468	 * Interate over the contents of the unlinked set.
469	 */
470	for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj);
471	    zap_cursor_retrieve(&zc, &zap) == 0;
472	    zap_cursor_advance(&zc)) {
473
474		/*
475		 * See what kind of object we have in list
476		 */
477
478		error = dmu_object_info(zfsvfs->z_os,
479		    zap.za_first_integer, &doi);
480		if (error != 0)
481			continue;
482
483		ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) ||
484		    (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS));
485		/*
486		 * We need to re-mark these list entries for deletion,
487		 * so we pull them back into core and set zp->z_unlinked.
488		 */
489		error = zfs_zget(zfsvfs, zap.za_first_integer, &zp);
490
491		/*
492		 * We may pick up znodes that are already marked for deletion.
493		 * This could happen during the purge of an extended attribute
494		 * directory.  All we need to do is skip over them, since they
495		 * are already in the system marked z_unlinked.
496		 */
497		if (error != 0)
498			continue;
499
500		zp->z_unlinked = B_TRUE;
501		VN_RELE(ZTOV(zp));
502	}
503	zap_cursor_fini(&zc);
504}
505
506/*
507 * Delete the entire contents of a directory.  Return a count
508 * of the number of entries that could not be deleted. If we encounter
509 * an error, return a count of at least one so that the directory stays
510 * in the unlinked set.
511 *
512 * NOTE: this function assumes that the directory is inactive,
513 *	so there is no need to lock its entries before deletion.
514 *	Also, it assumes the directory contents is *only* regular
515 *	files.
516 */
517static int
518zfs_purgedir(znode_t *dzp)
519{
520	zap_cursor_t	zc;
521	zap_attribute_t	zap;
522	znode_t		*xzp;
523	dmu_tx_t	*tx;
524	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
525	zfs_dirlock_t	dl;
526	int skipped = 0;
527	int error;
528
529	for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
530	    (error = zap_cursor_retrieve(&zc, &zap)) == 0;
531	    zap_cursor_advance(&zc)) {
532		error = zfs_zget(zfsvfs,
533		    ZFS_DIRENT_OBJ(zap.za_first_integer), &xzp);
534		if (error) {
535			skipped += 1;
536			continue;
537		}
538
539		ASSERT((ZTOV(xzp)->v_type == VREG) ||
540		    (ZTOV(xzp)->v_type == VLNK));
541
542		tx = dmu_tx_create(zfsvfs->z_os);
543		dmu_tx_hold_bonus(tx, dzp->z_id);
544		dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name);
545		dmu_tx_hold_bonus(tx, xzp->z_id);
546		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
547		error = dmu_tx_assign(tx, TXG_WAIT);
548		if (error) {
549			dmu_tx_abort(tx);
550			VN_RELE(ZTOV(xzp));
551			skipped += 1;
552			continue;
553		}
554		bzero(&dl, sizeof (dl));
555		dl.dl_dzp = dzp;
556		dl.dl_name = zap.za_name;
557
558		error = zfs_link_destroy(&dl, xzp, tx, 0, NULL);
559		if (error)
560			skipped += 1;
561		dmu_tx_commit(tx);
562
563		VN_RELE(ZTOV(xzp));
564	}
565	zap_cursor_fini(&zc);
566	if (error != ENOENT)
567		skipped += 1;
568	return (skipped);
569}
570
571void
572zfs_rmnode(znode_t *zp)
573{
574	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
575	objset_t	*os = zfsvfs->z_os;
576	znode_t		*xzp = NULL;
577	dmu_tx_t	*tx;
578	uint64_t	acl_obj;
579	int		error;
580
581	ASSERT(zp->z_phys->zp_links == 0);
582
583	/*
584	 * If this is a ZIL replay then leave the object in the unlinked set.
585	 * Otherwise we can get a deadlock, because the delete can be
586	 * quite large and span multiple tx's and txgs, but each replay
587	 * creates a tx to atomically run the replay function and mark the
588	 * replay record as complete. We deadlock trying to start a tx in
589	 * a new txg to further the deletion but can't because the replay
590	 * tx hasn't finished.
591	 *
592	 * We actually delete the object if we get a failure to create an
593	 * object in zil_replay_log_record(), or after calling zil_replay().
594	 */
595	if (zfsvfs->z_assign >= TXG_INITIAL) {
596		zfs_znode_dmu_fini(zp);
597		zfs_znode_free(zp);
598		return;
599	}
600
601	/*
602	 * If this is an attribute directory, purge its contents.
603	 */
604	if (ZTOV(zp) != NULL && ZTOV(zp)->v_type == VDIR &&
605	    (zp->z_phys->zp_flags & ZFS_XATTR)) {
606		if (zfs_purgedir(zp) != 0) {
607			/*
608			 * Not enough space to delete some xattrs.
609			 * Leave it in the unlinked set.
610			 */
611			zfs_znode_dmu_fini(zp);
612			zfs_znode_free(zp);
613			return;
614		}
615	}
616
617	/*
618	 * Free up all the data in the file.
619	 */
620	error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END);
621	if (error) {
622		/*
623		 * Not enough space.  Leave the file in the unlinked set.
624		 */
625		zfs_znode_dmu_fini(zp);
626		zfs_znode_free(zp);
627		return;
628	}
629
630	/*
631	 * If the file has extended attributes, we're going to unlink
632	 * the xattr dir.
633	 */
634	if (zp->z_phys->zp_xattr) {
635		error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
636		ASSERT(error == 0);
637	}
638
639	acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
640
641	/*
642	 * Set up the final transaction.
643	 */
644	tx = dmu_tx_create(os);
645	dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
646	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
647	if (xzp) {
648		dmu_tx_hold_bonus(tx, xzp->z_id);
649		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL);
650	}
651	if (acl_obj)
652		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
653	error = dmu_tx_assign(tx, TXG_WAIT);
654	if (error) {
655		/*
656		 * Not enough space to delete the file.  Leave it in the
657		 * unlinked set, leaking it until the fs is remounted (at
658		 * which point we'll call zfs_unlinked_drain() to process it).
659		 */
660		dmu_tx_abort(tx);
661		zfs_znode_dmu_fini(zp);
662		zfs_znode_free(zp);
663		goto out;
664	}
665
666	if (xzp) {
667		dmu_buf_will_dirty(xzp->z_dbuf, tx);
668		mutex_enter(&xzp->z_lock);
669		xzp->z_unlinked = B_TRUE;	/* mark xzp for deletion */
670		xzp->z_phys->zp_links = 0;	/* no more links to it */
671		mutex_exit(&xzp->z_lock);
672		zfs_unlinked_add(xzp, tx);
673	}
674
675	/* Remove this znode from the unlinked set */
676	VERIFY3U(0, ==,
677	    zap_remove_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
678
679	zfs_znode_delete(zp, tx);
680
681	dmu_tx_commit(tx);
682out:
683	if (xzp)
684		VN_RELE(ZTOV(xzp));
685}
686
687static uint64_t
688zfs_dirent(znode_t *zp)
689{
690	uint64_t de = zp->z_id;
691	if (zp->z_zfsvfs->z_version >= ZPL_VERSION_DIRENT_TYPE)
692		de |= IFTODT((zp)->z_phys->zp_mode) << 60;
693	return (de);
694}
695
696/*
697 * Link zp into dl.  Can only fail if zp has been unlinked.
698 */
699int
700zfs_link_create(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag)
701{
702	znode_t *dzp = dl->dl_dzp;
703	vnode_t *vp = ZTOV(zp);
704	uint64_t value;
705	int zp_is_dir = (vp->v_type == VDIR);
706	int error;
707
708	dmu_buf_will_dirty(zp->z_dbuf, tx);
709	mutex_enter(&zp->z_lock);
710
711	if (!(flag & ZRENAMING)) {
712		if (zp->z_unlinked) {	/* no new links to unlinked zp */
713			ASSERT(!(flag & (ZNEW | ZEXISTS)));
714			mutex_exit(&zp->z_lock);
715			return (ENOENT);
716		}
717		zp->z_phys->zp_links++;
718	}
719	zp->z_phys->zp_parent = dzp->z_id;	/* dzp is now zp's parent */
720
721	if (!(flag & ZNEW))
722		zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
723	mutex_exit(&zp->z_lock);
724
725	dmu_buf_will_dirty(dzp->z_dbuf, tx);
726	mutex_enter(&dzp->z_lock);
727	dzp->z_phys->zp_size++;			/* one dirent added */
728	dzp->z_phys->zp_links += zp_is_dir;	/* ".." link from zp */
729	zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx);
730	mutex_exit(&dzp->z_lock);
731
732	value = zfs_dirent(zp);
733	error = zap_add(zp->z_zfsvfs->z_os, dzp->z_id, dl->dl_name,
734	    8, 1, &value, tx);
735	ASSERT(error == 0);
736
737	dnlc_update(ZTOV(dzp), dl->dl_name, vp);
738
739	return (0);
740}
741
742/*
743 * Unlink zp from dl, and mark zp for deletion if this was the last link.
744 * Can fail if zp is a mount point (EBUSY) or a non-empty directory (EEXIST).
745 * If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list.
746 * If it's non-NULL, we use it to indicate whether the znode needs deletion,
747 * and it's the caller's job to do it.
748 */
749int
750zfs_link_destroy(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag,
751	boolean_t *unlinkedp)
752{
753	znode_t *dzp = dl->dl_dzp;
754	vnode_t *vp = ZTOV(zp);
755	int zp_is_dir = (vp->v_type == VDIR);
756	boolean_t unlinked = B_FALSE;
757	int error;
758
759	dnlc_remove(ZTOV(dzp), dl->dl_name);
760
761	if (!(flag & ZRENAMING)) {
762		dmu_buf_will_dirty(zp->z_dbuf, tx);
763
764		if (vn_vfswlock(vp))		/* prevent new mounts on zp */
765			return (EBUSY);
766
767		if (vn_ismntpt(vp)) {		/* don't remove mount point */
768			vn_vfsunlock(vp);
769			return (EBUSY);
770		}
771
772		mutex_enter(&zp->z_lock);
773		if (zp_is_dir && !zfs_dirempty(zp)) {	/* dir not empty */
774			mutex_exit(&zp->z_lock);
775			vn_vfsunlock(vp);
776			return (ENOTEMPTY);
777		}
778		if (zp->z_phys->zp_links <= zp_is_dir) {
779			zfs_panic_recover("zfs: link count on vnode %p is %u, "
780			    "should be at least %u", zp->z_vnode,
781			    (int)zp->z_phys->zp_links,
782			    zp_is_dir + 1);
783			zp->z_phys->zp_links = zp_is_dir + 1;
784		}
785		if (--zp->z_phys->zp_links == zp_is_dir) {
786			zp->z_unlinked = B_TRUE;
787			zp->z_phys->zp_links = 0;
788			unlinked = B_TRUE;
789		} else {
790			zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
791		}
792		mutex_exit(&zp->z_lock);
793		vn_vfsunlock(vp);
794	}
795
796	dmu_buf_will_dirty(dzp->z_dbuf, tx);
797	mutex_enter(&dzp->z_lock);
798	dzp->z_phys->zp_size--;			/* one dirent removed */
799	dzp->z_phys->zp_links -= zp_is_dir;	/* ".." link from zp */
800	zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx);
801	mutex_exit(&dzp->z_lock);
802
803	if (zp->z_zfsvfs->z_norm) {
804		if (((zp->z_zfsvfs->z_case == ZFS_CASE_INSENSITIVE) &&
805		    (flag & ZCIEXACT)) ||
806		    ((zp->z_zfsvfs->z_case == ZFS_CASE_MIXED) &&
807		    !(flag & ZCILOOK)))
808			error = zap_remove_norm(zp->z_zfsvfs->z_os,
809			    dzp->z_id, dl->dl_name, MT_EXACT, tx);
810		else
811			error = zap_remove_norm(zp->z_zfsvfs->z_os,
812			    dzp->z_id, dl->dl_name, MT_FIRST, tx);
813	} else {
814		error = zap_remove(zp->z_zfsvfs->z_os,
815		    dzp->z_id, dl->dl_name, tx);
816	}
817	ASSERT(error == 0);
818
819	if (unlinkedp != NULL)
820		*unlinkedp = unlinked;
821	else if (unlinked)
822		zfs_unlinked_add(zp, tx);
823
824	return (0);
825}
826
827/*
828 * Indicate whether the directory is empty.  Works with or without z_lock
829 * held, but can only be consider a hint in the latter case.  Returns true
830 * if only "." and ".." remain and there's no work in progress.
831 */
832boolean_t
833zfs_dirempty(znode_t *dzp)
834{
835	return (dzp->z_phys->zp_size == 2 && dzp->z_dirlocks == 0);
836}
837
838int
839zfs_make_xattrdir(znode_t *zp, vattr_t *vap, vnode_t **xvpp, cred_t *cr)
840{
841	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
842	znode_t *xzp;
843	dmu_tx_t *tx;
844	int error;
845	zfs_fuid_info_t *fuidp = NULL;
846
847	*xvpp = NULL;
848
849	/*
850	 * In FreeBSD, access checking for creating an EA is being done
851	 * in zfs_setextattr(),
852	 */
853#ifndef __FreeBSD__
854	if (error = zfs_zaccess(zp, ACE_WRITE_NAMED_ATTRS, 0, B_FALSE, cr))
855		return (error);
856#endif
857
858	tx = dmu_tx_create(zfsvfs->z_os);
859	dmu_tx_hold_bonus(tx, zp->z_id);
860	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
861	if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) {
862		if (zfsvfs->z_fuid_obj == 0) {
863			dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
864			dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
865			    FUID_SIZE_ESTIMATE(zfsvfs));
866			dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
867		} else {
868			dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
869			dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
870			    FUID_SIZE_ESTIMATE(zfsvfs));
871		}
872	}
873	error = dmu_tx_assign(tx, zfsvfs->z_assign);
874	if (error) {
875		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT)
876			dmu_tx_wait(tx);
877		dmu_tx_abort(tx);
878		return (error);
879	}
880	zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, 0, NULL, &fuidp);
881	ASSERT(xzp->z_phys->zp_parent == zp->z_id);
882	dmu_buf_will_dirty(zp->z_dbuf, tx);
883	zp->z_phys->zp_xattr = xzp->z_id;
884
885	(void) zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp,
886	    xzp, "", NULL, fuidp, vap);
887	if (fuidp)
888		zfs_fuid_info_free(fuidp);
889	dmu_tx_commit(tx);
890
891	*xvpp = ZTOV(xzp);
892
893	return (0);
894}
895
896/*
897 * Return a znode for the extended attribute directory for zp.
898 * ** If the directory does not already exist, it is created **
899 *
900 *	IN:	zp	- znode to obtain attribute directory from
901 *		cr	- credentials of caller
902 *		flags	- flags from the VOP_LOOKUP call
903 *
904 *	OUT:	xzpp	- pointer to extended attribute znode
905 *
906 *	RETURN:	0 on success
907 *		error number on failure
908 */
909int
910zfs_get_xattrdir(znode_t *zp, vnode_t **xvpp, cred_t *cr, int flags)
911{
912	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
913	znode_t		*xzp;
914	zfs_dirlock_t	*dl;
915	vattr_t		va;
916	int		error;
917top:
918	error = zfs_dirent_lock(&dl, zp, "", &xzp, ZXATTR, NULL, NULL);
919	if (error)
920		return (error);
921
922	if (xzp != NULL) {
923		*xvpp = ZTOV(xzp);
924		zfs_dirent_unlock(dl);
925		return (0);
926	}
927
928	ASSERT(zp->z_phys->zp_xattr == 0);
929
930	if (!(flags & CREATE_XATTR_DIR)) {
931		zfs_dirent_unlock(dl);
932#ifdef __FreeBSD__
933		return (ENOATTR);
934#else
935		return (ENOENT);
936#endif
937	}
938
939	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
940		zfs_dirent_unlock(dl);
941		return (EROFS);
942	}
943
944	/*
945	 * The ability to 'create' files in an attribute
946	 * directory comes from the write_xattr permission on the base file.
947	 *
948	 * The ability to 'search' an attribute directory requires
949	 * read_xattr permission on the base file.
950	 *
951	 * Once in a directory the ability to read/write attributes
952	 * is controlled by the permissions on the attribute file.
953	 */
954	va.va_mask = AT_TYPE | AT_MODE | AT_UID | AT_GID;
955	va.va_type = VDIR;
956	va.va_mode = S_IFDIR | S_ISVTX | 0777;
957	zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid);
958
959	error = zfs_make_xattrdir(zp, &va, xvpp, cr);
960	zfs_dirent_unlock(dl);
961
962	if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
963		/* NB: we already did dmu_tx_wait() if necessary */
964		goto top;
965	}
966	if (error == 0)
967		VOP_UNLOCK(*xvpp, 0);
968
969	return (error);
970}
971
972/*
973 * Decide whether it is okay to remove within a sticky directory.
974 *
975 * In sticky directories, write access is not sufficient;
976 * you can remove entries from a directory only if:
977 *
978 *	you own the directory,
979 *	you own the entry,
980 *	the entry is a plain file and you have write access,
981 *	or you are privileged (checked in secpolicy...).
982 *
983 * The function returns 0 if remove access is granted.
984 */
985int
986zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr)
987{
988	uid_t  		uid;
989	uid_t		downer;
990	uid_t		fowner;
991	zfsvfs_t	*zfsvfs = zdp->z_zfsvfs;
992
993	if (zdp->z_zfsvfs->z_assign >= TXG_INITIAL)	/* ZIL replay */
994		return (0);
995
996	if ((zdp->z_phys->zp_mode & S_ISVTX) == 0)
997		return (0);
998
999	downer = zfs_fuid_map_id(zfsvfs, zdp->z_phys->zp_uid, cr, ZFS_OWNER);
1000	fowner = zfs_fuid_map_id(zfsvfs, zp->z_phys->zp_uid, cr, ZFS_OWNER);
1001
1002	if ((uid = crgetuid(cr)) == downer || uid == fowner ||
1003	    (ZTOV(zp)->v_type == VREG &&
1004	    zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr) == 0))
1005		return (0);
1006	else
1007		return (secpolicy_vnode_remove(ZTOV(zp), cr));
1008}
1009