zfs_ctldir.c revision 242574
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 */
26
27/*
28 * ZFS control directory (a.k.a. ".zfs")
29 *
30 * This directory provides a common location for all ZFS meta-objects.
31 * Currently, this is only the 'snapshot' directory, but this may expand in the
32 * future.  The elements are built using the GFS primitives, as the hierarchy
33 * does not actually exist on disk.
34 *
35 * For 'snapshot', we don't want to have all snapshots always mounted, because
36 * this would take up a huge amount of space in /etc/mnttab.  We have three
37 * types of objects:
38 *
39 * 	ctldir ------> snapshotdir -------> snapshot
40 *                                             |
41 *                                             |
42 *                                             V
43 *                                         mounted fs
44 *
45 * The 'snapshot' node contains just enough information to lookup '..' and act
46 * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
47 * perform an automount of the underlying filesystem and return the
48 * corresponding vnode.
49 *
50 * All mounts are handled automatically by the kernel, but unmounts are
51 * (currently) handled from user land.  The main reason is that there is no
52 * reliable way to auto-unmount the filesystem when it's "no longer in use".
53 * When the user unmounts a filesystem, we call zfsctl_unmount(), which
54 * unmounts any snapshots within the snapshot directory.
55 *
56 * The '.zfs', '.zfs/snapshot', and all directories created under
57 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and
58 * share the same vfs_t as the head filesystem (what '.zfs' lives under).
59 *
60 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>'
61 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t.
62 * However, vnodes within these mounted on file systems have their v_vfsp
63 * fields set to the head filesystem to make NFS happy (see
64 * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t
65 * so that it cannot be freed until all snapshots have been unmounted.
66 */
67
68#include <sys/zfs_context.h>
69#include <sys/zfs_ctldir.h>
70#include <sys/zfs_ioctl.h>
71#include <sys/zfs_vfsops.h>
72#include <sys/namei.h>
73#include <sys/gfs.h>
74#include <sys/stat.h>
75#include <sys/dmu.h>
76#include <sys/dsl_deleg.h>
77#include <sys/mount.h>
78#include <sys/sunddi.h>
79
80#include "zfs_namecheck.h"
81
82typedef struct zfsctl_node {
83	gfs_dir_t	zc_gfs_private;
84	uint64_t	zc_id;
85	timestruc_t	zc_cmtime;	/* ctime and mtime, always the same */
86} zfsctl_node_t;
87
88typedef struct zfsctl_snapdir {
89	zfsctl_node_t	sd_node;
90	kmutex_t	sd_lock;
91	avl_tree_t	sd_snaps;
92} zfsctl_snapdir_t;
93
94typedef struct {
95	char		*se_name;
96	vnode_t		*se_root;
97	avl_node_t	se_node;
98} zfs_snapentry_t;
99
100static int
101snapentry_compare(const void *a, const void *b)
102{
103	const zfs_snapentry_t *sa = a;
104	const zfs_snapentry_t *sb = b;
105	int ret = strcmp(sa->se_name, sb->se_name);
106
107	if (ret < 0)
108		return (-1);
109	else if (ret > 0)
110		return (1);
111	else
112		return (0);
113}
114
115#ifdef sun
116vnodeops_t *zfsctl_ops_root;
117vnodeops_t *zfsctl_ops_snapdir;
118vnodeops_t *zfsctl_ops_snapshot;
119vnodeops_t *zfsctl_ops_shares;
120vnodeops_t *zfsctl_ops_shares_dir;
121
122static const fs_operation_def_t zfsctl_tops_root[];
123static const fs_operation_def_t zfsctl_tops_snapdir[];
124static const fs_operation_def_t zfsctl_tops_snapshot[];
125static const fs_operation_def_t zfsctl_tops_shares[];
126#else	/* !sun */
127static struct vop_vector zfsctl_ops_root;
128static struct vop_vector zfsctl_ops_snapdir;
129static struct vop_vector zfsctl_ops_snapshot;
130static struct vop_vector zfsctl_ops_shares;
131static struct vop_vector zfsctl_ops_shares_dir;
132#endif	/* !sun */
133
134static vnode_t *zfsctl_mknode_snapdir(vnode_t *);
135static vnode_t *zfsctl_mknode_shares(vnode_t *);
136static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset);
137static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *);
138
139#ifdef sun
140static gfs_opsvec_t zfsctl_opsvec[] = {
141	{ ".zfs", zfsctl_tops_root, &zfsctl_ops_root },
142	{ ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir },
143	{ ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot },
144	{ ".zfs/shares", zfsctl_tops_shares, &zfsctl_ops_shares_dir },
145	{ ".zfs/shares/vnode", zfsctl_tops_shares, &zfsctl_ops_shares },
146	{ NULL }
147};
148#endif	/* sun */
149
150/*
151 * Root directory elements.  We only have two entries
152 * snapshot and shares.
153 */
154static gfs_dirent_t zfsctl_root_entries[] = {
155	{ "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE },
156	{ "shares", zfsctl_mknode_shares, GFS_CACHE_VNODE },
157	{ NULL }
158};
159
160/* include . and .. in the calculation */
161#define	NROOT_ENTRIES	((sizeof (zfsctl_root_entries) / \
162    sizeof (gfs_dirent_t)) + 1)
163
164
165/*
166 * Initialize the various GFS pieces we'll need to create and manipulate .zfs
167 * directories.  This is called from the ZFS init routine, and initializes the
168 * vnode ops vectors that we'll be using.
169 */
170void
171zfsctl_init(void)
172{
173#ifdef sun
174	VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0);
175#endif
176}
177
178void
179zfsctl_fini(void)
180{
181#ifdef sun
182	/*
183	 * Remove vfsctl vnode ops
184	 */
185	if (zfsctl_ops_root)
186		vn_freevnodeops(zfsctl_ops_root);
187	if (zfsctl_ops_snapdir)
188		vn_freevnodeops(zfsctl_ops_snapdir);
189	if (zfsctl_ops_snapshot)
190		vn_freevnodeops(zfsctl_ops_snapshot);
191	if (zfsctl_ops_shares)
192		vn_freevnodeops(zfsctl_ops_shares);
193	if (zfsctl_ops_shares_dir)
194		vn_freevnodeops(zfsctl_ops_shares_dir);
195
196	zfsctl_ops_root = NULL;
197	zfsctl_ops_snapdir = NULL;
198	zfsctl_ops_snapshot = NULL;
199	zfsctl_ops_shares = NULL;
200	zfsctl_ops_shares_dir = NULL;
201#endif	/* sun */
202}
203
204boolean_t
205zfsctl_is_node(vnode_t *vp)
206{
207	return (vn_matchops(vp, zfsctl_ops_root) ||
208	    vn_matchops(vp, zfsctl_ops_snapdir) ||
209	    vn_matchops(vp, zfsctl_ops_snapshot) ||
210	    vn_matchops(vp, zfsctl_ops_shares) ||
211	    vn_matchops(vp, zfsctl_ops_shares_dir));
212
213}
214
215/*
216 * Return the inode number associated with the 'snapshot' or
217 * 'shares' directory.
218 */
219/* ARGSUSED */
220static ino64_t
221zfsctl_root_inode_cb(vnode_t *vp, int index)
222{
223	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
224
225	ASSERT(index <= 2);
226
227	if (index == 0)
228		return (ZFSCTL_INO_SNAPDIR);
229
230	return (zfsvfs->z_shares_dir);
231}
232
233/*
234 * Create the '.zfs' directory.  This directory is cached as part of the VFS
235 * structure.  This results in a hold on the vfs_t.  The code in zfs_umount()
236 * therefore checks against a vfs_count of 2 instead of 1.  This reference
237 * is removed when the ctldir is destroyed in the unmount.
238 */
239void
240zfsctl_create(zfsvfs_t *zfsvfs)
241{
242	vnode_t *vp, *rvp;
243	zfsctl_node_t *zcp;
244	uint64_t crtime[2];
245
246	ASSERT(zfsvfs->z_ctldir == NULL);
247
248	vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs,
249	    &zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries,
250	    zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL);
251	zcp = vp->v_data;
252	zcp->zc_id = ZFSCTL_INO_ROOT;
253
254	VERIFY(VFS_ROOT(zfsvfs->z_vfs, LK_EXCLUSIVE, &rvp) == 0);
255	VERIFY(0 == sa_lookup(VTOZ(rvp)->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
256	    &crtime, sizeof (crtime)));
257	ZFS_TIME_DECODE(&zcp->zc_cmtime, crtime);
258	VN_URELE(rvp);
259
260	/*
261	 * We're only faking the fact that we have a root of a filesystem for
262	 * the sake of the GFS interfaces.  Undo the flag manipulation it did
263	 * for us.
264	 */
265	vp->v_vflag &= ~VV_ROOT;
266
267	zfsvfs->z_ctldir = vp;
268
269	VOP_UNLOCK(vp, 0);
270}
271
272/*
273 * Destroy the '.zfs' directory.  Only called when the filesystem is unmounted.
274 * There might still be more references if we were force unmounted, but only
275 * new zfs_inactive() calls can occur and they don't reference .zfs
276 */
277void
278zfsctl_destroy(zfsvfs_t *zfsvfs)
279{
280	VN_RELE(zfsvfs->z_ctldir);
281	zfsvfs->z_ctldir = NULL;
282}
283
284/*
285 * Given a root znode, retrieve the associated .zfs directory.
286 * Add a hold to the vnode and return it.
287 */
288vnode_t *
289zfsctl_root(znode_t *zp)
290{
291	ASSERT(zfs_has_ctldir(zp));
292	VN_HOLD(zp->z_zfsvfs->z_ctldir);
293	return (zp->z_zfsvfs->z_ctldir);
294}
295
296/*
297 * Common open routine.  Disallow any write access.
298 */
299/* ARGSUSED */
300static int
301zfsctl_common_open(struct vop_open_args *ap)
302{
303	int flags = ap->a_mode;
304
305	if (flags & FWRITE)
306		return (EACCES);
307
308	return (0);
309}
310
311/*
312 * Common close routine.  Nothing to do here.
313 */
314/* ARGSUSED */
315static int
316zfsctl_common_close(struct vop_close_args *ap)
317{
318	return (0);
319}
320
321/*
322 * Common access routine.  Disallow writes.
323 */
324/* ARGSUSED */
325static int
326zfsctl_common_access(ap)
327	struct vop_access_args /* {
328		struct vnode *a_vp;
329		accmode_t a_accmode;
330		struct ucred *a_cred;
331		struct thread *a_td;
332	} */ *ap;
333{
334	accmode_t accmode = ap->a_accmode;
335
336#ifdef TODO
337	if (flags & V_ACE_MASK) {
338		if (accmode & ACE_ALL_WRITE_PERMS)
339			return (EACCES);
340	} else {
341#endif
342		if (accmode & VWRITE)
343			return (EACCES);
344#ifdef TODO
345	}
346#endif
347
348	return (0);
349}
350
351/*
352 * Common getattr function.  Fill in basic information.
353 */
354static void
355zfsctl_common_getattr(vnode_t *vp, vattr_t *vap)
356{
357	timestruc_t	now;
358
359	vap->va_uid = 0;
360	vap->va_gid = 0;
361	vap->va_rdev = 0;
362	/*
363	 * We are a purely virtual object, so we have no
364	 * blocksize or allocated blocks.
365	 */
366	vap->va_blksize = 0;
367	vap->va_nblocks = 0;
368	vap->va_seq = 0;
369	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
370	vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP |
371	    S_IROTH | S_IXOTH;
372	vap->va_type = VDIR;
373	/*
374	 * We live in the now (for atime).
375	 */
376	gethrestime(&now);
377	vap->va_atime = now;
378	/* FreeBSD: Reset chflags(2) flags. */
379	vap->va_flags = 0;
380}
381
382/*ARGSUSED*/
383static int
384zfsctl_common_fid(ap)
385	struct vop_fid_args /* {
386		struct vnode *a_vp;
387		struct fid *a_fid;
388	} */ *ap;
389{
390	vnode_t		*vp = ap->a_vp;
391	fid_t		*fidp = (void *)ap->a_fid;
392	zfsvfs_t	*zfsvfs = vp->v_vfsp->vfs_data;
393	zfsctl_node_t	*zcp = vp->v_data;
394	uint64_t	object = zcp->zc_id;
395	zfid_short_t	*zfid;
396	int		i;
397
398	ZFS_ENTER(zfsvfs);
399
400	fidp->fid_len = SHORT_FID_LEN;
401
402	zfid = (zfid_short_t *)fidp;
403
404	zfid->zf_len = SHORT_FID_LEN;
405
406	for (i = 0; i < sizeof (zfid->zf_object); i++)
407		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
408
409	/* .zfs znodes always have a generation number of 0 */
410	for (i = 0; i < sizeof (zfid->zf_gen); i++)
411		zfid->zf_gen[i] = 0;
412
413	ZFS_EXIT(zfsvfs);
414	return (0);
415}
416
417
418/*ARGSUSED*/
419static int
420zfsctl_shares_fid(ap)
421	struct vop_fid_args /* {
422		struct vnode *a_vp;
423		struct fid *a_fid;
424	} */ *ap;
425{
426	vnode_t		*vp = ap->a_vp;
427	fid_t		*fidp = (void *)ap->a_fid;
428	zfsvfs_t	*zfsvfs = vp->v_vfsp->vfs_data;
429	znode_t		*dzp;
430	int		error;
431
432	ZFS_ENTER(zfsvfs);
433
434	if (zfsvfs->z_shares_dir == 0) {
435		ZFS_EXIT(zfsvfs);
436		return (ENOTSUP);
437	}
438
439	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
440		error = VOP_FID(ZTOV(dzp), fidp);
441		VN_RELE(ZTOV(dzp));
442	}
443
444	ZFS_EXIT(zfsvfs);
445	return (error);
446}
447
448static int
449zfsctl_common_reclaim(ap)
450	struct vop_reclaim_args /* {
451		struct vnode *a_vp;
452		struct thread *a_td;
453	} */ *ap;
454{
455	vnode_t *vp = ap->a_vp;
456
457	/*
458	 * Destroy the vm object and flush associated pages.
459	 */
460	vnode_destroy_vobject(vp);
461	VI_LOCK(vp);
462	vp->v_data = NULL;
463	VI_UNLOCK(vp);
464	return (0);
465}
466
467/*
468 * .zfs inode namespace
469 *
470 * We need to generate unique inode numbers for all files and directories
471 * within the .zfs pseudo-filesystem.  We use the following scheme:
472 *
473 * 	ENTRY			ZFSCTL_INODE
474 * 	.zfs			1
475 * 	.zfs/snapshot		2
476 * 	.zfs/snapshot/<snap>	objectid(snap)
477 */
478
479#define	ZFSCTL_INO_SNAP(id)	(id)
480
481/*
482 * Get root directory attributes.
483 */
484/* ARGSUSED */
485static int
486zfsctl_root_getattr(ap)
487	struct vop_getattr_args /* {
488		struct vnode *a_vp;
489		struct vattr *a_vap;
490		struct ucred *a_cred;
491	} */ *ap;
492{
493	struct vnode *vp = ap->a_vp;
494	struct vattr *vap = ap->a_vap;
495	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
496	zfsctl_node_t *zcp = vp->v_data;
497
498	ZFS_ENTER(zfsvfs);
499	vap->va_nodeid = ZFSCTL_INO_ROOT;
500	vap->va_nlink = vap->va_size = NROOT_ENTRIES;
501	vap->va_mtime = vap->va_ctime = zcp->zc_cmtime;
502	vap->va_birthtime = vap->va_ctime;
503
504	zfsctl_common_getattr(vp, vap);
505	ZFS_EXIT(zfsvfs);
506
507	return (0);
508}
509
510/*
511 * Special case the handling of "..".
512 */
513/* ARGSUSED */
514int
515zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
516    int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
517    int *direntflags, pathname_t *realpnp)
518{
519	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
520	int err;
521
522	/*
523	 * No extended attributes allowed under .zfs
524	 */
525	if (flags & LOOKUP_XATTR)
526		return (EINVAL);
527
528	ZFS_ENTER(zfsvfs);
529
530	if (strcmp(nm, "..") == 0) {
531		err = VFS_ROOT(dvp->v_vfsp, LK_EXCLUSIVE, vpp);
532		if (err == 0)
533			VOP_UNLOCK(*vpp, 0);
534	} else {
535		err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir,
536		    cr, ct, direntflags, realpnp);
537	}
538
539	ZFS_EXIT(zfsvfs);
540
541	return (err);
542}
543
544#ifdef sun
545static int
546zfsctl_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
547    caller_context_t *ct)
548{
549	/*
550	 * We only care about ACL_ENABLED so that libsec can
551	 * display ACL correctly and not default to POSIX draft.
552	 */
553	if (cmd == _PC_ACL_ENABLED) {
554		*valp = _ACL_ACE_ENABLED;
555		return (0);
556	}
557
558	return (fs_pathconf(vp, cmd, valp, cr, ct));
559}
560#endif	/* sun */
561
562#ifdef sun
563static const fs_operation_def_t zfsctl_tops_root[] = {
564	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
565	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
566	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
567	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_root_getattr }	},
568	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
569	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir } 	},
570	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_root_lookup }	},
571	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
572	{ VOPNAME_INACTIVE,	{ .vop_inactive = gfs_vop_inactive }	},
573	{ VOPNAME_PATHCONF,	{ .vop_pathconf = zfsctl_pathconf }	},
574	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid	}	},
575	{ NULL }
576};
577#endif	/* sun */
578
579/*
580 * Special case the handling of "..".
581 */
582/* ARGSUSED */
583int
584zfsctl_freebsd_root_lookup(ap)
585	struct vop_lookup_args /* {
586		struct vnode *a_dvp;
587		struct vnode **a_vpp;
588		struct componentname *a_cnp;
589	} */ *ap;
590{
591	vnode_t *dvp = ap->a_dvp;
592	vnode_t **vpp = ap->a_vpp;
593	cred_t *cr = ap->a_cnp->cn_cred;
594	int flags = ap->a_cnp->cn_flags;
595	int nameiop = ap->a_cnp->cn_nameiop;
596	char nm[NAME_MAX + 1];
597	int err;
598
599	if ((flags & ISLASTCN) && (nameiop == RENAME || nameiop == CREATE))
600		return (EOPNOTSUPP);
601
602	ASSERT(ap->a_cnp->cn_namelen < sizeof(nm));
603	strlcpy(nm, ap->a_cnp->cn_nameptr, ap->a_cnp->cn_namelen + 1);
604
605	err = zfsctl_root_lookup(dvp, nm, vpp, NULL, 0, NULL, cr, NULL, NULL, NULL);
606	if (err == 0 && (nm[0] != '.' || nm[1] != '\0'))
607		vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
608	return (err);
609}
610
611static struct vop_vector zfsctl_ops_root = {
612	.vop_default =	&default_vnodeops,
613	.vop_open =	zfsctl_common_open,
614	.vop_close =	zfsctl_common_close,
615	.vop_ioctl =	VOP_EINVAL,
616	.vop_getattr =	zfsctl_root_getattr,
617	.vop_access =	zfsctl_common_access,
618	.vop_readdir =	gfs_vop_readdir,
619	.vop_lookup =	zfsctl_freebsd_root_lookup,
620	.vop_inactive =	gfs_vop_inactive,
621	.vop_reclaim =	zfsctl_common_reclaim,
622#ifdef TODO
623	.vop_pathconf =	zfsctl_pathconf,
624#endif
625	.vop_fid =	zfsctl_common_fid,
626};
627
628static int
629zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
630{
631	objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
632
633	if (snapshot_namecheck(name, NULL, NULL) != 0)
634		return (EILSEQ);
635	dmu_objset_name(os, zname);
636	if (strlen(zname) + 1 + strlen(name) >= len)
637		return (ENAMETOOLONG);
638	(void) strcat(zname, "@");
639	(void) strcat(zname, name);
640	return (0);
641}
642
643static int
644zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr)
645{
646	vnode_t *svp = sep->se_root;
647	int error;
648
649	ASSERT(vn_ismntpt(svp));
650
651	/* this will be dropped by dounmount() */
652	if ((error = vn_vfswlock(svp)) != 0)
653		return (error);
654
655#ifdef sun
656	VN_HOLD(svp);
657	error = dounmount(vn_mountedvfs(svp), fflags, cr);
658	if (error) {
659		VN_RELE(svp);
660		return (error);
661	}
662
663	/*
664	 * We can't use VN_RELE(), as that will try to invoke
665	 * zfsctl_snapdir_inactive(), which would cause us to destroy
666	 * the sd_lock mutex held by our caller.
667	 */
668	ASSERT(svp->v_count == 1);
669	gfs_vop_inactive(svp, cr, NULL);
670
671	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
672	kmem_free(sep, sizeof (zfs_snapentry_t));
673
674	return (0);
675#else	/* !sun */
676	return (dounmount(vn_mountedvfs(svp), fflags, curthread));
677#endif	/* !sun */
678}
679
680#ifdef sun
681static void
682zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm)
683{
684	avl_index_t where;
685	vfs_t *vfsp;
686	refstr_t *pathref;
687	char newpath[MAXNAMELEN];
688	char *tail;
689
690	ASSERT(MUTEX_HELD(&sdp->sd_lock));
691	ASSERT(sep != NULL);
692
693	vfsp = vn_mountedvfs(sep->se_root);
694	ASSERT(vfsp != NULL);
695
696	vfs_lock_wait(vfsp);
697
698	/*
699	 * Change the name in the AVL tree.
700	 */
701	avl_remove(&sdp->sd_snaps, sep);
702	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
703	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
704	(void) strcpy(sep->se_name, nm);
705	VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL);
706	avl_insert(&sdp->sd_snaps, sep, where);
707
708	/*
709	 * Change the current mountpoint info:
710	 * 	- update the tail of the mntpoint path
711	 *	- update the tail of the resource path
712	 */
713	pathref = vfs_getmntpoint(vfsp);
714	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
715	VERIFY((tail = strrchr(newpath, '/')) != NULL);
716	*(tail+1) = '\0';
717	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
718	(void) strcat(newpath, nm);
719	refstr_rele(pathref);
720	vfs_setmntpoint(vfsp, newpath, 0);
721
722	pathref = vfs_getresource(vfsp);
723	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
724	VERIFY((tail = strrchr(newpath, '@')) != NULL);
725	*(tail+1) = '\0';
726	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
727	(void) strcat(newpath, nm);
728	refstr_rele(pathref);
729	vfs_setresource(vfsp, newpath, 0);
730
731	vfs_unlock(vfsp);
732}
733#endif	/* sun */
734
735#ifdef sun
736/*ARGSUSED*/
737static int
738zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm,
739    cred_t *cr, caller_context_t *ct, int flags)
740{
741	zfsctl_snapdir_t *sdp = sdvp->v_data;
742	zfs_snapentry_t search, *sep;
743	zfsvfs_t *zfsvfs;
744	avl_index_t where;
745	char from[MAXNAMELEN], to[MAXNAMELEN];
746	char real[MAXNAMELEN];
747	int err;
748
749	zfsvfs = sdvp->v_vfsp->vfs_data;
750	ZFS_ENTER(zfsvfs);
751
752	if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
753		err = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
754		    MAXNAMELEN, NULL);
755		if (err == 0) {
756			snm = real;
757		} else if (err != ENOTSUP) {
758			ZFS_EXIT(zfsvfs);
759			return (err);
760		}
761	}
762
763	ZFS_EXIT(zfsvfs);
764
765	err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from);
766	if (!err)
767		err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to);
768	if (!err)
769		err = zfs_secpolicy_rename_perms(from, to, cr);
770	if (err)
771		return (err);
772
773	/*
774	 * Cannot move snapshots out of the snapdir.
775	 */
776	if (sdvp != tdvp)
777		return (EINVAL);
778
779	if (strcmp(snm, tnm) == 0)
780		return (0);
781
782	mutex_enter(&sdp->sd_lock);
783
784	search.se_name = (char *)snm;
785	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) {
786		mutex_exit(&sdp->sd_lock);
787		return (ENOENT);
788	}
789
790	err = dmu_objset_rename(from, to, 0);
791	if (err == 0)
792		zfsctl_rename_snap(sdp, sep, tnm);
793
794	mutex_exit(&sdp->sd_lock);
795
796	return (err);
797}
798#endif	/* sun */
799
800#ifdef sun
801/* ARGSUSED */
802static int
803zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
804    caller_context_t *ct, int flags)
805{
806	zfsctl_snapdir_t *sdp = dvp->v_data;
807	zfs_snapentry_t *sep;
808	zfs_snapentry_t search;
809	zfsvfs_t *zfsvfs;
810	char snapname[MAXNAMELEN];
811	char real[MAXNAMELEN];
812	int err;
813
814	zfsvfs = dvp->v_vfsp->vfs_data;
815	ZFS_ENTER(zfsvfs);
816
817	if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
818
819		err = dmu_snapshot_realname(zfsvfs->z_os, name, real,
820		    MAXNAMELEN, NULL);
821		if (err == 0) {
822			name = real;
823		} else if (err != ENOTSUP) {
824			ZFS_EXIT(zfsvfs);
825			return (err);
826		}
827	}
828
829	ZFS_EXIT(zfsvfs);
830
831	err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname);
832	if (!err)
833		err = zfs_secpolicy_destroy_perms(snapname, cr);
834	if (err)
835		return (err);
836
837	mutex_enter(&sdp->sd_lock);
838
839	search.se_name = name;
840	sep = avl_find(&sdp->sd_snaps, &search, NULL);
841	if (sep) {
842		avl_remove(&sdp->sd_snaps, sep);
843		err = zfsctl_unmount_snap(sep, MS_FORCE, cr);
844		if (err) {
845			avl_index_t where;
846
847			if (avl_find(&sdp->sd_snaps, sep, &where) == NULL)
848				avl_insert(&sdp->sd_snaps, sep, where);
849		} else
850			err = dmu_objset_destroy(snapname, B_FALSE);
851	} else {
852		err = ENOENT;
853	}
854
855	mutex_exit(&sdp->sd_lock);
856
857	return (err);
858}
859#endif	/* sun */
860
861/*
862 * This creates a snapshot under '.zfs/snapshot'.
863 */
864/* ARGSUSED */
865static int
866zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t  **vpp,
867    cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp)
868{
869	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
870	char name[MAXNAMELEN];
871	int err;
872	static enum symfollow follow = NO_FOLLOW;
873	static enum uio_seg seg = UIO_SYSSPACE;
874
875	if (snapshot_namecheck(dirname, NULL, NULL) != 0)
876		return (EILSEQ);
877
878	dmu_objset_name(zfsvfs->z_os, name);
879
880	*vpp = NULL;
881
882	err = zfs_secpolicy_snapshot_perms(name, cr);
883	if (err)
884		return (err);
885
886	if (err == 0) {
887		err = dmu_objset_snapshot(name, dirname, NULL, NULL,
888		    B_FALSE, B_FALSE, -1);
889		if (err)
890			return (err);
891		err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp);
892	}
893
894	return (err);
895}
896
897static int
898zfsctl_freebsd_snapdir_mkdir(ap)
899        struct vop_mkdir_args /* {
900                struct vnode *a_dvp;
901                struct vnode **a_vpp;
902                struct componentname *a_cnp;
903                struct vattr *a_vap;
904        } */ *ap;
905{
906
907	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
908
909	return (zfsctl_snapdir_mkdir(ap->a_dvp, ap->a_cnp->cn_nameptr, NULL,
910	    ap->a_vpp, ap->a_cnp->cn_cred, NULL, 0, NULL));
911}
912
913/*
914 * Lookup entry point for the 'snapshot' directory.  Try to open the
915 * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
916 * Perform a mount of the associated dataset on top of the vnode.
917 */
918/* ARGSUSED */
919int
920zfsctl_snapdir_lookup(ap)
921	struct vop_lookup_args /* {
922		struct vnode *a_dvp;
923		struct vnode **a_vpp;
924		struct componentname *a_cnp;
925	} */ *ap;
926{
927	vnode_t *dvp = ap->a_dvp;
928	vnode_t **vpp = ap->a_vpp;
929	struct componentname *cnp = ap->a_cnp;
930	char nm[NAME_MAX + 1];
931	zfsctl_snapdir_t *sdp = dvp->v_data;
932	objset_t *snap;
933	char snapname[MAXNAMELEN];
934	char real[MAXNAMELEN];
935	char *mountpoint;
936	zfs_snapentry_t *sep, search;
937	size_t mountpoint_len;
938	avl_index_t where;
939	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
940	int err;
941	int flags = 0;
942
943	/*
944	 * No extended attributes allowed under .zfs
945	 */
946	if (flags & LOOKUP_XATTR)
947		return (EINVAL);
948	ASSERT(ap->a_cnp->cn_namelen < sizeof(nm));
949	strlcpy(nm, ap->a_cnp->cn_nameptr, ap->a_cnp->cn_namelen + 1);
950
951	ASSERT(dvp->v_type == VDIR);
952
953	*vpp = NULL;
954
955	/*
956	 * If we get a recursive call, that means we got called
957	 * from the domount() code while it was trying to look up the
958	 * spec (which looks like a local path for zfs).  We need to
959	 * add some flag to domount() to tell it not to do this lookup.
960	 */
961	if (MUTEX_HELD(&sdp->sd_lock))
962		return (ENOENT);
963
964	ZFS_ENTER(zfsvfs);
965
966	if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) {
967		ZFS_EXIT(zfsvfs);
968		return (0);
969	}
970
971	if (flags & FIGNORECASE) {
972		boolean_t conflict = B_FALSE;
973
974		err = dmu_snapshot_realname(zfsvfs->z_os, nm, real,
975		    MAXNAMELEN, &conflict);
976		if (err == 0) {
977			strlcpy(nm, real, sizeof(nm));
978		} else if (err != ENOTSUP) {
979			ZFS_EXIT(zfsvfs);
980			return (err);
981		}
982#if 0
983		if (realpnp)
984			(void) strlcpy(realpnp->pn_buf, nm,
985			    realpnp->pn_bufsize);
986		if (conflict && direntflags)
987			*direntflags = ED_CASE_CONFLICT;
988#endif
989	}
990
991	mutex_enter(&sdp->sd_lock);
992	search.se_name = (char *)nm;
993	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) {
994		*vpp = sep->se_root;
995		VN_HOLD(*vpp);
996		err = traverse(vpp, LK_EXCLUSIVE | LK_RETRY);
997		if (err) {
998			VN_RELE(*vpp);
999			*vpp = NULL;
1000		} else if (*vpp == sep->se_root) {
1001			/*
1002			 * The snapshot was unmounted behind our backs,
1003			 * try to remount it.
1004			 */
1005			VERIFY(zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname) == 0);
1006			goto domount;
1007		} else {
1008			/*
1009			 * VROOT was set during the traverse call.  We need
1010			 * to clear it since we're pretending to be part
1011			 * of our parent's vfs.
1012			 */
1013			(*vpp)->v_flag &= ~VROOT;
1014		}
1015		mutex_exit(&sdp->sd_lock);
1016		ZFS_EXIT(zfsvfs);
1017		return (err);
1018	}
1019
1020	/*
1021	 * The requested snapshot is not currently mounted, look it up.
1022	 */
1023	err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname);
1024	if (err) {
1025		mutex_exit(&sdp->sd_lock);
1026		ZFS_EXIT(zfsvfs);
1027		/*
1028		 * handle "ls *" or "?" in a graceful manner,
1029		 * forcing EILSEQ to ENOENT.
1030		 * Since shell ultimately passes "*" or "?" as name to lookup
1031		 */
1032		return (err == EILSEQ ? ENOENT : err);
1033	}
1034	if (dmu_objset_hold(snapname, FTAG, &snap) != 0) {
1035		mutex_exit(&sdp->sd_lock);
1036		/* Translate errors and add SAVENAME when needed. */
1037		if ((cnp->cn_flags & ISLASTCN) && cnp->cn_nameiop == CREATE) {
1038			err = EJUSTRETURN;
1039			cnp->cn_flags |= SAVENAME;
1040		} else {
1041			err = ENOENT;
1042		}
1043		ZFS_EXIT(zfsvfs);
1044		return (err);
1045	}
1046
1047	sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP);
1048	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
1049	(void) strcpy(sep->se_name, nm);
1050	*vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap));
1051	VN_HOLD(*vpp);
1052	avl_insert(&sdp->sd_snaps, sep, where);
1053
1054	dmu_objset_rele(snap, FTAG);
1055domount:
1056	mountpoint_len = strlen(dvp->v_vfsp->mnt_stat.f_mntonname) +
1057	    strlen("/" ZFS_CTLDIR_NAME "/snapshot/") + strlen(nm) + 1;
1058	mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
1059	(void) snprintf(mountpoint, mountpoint_len,
1060	    "%s/" ZFS_CTLDIR_NAME "/snapshot/%s",
1061	    dvp->v_vfsp->mnt_stat.f_mntonname, nm);
1062	err = mount_snapshot(curthread, vpp, "zfs", mountpoint, snapname, 0);
1063	kmem_free(mountpoint, mountpoint_len);
1064	if (err == 0) {
1065		/*
1066		 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
1067		 *
1068		 * This is where we lie about our v_vfsp in order to
1069		 * make .zfs/snapshot/<snapname> accessible over NFS
1070		 * without requiring manual mounts of <snapname>.
1071		 */
1072		ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs);
1073		VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
1074	}
1075	mutex_exit(&sdp->sd_lock);
1076	ZFS_EXIT(zfsvfs);
1077	if (err != 0)
1078		*vpp = NULL;
1079	return (err);
1080}
1081
1082/* ARGSUSED */
1083int
1084zfsctl_shares_lookup(ap)
1085	struct vop_lookup_args /* {
1086		struct vnode *a_dvp;
1087		struct vnode **a_vpp;
1088		struct componentname *a_cnp;
1089	} */ *ap;
1090{
1091	vnode_t *dvp = ap->a_dvp;
1092	vnode_t **vpp = ap->a_vpp;
1093	struct componentname *cnp = ap->a_cnp;
1094	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
1095	char nm[NAME_MAX + 1];
1096	znode_t *dzp;
1097	int error;
1098
1099	ZFS_ENTER(zfsvfs);
1100
1101	ASSERT(cnp->cn_namelen < sizeof(nm));
1102	strlcpy(nm, cnp->cn_nameptr, cnp->cn_namelen + 1);
1103
1104	if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) {
1105		ZFS_EXIT(zfsvfs);
1106		return (0);
1107	}
1108
1109	if (zfsvfs->z_shares_dir == 0) {
1110		ZFS_EXIT(zfsvfs);
1111		return (ENOTSUP);
1112	}
1113	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0)
1114		error = VOP_LOOKUP(ZTOV(dzp), vpp, cnp);
1115
1116	VN_RELE(ZTOV(dzp));
1117	ZFS_EXIT(zfsvfs);
1118
1119	return (error);
1120}
1121
1122/* ARGSUSED */
1123static int
1124zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp,
1125    offset_t *offp, offset_t *nextp, void *data, int flags)
1126{
1127	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1128	char snapname[MAXNAMELEN];
1129	uint64_t id, cookie;
1130	boolean_t case_conflict;
1131	int error;
1132
1133	ZFS_ENTER(zfsvfs);
1134
1135	cookie = *offp;
1136	error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id,
1137	    &cookie, &case_conflict);
1138	if (error) {
1139		ZFS_EXIT(zfsvfs);
1140		if (error == ENOENT) {
1141			*eofp = 1;
1142			return (0);
1143		}
1144		return (error);
1145	}
1146
1147	if (flags & V_RDDIR_ENTFLAGS) {
1148		edirent_t *eodp = dp;
1149
1150		(void) strcpy(eodp->ed_name, snapname);
1151		eodp->ed_ino = ZFSCTL_INO_SNAP(id);
1152		eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0;
1153	} else {
1154		struct dirent64 *odp = dp;
1155
1156		(void) strcpy(odp->d_name, snapname);
1157		odp->d_ino = ZFSCTL_INO_SNAP(id);
1158	}
1159	*nextp = cookie;
1160
1161	ZFS_EXIT(zfsvfs);
1162
1163	return (0);
1164}
1165
1166/* ARGSUSED */
1167static int
1168zfsctl_shares_readdir(ap)
1169	struct vop_readdir_args /* {
1170		struct vnode *a_vp;
1171		struct uio *a_uio;
1172		struct ucred *a_cred;
1173		int *a_eofflag;
1174		int *a_ncookies;
1175		u_long **a_cookies;
1176	} */ *ap;
1177{
1178	vnode_t *vp = ap->a_vp;
1179	uio_t *uiop = ap->a_uio;
1180	cred_t *cr = ap->a_cred;
1181	int *eofp = ap->a_eofflag;
1182	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1183	znode_t *dzp;
1184	int error;
1185
1186	ZFS_ENTER(zfsvfs);
1187
1188	if (zfsvfs->z_shares_dir == 0) {
1189		ZFS_EXIT(zfsvfs);
1190		return (ENOTSUP);
1191	}
1192	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1193		vn_lock(ZTOV(dzp), LK_SHARED | LK_RETRY);
1194		error = VOP_READDIR(ZTOV(dzp), uiop, cr, eofp, ap->a_ncookies, ap->a_cookies);
1195		VN_URELE(ZTOV(dzp));
1196	} else {
1197		*eofp = 1;
1198		error = ENOENT;
1199	}
1200
1201	ZFS_EXIT(zfsvfs);
1202	return (error);
1203}
1204
1205/*
1206 * pvp is the '.zfs' directory (zfsctl_node_t).
1207 * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t).
1208 *
1209 * This function is the callback to create a GFS vnode for '.zfs/snapshot'
1210 * when a lookup is performed on .zfs for "snapshot".
1211 */
1212vnode_t *
1213zfsctl_mknode_snapdir(vnode_t *pvp)
1214{
1215	vnode_t *vp;
1216	zfsctl_snapdir_t *sdp;
1217
1218	vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, pvp->v_vfsp,
1219	    &zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN,
1220	    zfsctl_snapdir_readdir_cb, NULL);
1221	sdp = vp->v_data;
1222	sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR;
1223	sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
1224	mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
1225	avl_create(&sdp->sd_snaps, snapentry_compare,
1226	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
1227	VOP_UNLOCK(vp, 0);
1228	return (vp);
1229}
1230
1231vnode_t *
1232zfsctl_mknode_shares(vnode_t *pvp)
1233{
1234	vnode_t *vp;
1235	zfsctl_node_t *sdp;
1236
1237	vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, pvp->v_vfsp,
1238	    &zfsctl_ops_shares, NULL, NULL, MAXNAMELEN,
1239	    NULL, NULL);
1240	sdp = vp->v_data;
1241	sdp->zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
1242	VOP_UNLOCK(vp, 0);
1243	return (vp);
1244
1245}
1246
1247/* ARGSUSED */
1248static int
1249zfsctl_shares_getattr(ap)
1250	struct vop_getattr_args /* {
1251		struct vnode *a_vp;
1252		struct vattr *a_vap;
1253		struct ucred *a_cred;
1254		struct thread *a_td;
1255	} */ *ap;
1256{
1257	vnode_t *vp = ap->a_vp;
1258	vattr_t *vap = ap->a_vap;
1259	cred_t *cr = ap->a_cred;
1260	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1261	znode_t *dzp;
1262	int error;
1263
1264	ZFS_ENTER(zfsvfs);
1265	if (zfsvfs->z_shares_dir == 0) {
1266		ZFS_EXIT(zfsvfs);
1267		return (ENOTSUP);
1268	}
1269	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1270		vn_lock(ZTOV(dzp), LK_SHARED | LK_RETRY);
1271		error = VOP_GETATTR(ZTOV(dzp), vap, cr);
1272		VN_URELE(ZTOV(dzp));
1273	}
1274	ZFS_EXIT(zfsvfs);
1275	return (error);
1276
1277
1278}
1279
1280/* ARGSUSED */
1281static int
1282zfsctl_snapdir_getattr(ap)
1283	struct vop_getattr_args /* {
1284		struct vnode *a_vp;
1285		struct vattr *a_vap;
1286		struct ucred *a_cred;
1287	} */ *ap;
1288{
1289	vnode_t *vp = ap->a_vp;
1290	vattr_t *vap = ap->a_vap;
1291	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1292	zfsctl_snapdir_t *sdp = vp->v_data;
1293
1294	ZFS_ENTER(zfsvfs);
1295	zfsctl_common_getattr(vp, vap);
1296	vap->va_nodeid = gfs_file_inode(vp);
1297	vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2;
1298	vap->va_ctime = vap->va_mtime = dmu_objset_snap_cmtime(zfsvfs->z_os);
1299	vap->va_birthtime = vap->va_ctime;
1300	ZFS_EXIT(zfsvfs);
1301
1302	return (0);
1303}
1304
1305/* ARGSUSED */
1306static int
1307zfsctl_snapdir_inactive(ap)
1308	struct vop_inactive_args /* {
1309		struct vnode *a_vp;
1310		struct thread *a_td;
1311	} */ *ap;
1312{
1313	vnode_t *vp = ap->a_vp;
1314	zfsctl_snapdir_t *sdp = vp->v_data;
1315	zfs_snapentry_t *sep;
1316
1317	/*
1318	 * On forced unmount we have to free snapshots from here.
1319	 */
1320	mutex_enter(&sdp->sd_lock);
1321	while ((sep = avl_first(&sdp->sd_snaps)) != NULL) {
1322		avl_remove(&sdp->sd_snaps, sep);
1323		kmem_free(sep->se_name, strlen(sep->se_name) + 1);
1324		kmem_free(sep, sizeof (zfs_snapentry_t));
1325	}
1326	mutex_exit(&sdp->sd_lock);
1327	gfs_dir_inactive(vp);
1328	ASSERT(avl_numnodes(&sdp->sd_snaps) == 0);
1329	mutex_destroy(&sdp->sd_lock);
1330	avl_destroy(&sdp->sd_snaps);
1331	kmem_free(sdp, sizeof (zfsctl_snapdir_t));
1332
1333	return (0);
1334}
1335
1336#ifdef sun
1337static const fs_operation_def_t zfsctl_tops_snapdir[] = {
1338	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
1339	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
1340	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
1341	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_snapdir_getattr } },
1342	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
1343	{ VOPNAME_RENAME,	{ .vop_rename = zfsctl_snapdir_rename }	},
1344	{ VOPNAME_RMDIR,	{ .vop_rmdir = zfsctl_snapdir_remove }	},
1345	{ VOPNAME_MKDIR,	{ .vop_mkdir = zfsctl_snapdir_mkdir }	},
1346	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir }	},
1347	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_snapdir_lookup }	},
1348	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
1349	{ VOPNAME_INACTIVE,	{ .vop_inactive = zfsctl_snapdir_inactive } },
1350	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid }	},
1351	{ NULL }
1352};
1353
1354static const fs_operation_def_t zfsctl_tops_shares[] = {
1355	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
1356	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
1357	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
1358	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_shares_getattr } },
1359	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
1360	{ VOPNAME_READDIR,	{ .vop_readdir = zfsctl_shares_readdir } },
1361	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_shares_lookup }	},
1362	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
1363	{ VOPNAME_INACTIVE,	{ .vop_inactive = gfs_vop_inactive } },
1364	{ VOPNAME_FID,		{ .vop_fid = zfsctl_shares_fid } },
1365	{ NULL }
1366};
1367#else	/* !sun */
1368static struct vop_vector zfsctl_ops_snapdir = {
1369	.vop_default =	&default_vnodeops,
1370	.vop_open =	zfsctl_common_open,
1371	.vop_close =	zfsctl_common_close,
1372	.vop_ioctl =	VOP_EINVAL,
1373	.vop_getattr =	zfsctl_snapdir_getattr,
1374	.vop_access =	zfsctl_common_access,
1375	.vop_mkdir =	zfsctl_freebsd_snapdir_mkdir,
1376	.vop_readdir =	gfs_vop_readdir,
1377	.vop_lookup =	zfsctl_snapdir_lookup,
1378	.vop_inactive =	zfsctl_snapdir_inactive,
1379	.vop_reclaim =	zfsctl_common_reclaim,
1380	.vop_fid =	zfsctl_common_fid,
1381};
1382
1383static struct vop_vector zfsctl_ops_shares = {
1384	.vop_default =	&default_vnodeops,
1385	.vop_open =	zfsctl_common_open,
1386	.vop_close =	zfsctl_common_close,
1387	.vop_ioctl =	VOP_EINVAL,
1388	.vop_getattr =	zfsctl_shares_getattr,
1389	.vop_access =	zfsctl_common_access,
1390	.vop_readdir =	zfsctl_shares_readdir,
1391	.vop_lookup =	zfsctl_shares_lookup,
1392	.vop_inactive =	gfs_vop_inactive,
1393	.vop_reclaim =	zfsctl_common_reclaim,
1394	.vop_fid =	zfsctl_shares_fid,
1395};
1396#endif	/* !sun */
1397
1398/*
1399 * pvp is the GFS vnode '.zfs/snapshot'.
1400 *
1401 * This creates a GFS node under '.zfs/snapshot' representing each
1402 * snapshot.  This newly created GFS node is what we mount snapshot
1403 * vfs_t's ontop of.
1404 */
1405static vnode_t *
1406zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset)
1407{
1408	vnode_t *vp;
1409	zfsctl_node_t *zcp;
1410
1411	vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, pvp->v_vfsp,
1412	    &zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL);
1413	VN_HOLD(vp);
1414	zcp = vp->v_data;
1415	zcp->zc_id = objset;
1416	VOP_UNLOCK(vp, 0);
1417
1418	return (vp);
1419}
1420
1421static int
1422zfsctl_snapshot_inactive(ap)
1423	struct vop_inactive_args /* {
1424		struct vnode *a_vp;
1425		struct thread *a_td;
1426	} */ *ap;
1427{
1428	vnode_t *vp = ap->a_vp;
1429	cred_t *cr = ap->a_td->td_ucred;
1430	struct vop_inactive_args iap;
1431	zfsctl_snapdir_t *sdp;
1432	zfs_snapentry_t *sep, *next;
1433	int locked;
1434	vnode_t *dvp;
1435
1436	if (vp->v_count > 0)
1437		goto end;
1438
1439	VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0);
1440	sdp = dvp->v_data;
1441	VOP_UNLOCK(dvp, 0);
1442
1443	if (!(locked = MUTEX_HELD(&sdp->sd_lock)))
1444		mutex_enter(&sdp->sd_lock);
1445
1446	ASSERT(!vn_ismntpt(vp));
1447
1448	sep = avl_first(&sdp->sd_snaps);
1449	while (sep != NULL) {
1450		next = AVL_NEXT(&sdp->sd_snaps, sep);
1451
1452		if (sep->se_root == vp) {
1453			avl_remove(&sdp->sd_snaps, sep);
1454			kmem_free(sep->se_name, strlen(sep->se_name) + 1);
1455			kmem_free(sep, sizeof (zfs_snapentry_t));
1456			break;
1457		}
1458		sep = next;
1459	}
1460	ASSERT(sep != NULL);
1461
1462	if (!locked)
1463		mutex_exit(&sdp->sd_lock);
1464	VN_RELE(dvp);
1465
1466end:
1467	/*
1468	 * Dispose of the vnode for the snapshot mount point.
1469	 * This is safe to do because once this entry has been removed
1470	 * from the AVL tree, it can't be found again, so cannot become
1471	 * "active".  If we lookup the same name again we will end up
1472	 * creating a new vnode.
1473	 */
1474	iap.a_vp = vp;
1475	return (gfs_vop_inactive(&iap));
1476}
1477
1478static int
1479zfsctl_traverse_begin(vnode_t **vpp, int lktype)
1480{
1481
1482	VN_HOLD(*vpp);
1483	/* Snapshot should be already mounted, but just in case. */
1484	if (vn_mountedvfs(*vpp) == NULL)
1485		return (ENOENT);
1486	return (traverse(vpp, lktype));
1487}
1488
1489static void
1490zfsctl_traverse_end(vnode_t *vp, int err)
1491{
1492
1493	if (err == 0)
1494		vput(vp);
1495	else
1496		VN_RELE(vp);
1497}
1498
1499static int
1500zfsctl_snapshot_getattr(ap)
1501	struct vop_getattr_args /* {
1502		struct vnode *a_vp;
1503		struct vattr *a_vap;
1504		struct ucred *a_cred;
1505	} */ *ap;
1506{
1507	vnode_t *vp = ap->a_vp;
1508	int err;
1509
1510	err = zfsctl_traverse_begin(&vp, LK_SHARED | LK_RETRY);
1511	if (err == 0)
1512		err = VOP_GETATTR(vp, ap->a_vap, ap->a_cred);
1513	zfsctl_traverse_end(vp, err);
1514	return (err);
1515}
1516
1517static int
1518zfsctl_snapshot_fid(ap)
1519	struct vop_fid_args /* {
1520		struct vnode *a_vp;
1521		struct fid *a_fid;
1522	} */ *ap;
1523{
1524	vnode_t *vp = ap->a_vp;
1525	int err;
1526
1527	err = zfsctl_traverse_begin(&vp, LK_SHARED | LK_RETRY);
1528	if (err == 0)
1529		err = VOP_VPTOFH(vp, (void *)ap->a_fid);
1530	zfsctl_traverse_end(vp, err);
1531	return (err);
1532}
1533
1534static int
1535zfsctl_snapshot_lookup(ap)
1536	struct vop_lookup_args /* {
1537		struct vnode *a_dvp;
1538		struct vnode **a_vpp;
1539		struct componentname *a_cnp;
1540	} */ *ap;
1541{
1542	vnode_t *dvp = ap->a_dvp;
1543	vnode_t **vpp = ap->a_vpp;
1544	struct componentname *cnp = ap->a_cnp;
1545	cred_t *cr = ap->a_cnp->cn_cred;
1546	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
1547	int error;
1548
1549	if (cnp->cn_namelen != 2 || cnp->cn_nameptr[0] != '.' ||
1550	    cnp->cn_nameptr[1] != '.') {
1551		return (ENOENT);
1552	}
1553
1554	ASSERT(dvp->v_type == VDIR);
1555	ASSERT(zfsvfs->z_ctldir != NULL);
1556
1557	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", vpp,
1558	    NULL, 0, NULL, cr, NULL, NULL, NULL);
1559	if (error == 0)
1560		vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1561	return (error);
1562}
1563
1564static int
1565zfsctl_snapshot_vptocnp(struct vop_vptocnp_args *ap)
1566{
1567	zfsvfs_t *zfsvfs = ap->a_vp->v_vfsp->vfs_data;
1568	vnode_t *dvp, *vp;
1569	zfsctl_snapdir_t *sdp;
1570	zfs_snapentry_t *sep;
1571	int error;
1572
1573	ASSERT(zfsvfs->z_ctldir != NULL);
1574	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1575	    NULL, 0, NULL, kcred, NULL, NULL, NULL);
1576	if (error != 0)
1577		return (error);
1578	sdp = dvp->v_data;
1579
1580	mutex_enter(&sdp->sd_lock);
1581	sep = avl_first(&sdp->sd_snaps);
1582	while (sep != NULL) {
1583		vp = sep->se_root;
1584		if (vp == ap->a_vp)
1585			break;
1586		sep = AVL_NEXT(&sdp->sd_snaps, sep);
1587	}
1588	if (sep == NULL) {
1589		mutex_exit(&sdp->sd_lock);
1590		error = ENOENT;
1591	} else {
1592		size_t len;
1593
1594		len = strlen(sep->se_name);
1595		*ap->a_buflen -= len;
1596		bcopy(sep->se_name, ap->a_buf + *ap->a_buflen, len);
1597		mutex_exit(&sdp->sd_lock);
1598		vref(dvp);
1599		*ap->a_vpp = dvp;
1600	}
1601	VN_RELE(dvp);
1602
1603	return (error);
1604}
1605
1606/*
1607 * These VP's should never see the light of day.  They should always
1608 * be covered.
1609 */
1610static struct vop_vector zfsctl_ops_snapshot = {
1611	.vop_default =	&default_vnodeops,
1612	.vop_inactive =	zfsctl_snapshot_inactive,
1613	.vop_lookup =	zfsctl_snapshot_lookup,
1614	.vop_reclaim =	zfsctl_common_reclaim,
1615	.vop_getattr =	zfsctl_snapshot_getattr,
1616	.vop_fid =	zfsctl_snapshot_fid,
1617	.vop_vptocnp =	zfsctl_snapshot_vptocnp,
1618};
1619
1620int
1621zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1622{
1623	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1624	vnode_t *dvp, *vp;
1625	zfsctl_snapdir_t *sdp;
1626	zfsctl_node_t *zcp;
1627	zfs_snapentry_t *sep;
1628	int error;
1629
1630	ASSERT(zfsvfs->z_ctldir != NULL);
1631	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1632	    NULL, 0, NULL, kcred, NULL, NULL, NULL);
1633	if (error != 0)
1634		return (error);
1635	sdp = dvp->v_data;
1636
1637	mutex_enter(&sdp->sd_lock);
1638	sep = avl_first(&sdp->sd_snaps);
1639	while (sep != NULL) {
1640		vp = sep->se_root;
1641		zcp = vp->v_data;
1642		if (zcp->zc_id == objsetid)
1643			break;
1644
1645		sep = AVL_NEXT(&sdp->sd_snaps, sep);
1646	}
1647
1648	if (sep != NULL) {
1649		VN_HOLD(vp);
1650		/*
1651		 * Return the mounted root rather than the covered mount point.
1652		 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid>
1653		 * and returns the ZFS vnode mounted on top of the GFS node.
1654		 * This ZFS vnode is the root of the vfs for objset 'objsetid'.
1655		 */
1656		error = traverse(&vp, LK_SHARED | LK_RETRY);
1657		if (error == 0) {
1658			if (vp == sep->se_root)
1659				error = EINVAL;
1660			else
1661				*zfsvfsp = VTOZ(vp)->z_zfsvfs;
1662		}
1663		mutex_exit(&sdp->sd_lock);
1664		if (error == 0)
1665			VN_URELE(vp);
1666		else
1667			VN_RELE(vp);
1668	} else {
1669		error = EINVAL;
1670		mutex_exit(&sdp->sd_lock);
1671	}
1672
1673	VN_RELE(dvp);
1674
1675	return (error);
1676}
1677
1678/*
1679 * Unmount any snapshots for the given filesystem.  This is called from
1680 * zfs_umount() - if we have a ctldir, then go through and unmount all the
1681 * snapshots.
1682 */
1683int
1684zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1685{
1686	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1687	vnode_t *dvp;
1688	zfsctl_snapdir_t *sdp;
1689	zfs_snapentry_t *sep, *next;
1690	int error;
1691
1692	ASSERT(zfsvfs->z_ctldir != NULL);
1693	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1694	    NULL, 0, NULL, cr, NULL, NULL, NULL);
1695	if (error != 0)
1696		return (error);
1697	sdp = dvp->v_data;
1698
1699	mutex_enter(&sdp->sd_lock);
1700
1701	sep = avl_first(&sdp->sd_snaps);
1702	while (sep != NULL) {
1703		next = AVL_NEXT(&sdp->sd_snaps, sep);
1704
1705		/*
1706		 * If this snapshot is not mounted, then it must
1707		 * have just been unmounted by somebody else, and
1708		 * will be cleaned up by zfsctl_snapdir_inactive().
1709		 */
1710		if (vn_ismntpt(sep->se_root)) {
1711			error = zfsctl_unmount_snap(sep, fflags, cr);
1712			if (error) {
1713				avl_index_t where;
1714
1715				/*
1716				 * Before reinserting snapshot to the tree,
1717				 * check if it was actually removed. For example
1718				 * when snapshot mount point is busy, we will
1719				 * have an error here, but there will be no need
1720				 * to reinsert snapshot.
1721				 */
1722				if (avl_find(&sdp->sd_snaps, sep, &where) == NULL)
1723					avl_insert(&sdp->sd_snaps, sep, where);
1724				break;
1725			}
1726		}
1727		sep = next;
1728	}
1729
1730	mutex_exit(&sdp->sd_lock);
1731	VN_RELE(dvp);
1732
1733	return (error);
1734}
1735