vdev_disk.c revision 185029
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/spa.h>
28#include <sys/refcount.h>
29#include <sys/vdev_disk.h>
30#include <sys/vdev_impl.h>
31#include <sys/fs/zfs.h>
32#include <sys/zio.h>
33#include <sys/sunldi.h>
34#include <sys/fm/fs/zfs.h>
35
36/*
37 * Virtual device vector for disks.
38 */
39
40extern ldi_ident_t zfs_li;
41
42typedef struct vdev_disk_buf {
43	buf_t	vdb_buf;
44	zio_t	*vdb_io;
45} vdev_disk_buf_t;
46
47static int
48vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *ashift)
49{
50	vdev_disk_t *dvd;
51	struct dk_minfo dkm;
52	int error;
53	dev_t dev;
54	int otyp;
55
56	/*
57	 * We must have a pathname, and it must be absolute.
58	 */
59	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') {
60		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
61		return (EINVAL);
62	}
63
64	dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
65
66	/*
67	 * When opening a disk device, we want to preserve the user's original
68	 * intent.  We always want to open the device by the path the user gave
69	 * us, even if it is one of multiple paths to the save device.  But we
70	 * also want to be able to survive disks being removed/recabled.
71	 * Therefore the sequence of opening devices is:
72	 *
73	 * 1. Try opening the device by path.  For legacy pools without the
74	 *    'whole_disk' property, attempt to fix the path by appending 's0'.
75	 *
76	 * 2. If the devid of the device matches the stored value, return
77	 *    success.
78	 *
79	 * 3. Otherwise, the device may have moved.  Try opening the device
80	 *    by the devid instead.
81	 *
82	 * If the vdev is part of the root pool, we avoid opening it by path.
83	 * We do this because there is no /dev path available early in boot,
84	 * and if we try to open the device by path at a later point, we can
85	 * deadlock when devfsadm attempts to open the underlying backing store
86	 * file.
87	 */
88	if (vd->vdev_devid != NULL) {
89		if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid,
90		    &dvd->vd_minor) != 0) {
91			vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
92			return (EINVAL);
93		}
94	}
95
96	error = EINVAL;		/* presume failure */
97
98	if (vd->vdev_path != NULL && !spa_is_root(vd->vdev_spa)) {
99		ddi_devid_t devid;
100
101		if (vd->vdev_wholedisk == -1ULL) {
102			size_t len = strlen(vd->vdev_path) + 3;
103			char *buf = kmem_alloc(len, KM_SLEEP);
104			ldi_handle_t lh;
105
106			(void) snprintf(buf, len, "%ss0", vd->vdev_path);
107
108			if (ldi_open_by_name(buf, spa_mode, kcred,
109			    &lh, zfs_li) == 0) {
110				spa_strfree(vd->vdev_path);
111				vd->vdev_path = buf;
112				vd->vdev_wholedisk = 1ULL;
113				(void) ldi_close(lh, spa_mode, kcred);
114			} else {
115				kmem_free(buf, len);
116			}
117		}
118
119		error = ldi_open_by_name(vd->vdev_path, spa_mode, kcred,
120		    &dvd->vd_lh, zfs_li);
121
122		/*
123		 * Compare the devid to the stored value.
124		 */
125		if (error == 0 && vd->vdev_devid != NULL &&
126		    ldi_get_devid(dvd->vd_lh, &devid) == 0) {
127			if (ddi_devid_compare(devid, dvd->vd_devid) != 0) {
128				error = EINVAL;
129				(void) ldi_close(dvd->vd_lh, spa_mode, kcred);
130				dvd->vd_lh = NULL;
131			}
132			ddi_devid_free(devid);
133		}
134
135		/*
136		 * If we succeeded in opening the device, but 'vdev_wholedisk'
137		 * is not yet set, then this must be a slice.
138		 */
139		if (error == 0 && vd->vdev_wholedisk == -1ULL)
140			vd->vdev_wholedisk = 0;
141	}
142
143	/*
144	 * If we were unable to open by path, or the devid check fails, open by
145	 * devid instead.
146	 */
147	if (error != 0 && vd->vdev_devid != NULL)
148		error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor,
149		    spa_mode, kcred, &dvd->vd_lh, zfs_li);
150
151	/*
152	 * If all else fails, then try opening by physical path (if available)
153	 * or the logical path (if we failed due to the devid check).  While not
154	 * as reliable as the devid, this will give us something, and the higher
155	 * level vdev validation will prevent us from opening the wrong device.
156	 */
157	if (error) {
158		if (vd->vdev_physpath != NULL &&
159		    (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != ENODEV)
160			error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode,
161			    kcred, &dvd->vd_lh, zfs_li);
162
163		/*
164		 * Note that we don't support the legacy auto-wholedisk support
165		 * as above.  This hasn't been used in a very long time and we
166		 * don't need to propagate its oddities to this edge condition.
167		 */
168		if (error && vd->vdev_path != NULL &&
169		    !spa_is_root(vd->vdev_spa))
170			error = ldi_open_by_name(vd->vdev_path, spa_mode, kcred,
171			    &dvd->vd_lh, zfs_li);
172	}
173
174	if (error) {
175		vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
176		return (error);
177	}
178
179	/*
180	 * Once a device is opened, verify that the physical device path (if
181	 * available) is up to date.
182	 */
183	if (ldi_get_dev(dvd->vd_lh, &dev) == 0 &&
184	    ldi_get_otyp(dvd->vd_lh, &otyp) == 0) {
185		char *physpath, *minorname;
186
187		physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP);
188		minorname = NULL;
189		if (ddi_dev_pathname(dev, otyp, physpath) == 0 &&
190		    ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 &&
191		    (vd->vdev_physpath == NULL ||
192		    strcmp(vd->vdev_physpath, physpath) != 0)) {
193			if (vd->vdev_physpath)
194				spa_strfree(vd->vdev_physpath);
195			(void) strlcat(physpath, ":", MAXPATHLEN);
196			(void) strlcat(physpath, minorname, MAXPATHLEN);
197			vd->vdev_physpath = spa_strdup(physpath);
198		}
199		if (minorname)
200			kmem_free(minorname, strlen(minorname) + 1);
201		kmem_free(physpath, MAXPATHLEN);
202	}
203
204	/*
205	 * Determine the actual size of the device.
206	 */
207	if (ldi_get_size(dvd->vd_lh, psize) != 0) {
208		vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
209		return (EINVAL);
210	}
211
212	/*
213	 * If we own the whole disk, try to enable disk write caching.
214	 * We ignore errors because it's OK if we can't do it.
215	 */
216	if (vd->vdev_wholedisk == 1) {
217		int wce = 1;
218		(void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce,
219		    FKIOCTL, kcred, NULL);
220	}
221
222	/*
223	 * Determine the device's minimum transfer size.
224	 * If the ioctl isn't supported, assume DEV_BSIZE.
225	 */
226	if (ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO, (intptr_t)&dkm,
227	    FKIOCTL, kcred, NULL) != 0)
228		dkm.dki_lbsize = DEV_BSIZE;
229
230	*ashift = highbit(MAX(dkm.dki_lbsize, SPA_MINBLOCKSIZE)) - 1;
231
232	/*
233	 * Clear the nowritecache bit, so that on a vdev_reopen() we will
234	 * try again.
235	 */
236	vd->vdev_nowritecache = B_FALSE;
237
238	return (0);
239}
240
241static void
242vdev_disk_close(vdev_t *vd)
243{
244	vdev_disk_t *dvd = vd->vdev_tsd;
245
246	if (dvd == NULL)
247		return;
248
249	if (dvd->vd_minor != NULL)
250		ddi_devid_str_free(dvd->vd_minor);
251
252	if (dvd->vd_devid != NULL)
253		ddi_devid_free(dvd->vd_devid);
254
255	if (dvd->vd_lh != NULL)
256		(void) ldi_close(dvd->vd_lh, spa_mode, kcred);
257
258	kmem_free(dvd, sizeof (vdev_disk_t));
259	vd->vdev_tsd = NULL;
260}
261
262int
263vdev_disk_physio(ldi_handle_t vd_lh, caddr_t data, size_t size,
264    uint64_t offset, int flags)
265{
266	buf_t *bp;
267	int error = 0;
268
269	if (vd_lh == NULL)
270		return (EINVAL);
271
272	ASSERT(flags & B_READ || flags & B_WRITE);
273
274	bp = getrbuf(KM_SLEEP);
275	bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST;
276	bp->b_bcount = size;
277	bp->b_un.b_addr = (void *)data;
278	bp->b_lblkno = lbtodb(offset);
279	bp->b_bufsize = size;
280
281	error = ldi_strategy(vd_lh, bp);
282	ASSERT(error == 0);
283	if ((error = biowait(bp)) == 0 && bp->b_resid != 0)
284		error = EIO;
285	freerbuf(bp);
286
287	return (error);
288}
289
290static void
291vdev_disk_io_intr(buf_t *bp)
292{
293	vdev_disk_buf_t *vdb = (vdev_disk_buf_t *)bp;
294	zio_t *zio = vdb->vdb_io;
295
296	/*
297	 * The rest of the zio stack only deals with EIO, ECKSUM, and ENXIO.
298	 * Rather than teach the rest of the stack about other error
299	 * possibilities (EFAULT, etc), we normalize the error value here.
300	 */
301	zio->io_error = (geterror(bp) != 0 ? EIO : 0);
302
303	if (zio->io_error == 0 && bp->b_resid != 0)
304		zio->io_error = EIO;
305
306	kmem_free(vdb, sizeof (vdev_disk_buf_t));
307
308	zio_interrupt(zio);
309}
310
311static void
312vdev_disk_ioctl_free(zio_t *zio)
313{
314	kmem_free(zio->io_vsd, sizeof (struct dk_callback));
315}
316
317static void
318vdev_disk_ioctl_done(void *zio_arg, int error)
319{
320	zio_t *zio = zio_arg;
321
322	zio->io_error = error;
323
324	zio_interrupt(zio);
325}
326
327static int
328vdev_disk_io_start(zio_t *zio)
329{
330	vdev_t *vd = zio->io_vd;
331	vdev_disk_t *dvd = vd->vdev_tsd;
332	vdev_disk_buf_t *vdb;
333	struct dk_callback *dkc;
334	buf_t *bp;
335	int error;
336
337	if (zio->io_type == ZIO_TYPE_IOCTL) {
338		/* XXPOLICY */
339		if (!vdev_readable(vd)) {
340			zio->io_error = ENXIO;
341			return (ZIO_PIPELINE_CONTINUE);
342		}
343
344		switch (zio->io_cmd) {
345
346		case DKIOCFLUSHWRITECACHE:
347
348			if (zfs_nocacheflush)
349				break;
350
351			if (vd->vdev_nowritecache) {
352				zio->io_error = ENOTSUP;
353				break;
354			}
355
356			zio->io_vsd = dkc = kmem_alloc(sizeof (*dkc), KM_SLEEP);
357			zio->io_vsd_free = vdev_disk_ioctl_free;
358
359			dkc->dkc_callback = vdev_disk_ioctl_done;
360			dkc->dkc_flag = FLUSH_VOLATILE;
361			dkc->dkc_cookie = zio;
362
363			error = ldi_ioctl(dvd->vd_lh, zio->io_cmd,
364			    (uintptr_t)dkc, FKIOCTL, kcred, NULL);
365
366			if (error == 0) {
367				/*
368				 * The ioctl will be done asychronously,
369				 * and will call vdev_disk_ioctl_done()
370				 * upon completion.
371				 */
372				return (ZIO_PIPELINE_STOP);
373			}
374
375			if (error == ENOTSUP || error == ENOTTY) {
376				/*
377				 * If we get ENOTSUP or ENOTTY, we know that
378				 * no future attempts will ever succeed.
379				 * In this case we set a persistent bit so
380				 * that we don't bother with the ioctl in the
381				 * future.
382				 */
383				vd->vdev_nowritecache = B_TRUE;
384			}
385			zio->io_error = error;
386
387			break;
388
389		default:
390			zio->io_error = ENOTSUP;
391		}
392
393		return (ZIO_PIPELINE_CONTINUE);
394	}
395
396	vdb = kmem_alloc(sizeof (vdev_disk_buf_t), KM_SLEEP);
397
398	vdb->vdb_io = zio;
399	bp = &vdb->vdb_buf;
400
401	bioinit(bp);
402	bp->b_flags = B_BUSY | B_NOCACHE |
403	    (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE) |
404	    ((zio->io_flags & ZIO_FLAG_IO_RETRY) ? 0 : B_FAILFAST);
405	bp->b_bcount = zio->io_size;
406	bp->b_un.b_addr = zio->io_data;
407	bp->b_lblkno = lbtodb(zio->io_offset);
408	bp->b_bufsize = zio->io_size;
409	bp->b_iodone = (int (*)())vdev_disk_io_intr;
410
411	/* ldi_strategy() will return non-zero only on programming errors */
412	VERIFY(ldi_strategy(dvd->vd_lh, bp) == 0);
413
414	return (ZIO_PIPELINE_STOP);
415}
416
417static void
418vdev_disk_io_done(zio_t *zio)
419{
420	vdev_t *vd = zio->io_vd;
421
422	/*
423	 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if
424	 * the device has been removed.  If this is the case, then we trigger an
425	 * asynchronous removal of the device. Otherwise, probe the device and
426	 * make sure it's still accessible.
427	 */
428	if (zio->io_error == EIO) {
429		vdev_disk_t *dvd = vd->vdev_tsd;
430		int state = DKIO_NONE;
431
432		if (ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state,
433		    FKIOCTL, kcred, NULL) == 0 && state != DKIO_INSERTED) {
434			vd->vdev_remove_wanted = B_TRUE;
435			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
436		}
437	}
438}
439
440vdev_ops_t vdev_disk_ops = {
441	vdev_disk_open,
442	vdev_disk_close,
443	vdev_default_asize,
444	vdev_disk_io_start,
445	vdev_disk_io_done,
446	NULL,
447	VDEV_TYPE_DISK,		/* name of this vdev type */
448	B_TRUE			/* leaf vdev */
449};
450
451/*
452 * Given the root disk device devid or pathname, read the label from
453 * the device, and construct a configuration nvlist.
454 */
455int
456vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
457{
458	ldi_handle_t vd_lh;
459	vdev_label_t *label;
460	uint64_t s, size;
461	int l;
462	ddi_devid_t tmpdevid;
463	int error = -1;
464	char *minor_name;
465
466	/*
467	 * Read the device label and build the nvlist.
468	 */
469	if (devid != NULL && ddi_devid_str_decode(devid, &tmpdevid,
470	    &minor_name) == 0) {
471		error = ldi_open_by_devid(tmpdevid, minor_name,
472		    spa_mode, kcred, &vd_lh, zfs_li);
473		ddi_devid_free(tmpdevid);
474		ddi_devid_str_free(minor_name);
475	}
476
477	if (error && (error = ldi_open_by_name(devpath, FREAD, kcred, &vd_lh,
478	    zfs_li)))
479		return (error);
480
481	if (ldi_get_size(vd_lh, &s)) {
482		(void) ldi_close(vd_lh, FREAD, kcred);
483		return (EIO);
484	}
485
486	size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t);
487	label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP);
488
489	for (l = 0; l < VDEV_LABELS; l++) {
490		uint64_t offset, state, txg = 0;
491
492		/* read vdev label */
493		offset = vdev_label_offset(size, l, 0);
494		if (vdev_disk_physio(vd_lh, (caddr_t)label,
495		    VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE +
496		    VDEV_PHYS_SIZE, offset, B_READ) != 0)
497			continue;
498
499		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
500		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
501			*config = NULL;
502			continue;
503		}
504
505		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
506		    &state) != 0 || state >= POOL_STATE_DESTROYED) {
507			nvlist_free(*config);
508			*config = NULL;
509			continue;
510		}
511
512		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
513		    &txg) != 0 || txg == 0) {
514			nvlist_free(*config);
515			*config = NULL;
516			continue;
517		}
518
519		break;
520	}
521
522	kmem_free(label, sizeof (vdev_label_t));
523	(void) ldi_close(vd_lh, FREAD, kcred);
524
525	return (error);
526}
527