165918Sasmodai/*
265918Sasmodai * CDDL HEADER START
365918Sasmodai *
465918Sasmodai * The contents of this file are subject to the terms of the
565918Sasmodai * Common Development and Distribution License (the "License").
665918Sasmodai * You may not use this file except in compliance with the License.
765918Sasmodai *
865918Sasmodai * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
965918Sasmodai * or http://www.opensolaris.org/os/licensing.
1065918Sasmodai * See the License for the specific language governing permissions
1165918Sasmodai * and limitations under the License.
1265918Sasmodai *
1365918Sasmodai * When distributing Covered Code, include this CDDL HEADER in each
1465918Sasmodai * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1565918Sasmodai * If applicable, add the following below this CDDL HEADER, with the
1665918Sasmodai * fields enclosed by brackets "[]" replaced with your own identifying
1765918Sasmodai * information: Portions Copyright [yyyy] [name of copyright owner]
1865918Sasmodai *
1965918Sasmodai * CDDL HEADER END
2065918Sasmodai */
2165918Sasmodai/*
2265918Sasmodai * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
2365918Sasmodai * Copyright (c) 2013 by Delphix. All rights reserved.
2465918Sasmodai * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
2565918Sasmodai * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
2665918Sasmodai */
2765918Sasmodai
2865918Sasmodai#include <sys/zfs_context.h>
2972112Sasmodai#include <sys/spa_impl.h>
3065918Sasmodai#include <sys/spa_boot.h>
3165918Sasmodai#include <sys/zio.h>
3272112Sasmodai#include <sys/zio_checksum.h>
3365918Sasmodai#include <sys/zio_compress.h>
3498415Sobrien#include <sys/dmu.h>
3598415Sobrien#include <sys/dmu_tx.h>
3669356Sasmodai#include <sys/zap.h>
3769356Sasmodai#include <sys/zil.h>
3865918Sasmodai#include <sys/vdev_impl.h>
3972112Sasmodai#include <sys/metaslab.h>
4065918Sasmodai#include <sys/uberblock_impl.h>
4172112Sasmodai#include <sys/txg.h>
4265918Sasmodai#include <sys/avl.h>
4365918Sasmodai#include <sys/unique.h>
4498415Sobrien#include <sys/dsl_pool.h>
4598415Sobrien#include <sys/dsl_dir.h>
4672112Sasmodai#include <sys/dsl_prop.h>
47#include <sys/dsl_scan.h>
48#include <sys/fs/zfs.h>
49#include <sys/metaslab_impl.h>
50#include <sys/arc.h>
51#include <sys/ddt.h>
52#include "zfs_prop.h"
53#include "zfeature_common.h"
54
55/*
56 * SPA locking
57 *
58 * There are four basic locks for managing spa_t structures:
59 *
60 * spa_namespace_lock (global mutex)
61 *
62 *	This lock must be acquired to do any of the following:
63 *
64 *		- Lookup a spa_t by name
65 *		- Add or remove a spa_t from the namespace
66 *		- Increase spa_refcount from non-zero
67 *		- Check if spa_refcount is zero
68 *		- Rename a spa_t
69 *		- add/remove/attach/detach devices
70 *		- Held for the duration of create/destroy/import/export
71 *
72 *	It does not need to handle recursion.  A create or destroy may
73 *	reference objects (files or zvols) in other pools, but by
74 *	definition they must have an existing reference, and will never need
75 *	to lookup a spa_t by name.
76 *
77 * spa_refcount (per-spa refcount_t protected by mutex)
78 *
79 *	This reference count keep track of any active users of the spa_t.  The
80 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
81 *	the refcount is never really 'zero' - opening a pool implicitly keeps
82 *	some references in the DMU.  Internally we check against spa_minref, but
83 *	present the image of a zero/non-zero value to consumers.
84 *
85 * spa_config_lock[] (per-spa array of rwlocks)
86 *
87 *	This protects the spa_t from config changes, and must be held in
88 *	the following circumstances:
89 *
90 *		- RW_READER to perform I/O to the spa
91 *		- RW_WRITER to change the vdev config
92 *
93 * The locking order is fairly straightforward:
94 *
95 *		spa_namespace_lock	->	spa_refcount
96 *
97 *	The namespace lock must be acquired to increase the refcount from 0
98 *	or to check if it is zero.
99 *
100 *		spa_refcount		->	spa_config_lock[]
101 *
102 *	There must be at least one valid reference on the spa_t to acquire
103 *	the config lock.
104 *
105 *		spa_namespace_lock	->	spa_config_lock[]
106 *
107 *	The namespace lock must always be taken before the config lock.
108 *
109 *
110 * The spa_namespace_lock can be acquired directly and is globally visible.
111 *
112 * The namespace is manipulated using the following functions, all of which
113 * require the spa_namespace_lock to be held.
114 *
115 *	spa_lookup()		Lookup a spa_t by name.
116 *
117 *	spa_add()		Create a new spa_t in the namespace.
118 *
119 *	spa_remove()		Remove a spa_t from the namespace.  This also
120 *				frees up any memory associated with the spa_t.
121 *
122 *	spa_next()		Returns the next spa_t in the system, or the
123 *				first if NULL is passed.
124 *
125 *	spa_evict_all()		Shutdown and remove all spa_t structures in
126 *				the system.
127 *
128 *	spa_guid_exists()	Determine whether a pool/device guid exists.
129 *
130 * The spa_refcount is manipulated using the following functions:
131 *
132 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
133 *				called with spa_namespace_lock held if the
134 *				refcount is currently zero.
135 *
136 *	spa_close()		Remove a reference from the spa_t.  This will
137 *				not free the spa_t or remove it from the
138 *				namespace.  No locking is required.
139 *
140 *	spa_refcount_zero()	Returns true if the refcount is currently
141 *				zero.  Must be called with spa_namespace_lock
142 *				held.
143 *
144 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
145 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
146 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
147 *
148 * To read the configuration, it suffices to hold one of these locks as reader.
149 * To modify the configuration, you must hold all locks as writer.  To modify
150 * vdev state without altering the vdev tree's topology (e.g. online/offline),
151 * you must hold SCL_STATE and SCL_ZIO as writer.
152 *
153 * We use these distinct config locks to avoid recursive lock entry.
154 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
155 * block allocations (SCL_ALLOC), which may require reading space maps
156 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
157 *
158 * The spa config locks cannot be normal rwlocks because we need the
159 * ability to hand off ownership.  For example, SCL_ZIO is acquired
160 * by the issuing thread and later released by an interrupt thread.
161 * They do, however, obey the usual write-wanted semantics to prevent
162 * writer (i.e. system administrator) starvation.
163 *
164 * The lock acquisition rules are as follows:
165 *
166 * SCL_CONFIG
167 *	Protects changes to the vdev tree topology, such as vdev
168 *	add/remove/attach/detach.  Protects the dirty config list
169 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
170 *
171 * SCL_STATE
172 *	Protects changes to pool state and vdev state, such as vdev
173 *	online/offline/fault/degrade/clear.  Protects the dirty state list
174 *	(spa_state_dirty_list) and global pool state (spa_state).
175 *
176 * SCL_ALLOC
177 *	Protects changes to metaslab groups and classes.
178 *	Held as reader by metaslab_alloc() and metaslab_claim().
179 *
180 * SCL_ZIO
181 *	Held by bp-level zios (those which have no io_vd upon entry)
182 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
183 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
184 *
185 * SCL_FREE
186 *	Protects changes to metaslab groups and classes.
187 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
188 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
189 *	blocks in zio_done() while another i/o that holds either
190 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
191 *
192 * SCL_VDEV
193 *	Held as reader to prevent changes to the vdev tree during trivial
194 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
195 *	other locks, and lower than all of them, to ensure that it's safe
196 *	to acquire regardless of caller context.
197 *
198 * In addition, the following rules apply:
199 *
200 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
201 *	The lock ordering is SCL_CONFIG > spa_props_lock.
202 *
203 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
204 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
205 *	or zio_write_phys() -- the caller must ensure that the config cannot
206 *	cannot change in the interim, and that the vdev cannot be reopened.
207 *	SCL_STATE as reader suffices for both.
208 *
209 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
210 *
211 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
212 *				for writing.
213 *
214 *	spa_vdev_exit()		Release the config lock, wait for all I/O
215 *				to complete, sync the updated configs to the
216 *				cache, and release the namespace lock.
217 *
218 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
219 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
220 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
221 *
222 * spa_rename() is also implemented within this file since it requires
223 * manipulation of the namespace.
224 */
225
226static avl_tree_t spa_namespace_avl;
227kmutex_t spa_namespace_lock;
228static kcondvar_t spa_namespace_cv;
229static int spa_active_count;
230int spa_max_replication_override = SPA_DVAS_PER_BP;
231
232static kmutex_t spa_spare_lock;
233static avl_tree_t spa_spare_avl;
234static kmutex_t spa_l2cache_lock;
235static avl_tree_t spa_l2cache_avl;
236
237kmem_cache_t *spa_buffer_pool;
238int spa_mode_global;
239
240#ifdef ZFS_DEBUG
241/* Everything except dprintf and spa is on by default in debug builds */
242int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
243#else
244int zfs_flags = 0;
245#endif
246
247/*
248 * zfs_recover can be set to nonzero to attempt to recover from
249 * otherwise-fatal errors, typically caused by on-disk corruption.  When
250 * set, calls to zfs_panic_recover() will turn into warning messages.
251 */
252int zfs_recover = 0;
253SYSCTL_DECL(_vfs_zfs);
254TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
255SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RDTUN, &zfs_recover, 0,
256    "Try to recover from otherwise-fatal errors.");
257
258extern int zfs_txg_synctime_ms;
259
260/*
261 * Expiration time in units of zfs_txg_synctime_ms. This value has two
262 * meanings. First it is used to determine when the spa_deadman logic
263 * should fire. By default the spa_deadman will fire if spa_sync has
264 * not completed in 1000 * zfs_txg_synctime_ms (i.e. 1000 seconds).
265 * Secondly, the value determines if an I/O is considered "hung".
266 * Any I/O that has not completed in zfs_deadman_synctime is considered
267 * "hung" resulting in a system panic.
268 * 1000 zfs_txg_synctime_ms (i.e. 1000 seconds).
269 */
270uint64_t zfs_deadman_synctime = 1000ULL;
271TUNABLE_QUAD("vfs.zfs.deadman_synctime", &zfs_deadman_synctime);
272SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime, CTLFLAG_RDTUN,
273    &zfs_deadman_synctime, 0,
274    "Stalled ZFS I/O expiration time in units of vfs.zfs.txg.synctime_ms");
275
276/*
277 * Default value of -1 for zfs_deadman_enabled is resolved in
278 * zfs_deadman_init()
279 */
280int zfs_deadman_enabled = -1;
281TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
282SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
283    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
284
285#ifndef illumos
286#ifdef _KERNEL
287static void
288zfs_deadman_init()
289{
290	/*
291	 * If we are not i386 or amd64 or in a virtual machine,
292	 * disable ZFS deadman thread by default
293	 */
294	if (zfs_deadman_enabled == -1) {
295#if defined(__amd64__) || defined(__i386__)
296		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
297#else
298		zfs_deadman_enabled = 0;
299#endif
300	}
301}
302#endif	/* _KERNEL */
303#endif	/* !illumos */
304
305/*
306 * ==========================================================================
307 * SPA config locking
308 * ==========================================================================
309 */
310static void
311spa_config_lock_init(spa_t *spa)
312{
313	for (int i = 0; i < SCL_LOCKS; i++) {
314		spa_config_lock_t *scl = &spa->spa_config_lock[i];
315		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
316		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
317		refcount_create_untracked(&scl->scl_count);
318		scl->scl_writer = NULL;
319		scl->scl_write_wanted = 0;
320	}
321}
322
323static void
324spa_config_lock_destroy(spa_t *spa)
325{
326	for (int i = 0; i < SCL_LOCKS; i++) {
327		spa_config_lock_t *scl = &spa->spa_config_lock[i];
328		mutex_destroy(&scl->scl_lock);
329		cv_destroy(&scl->scl_cv);
330		refcount_destroy(&scl->scl_count);
331		ASSERT(scl->scl_writer == NULL);
332		ASSERT(scl->scl_write_wanted == 0);
333	}
334}
335
336int
337spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
338{
339	for (int i = 0; i < SCL_LOCKS; i++) {
340		spa_config_lock_t *scl = &spa->spa_config_lock[i];
341		if (!(locks & (1 << i)))
342			continue;
343		mutex_enter(&scl->scl_lock);
344		if (rw == RW_READER) {
345			if (scl->scl_writer || scl->scl_write_wanted) {
346				mutex_exit(&scl->scl_lock);
347				spa_config_exit(spa, locks ^ (1 << i), tag);
348				return (0);
349			}
350		} else {
351			ASSERT(scl->scl_writer != curthread);
352			if (!refcount_is_zero(&scl->scl_count)) {
353				mutex_exit(&scl->scl_lock);
354				spa_config_exit(spa, locks ^ (1 << i), tag);
355				return (0);
356			}
357			scl->scl_writer = curthread;
358		}
359		(void) refcount_add(&scl->scl_count, tag);
360		mutex_exit(&scl->scl_lock);
361	}
362	return (1);
363}
364
365void
366spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
367{
368	int wlocks_held = 0;
369
370	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
371
372	for (int i = 0; i < SCL_LOCKS; i++) {
373		spa_config_lock_t *scl = &spa->spa_config_lock[i];
374		if (scl->scl_writer == curthread)
375			wlocks_held |= (1 << i);
376		if (!(locks & (1 << i)))
377			continue;
378		mutex_enter(&scl->scl_lock);
379		if (rw == RW_READER) {
380			while (scl->scl_writer || scl->scl_write_wanted) {
381				cv_wait(&scl->scl_cv, &scl->scl_lock);
382			}
383		} else {
384			ASSERT(scl->scl_writer != curthread);
385			while (!refcount_is_zero(&scl->scl_count)) {
386				scl->scl_write_wanted++;
387				cv_wait(&scl->scl_cv, &scl->scl_lock);
388				scl->scl_write_wanted--;
389			}
390			scl->scl_writer = curthread;
391		}
392		(void) refcount_add(&scl->scl_count, tag);
393		mutex_exit(&scl->scl_lock);
394	}
395	ASSERT(wlocks_held <= locks);
396}
397
398void
399spa_config_exit(spa_t *spa, int locks, void *tag)
400{
401	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
402		spa_config_lock_t *scl = &spa->spa_config_lock[i];
403		if (!(locks & (1 << i)))
404			continue;
405		mutex_enter(&scl->scl_lock);
406		ASSERT(!refcount_is_zero(&scl->scl_count));
407		if (refcount_remove(&scl->scl_count, tag) == 0) {
408			ASSERT(scl->scl_writer == NULL ||
409			    scl->scl_writer == curthread);
410			scl->scl_writer = NULL;	/* OK in either case */
411			cv_broadcast(&scl->scl_cv);
412		}
413		mutex_exit(&scl->scl_lock);
414	}
415}
416
417int
418spa_config_held(spa_t *spa, int locks, krw_t rw)
419{
420	int locks_held = 0;
421
422	for (int i = 0; i < SCL_LOCKS; i++) {
423		spa_config_lock_t *scl = &spa->spa_config_lock[i];
424		if (!(locks & (1 << i)))
425			continue;
426		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
427		    (rw == RW_WRITER && scl->scl_writer == curthread))
428			locks_held |= 1 << i;
429	}
430
431	return (locks_held);
432}
433
434/*
435 * ==========================================================================
436 * SPA namespace functions
437 * ==========================================================================
438 */
439
440/*
441 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
442 * Returns NULL if no matching spa_t is found.
443 */
444spa_t *
445spa_lookup(const char *name)
446{
447	static spa_t search;	/* spa_t is large; don't allocate on stack */
448	spa_t *spa;
449	avl_index_t where;
450	char *cp;
451
452	ASSERT(MUTEX_HELD(&spa_namespace_lock));
453
454	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
455
456	/*
457	 * If it's a full dataset name, figure out the pool name and
458	 * just use that.
459	 */
460	cp = strpbrk(search.spa_name, "/@");
461	if (cp != NULL)
462		*cp = '\0';
463
464	spa = avl_find(&spa_namespace_avl, &search, &where);
465
466	return (spa);
467}
468
469/*
470 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
471 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
472 * looking for potentially hung I/Os.
473 */
474void
475spa_deadman(void *arg)
476{
477	spa_t *spa = arg;
478
479	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
480	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
481	    ++spa->spa_deadman_calls);
482	if (zfs_deadman_enabled)
483		vdev_deadman(spa->spa_root_vdev);
484}
485
486/*
487 * Create an uninitialized spa_t with the given name.  Requires
488 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
489 * exist by calling spa_lookup() first.
490 */
491spa_t *
492spa_add(const char *name, nvlist_t *config, const char *altroot)
493{
494	spa_t *spa;
495	spa_config_dirent_t *dp;
496#ifdef illumos
497	cyc_handler_t hdlr;
498	cyc_time_t when;
499#endif
500
501	ASSERT(MUTEX_HELD(&spa_namespace_lock));
502
503	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
504
505	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
506	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
507	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
508	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
509	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
510	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
511	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
512	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
513	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
514
515	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
516	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
517	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
518	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
519
520	for (int t = 0; t < TXG_SIZE; t++)
521		bplist_create(&spa->spa_free_bplist[t]);
522
523	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
524	spa->spa_state = POOL_STATE_UNINITIALIZED;
525	spa->spa_freeze_txg = UINT64_MAX;
526	spa->spa_final_txg = UINT64_MAX;
527	spa->spa_load_max_txg = UINT64_MAX;
528	spa->spa_proc = &p0;
529	spa->spa_proc_state = SPA_PROC_NONE;
530
531#ifdef illumos
532	hdlr.cyh_func = spa_deadman;
533	hdlr.cyh_arg = spa;
534	hdlr.cyh_level = CY_LOW_LEVEL;
535#endif
536
537	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime *
538	    zfs_txg_synctime_ms);
539
540#ifdef illumos
541	/*
542	 * This determines how often we need to check for hung I/Os after
543	 * the cyclic has already fired. Since checking for hung I/Os is
544	 * an expensive operation we don't want to check too frequently.
545	 * Instead wait for 5 synctimes before checking again.
546	 */
547	when.cyt_interval = MSEC2NSEC(5 * zfs_txg_synctime_ms);
548	when.cyt_when = CY_INFINITY;
549	mutex_enter(&cpu_lock);
550	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
551	mutex_exit(&cpu_lock);
552#else	/* !illumos */
553#ifdef _KERNEL
554	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
555#endif
556#endif
557	refcount_create(&spa->spa_refcount);
558	spa_config_lock_init(spa);
559
560	avl_add(&spa_namespace_avl, spa);
561
562	/*
563	 * Set the alternate root, if there is one.
564	 */
565	if (altroot) {
566		spa->spa_root = spa_strdup(altroot);
567		spa_active_count++;
568	}
569
570	/*
571	 * Every pool starts with the default cachefile
572	 */
573	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
574	    offsetof(spa_config_dirent_t, scd_link));
575
576	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
577	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
578	list_insert_head(&spa->spa_config_list, dp);
579
580	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
581	    KM_SLEEP) == 0);
582
583	if (config != NULL) {
584		nvlist_t *features;
585
586		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
587		    &features) == 0) {
588			VERIFY(nvlist_dup(features, &spa->spa_label_features,
589			    0) == 0);
590		}
591
592		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
593	}
594
595	if (spa->spa_label_features == NULL) {
596		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
597		    KM_SLEEP) == 0);
598	}
599
600	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
601
602	return (spa);
603}
604
605/*
606 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
607 * spa_namespace_lock.  This is called only after the spa_t has been closed and
608 * deactivated.
609 */
610void
611spa_remove(spa_t *spa)
612{
613	spa_config_dirent_t *dp;
614
615	ASSERT(MUTEX_HELD(&spa_namespace_lock));
616	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
617
618	nvlist_free(spa->spa_config_splitting);
619
620	avl_remove(&spa_namespace_avl, spa);
621	cv_broadcast(&spa_namespace_cv);
622
623	if (spa->spa_root) {
624		spa_strfree(spa->spa_root);
625		spa_active_count--;
626	}
627
628	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
629		list_remove(&spa->spa_config_list, dp);
630		if (dp->scd_path != NULL)
631			spa_strfree(dp->scd_path);
632		kmem_free(dp, sizeof (spa_config_dirent_t));
633	}
634
635	list_destroy(&spa->spa_config_list);
636
637	nvlist_free(spa->spa_label_features);
638	nvlist_free(spa->spa_load_info);
639	spa_config_set(spa, NULL);
640
641#ifdef illumos
642	mutex_enter(&cpu_lock);
643	if (spa->spa_deadman_cycid != CYCLIC_NONE)
644		cyclic_remove(spa->spa_deadman_cycid);
645	mutex_exit(&cpu_lock);
646	spa->spa_deadman_cycid = CYCLIC_NONE;
647#else	/* !illumos */
648#ifdef _KERNEL
649	callout_drain(&spa->spa_deadman_cycid);
650#endif
651#endif
652
653	refcount_destroy(&spa->spa_refcount);
654
655	spa_config_lock_destroy(spa);
656
657	for (int t = 0; t < TXG_SIZE; t++)
658		bplist_destroy(&spa->spa_free_bplist[t]);
659
660	cv_destroy(&spa->spa_async_cv);
661	cv_destroy(&spa->spa_proc_cv);
662	cv_destroy(&spa->spa_scrub_io_cv);
663	cv_destroy(&spa->spa_suspend_cv);
664
665	mutex_destroy(&spa->spa_async_lock);
666	mutex_destroy(&spa->spa_errlist_lock);
667	mutex_destroy(&spa->spa_errlog_lock);
668	mutex_destroy(&spa->spa_history_lock);
669	mutex_destroy(&spa->spa_proc_lock);
670	mutex_destroy(&spa->spa_props_lock);
671	mutex_destroy(&spa->spa_scrub_lock);
672	mutex_destroy(&spa->spa_suspend_lock);
673	mutex_destroy(&spa->spa_vdev_top_lock);
674
675	kmem_free(spa, sizeof (spa_t));
676}
677
678/*
679 * Given a pool, return the next pool in the namespace, or NULL if there is
680 * none.  If 'prev' is NULL, return the first pool.
681 */
682spa_t *
683spa_next(spa_t *prev)
684{
685	ASSERT(MUTEX_HELD(&spa_namespace_lock));
686
687	if (prev)
688		return (AVL_NEXT(&spa_namespace_avl, prev));
689	else
690		return (avl_first(&spa_namespace_avl));
691}
692
693/*
694 * ==========================================================================
695 * SPA refcount functions
696 * ==========================================================================
697 */
698
699/*
700 * Add a reference to the given spa_t.  Must have at least one reference, or
701 * have the namespace lock held.
702 */
703void
704spa_open_ref(spa_t *spa, void *tag)
705{
706	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
707	    MUTEX_HELD(&spa_namespace_lock));
708	(void) refcount_add(&spa->spa_refcount, tag);
709}
710
711/*
712 * Remove a reference to the given spa_t.  Must have at least one reference, or
713 * have the namespace lock held.
714 */
715void
716spa_close(spa_t *spa, void *tag)
717{
718	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
719	    MUTEX_HELD(&spa_namespace_lock));
720	(void) refcount_remove(&spa->spa_refcount, tag);
721}
722
723/*
724 * Check to see if the spa refcount is zero.  Must be called with
725 * spa_namespace_lock held.  We really compare against spa_minref, which is the
726 * number of references acquired when opening a pool
727 */
728boolean_t
729spa_refcount_zero(spa_t *spa)
730{
731	ASSERT(MUTEX_HELD(&spa_namespace_lock));
732
733	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
734}
735
736/*
737 * ==========================================================================
738 * SPA spare and l2cache tracking
739 * ==========================================================================
740 */
741
742/*
743 * Hot spares and cache devices are tracked using the same code below,
744 * for 'auxiliary' devices.
745 */
746
747typedef struct spa_aux {
748	uint64_t	aux_guid;
749	uint64_t	aux_pool;
750	avl_node_t	aux_avl;
751	int		aux_count;
752} spa_aux_t;
753
754static int
755spa_aux_compare(const void *a, const void *b)
756{
757	const spa_aux_t *sa = a;
758	const spa_aux_t *sb = b;
759
760	if (sa->aux_guid < sb->aux_guid)
761		return (-1);
762	else if (sa->aux_guid > sb->aux_guid)
763		return (1);
764	else
765		return (0);
766}
767
768void
769spa_aux_add(vdev_t *vd, avl_tree_t *avl)
770{
771	avl_index_t where;
772	spa_aux_t search;
773	spa_aux_t *aux;
774
775	search.aux_guid = vd->vdev_guid;
776	if ((aux = avl_find(avl, &search, &where)) != NULL) {
777		aux->aux_count++;
778	} else {
779		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
780		aux->aux_guid = vd->vdev_guid;
781		aux->aux_count = 1;
782		avl_insert(avl, aux, where);
783	}
784}
785
786void
787spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
788{
789	spa_aux_t search;
790	spa_aux_t *aux;
791	avl_index_t where;
792
793	search.aux_guid = vd->vdev_guid;
794	aux = avl_find(avl, &search, &where);
795
796	ASSERT(aux != NULL);
797
798	if (--aux->aux_count == 0) {
799		avl_remove(avl, aux);
800		kmem_free(aux, sizeof (spa_aux_t));
801	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
802		aux->aux_pool = 0ULL;
803	}
804}
805
806boolean_t
807spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
808{
809	spa_aux_t search, *found;
810
811	search.aux_guid = guid;
812	found = avl_find(avl, &search, NULL);
813
814	if (pool) {
815		if (found)
816			*pool = found->aux_pool;
817		else
818			*pool = 0ULL;
819	}
820
821	if (refcnt) {
822		if (found)
823			*refcnt = found->aux_count;
824		else
825			*refcnt = 0;
826	}
827
828	return (found != NULL);
829}
830
831void
832spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
833{
834	spa_aux_t search, *found;
835	avl_index_t where;
836
837	search.aux_guid = vd->vdev_guid;
838	found = avl_find(avl, &search, &where);
839	ASSERT(found != NULL);
840	ASSERT(found->aux_pool == 0ULL);
841
842	found->aux_pool = spa_guid(vd->vdev_spa);
843}
844
845/*
846 * Spares are tracked globally due to the following constraints:
847 *
848 * 	- A spare may be part of multiple pools.
849 * 	- A spare may be added to a pool even if it's actively in use within
850 *	  another pool.
851 * 	- A spare in use in any pool can only be the source of a replacement if
852 *	  the target is a spare in the same pool.
853 *
854 * We keep track of all spares on the system through the use of a reference
855 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
856 * spare, then we bump the reference count in the AVL tree.  In addition, we set
857 * the 'vdev_isspare' member to indicate that the device is a spare (active or
858 * inactive).  When a spare is made active (used to replace a device in the
859 * pool), we also keep track of which pool its been made a part of.
860 *
861 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
862 * called under the spa_namespace lock as part of vdev reconfiguration.  The
863 * separate spare lock exists for the status query path, which does not need to
864 * be completely consistent with respect to other vdev configuration changes.
865 */
866
867static int
868spa_spare_compare(const void *a, const void *b)
869{
870	return (spa_aux_compare(a, b));
871}
872
873void
874spa_spare_add(vdev_t *vd)
875{
876	mutex_enter(&spa_spare_lock);
877	ASSERT(!vd->vdev_isspare);
878	spa_aux_add(vd, &spa_spare_avl);
879	vd->vdev_isspare = B_TRUE;
880	mutex_exit(&spa_spare_lock);
881}
882
883void
884spa_spare_remove(vdev_t *vd)
885{
886	mutex_enter(&spa_spare_lock);
887	ASSERT(vd->vdev_isspare);
888	spa_aux_remove(vd, &spa_spare_avl);
889	vd->vdev_isspare = B_FALSE;
890	mutex_exit(&spa_spare_lock);
891}
892
893boolean_t
894spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
895{
896	boolean_t found;
897
898	mutex_enter(&spa_spare_lock);
899	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
900	mutex_exit(&spa_spare_lock);
901
902	return (found);
903}
904
905void
906spa_spare_activate(vdev_t *vd)
907{
908	mutex_enter(&spa_spare_lock);
909	ASSERT(vd->vdev_isspare);
910	spa_aux_activate(vd, &spa_spare_avl);
911	mutex_exit(&spa_spare_lock);
912}
913
914/*
915 * Level 2 ARC devices are tracked globally for the same reasons as spares.
916 * Cache devices currently only support one pool per cache device, and so
917 * for these devices the aux reference count is currently unused beyond 1.
918 */
919
920static int
921spa_l2cache_compare(const void *a, const void *b)
922{
923	return (spa_aux_compare(a, b));
924}
925
926void
927spa_l2cache_add(vdev_t *vd)
928{
929	mutex_enter(&spa_l2cache_lock);
930	ASSERT(!vd->vdev_isl2cache);
931	spa_aux_add(vd, &spa_l2cache_avl);
932	vd->vdev_isl2cache = B_TRUE;
933	mutex_exit(&spa_l2cache_lock);
934}
935
936void
937spa_l2cache_remove(vdev_t *vd)
938{
939	mutex_enter(&spa_l2cache_lock);
940	ASSERT(vd->vdev_isl2cache);
941	spa_aux_remove(vd, &spa_l2cache_avl);
942	vd->vdev_isl2cache = B_FALSE;
943	mutex_exit(&spa_l2cache_lock);
944}
945
946boolean_t
947spa_l2cache_exists(uint64_t guid, uint64_t *pool)
948{
949	boolean_t found;
950
951	mutex_enter(&spa_l2cache_lock);
952	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
953	mutex_exit(&spa_l2cache_lock);
954
955	return (found);
956}
957
958void
959spa_l2cache_activate(vdev_t *vd)
960{
961	mutex_enter(&spa_l2cache_lock);
962	ASSERT(vd->vdev_isl2cache);
963	spa_aux_activate(vd, &spa_l2cache_avl);
964	mutex_exit(&spa_l2cache_lock);
965}
966
967/*
968 * ==========================================================================
969 * SPA vdev locking
970 * ==========================================================================
971 */
972
973/*
974 * Lock the given spa_t for the purpose of adding or removing a vdev.
975 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
976 * It returns the next transaction group for the spa_t.
977 */
978uint64_t
979spa_vdev_enter(spa_t *spa)
980{
981	mutex_enter(&spa->spa_vdev_top_lock);
982	mutex_enter(&spa_namespace_lock);
983	return (spa_vdev_config_enter(spa));
984}
985
986/*
987 * Internal implementation for spa_vdev_enter().  Used when a vdev
988 * operation requires multiple syncs (i.e. removing a device) while
989 * keeping the spa_namespace_lock held.
990 */
991uint64_t
992spa_vdev_config_enter(spa_t *spa)
993{
994	ASSERT(MUTEX_HELD(&spa_namespace_lock));
995
996	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
997
998	return (spa_last_synced_txg(spa) + 1);
999}
1000
1001/*
1002 * Used in combination with spa_vdev_config_enter() to allow the syncing
1003 * of multiple transactions without releasing the spa_namespace_lock.
1004 */
1005void
1006spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1007{
1008	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1009
1010	int config_changed = B_FALSE;
1011
1012	ASSERT(txg > spa_last_synced_txg(spa));
1013
1014	spa->spa_pending_vdev = NULL;
1015
1016	/*
1017	 * Reassess the DTLs.
1018	 */
1019	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1020
1021	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1022		config_changed = B_TRUE;
1023		spa->spa_config_generation++;
1024	}
1025
1026	/*
1027	 * Verify the metaslab classes.
1028	 */
1029	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1030	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1031
1032	spa_config_exit(spa, SCL_ALL, spa);
1033
1034	/*
1035	 * Panic the system if the specified tag requires it.  This
1036	 * is useful for ensuring that configurations are updated
1037	 * transactionally.
1038	 */
1039	if (zio_injection_enabled)
1040		zio_handle_panic_injection(spa, tag, 0);
1041
1042	/*
1043	 * Note: this txg_wait_synced() is important because it ensures
1044	 * that there won't be more than one config change per txg.
1045	 * This allows us to use the txg as the generation number.
1046	 */
1047	if (error == 0)
1048		txg_wait_synced(spa->spa_dsl_pool, txg);
1049
1050	if (vd != NULL) {
1051		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
1052		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1053		vdev_free(vd);
1054		spa_config_exit(spa, SCL_ALL, spa);
1055	}
1056
1057	/*
1058	 * If the config changed, update the config cache.
1059	 */
1060	if (config_changed)
1061		spa_config_sync(spa, B_FALSE, B_TRUE);
1062}
1063
1064/*
1065 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1066 * locking of spa_vdev_enter(), we also want make sure the transactions have
1067 * synced to disk, and then update the global configuration cache with the new
1068 * information.
1069 */
1070int
1071spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1072{
1073	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1074	mutex_exit(&spa_namespace_lock);
1075	mutex_exit(&spa->spa_vdev_top_lock);
1076
1077	return (error);
1078}
1079
1080/*
1081 * Lock the given spa_t for the purpose of changing vdev state.
1082 */
1083void
1084spa_vdev_state_enter(spa_t *spa, int oplocks)
1085{
1086	int locks = SCL_STATE_ALL | oplocks;
1087
1088	/*
1089	 * Root pools may need to read of the underlying devfs filesystem
1090	 * when opening up a vdev.  Unfortunately if we're holding the
1091	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1092	 * the read from the root filesystem.  Instead we "prefetch"
1093	 * the associated vnodes that we need prior to opening the
1094	 * underlying devices and cache them so that we can prevent
1095	 * any I/O when we are doing the actual open.
1096	 */
1097	if (spa_is_root(spa)) {
1098		int low = locks & ~(SCL_ZIO - 1);
1099		int high = locks & ~low;
1100
1101		spa_config_enter(spa, high, spa, RW_WRITER);
1102		vdev_hold(spa->spa_root_vdev);
1103		spa_config_enter(spa, low, spa, RW_WRITER);
1104	} else {
1105		spa_config_enter(spa, locks, spa, RW_WRITER);
1106	}
1107	spa->spa_vdev_locks = locks;
1108}
1109
1110int
1111spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1112{
1113	boolean_t config_changed = B_FALSE;
1114
1115	if (vd != NULL || error == 0)
1116		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1117		    0, 0, B_FALSE);
1118
1119	if (vd != NULL) {
1120		vdev_state_dirty(vd->vdev_top);
1121		config_changed = B_TRUE;
1122		spa->spa_config_generation++;
1123	}
1124
1125	if (spa_is_root(spa))
1126		vdev_rele(spa->spa_root_vdev);
1127
1128	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1129	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1130
1131	/*
1132	 * If anything changed, wait for it to sync.  This ensures that,
1133	 * from the system administrator's perspective, zpool(1M) commands
1134	 * are synchronous.  This is important for things like zpool offline:
1135	 * when the command completes, you expect no further I/O from ZFS.
1136	 */
1137	if (vd != NULL)
1138		txg_wait_synced(spa->spa_dsl_pool, 0);
1139
1140	/*
1141	 * If the config changed, update the config cache.
1142	 */
1143	if (config_changed) {
1144		mutex_enter(&spa_namespace_lock);
1145		spa_config_sync(spa, B_FALSE, B_TRUE);
1146		mutex_exit(&spa_namespace_lock);
1147	}
1148
1149	return (error);
1150}
1151
1152/*
1153 * ==========================================================================
1154 * Miscellaneous functions
1155 * ==========================================================================
1156 */
1157
1158void
1159spa_activate_mos_feature(spa_t *spa, const char *feature)
1160{
1161	(void) nvlist_add_boolean(spa->spa_label_features, feature);
1162	vdev_config_dirty(spa->spa_root_vdev);
1163}
1164
1165void
1166spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1167{
1168	(void) nvlist_remove_all(spa->spa_label_features, feature);
1169	vdev_config_dirty(spa->spa_root_vdev);
1170}
1171
1172/*
1173 * Rename a spa_t.
1174 */
1175int
1176spa_rename(const char *name, const char *newname)
1177{
1178	spa_t *spa;
1179	int err;
1180
1181	/*
1182	 * Lookup the spa_t and grab the config lock for writing.  We need to
1183	 * actually open the pool so that we can sync out the necessary labels.
1184	 * It's OK to call spa_open() with the namespace lock held because we
1185	 * allow recursive calls for other reasons.
1186	 */
1187	mutex_enter(&spa_namespace_lock);
1188	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1189		mutex_exit(&spa_namespace_lock);
1190		return (err);
1191	}
1192
1193	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1194
1195	avl_remove(&spa_namespace_avl, spa);
1196	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1197	avl_add(&spa_namespace_avl, spa);
1198
1199	/*
1200	 * Sync all labels to disk with the new names by marking the root vdev
1201	 * dirty and waiting for it to sync.  It will pick up the new pool name
1202	 * during the sync.
1203	 */
1204	vdev_config_dirty(spa->spa_root_vdev);
1205
1206	spa_config_exit(spa, SCL_ALL, FTAG);
1207
1208	txg_wait_synced(spa->spa_dsl_pool, 0);
1209
1210	/*
1211	 * Sync the updated config cache.
1212	 */
1213	spa_config_sync(spa, B_FALSE, B_TRUE);
1214
1215	spa_close(spa, FTAG);
1216
1217	mutex_exit(&spa_namespace_lock);
1218
1219	return (0);
1220}
1221
1222/*
1223 * Return the spa_t associated with given pool_guid, if it exists.  If
1224 * device_guid is non-zero, determine whether the pool exists *and* contains
1225 * a device with the specified device_guid.
1226 */
1227spa_t *
1228spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1229{
1230	spa_t *spa;
1231	avl_tree_t *t = &spa_namespace_avl;
1232
1233	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1234
1235	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1236		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1237			continue;
1238		if (spa->spa_root_vdev == NULL)
1239			continue;
1240		if (spa_guid(spa) == pool_guid) {
1241			if (device_guid == 0)
1242				break;
1243
1244			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1245			    device_guid) != NULL)
1246				break;
1247
1248			/*
1249			 * Check any devices we may be in the process of adding.
1250			 */
1251			if (spa->spa_pending_vdev) {
1252				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1253				    device_guid) != NULL)
1254					break;
1255			}
1256		}
1257	}
1258
1259	return (spa);
1260}
1261
1262/*
1263 * Determine whether a pool with the given pool_guid exists.
1264 */
1265boolean_t
1266spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1267{
1268	return (spa_by_guid(pool_guid, device_guid) != NULL);
1269}
1270
1271char *
1272spa_strdup(const char *s)
1273{
1274	size_t len;
1275	char *new;
1276
1277	len = strlen(s);
1278	new = kmem_alloc(len + 1, KM_SLEEP);
1279	bcopy(s, new, len);
1280	new[len] = '\0';
1281
1282	return (new);
1283}
1284
1285void
1286spa_strfree(char *s)
1287{
1288	kmem_free(s, strlen(s) + 1);
1289}
1290
1291uint64_t
1292spa_get_random(uint64_t range)
1293{
1294	uint64_t r;
1295
1296	ASSERT(range != 0);
1297
1298	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1299
1300	return (r % range);
1301}
1302
1303uint64_t
1304spa_generate_guid(spa_t *spa)
1305{
1306	uint64_t guid = spa_get_random(-1ULL);
1307
1308	if (spa != NULL) {
1309		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1310			guid = spa_get_random(-1ULL);
1311	} else {
1312		while (guid == 0 || spa_guid_exists(guid, 0))
1313			guid = spa_get_random(-1ULL);
1314	}
1315
1316	return (guid);
1317}
1318
1319void
1320sprintf_blkptr(char *buf, const blkptr_t *bp)
1321{
1322	char type[256];
1323	char *checksum = NULL;
1324	char *compress = NULL;
1325
1326	if (bp != NULL) {
1327		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1328			dmu_object_byteswap_t bswap =
1329			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1330			(void) snprintf(type, sizeof (type), "bswap %s %s",
1331			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1332			    "metadata" : "data",
1333			    dmu_ot_byteswap[bswap].ob_name);
1334		} else {
1335			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1336			    sizeof (type));
1337		}
1338		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1339		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1340	}
1341
1342	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1343}
1344
1345void
1346spa_freeze(spa_t *spa)
1347{
1348	uint64_t freeze_txg = 0;
1349
1350	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1351	if (spa->spa_freeze_txg == UINT64_MAX) {
1352		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1353		spa->spa_freeze_txg = freeze_txg;
1354	}
1355	spa_config_exit(spa, SCL_ALL, FTAG);
1356	if (freeze_txg != 0)
1357		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1358}
1359
1360void
1361zfs_panic_recover(const char *fmt, ...)
1362{
1363	va_list adx;
1364
1365	va_start(adx, fmt);
1366	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1367	va_end(adx);
1368}
1369
1370/*
1371 * This is a stripped-down version of strtoull, suitable only for converting
1372 * lowercase hexadecimal numbers that don't overflow.
1373 */
1374uint64_t
1375zfs_strtonum(const char *str, char **nptr)
1376{
1377	uint64_t val = 0;
1378	char c;
1379	int digit;
1380
1381	while ((c = *str) != '\0') {
1382		if (c >= '0' && c <= '9')
1383			digit = c - '0';
1384		else if (c >= 'a' && c <= 'f')
1385			digit = 10 + c - 'a';
1386		else
1387			break;
1388
1389		val *= 16;
1390		val += digit;
1391
1392		str++;
1393	}
1394
1395	if (nptr)
1396		*nptr = (char *)str;
1397
1398	return (val);
1399}
1400
1401/*
1402 * ==========================================================================
1403 * Accessor functions
1404 * ==========================================================================
1405 */
1406
1407boolean_t
1408spa_shutting_down(spa_t *spa)
1409{
1410	return (spa->spa_async_suspended);
1411}
1412
1413dsl_pool_t *
1414spa_get_dsl(spa_t *spa)
1415{
1416	return (spa->spa_dsl_pool);
1417}
1418
1419boolean_t
1420spa_is_initializing(spa_t *spa)
1421{
1422	return (spa->spa_is_initializing);
1423}
1424
1425blkptr_t *
1426spa_get_rootblkptr(spa_t *spa)
1427{
1428	return (&spa->spa_ubsync.ub_rootbp);
1429}
1430
1431void
1432spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1433{
1434	spa->spa_uberblock.ub_rootbp = *bp;
1435}
1436
1437void
1438spa_altroot(spa_t *spa, char *buf, size_t buflen)
1439{
1440	if (spa->spa_root == NULL)
1441		buf[0] = '\0';
1442	else
1443		(void) strncpy(buf, spa->spa_root, buflen);
1444}
1445
1446int
1447spa_sync_pass(spa_t *spa)
1448{
1449	return (spa->spa_sync_pass);
1450}
1451
1452char *
1453spa_name(spa_t *spa)
1454{
1455	return (spa->spa_name);
1456}
1457
1458uint64_t
1459spa_guid(spa_t *spa)
1460{
1461	dsl_pool_t *dp = spa_get_dsl(spa);
1462	uint64_t guid;
1463
1464	/*
1465	 * If we fail to parse the config during spa_load(), we can go through
1466	 * the error path (which posts an ereport) and end up here with no root
1467	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1468	 * this case.
1469	 */
1470	if (spa->spa_root_vdev == NULL)
1471		return (spa->spa_config_guid);
1472
1473	guid = spa->spa_last_synced_guid != 0 ?
1474	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1475
1476	/*
1477	 * Return the most recently synced out guid unless we're
1478	 * in syncing context.
1479	 */
1480	if (dp && dsl_pool_sync_context(dp))
1481		return (spa->spa_root_vdev->vdev_guid);
1482	else
1483		return (guid);
1484}
1485
1486uint64_t
1487spa_load_guid(spa_t *spa)
1488{
1489	/*
1490	 * This is a GUID that exists solely as a reference for the
1491	 * purposes of the arc.  It is generated at load time, and
1492	 * is never written to persistent storage.
1493	 */
1494	return (spa->spa_load_guid);
1495}
1496
1497uint64_t
1498spa_last_synced_txg(spa_t *spa)
1499{
1500	return (spa->spa_ubsync.ub_txg);
1501}
1502
1503uint64_t
1504spa_first_txg(spa_t *spa)
1505{
1506	return (spa->spa_first_txg);
1507}
1508
1509uint64_t
1510spa_syncing_txg(spa_t *spa)
1511{
1512	return (spa->spa_syncing_txg);
1513}
1514
1515pool_state_t
1516spa_state(spa_t *spa)
1517{
1518	return (spa->spa_state);
1519}
1520
1521spa_load_state_t
1522spa_load_state(spa_t *spa)
1523{
1524	return (spa->spa_load_state);
1525}
1526
1527uint64_t
1528spa_freeze_txg(spa_t *spa)
1529{
1530	return (spa->spa_freeze_txg);
1531}
1532
1533/* ARGSUSED */
1534uint64_t
1535spa_get_asize(spa_t *spa, uint64_t lsize)
1536{
1537	/*
1538	 * The worst case is single-sector max-parity RAID-Z blocks, in which
1539	 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1540	 * times the size; so just assume that.  Add to this the fact that
1541	 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1542	 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1543	 */
1544	return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1545}
1546
1547uint64_t
1548spa_get_dspace(spa_t *spa)
1549{
1550	return (spa->spa_dspace);
1551}
1552
1553void
1554spa_update_dspace(spa_t *spa)
1555{
1556	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1557	    ddt_get_dedup_dspace(spa);
1558}
1559
1560/*
1561 * Return the failure mode that has been set to this pool. The default
1562 * behavior will be to block all I/Os when a complete failure occurs.
1563 */
1564uint8_t
1565spa_get_failmode(spa_t *spa)
1566{
1567	return (spa->spa_failmode);
1568}
1569
1570boolean_t
1571spa_suspended(spa_t *spa)
1572{
1573	return (spa->spa_suspended);
1574}
1575
1576uint64_t
1577spa_version(spa_t *spa)
1578{
1579	return (spa->spa_ubsync.ub_version);
1580}
1581
1582boolean_t
1583spa_deflate(spa_t *spa)
1584{
1585	return (spa->spa_deflate);
1586}
1587
1588metaslab_class_t *
1589spa_normal_class(spa_t *spa)
1590{
1591	return (spa->spa_normal_class);
1592}
1593
1594metaslab_class_t *
1595spa_log_class(spa_t *spa)
1596{
1597	return (spa->spa_log_class);
1598}
1599
1600int
1601spa_max_replication(spa_t *spa)
1602{
1603	/*
1604	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1605	 * handle BPs with more than one DVA allocated.  Set our max
1606	 * replication level accordingly.
1607	 */
1608	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1609		return (1);
1610	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1611}
1612
1613int
1614spa_prev_software_version(spa_t *spa)
1615{
1616	return (spa->spa_prev_software_version);
1617}
1618
1619uint64_t
1620spa_deadman_synctime(spa_t *spa)
1621{
1622	return (spa->spa_deadman_synctime);
1623}
1624
1625uint64_t
1626dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1627{
1628	uint64_t asize = DVA_GET_ASIZE(dva);
1629	uint64_t dsize = asize;
1630
1631	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1632
1633	if (asize != 0 && spa->spa_deflate) {
1634		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1635		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1636	}
1637
1638	return (dsize);
1639}
1640
1641uint64_t
1642bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1643{
1644	uint64_t dsize = 0;
1645
1646	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1647		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1648
1649	return (dsize);
1650}
1651
1652uint64_t
1653bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1654{
1655	uint64_t dsize = 0;
1656
1657	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1658
1659	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1660		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1661
1662	spa_config_exit(spa, SCL_VDEV, FTAG);
1663
1664	return (dsize);
1665}
1666
1667/*
1668 * ==========================================================================
1669 * Initialization and Termination
1670 * ==========================================================================
1671 */
1672
1673static int
1674spa_name_compare(const void *a1, const void *a2)
1675{
1676	const spa_t *s1 = a1;
1677	const spa_t *s2 = a2;
1678	int s;
1679
1680	s = strcmp(s1->spa_name, s2->spa_name);
1681	if (s > 0)
1682		return (1);
1683	if (s < 0)
1684		return (-1);
1685	return (0);
1686}
1687
1688int
1689spa_busy(void)
1690{
1691	return (spa_active_count);
1692}
1693
1694void
1695spa_boot_init()
1696{
1697	spa_config_load();
1698}
1699
1700#ifdef _KERNEL
1701EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1702#endif
1703
1704void
1705spa_init(int mode)
1706{
1707	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1708	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1709	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1710	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1711
1712	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1713	    offsetof(spa_t, spa_avl));
1714
1715	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1716	    offsetof(spa_aux_t, aux_avl));
1717
1718	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1719	    offsetof(spa_aux_t, aux_avl));
1720
1721	spa_mode_global = mode;
1722
1723#ifdef illumos
1724#ifdef _KERNEL
1725	spa_arch_init();
1726#else
1727	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1728		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1729		if (arc_procfd == -1) {
1730			perror("could not enable watchpoints: "
1731			    "opening /proc/self/ctl failed: ");
1732		} else {
1733			arc_watch = B_TRUE;
1734		}
1735	}
1736#endif
1737#endif /* illumos */
1738	refcount_sysinit();
1739	unique_init();
1740	space_map_init();
1741	zio_init();
1742	dmu_init();
1743	zil_init();
1744	vdev_cache_stat_init();
1745	zfs_prop_init();
1746	zpool_prop_init();
1747	zpool_feature_init();
1748	spa_config_load();
1749	l2arc_start();
1750#ifndef illumos
1751#ifdef _KERNEL
1752	zfs_deadman_init();
1753#endif
1754#endif	/* !illumos */
1755}
1756
1757void
1758spa_fini(void)
1759{
1760	l2arc_stop();
1761
1762	spa_evict_all();
1763
1764	vdev_cache_stat_fini();
1765	zil_fini();
1766	dmu_fini();
1767	zio_fini();
1768	space_map_fini();
1769	unique_fini();
1770	refcount_fini();
1771
1772	avl_destroy(&spa_namespace_avl);
1773	avl_destroy(&spa_spare_avl);
1774	avl_destroy(&spa_l2cache_avl);
1775
1776	cv_destroy(&spa_namespace_cv);
1777	mutex_destroy(&spa_namespace_lock);
1778	mutex_destroy(&spa_spare_lock);
1779	mutex_destroy(&spa_l2cache_lock);
1780}
1781
1782/*
1783 * Return whether this pool has slogs. No locking needed.
1784 * It's not a problem if the wrong answer is returned as it's only for
1785 * performance and not correctness
1786 */
1787boolean_t
1788spa_has_slogs(spa_t *spa)
1789{
1790	return (spa->spa_log_class->mc_rotor != NULL);
1791}
1792
1793spa_log_state_t
1794spa_get_log_state(spa_t *spa)
1795{
1796	return (spa->spa_log_state);
1797}
1798
1799void
1800spa_set_log_state(spa_t *spa, spa_log_state_t state)
1801{
1802	spa->spa_log_state = state;
1803}
1804
1805boolean_t
1806spa_is_root(spa_t *spa)
1807{
1808	return (spa->spa_is_root);
1809}
1810
1811boolean_t
1812spa_writeable(spa_t *spa)
1813{
1814	return (!!(spa->spa_mode & FWRITE));
1815}
1816
1817int
1818spa_mode(spa_t *spa)
1819{
1820	return (spa->spa_mode);
1821}
1822
1823uint64_t
1824spa_bootfs(spa_t *spa)
1825{
1826	return (spa->spa_bootfs);
1827}
1828
1829uint64_t
1830spa_delegation(spa_t *spa)
1831{
1832	return (spa->spa_delegation);
1833}
1834
1835objset_t *
1836spa_meta_objset(spa_t *spa)
1837{
1838	return (spa->spa_meta_objset);
1839}
1840
1841enum zio_checksum
1842spa_dedup_checksum(spa_t *spa)
1843{
1844	return (spa->spa_dedup_checksum);
1845}
1846
1847/*
1848 * Reset pool scan stat per scan pass (or reboot).
1849 */
1850void
1851spa_scan_stat_init(spa_t *spa)
1852{
1853	/* data not stored on disk */
1854	spa->spa_scan_pass_start = gethrestime_sec();
1855	spa->spa_scan_pass_exam = 0;
1856	vdev_scan_stat_init(spa->spa_root_vdev);
1857}
1858
1859/*
1860 * Get scan stats for zpool status reports
1861 */
1862int
1863spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1864{
1865	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1866
1867	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1868		return (SET_ERROR(ENOENT));
1869	bzero(ps, sizeof (pool_scan_stat_t));
1870
1871	/* data stored on disk */
1872	ps->pss_func = scn->scn_phys.scn_func;
1873	ps->pss_start_time = scn->scn_phys.scn_start_time;
1874	ps->pss_end_time = scn->scn_phys.scn_end_time;
1875	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1876	ps->pss_examined = scn->scn_phys.scn_examined;
1877	ps->pss_to_process = scn->scn_phys.scn_to_process;
1878	ps->pss_processed = scn->scn_phys.scn_processed;
1879	ps->pss_errors = scn->scn_phys.scn_errors;
1880	ps->pss_state = scn->scn_phys.scn_state;
1881
1882	/* data not stored on disk */
1883	ps->pss_pass_start = spa->spa_scan_pass_start;
1884	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1885
1886	return (0);
1887}
1888
1889boolean_t
1890spa_debug_enabled(spa_t *spa)
1891{
1892	return (spa->spa_debug);
1893}
1894