1/*	$NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $	*/
2
3/*
4 * Sun RPC is a product of Sun Microsystems, Inc. and is provided for
5 * unrestricted use provided that this legend is included on all tape
6 * media and as a part of the software program in whole or part.  Users
7 * may copy or modify Sun RPC without charge, but are not authorized
8 * to license or distribute it to anyone else except as part of a product or
9 * program developed by the user.
10 *
11 * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
12 * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
13 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
14 *
15 * Sun RPC is provided with no support and without any obligation on the
16 * part of Sun Microsystems, Inc. to assist in its use, correction,
17 * modification or enhancement.
18 *
19 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
20 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
21 * OR ANY PART THEREOF.
22 *
23 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
24 * or profits or other special, indirect and consequential damages, even if
25 * Sun has been advised of the possibility of such damages.
26 *
27 * Sun Microsystems, Inc.
28 * 2550 Garcia Avenue
29 * Mountain View, California  94043
30 */
31
32/*
33 * Copyright (c) 1986-1991 by Sun Microsystems Inc.
34 */
35
36#if defined(LIBC_SCCS) && !defined(lint)
37#ident	"@(#)svc_dg.c	1.17	94/04/24 SMI"
38#endif
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD$");
41
42/*
43 * svc_dg.c, Server side for connectionless RPC.
44 *
45 * Does some caching in the hopes of achieving execute-at-most-once semantics.
46 */
47
48#include "namespace.h"
49#include "reentrant.h"
50#include <sys/types.h>
51#include <sys/socket.h>
52#include <rpc/rpc.h>
53#include <rpc/svc_dg.h>
54#include <assert.h>
55#include <errno.h>
56#include <unistd.h>
57#include <stdio.h>
58#include <stdlib.h>
59#include <string.h>
60#ifdef RPC_CACHE_DEBUG
61#include <netconfig.h>
62#include <netdir.h>
63#endif
64#include <err.h>
65#include "un-namespace.h"
66
67#include "rpc_com.h"
68#include "mt_misc.h"
69
70#define	su_data(xprt)	((struct svc_dg_data *)(xprt->xp_p2))
71#define	rpc_buffer(xprt) ((xprt)->xp_p1)
72
73#ifndef MAX
74#define	MAX(a, b)	(((a) > (b)) ? (a) : (b))
75#endif
76
77static void svc_dg_ops(SVCXPRT *);
78static enum xprt_stat svc_dg_stat(SVCXPRT *);
79static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *);
80static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *);
81static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *);
82static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *);
83static void svc_dg_destroy(SVCXPRT *);
84static bool_t svc_dg_control(SVCXPRT *, const u_int, void *);
85static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *);
86static void cache_set(SVCXPRT *, size_t);
87int svc_dg_enablecache(SVCXPRT *, u_int);
88
89/*
90 * Usage:
91 *	xprt = svc_dg_create(sock, sendsize, recvsize);
92 * Does other connectionless specific initializations.
93 * Once *xprt is initialized, it is registered.
94 * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
95 * system defaults are chosen.
96 * The routines returns NULL if a problem occurred.
97 */
98static const char svc_dg_str[] = "svc_dg_create: %s";
99static const char svc_dg_err1[] = "could not get transport information";
100static const char svc_dg_err2[] = "transport does not support data transfer";
101static const char svc_dg_err3[] = "getsockname failed";
102static const char svc_dg_err4[] = "cannot set IP_RECVDSTADDR";
103static const char __no_mem_str[] = "out of memory";
104
105SVCXPRT *
106svc_dg_create(fd, sendsize, recvsize)
107	int fd;
108	u_int sendsize;
109	u_int recvsize;
110{
111	SVCXPRT *xprt;
112	struct svc_dg_data *su = NULL;
113	struct __rpc_sockinfo si;
114	struct sockaddr_storage ss;
115	socklen_t slen;
116
117	if (!__rpc_fd2sockinfo(fd, &si)) {
118		warnx(svc_dg_str, svc_dg_err1);
119		return (NULL);
120	}
121	/*
122	 * Find the receive and the send size
123	 */
124	sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize);
125	recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize);
126	if ((sendsize == 0) || (recvsize == 0)) {
127		warnx(svc_dg_str, svc_dg_err2);
128		return (NULL);
129	}
130
131	xprt = svc_xprt_alloc();
132	if (xprt == NULL)
133		goto freedata;
134
135	su = mem_alloc(sizeof (*su));
136	if (su == NULL)
137		goto freedata;
138	su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4;
139	if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL)
140		goto freedata;
141	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz,
142		XDR_DECODE);
143	su->su_cache = NULL;
144	xprt->xp_fd = fd;
145	xprt->xp_p2 = su;
146	xprt->xp_verf.oa_base = su->su_verfbody;
147	svc_dg_ops(xprt);
148	xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage);
149
150	slen = sizeof ss;
151	if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) {
152		warnx(svc_dg_str, svc_dg_err3);
153		goto freedata_nowarn;
154	}
155	xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
156	xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
157	xprt->xp_ltaddr.len = slen;
158	memcpy(xprt->xp_ltaddr.buf, &ss, slen);
159
160	if (ss.ss_family == AF_INET) {
161		struct sockaddr_in *sin;
162		static const int true_value = 1;
163
164		sin = (struct sockaddr_in *)(void *)&ss;
165		if (sin->sin_addr.s_addr == INADDR_ANY) {
166		    su->su_srcaddr.buf = mem_alloc(sizeof (ss));
167		    su->su_srcaddr.maxlen = sizeof (ss);
168
169		    if (_setsockopt(fd, IPPROTO_IP, IP_RECVDSTADDR,
170				    &true_value, sizeof(true_value))) {
171			    warnx(svc_dg_str,  svc_dg_err4);
172			    goto freedata_nowarn;
173		    }
174		}
175	}
176
177	xprt_register(xprt);
178	return (xprt);
179freedata:
180	(void) warnx(svc_dg_str, __no_mem_str);
181freedata_nowarn:
182	if (xprt) {
183		if (su)
184			(void) mem_free(su, sizeof (*su));
185		svc_xprt_free(xprt);
186	}
187	return (NULL);
188}
189
190/*ARGSUSED*/
191static enum xprt_stat
192svc_dg_stat(xprt)
193	SVCXPRT *xprt;
194{
195	return (XPRT_IDLE);
196}
197
198static int
199svc_dg_recvfrom(int fd, char *buf, int buflen,
200    struct sockaddr *raddr, socklen_t *raddrlen,
201    struct sockaddr *laddr, socklen_t *laddrlen)
202{
203	struct msghdr msg;
204	struct iovec msg_iov[1];
205	struct sockaddr_in *lin = (struct sockaddr_in *)laddr;
206	int rlen;
207	bool_t have_lin = FALSE;
208	char tmp[CMSG_LEN(sizeof(*lin))];
209	struct cmsghdr *cmsg;
210
211	memset((char *)&msg, 0, sizeof(msg));
212	msg_iov[0].iov_base = buf;
213	msg_iov[0].iov_len = buflen;
214	msg.msg_iov = msg_iov;
215	msg.msg_iovlen = 1;
216	msg.msg_namelen = *raddrlen;
217	msg.msg_name = (char *)raddr;
218	if (laddr != NULL) {
219	    msg.msg_control = (caddr_t)tmp;
220	    msg.msg_controllen = CMSG_LEN(sizeof(*lin));
221	}
222	rlen = _recvmsg(fd, &msg, 0);
223	if (rlen >= 0)
224		*raddrlen = msg.msg_namelen;
225
226	if (rlen == -1 || laddr == NULL ||
227	    msg.msg_controllen < sizeof(struct cmsghdr) ||
228	    msg.msg_flags & MSG_CTRUNC)
229		return rlen;
230
231	for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;
232	     cmsg = CMSG_NXTHDR(&msg, cmsg)) {
233		if (cmsg->cmsg_level == IPPROTO_IP &&
234		    cmsg->cmsg_type == IP_RECVDSTADDR) {
235			have_lin = TRUE;
236			memcpy(&lin->sin_addr,
237			    (struct in_addr *)CMSG_DATA(cmsg),
238			    sizeof(struct in_addr));
239			break;
240		}
241	}
242
243	lin->sin_family = AF_INET;
244	lin->sin_port = 0;
245	*laddrlen = sizeof(struct sockaddr_in);
246
247	if (!have_lin)
248		lin->sin_addr.s_addr = INADDR_ANY;
249
250	return rlen;
251}
252
253static bool_t
254svc_dg_recv(xprt, msg)
255	SVCXPRT *xprt;
256	struct rpc_msg *msg;
257{
258	struct svc_dg_data *su = su_data(xprt);
259	XDR *xdrs = &(su->su_xdrs);
260	char *reply;
261	struct sockaddr_storage ss;
262	socklen_t alen;
263	size_t replylen;
264	ssize_t rlen;
265
266again:
267	alen = sizeof (struct sockaddr_storage);
268	rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz,
269	    (struct sockaddr *)(void *)&ss, &alen,
270	    (struct sockaddr *)su->su_srcaddr.buf, &su->su_srcaddr.len);
271	if (rlen == -1 && errno == EINTR)
272		goto again;
273	if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t))))
274		return (FALSE);
275	if (xprt->xp_rtaddr.len < alen) {
276		if (xprt->xp_rtaddr.len != 0)
277			mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len);
278		xprt->xp_rtaddr.buf = mem_alloc(alen);
279		xprt->xp_rtaddr.len = alen;
280	}
281	memcpy(xprt->xp_rtaddr.buf, &ss, alen);
282#ifdef PORTMAP
283	if (ss.ss_family == AF_INET) {
284		xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf;
285		xprt->xp_addrlen = sizeof (struct sockaddr_in);
286	}
287#endif				/* PORTMAP */
288	xdrs->x_op = XDR_DECODE;
289	XDR_SETPOS(xdrs, 0);
290	if (! xdr_callmsg(xdrs, msg)) {
291		return (FALSE);
292	}
293	su->su_xid = msg->rm_xid;
294	if (su->su_cache != NULL) {
295		if (cache_get(xprt, msg, &reply, &replylen)) {
296			(void)_sendto(xprt->xp_fd, reply, replylen, 0,
297			    (struct sockaddr *)(void *)&ss, alen);
298			return (FALSE);
299		}
300	}
301	return (TRUE);
302}
303
304static int
305svc_dg_sendto(int fd, char *buf, int buflen,
306    const struct sockaddr *raddr, socklen_t raddrlen,
307    const struct sockaddr *laddr, socklen_t laddrlen)
308{
309	struct msghdr msg;
310	struct iovec msg_iov[1];
311	struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr;
312	struct in_addr *lin = &laddr_in->sin_addr;
313	char tmp[CMSG_SPACE(sizeof(*lin))];
314	struct cmsghdr *cmsg;
315
316	memset((char *)&msg, 0, sizeof(msg));
317	msg_iov[0].iov_base = buf;
318	msg_iov[0].iov_len = buflen;
319	msg.msg_iov = msg_iov;
320	msg.msg_iovlen = 1;
321	msg.msg_namelen = raddrlen;
322	msg.msg_name = (char *)raddr;
323
324	if (laddr != NULL && laddr->sa_family == AF_INET &&
325	    lin->s_addr != INADDR_ANY) {
326		msg.msg_control = (caddr_t)tmp;
327		msg.msg_controllen = CMSG_LEN(sizeof(*lin));
328		cmsg = CMSG_FIRSTHDR(&msg);
329		cmsg->cmsg_len = CMSG_LEN(sizeof(*lin));
330		cmsg->cmsg_level = IPPROTO_IP;
331		cmsg->cmsg_type = IP_SENDSRCADDR;
332		memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin));
333	}
334
335	return _sendmsg(fd, &msg, 0);
336}
337
338static bool_t
339svc_dg_reply(xprt, msg)
340	SVCXPRT *xprt;
341	struct rpc_msg *msg;
342{
343	struct svc_dg_data *su = su_data(xprt);
344	XDR *xdrs = &(su->su_xdrs);
345	bool_t stat = TRUE;
346	size_t slen;
347	xdrproc_t xdr_proc;
348	caddr_t xdr_where;
349
350	xdrs->x_op = XDR_ENCODE;
351	XDR_SETPOS(xdrs, 0);
352	msg->rm_xid = su->su_xid;
353	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
354	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
355		xdr_proc = msg->acpted_rply.ar_results.proc;
356		xdr_where = msg->acpted_rply.ar_results.where;
357		msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void;
358		msg->acpted_rply.ar_results.where = NULL;
359
360		if (!xdr_replymsg(xdrs, msg) ||
361		    !SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where))
362			stat = FALSE;
363	} else {
364		stat = xdr_replymsg(xdrs, msg);
365	}
366	if (stat) {
367		slen = XDR_GETPOS(xdrs);
368		if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen,
369		    (struct sockaddr *)xprt->xp_rtaddr.buf,
370		    (socklen_t)xprt->xp_rtaddr.len,
371		    (struct sockaddr *)su->su_srcaddr.buf,
372		    (socklen_t)su->su_srcaddr.len) == (ssize_t) slen) {
373			stat = TRUE;
374			if (su->su_cache)
375				cache_set(xprt, slen);
376		}
377	}
378	return (stat);
379}
380
381static bool_t
382svc_dg_getargs(xprt, xdr_args, args_ptr)
383	SVCXPRT *xprt;
384	xdrproc_t xdr_args;
385	void *args_ptr;
386{
387	struct svc_dg_data *su;
388
389	assert(xprt != NULL);
390	su = su_data(xprt);
391	return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt),
392		&su->su_xdrs, xdr_args, args_ptr));
393}
394
395static bool_t
396svc_dg_freeargs(xprt, xdr_args, args_ptr)
397	SVCXPRT *xprt;
398	xdrproc_t xdr_args;
399	void *args_ptr;
400{
401	XDR *xdrs = &(su_data(xprt)->su_xdrs);
402
403	xdrs->x_op = XDR_FREE;
404	return (*xdr_args)(xdrs, args_ptr);
405}
406
407static void
408svc_dg_destroy(xprt)
409	SVCXPRT *xprt;
410{
411	struct svc_dg_data *su = su_data(xprt);
412
413	xprt_unregister(xprt);
414	if (xprt->xp_fd != -1)
415		(void)_close(xprt->xp_fd);
416	XDR_DESTROY(&(su->su_xdrs));
417	(void) mem_free(rpc_buffer(xprt), su->su_iosz);
418	if (su->su_srcaddr.buf)
419		(void) mem_free(su->su_srcaddr.buf, su->su_srcaddr.maxlen);
420	(void) mem_free(su, sizeof (*su));
421	if (xprt->xp_rtaddr.buf)
422		(void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen);
423	if (xprt->xp_ltaddr.buf)
424		(void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen);
425	if (xprt->xp_tp)
426		(void) free(xprt->xp_tp);
427	svc_xprt_free(xprt);
428}
429
430static bool_t
431/*ARGSUSED*/
432svc_dg_control(xprt, rq, in)
433	SVCXPRT *xprt;
434	const u_int	rq;
435	void		*in;
436{
437	return (FALSE);
438}
439
440static void
441svc_dg_ops(xprt)
442	SVCXPRT *xprt;
443{
444	static struct xp_ops ops;
445	static struct xp_ops2 ops2;
446
447/* VARIABLES PROTECTED BY ops_lock: ops */
448
449	mutex_lock(&ops_lock);
450	if (ops.xp_recv == NULL) {
451		ops.xp_recv = svc_dg_recv;
452		ops.xp_stat = svc_dg_stat;
453		ops.xp_getargs = svc_dg_getargs;
454		ops.xp_reply = svc_dg_reply;
455		ops.xp_freeargs = svc_dg_freeargs;
456		ops.xp_destroy = svc_dg_destroy;
457		ops2.xp_control = svc_dg_control;
458	}
459	xprt->xp_ops = &ops;
460	xprt->xp_ops2 = &ops2;
461	mutex_unlock(&ops_lock);
462}
463
464/*  The CACHING COMPONENT */
465
466/*
467 * Could have been a separate file, but some part of it depends upon the
468 * private structure of the client handle.
469 *
470 * Fifo cache for cl server
471 * Copies pointers to reply buffers into fifo cache
472 * Buffers are sent again if retransmissions are detected.
473 */
474
475#define	SPARSENESS 4	/* 75% sparse */
476
477#define	ALLOC(type, size)	\
478	(type *) mem_alloc((sizeof (type) * (size)))
479
480#define	MEMZERO(addr, type, size)	 \
481	(void) memset((void *) (addr), 0, sizeof (type) * (int) (size))
482
483#define	FREE(addr, type, size)	\
484	mem_free((addr), (sizeof (type) * (size)))
485
486/*
487 * An entry in the cache
488 */
489typedef struct cache_node *cache_ptr;
490struct cache_node {
491	/*
492	 * Index into cache is xid, proc, vers, prog and address
493	 */
494	u_int32_t cache_xid;
495	rpcproc_t cache_proc;
496	rpcvers_t cache_vers;
497	rpcprog_t cache_prog;
498	struct netbuf cache_addr;
499	/*
500	 * The cached reply and length
501	 */
502	char *cache_reply;
503	size_t cache_replylen;
504	/*
505	 * Next node on the list, if there is a collision
506	 */
507	cache_ptr cache_next;
508};
509
510/*
511 * The entire cache
512 */
513struct cl_cache {
514	u_int uc_size;		/* size of cache */
515	cache_ptr *uc_entries;	/* hash table of entries in cache */
516	cache_ptr *uc_fifo;	/* fifo list of entries in cache */
517	u_int uc_nextvictim;	/* points to next victim in fifo list */
518	rpcprog_t uc_prog;	/* saved program number */
519	rpcvers_t uc_vers;	/* saved version number */
520	rpcproc_t uc_proc;	/* saved procedure number */
521};
522
523
524/*
525 * the hashing function
526 */
527#define	CACHE_LOC(transp, xid)	\
528	(xid % (SPARSENESS * ((struct cl_cache *) \
529		su_data(transp)->su_cache)->uc_size))
530
531/*
532 * Enable use of the cache. Returns 1 on success, 0 on failure.
533 * Note: there is no disable.
534 */
535static const char cache_enable_str[] = "svc_enablecache: %s %s";
536static const char alloc_err[] = "could not allocate cache ";
537static const char enable_err[] = "cache already enabled";
538
539int
540svc_dg_enablecache(transp, size)
541	SVCXPRT *transp;
542	u_int size;
543{
544	struct svc_dg_data *su = su_data(transp);
545	struct cl_cache *uc;
546
547	mutex_lock(&dupreq_lock);
548	if (su->su_cache != NULL) {
549		(void) warnx(cache_enable_str, enable_err, " ");
550		mutex_unlock(&dupreq_lock);
551		return (0);
552	}
553	uc = ALLOC(struct cl_cache, 1);
554	if (uc == NULL) {
555		warnx(cache_enable_str, alloc_err, " ");
556		mutex_unlock(&dupreq_lock);
557		return (0);
558	}
559	uc->uc_size = size;
560	uc->uc_nextvictim = 0;
561	uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS);
562	if (uc->uc_entries == NULL) {
563		warnx(cache_enable_str, alloc_err, "data");
564		FREE(uc, struct cl_cache, 1);
565		mutex_unlock(&dupreq_lock);
566		return (0);
567	}
568	MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS);
569	uc->uc_fifo = ALLOC(cache_ptr, size);
570	if (uc->uc_fifo == NULL) {
571		warnx(cache_enable_str, alloc_err, "fifo");
572		FREE(uc->uc_entries, cache_ptr, size * SPARSENESS);
573		FREE(uc, struct cl_cache, 1);
574		mutex_unlock(&dupreq_lock);
575		return (0);
576	}
577	MEMZERO(uc->uc_fifo, cache_ptr, size);
578	su->su_cache = (char *)(void *)uc;
579	mutex_unlock(&dupreq_lock);
580	return (1);
581}
582
583/*
584 * Set an entry in the cache.  It assumes that the uc entry is set from
585 * the earlier call to cache_get() for the same procedure.  This will always
586 * happen because cache_get() is calle by svc_dg_recv and cache_set() is called
587 * by svc_dg_reply().  All this hoopla because the right RPC parameters are
588 * not available at svc_dg_reply time.
589 */
590
591static const char cache_set_str[] = "cache_set: %s";
592static const char cache_set_err1[] = "victim not found";
593static const char cache_set_err2[] = "victim alloc failed";
594static const char cache_set_err3[] = "could not allocate new rpc buffer";
595
596static void
597cache_set(xprt, replylen)
598	SVCXPRT *xprt;
599	size_t replylen;
600{
601	cache_ptr victim;
602	cache_ptr *vicp;
603	struct svc_dg_data *su = su_data(xprt);
604	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
605	u_int loc;
606	char *newbuf;
607#ifdef RPC_CACHE_DEBUG
608	struct netconfig *nconf;
609	char *uaddr;
610#endif
611
612	mutex_lock(&dupreq_lock);
613	/*
614	 * Find space for the new entry, either by
615	 * reusing an old entry, or by mallocing a new one
616	 */
617	victim = uc->uc_fifo[uc->uc_nextvictim];
618	if (victim != NULL) {
619		loc = CACHE_LOC(xprt, victim->cache_xid);
620		for (vicp = &uc->uc_entries[loc];
621			*vicp != NULL && *vicp != victim;
622			vicp = &(*vicp)->cache_next)
623			;
624		if (*vicp == NULL) {
625			warnx(cache_set_str, cache_set_err1);
626			mutex_unlock(&dupreq_lock);
627			return;
628		}
629		*vicp = victim->cache_next;	/* remove from cache */
630		newbuf = victim->cache_reply;
631	} else {
632		victim = ALLOC(struct cache_node, 1);
633		if (victim == NULL) {
634			warnx(cache_set_str, cache_set_err2);
635			mutex_unlock(&dupreq_lock);
636			return;
637		}
638		newbuf = mem_alloc(su->su_iosz);
639		if (newbuf == NULL) {
640			warnx(cache_set_str, cache_set_err3);
641			FREE(victim, struct cache_node, 1);
642			mutex_unlock(&dupreq_lock);
643			return;
644		}
645	}
646
647	/*
648	 * Store it away
649	 */
650#ifdef RPC_CACHE_DEBUG
651	if (nconf = getnetconfigent(xprt->xp_netid)) {
652		uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
653		freenetconfigent(nconf);
654		printf(
655	"cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
656			su->su_xid, uc->uc_prog, uc->uc_vers,
657			uc->uc_proc, uaddr);
658		free(uaddr);
659	}
660#endif
661	victim->cache_replylen = replylen;
662	victim->cache_reply = rpc_buffer(xprt);
663	rpc_buffer(xprt) = newbuf;
664	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt),
665			su->su_iosz, XDR_ENCODE);
666	victim->cache_xid = su->su_xid;
667	victim->cache_proc = uc->uc_proc;
668	victim->cache_vers = uc->uc_vers;
669	victim->cache_prog = uc->uc_prog;
670	victim->cache_addr = xprt->xp_rtaddr;
671	victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len);
672	(void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf,
673	    (size_t)xprt->xp_rtaddr.len);
674	loc = CACHE_LOC(xprt, victim->cache_xid);
675	victim->cache_next = uc->uc_entries[loc];
676	uc->uc_entries[loc] = victim;
677	uc->uc_fifo[uc->uc_nextvictim++] = victim;
678	uc->uc_nextvictim %= uc->uc_size;
679	mutex_unlock(&dupreq_lock);
680}
681
682/*
683 * Try to get an entry from the cache
684 * return 1 if found, 0 if not found and set the stage for cache_set()
685 */
686static int
687cache_get(xprt, msg, replyp, replylenp)
688	SVCXPRT *xprt;
689	struct rpc_msg *msg;
690	char **replyp;
691	size_t *replylenp;
692{
693	u_int loc;
694	cache_ptr ent;
695	struct svc_dg_data *su = su_data(xprt);
696	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
697#ifdef RPC_CACHE_DEBUG
698	struct netconfig *nconf;
699	char *uaddr;
700#endif
701
702	mutex_lock(&dupreq_lock);
703	loc = CACHE_LOC(xprt, su->su_xid);
704	for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
705		if (ent->cache_xid == su->su_xid &&
706			ent->cache_proc == msg->rm_call.cb_proc &&
707			ent->cache_vers == msg->rm_call.cb_vers &&
708			ent->cache_prog == msg->rm_call.cb_prog &&
709			ent->cache_addr.len == xprt->xp_rtaddr.len &&
710			(memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf,
711				xprt->xp_rtaddr.len) == 0)) {
712#ifdef RPC_CACHE_DEBUG
713			if (nconf = getnetconfigent(xprt->xp_netid)) {
714				uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
715				freenetconfigent(nconf);
716				printf(
717	"cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
718					su->su_xid, msg->rm_call.cb_prog,
719					msg->rm_call.cb_vers,
720					msg->rm_call.cb_proc, uaddr);
721				free(uaddr);
722			}
723#endif
724			*replyp = ent->cache_reply;
725			*replylenp = ent->cache_replylen;
726			mutex_unlock(&dupreq_lock);
727			return (1);
728		}
729	}
730	/*
731	 * Failed to find entry
732	 * Remember a few things so we can do a set later
733	 */
734	uc->uc_proc = msg->rm_call.cb_proc;
735	uc->uc_vers = msg->rm_call.cb_vers;
736	uc->uc_prog = msg->rm_call.cb_prog;
737	mutex_unlock(&dupreq_lock);
738	return (0);
739}
740