1246769Sjkim/* ssl/s3_cbc.c */
2246769Sjkim/* ====================================================================
3246769Sjkim * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
4246769Sjkim *
5246769Sjkim * Redistribution and use in source and binary forms, with or without
6246769Sjkim * modification, are permitted provided that the following conditions
7246769Sjkim * are met:
8246769Sjkim *
9246769Sjkim * 1. Redistributions of source code must retain the above copyright
10246769Sjkim *    notice, this list of conditions and the following disclaimer.
11246769Sjkim *
12246769Sjkim * 2. Redistributions in binary form must reproduce the above copyright
13246769Sjkim *    notice, this list of conditions and the following disclaimer in
14246769Sjkim *    the documentation and/or other materials provided with the
15246769Sjkim *    distribution.
16246769Sjkim *
17246769Sjkim * 3. All advertising materials mentioning features or use of this
18246769Sjkim *    software must display the following acknowledgment:
19246769Sjkim *    "This product includes software developed by the OpenSSL Project
20246769Sjkim *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21246769Sjkim *
22246769Sjkim * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23246769Sjkim *    endorse or promote products derived from this software without
24246769Sjkim *    prior written permission. For written permission, please contact
25246769Sjkim *    openssl-core@openssl.org.
26246769Sjkim *
27246769Sjkim * 5. Products derived from this software may not be called "OpenSSL"
28246769Sjkim *    nor may "OpenSSL" appear in their names without prior written
29246769Sjkim *    permission of the OpenSSL Project.
30246769Sjkim *
31246769Sjkim * 6. Redistributions of any form whatsoever must retain the following
32246769Sjkim *    acknowledgment:
33246769Sjkim *    "This product includes software developed by the OpenSSL Project
34246769Sjkim *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35246769Sjkim *
36246769Sjkim * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37246769Sjkim * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38246769Sjkim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39246769Sjkim * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40246769Sjkim * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41246769Sjkim * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42246769Sjkim * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43246769Sjkim * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44246769Sjkim * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45246769Sjkim * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46246769Sjkim * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47246769Sjkim * OF THE POSSIBILITY OF SUCH DAMAGE.
48246769Sjkim * ====================================================================
49246769Sjkim *
50246769Sjkim * This product includes cryptographic software written by Eric Young
51246769Sjkim * (eay@cryptsoft.com).  This product includes software written by Tim
52246769Sjkim * Hudson (tjh@cryptsoft.com).
53246769Sjkim *
54246769Sjkim */
55246769Sjkim
56279264Sdelphij#include "../crypto/constant_time_locl.h"
57246769Sjkim#include "ssl_locl.h"
58246769Sjkim
59246769Sjkim#include <openssl/md5.h>
60246769Sjkim#include <openssl/sha.h>
61246769Sjkim
62246769Sjkim/* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
63246769Sjkim * field. (SHA-384/512 have 128-bit length.) */
64246769Sjkim#define MAX_HASH_BIT_COUNT_BYTES 16
65246769Sjkim
66246769Sjkim/* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
67246769Sjkim * Currently SHA-384/512 has a 128-byte block size and that's the largest
68246769Sjkim * supported by TLS.) */
69246769Sjkim#define MAX_HASH_BLOCK_SIZE 128
70246769Sjkim
71246769Sjkim/* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
72246769Sjkim * record in |rec| by updating |rec->length| in constant time.
73246769Sjkim *
74246769Sjkim * block_size: the block size of the cipher used to encrypt the record.
75246769Sjkim * returns:
76246769Sjkim *   0: (in non-constant time) if the record is publicly invalid.
77246769Sjkim *   1: if the padding was valid
78246769Sjkim *  -1: otherwise. */
79246769Sjkimint ssl3_cbc_remove_padding(const SSL* s,
80246769Sjkim			    SSL3_RECORD *rec,
81246769Sjkim			    unsigned block_size,
82246769Sjkim			    unsigned mac_size)
83246769Sjkim	{
84246769Sjkim	unsigned padding_length, good;
85246769Sjkim	const unsigned overhead = 1 /* padding length byte */ + mac_size;
86246769Sjkim
87246769Sjkim	/* These lengths are all public so we can test them in non-constant
88246769Sjkim	 * time. */
89246769Sjkim	if (overhead > rec->length)
90246769Sjkim		return 0;
91246769Sjkim
92246769Sjkim	padding_length = rec->data[rec->length-1];
93246769Sjkim	good = constant_time_ge(rec->length, padding_length+overhead);
94246769Sjkim	/* SSLv3 requires that the padding is minimal. */
95246769Sjkim	good &= constant_time_ge(block_size, padding_length+1);
96246769Sjkim	padding_length = good & (padding_length+1);
97246769Sjkim	rec->length -= padding_length;
98246769Sjkim	rec->type |= padding_length<<8;	/* kludge: pass padding length */
99279264Sdelphij	return constant_time_select_int(good, 1, -1);
100279264Sdelphij	}
101246769Sjkim
102246769Sjkim/* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
103246769Sjkim * record in |rec| in constant time and returns 1 if the padding is valid and
104246769Sjkim * -1 otherwise. It also removes any explicit IV from the start of the record
105246769Sjkim * without leaking any timing about whether there was enough space after the
106246769Sjkim * padding was removed.
107246769Sjkim *
108246769Sjkim * block_size: the block size of the cipher used to encrypt the record.
109246769Sjkim * returns:
110246769Sjkim *   0: (in non-constant time) if the record is publicly invalid.
111246769Sjkim *   1: if the padding was valid
112246769Sjkim *  -1: otherwise. */
113246769Sjkimint tls1_cbc_remove_padding(const SSL* s,
114246769Sjkim			    SSL3_RECORD *rec,
115246769Sjkim			    unsigned block_size,
116246769Sjkim			    unsigned mac_size)
117246769Sjkim	{
118246769Sjkim	unsigned padding_length, good, to_check, i;
119246769Sjkim	const unsigned overhead = 1 /* padding length byte */ + mac_size;
120246769Sjkim	/* Check if version requires explicit IV */
121254107Sdelphij	if (s->version >= TLS1_1_VERSION || s->version == DTLS1_BAD_VER)
122246769Sjkim		{
123246769Sjkim		/* These lengths are all public so we can test them in
124246769Sjkim		 * non-constant time.
125246769Sjkim		 */
126246769Sjkim		if (overhead + block_size > rec->length)
127246769Sjkim			return 0;
128246769Sjkim		/* We can now safely skip explicit IV */
129246769Sjkim		rec->data += block_size;
130246769Sjkim		rec->input += block_size;
131246769Sjkim		rec->length -= block_size;
132246769Sjkim		}
133246769Sjkim	else if (overhead > rec->length)
134246769Sjkim		return 0;
135246769Sjkim
136246769Sjkim	padding_length = rec->data[rec->length-1];
137246769Sjkim
138246769Sjkim	/* NB: if compression is in operation the first packet may not be of
139246769Sjkim	 * even length so the padding bug check cannot be performed. This bug
140246769Sjkim	 * workaround has been around since SSLeay so hopefully it is either
141246769Sjkim	 * fixed now or no buggy implementation supports compression [steve]
142246769Sjkim	 */
143246769Sjkim	if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand)
144246769Sjkim		{
145246769Sjkim		/* First packet is even in size, so check */
146246769Sjkim		if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) &&
147246769Sjkim		    !(padding_length & 1))
148246769Sjkim			{
149246769Sjkim			s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG;
150246769Sjkim			}
151246769Sjkim		if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) &&
152246769Sjkim		    padding_length > 0)
153246769Sjkim			{
154246769Sjkim			padding_length--;
155246769Sjkim			}
156246769Sjkim		}
157246769Sjkim
158246769Sjkim	if (EVP_CIPHER_flags(s->enc_read_ctx->cipher)&EVP_CIPH_FLAG_AEAD_CIPHER)
159246769Sjkim		{
160246769Sjkim		/* padding is already verified */
161246769Sjkim		rec->length -= padding_length + 1;
162246769Sjkim		return 1;
163246769Sjkim		}
164246769Sjkim
165246769Sjkim	good = constant_time_ge(rec->length, overhead+padding_length);
166246769Sjkim	/* The padding consists of a length byte at the end of the record and
167246769Sjkim	 * then that many bytes of padding, all with the same value as the
168246769Sjkim	 * length byte. Thus, with the length byte included, there are i+1
169246769Sjkim	 * bytes of padding.
170246769Sjkim	 *
171246769Sjkim	 * We can't check just |padding_length+1| bytes because that leaks
172246769Sjkim	 * decrypted information. Therefore we always have to check the maximum
173246769Sjkim	 * amount of padding possible. (Again, the length of the record is
174246769Sjkim	 * public information so we can use it.) */
175246769Sjkim	to_check = 255; /* maximum amount of padding. */
176246769Sjkim	if (to_check > rec->length-1)
177246769Sjkim		to_check = rec->length-1;
178246769Sjkim
179246769Sjkim	for (i = 0; i < to_check; i++)
180246769Sjkim		{
181279264Sdelphij		unsigned char mask = constant_time_ge_8(padding_length, i);
182246769Sjkim		unsigned char b = rec->data[rec->length-1-i];
183246769Sjkim		/* The final |padding_length+1| bytes should all have the value
184246769Sjkim		 * |padding_length|. Therefore the XOR should be zero. */
185246769Sjkim		good &= ~(mask&(padding_length ^ b));
186246769Sjkim		}
187246769Sjkim
188246769Sjkim	/* If any of the final |padding_length+1| bytes had the wrong value,
189279264Sdelphij	 * one or more of the lower eight bits of |good| will be cleared.
190279264Sdelphij	 */
191279264Sdelphij	good = constant_time_eq(0xff, good & 0xff);
192246769Sjkim	padding_length = good & (padding_length+1);
193246769Sjkim	rec->length -= padding_length;
194246769Sjkim	rec->type |= padding_length<<8;	/* kludge: pass padding length */
195246769Sjkim
196279264Sdelphij	return constant_time_select_int(good, 1, -1);
197246769Sjkim	}
198246769Sjkim
199246769Sjkim/* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
200246769Sjkim * constant time (independent of the concrete value of rec->length, which may
201246769Sjkim * vary within a 256-byte window).
202246769Sjkim *
203246769Sjkim * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
204246769Sjkim * this function.
205246769Sjkim *
206246769Sjkim * On entry:
207246769Sjkim *   rec->orig_len >= md_size
208246769Sjkim *   md_size <= EVP_MAX_MD_SIZE
209246769Sjkim *
210246769Sjkim * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
211246769Sjkim * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
212246769Sjkim * a single or pair of cache-lines, then the variable memory accesses don't
213246769Sjkim * actually affect the timing. CPUs with smaller cache-lines [if any] are
214246769Sjkim * not multi-core and are not considered vulnerable to cache-timing attacks.
215246769Sjkim */
216246769Sjkim#define CBC_MAC_ROTATE_IN_PLACE
217246769Sjkim
218246769Sjkimvoid ssl3_cbc_copy_mac(unsigned char* out,
219246769Sjkim		       const SSL3_RECORD *rec,
220246769Sjkim		       unsigned md_size,unsigned orig_len)
221246769Sjkim	{
222246769Sjkim#if defined(CBC_MAC_ROTATE_IN_PLACE)
223246769Sjkim	unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE];
224246769Sjkim	unsigned char *rotated_mac;
225246769Sjkim#else
226246769Sjkim	unsigned char rotated_mac[EVP_MAX_MD_SIZE];
227246769Sjkim#endif
228246769Sjkim
229246769Sjkim	/* mac_end is the index of |rec->data| just after the end of the MAC. */
230246769Sjkim	unsigned mac_end = rec->length;
231246769Sjkim	unsigned mac_start = mac_end - md_size;
232246769Sjkim	/* scan_start contains the number of bytes that we can ignore because
233246769Sjkim	 * the MAC's position can only vary by 255 bytes. */
234246769Sjkim	unsigned scan_start = 0;
235246769Sjkim	unsigned i, j;
236246769Sjkim	unsigned div_spoiler;
237246769Sjkim	unsigned rotate_offset;
238246769Sjkim
239246769Sjkim	OPENSSL_assert(orig_len >= md_size);
240246769Sjkim	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
241246769Sjkim
242246769Sjkim#if defined(CBC_MAC_ROTATE_IN_PLACE)
243246769Sjkim	rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63);
244246769Sjkim#endif
245246769Sjkim
246246769Sjkim	/* This information is public so it's safe to branch based on it. */
247246769Sjkim	if (orig_len > md_size + 255 + 1)
248246769Sjkim		scan_start = orig_len - (md_size + 255 + 1);
249246769Sjkim	/* div_spoiler contains a multiple of md_size that is used to cause the
250246769Sjkim	 * modulo operation to be constant time. Without this, the time varies
251246769Sjkim	 * based on the amount of padding when running on Intel chips at least.
252246769Sjkim	 *
253246769Sjkim	 * The aim of right-shifting md_size is so that the compiler doesn't
254246769Sjkim	 * figure out that it can remove div_spoiler as that would require it
255246769Sjkim	 * to prove that md_size is always even, which I hope is beyond it. */
256246769Sjkim	div_spoiler = md_size >> 1;
257246769Sjkim	div_spoiler <<= (sizeof(div_spoiler)-1)*8;
258246769Sjkim	rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
259246769Sjkim
260246769Sjkim	memset(rotated_mac, 0, md_size);
261246769Sjkim	for (i = scan_start, j = 0; i < orig_len; i++)
262246769Sjkim		{
263279264Sdelphij		unsigned char mac_started = constant_time_ge_8(i, mac_start);
264279264Sdelphij		unsigned char mac_ended = constant_time_ge_8(i, mac_end);
265246769Sjkim		unsigned char b = rec->data[i];
266246769Sjkim		rotated_mac[j++] |= b & mac_started & ~mac_ended;
267246769Sjkim		j &= constant_time_lt(j,md_size);
268246769Sjkim		}
269246769Sjkim
270246769Sjkim	/* Now rotate the MAC */
271246769Sjkim#if defined(CBC_MAC_ROTATE_IN_PLACE)
272246769Sjkim	j = 0;
273246769Sjkim	for (i = 0; i < md_size; i++)
274246769Sjkim		{
275246769Sjkim		/* in case cache-line is 32 bytes, touch second line */
276246769Sjkim		((volatile unsigned char *)rotated_mac)[rotate_offset^32];
277246769Sjkim		out[j++] = rotated_mac[rotate_offset++];
278246769Sjkim		rotate_offset &= constant_time_lt(rotate_offset,md_size);
279246769Sjkim		}
280246769Sjkim#else
281246769Sjkim	memset(out, 0, md_size);
282246769Sjkim	rotate_offset = md_size - rotate_offset;
283246769Sjkim	rotate_offset &= constant_time_lt(rotate_offset,md_size);
284246769Sjkim	for (i = 0; i < md_size; i++)
285246769Sjkim		{
286246769Sjkim		for (j = 0; j < md_size; j++)
287246769Sjkim			out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
288246769Sjkim		rotate_offset++;
289246769Sjkim		rotate_offset &= constant_time_lt(rotate_offset,md_size);
290246769Sjkim		}
291246769Sjkim#endif
292246769Sjkim	}
293246769Sjkim
294246769Sjkim/* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
295246769Sjkim * little-endian order. The value of p is advanced by four. */
296246769Sjkim#define u32toLE(n, p) \
297246769Sjkim	(*((p)++)=(unsigned char)(n), \
298246769Sjkim	 *((p)++)=(unsigned char)(n>>8), \
299246769Sjkim	 *((p)++)=(unsigned char)(n>>16), \
300246769Sjkim	 *((p)++)=(unsigned char)(n>>24))
301246769Sjkim
302246769Sjkim/* These functions serialize the state of a hash and thus perform the standard
303246769Sjkim * "final" operation without adding the padding and length that such a function
304246769Sjkim * typically does. */
305246769Sjkimstatic void tls1_md5_final_raw(void* ctx, unsigned char *md_out)
306246769Sjkim	{
307246769Sjkim	MD5_CTX *md5 = ctx;
308246769Sjkim	u32toLE(md5->A, md_out);
309246769Sjkim	u32toLE(md5->B, md_out);
310246769Sjkim	u32toLE(md5->C, md_out);
311246769Sjkim	u32toLE(md5->D, md_out);
312246769Sjkim	}
313246769Sjkim
314246769Sjkimstatic void tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
315246769Sjkim	{
316246769Sjkim	SHA_CTX *sha1 = ctx;
317246769Sjkim	l2n(sha1->h0, md_out);
318246769Sjkim	l2n(sha1->h1, md_out);
319246769Sjkim	l2n(sha1->h2, md_out);
320246769Sjkim	l2n(sha1->h3, md_out);
321246769Sjkim	l2n(sha1->h4, md_out);
322246769Sjkim	}
323246769Sjkim#define LARGEST_DIGEST_CTX SHA_CTX
324246769Sjkim
325246769Sjkim#ifndef OPENSSL_NO_SHA256
326246769Sjkimstatic void tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
327246769Sjkim	{
328246769Sjkim	SHA256_CTX *sha256 = ctx;
329246769Sjkim	unsigned i;
330246769Sjkim
331246769Sjkim	for (i = 0; i < 8; i++)
332246769Sjkim		{
333246769Sjkim		l2n(sha256->h[i], md_out);
334246769Sjkim		}
335246769Sjkim	}
336246769Sjkim#undef  LARGEST_DIGEST_CTX
337246769Sjkim#define LARGEST_DIGEST_CTX SHA256_CTX
338246769Sjkim#endif
339246769Sjkim
340246769Sjkim#ifndef OPENSSL_NO_SHA512
341246769Sjkimstatic void tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
342246769Sjkim	{
343246769Sjkim	SHA512_CTX *sha512 = ctx;
344246769Sjkim	unsigned i;
345246769Sjkim
346246769Sjkim	for (i = 0; i < 8; i++)
347246769Sjkim		{
348246769Sjkim		l2n8(sha512->h[i], md_out);
349246769Sjkim		}
350246769Sjkim	}
351246769Sjkim#undef  LARGEST_DIGEST_CTX
352246769Sjkim#define LARGEST_DIGEST_CTX SHA512_CTX
353246769Sjkim#endif
354246769Sjkim
355246769Sjkim/* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
356246769Sjkim * which ssl3_cbc_digest_record supports. */
357246769Sjkimchar ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
358246769Sjkim	{
359246769Sjkim#ifdef OPENSSL_FIPS
360246769Sjkim	if (FIPS_mode())
361246769Sjkim		return 0;
362246769Sjkim#endif
363246769Sjkim	switch (EVP_MD_CTX_type(ctx))
364246769Sjkim		{
365246769Sjkim		case NID_md5:
366246769Sjkim		case NID_sha1:
367246769Sjkim#ifndef OPENSSL_NO_SHA256
368246769Sjkim		case NID_sha224:
369246769Sjkim		case NID_sha256:
370246769Sjkim#endif
371246769Sjkim#ifndef OPENSSL_NO_SHA512
372246769Sjkim		case NID_sha384:
373246769Sjkim		case NID_sha512:
374246769Sjkim#endif
375246769Sjkim			return 1;
376246769Sjkim		default:
377246769Sjkim			return 0;
378246769Sjkim		}
379246769Sjkim	}
380246769Sjkim
381246769Sjkim/* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
382246769Sjkim * record.
383246769Sjkim *
384246769Sjkim *   ctx: the EVP_MD_CTX from which we take the hash function.
385246769Sjkim *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
386246769Sjkim *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
387246769Sjkim *   md_out_size: if non-NULL, the number of output bytes is written here.
388246769Sjkim *   header: the 13-byte, TLS record header.
389246769Sjkim *   data: the record data itself, less any preceeding explicit IV.
390246769Sjkim *   data_plus_mac_size: the secret, reported length of the data and MAC
391246769Sjkim *     once the padding has been removed.
392246769Sjkim *   data_plus_mac_plus_padding_size: the public length of the whole
393246769Sjkim *     record, including padding.
394246769Sjkim *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
395246769Sjkim *
396246769Sjkim * On entry: by virtue of having been through one of the remove_padding
397246769Sjkim * functions, above, we know that data_plus_mac_size is large enough to contain
398246769Sjkim * a padding byte and MAC. (If the padding was invalid, it might contain the
399246769Sjkim * padding too. ) */
400246769Sjkimvoid ssl3_cbc_digest_record(
401246769Sjkim	const EVP_MD_CTX *ctx,
402246769Sjkim	unsigned char* md_out,
403246769Sjkim	size_t* md_out_size,
404246769Sjkim	const unsigned char header[13],
405246769Sjkim	const unsigned char *data,
406246769Sjkim	size_t data_plus_mac_size,
407246769Sjkim	size_t data_plus_mac_plus_padding_size,
408246769Sjkim	const unsigned char *mac_secret,
409246769Sjkim	unsigned mac_secret_length,
410246769Sjkim	char is_sslv3)
411246769Sjkim	{
412246769Sjkim	union {	double align;
413246769Sjkim		unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state;
414246769Sjkim	void (*md_final_raw)(void *ctx, unsigned char *md_out);
415246769Sjkim	void (*md_transform)(void *ctx, const unsigned char *block);
416246769Sjkim	unsigned md_size, md_block_size = 64;
417246769Sjkim	unsigned sslv3_pad_length = 40, header_length, variance_blocks,
418246769Sjkim		 len, max_mac_bytes, num_blocks,
419246769Sjkim		 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
420246769Sjkim	unsigned int bits;	/* at most 18 bits */
421246769Sjkim	unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
422246769Sjkim	/* hmac_pad is the masked HMAC key. */
423246769Sjkim	unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
424246769Sjkim	unsigned char first_block[MAX_HASH_BLOCK_SIZE];
425246769Sjkim	unsigned char mac_out[EVP_MAX_MD_SIZE];
426246769Sjkim	unsigned i, j, md_out_size_u;
427246769Sjkim	EVP_MD_CTX md_ctx;
428246769Sjkim	/* mdLengthSize is the number of bytes in the length field that terminates
429246769Sjkim	* the hash. */
430246769Sjkim	unsigned md_length_size = 8;
431246769Sjkim	char length_is_big_endian = 1;
432246769Sjkim
433246769Sjkim	/* This is a, hopefully redundant, check that allows us to forget about
434246769Sjkim	 * many possible overflows later in this function. */
435246769Sjkim	OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
436246769Sjkim
437246769Sjkim	switch (EVP_MD_CTX_type(ctx))
438246769Sjkim		{
439246769Sjkim		case NID_md5:
440246769Sjkim			MD5_Init((MD5_CTX*)md_state.c);
441246769Sjkim			md_final_raw = tls1_md5_final_raw;
442246769Sjkim			md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
443246769Sjkim			md_size = 16;
444246769Sjkim			sslv3_pad_length = 48;
445246769Sjkim			length_is_big_endian = 0;
446246769Sjkim			break;
447246769Sjkim		case NID_sha1:
448246769Sjkim			SHA1_Init((SHA_CTX*)md_state.c);
449246769Sjkim			md_final_raw = tls1_sha1_final_raw;
450246769Sjkim			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
451246769Sjkim			md_size = 20;
452246769Sjkim			break;
453246769Sjkim#ifndef OPENSSL_NO_SHA256
454246769Sjkim		case NID_sha224:
455246769Sjkim			SHA224_Init((SHA256_CTX*)md_state.c);
456246769Sjkim			md_final_raw = tls1_sha256_final_raw;
457246769Sjkim			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
458246769Sjkim			md_size = 224/8;
459246769Sjkim			break;
460246769Sjkim		case NID_sha256:
461246769Sjkim			SHA256_Init((SHA256_CTX*)md_state.c);
462246769Sjkim			md_final_raw = tls1_sha256_final_raw;
463246769Sjkim			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
464246769Sjkim			md_size = 32;
465246769Sjkim			break;
466246769Sjkim#endif
467246769Sjkim#ifndef OPENSSL_NO_SHA512
468246769Sjkim		case NID_sha384:
469246769Sjkim			SHA384_Init((SHA512_CTX*)md_state.c);
470246769Sjkim			md_final_raw = tls1_sha512_final_raw;
471246769Sjkim			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
472246769Sjkim			md_size = 384/8;
473246769Sjkim			md_block_size = 128;
474246769Sjkim			md_length_size = 16;
475246769Sjkim			break;
476246769Sjkim		case NID_sha512:
477246769Sjkim			SHA512_Init((SHA512_CTX*)md_state.c);
478246769Sjkim			md_final_raw = tls1_sha512_final_raw;
479246769Sjkim			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
480246769Sjkim			md_size = 64;
481246769Sjkim			md_block_size = 128;
482246769Sjkim			md_length_size = 16;
483246769Sjkim			break;
484246769Sjkim#endif
485246769Sjkim		default:
486246769Sjkim			/* ssl3_cbc_record_digest_supported should have been
487246769Sjkim			 * called first to check that the hash function is
488246769Sjkim			 * supported. */
489246769Sjkim			OPENSSL_assert(0);
490246769Sjkim			if (md_out_size)
491246769Sjkim				*md_out_size = -1;
492246769Sjkim			return;
493246769Sjkim		}
494246769Sjkim
495246769Sjkim	OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
496246769Sjkim	OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
497246769Sjkim	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
498246769Sjkim
499246769Sjkim	header_length = 13;
500246769Sjkim	if (is_sslv3)
501246769Sjkim		{
502246769Sjkim		header_length =
503246769Sjkim			mac_secret_length +
504246769Sjkim			sslv3_pad_length +
505246769Sjkim			8 /* sequence number */ +
506246769Sjkim			1 /* record type */ +
507246769Sjkim			2 /* record length */;
508246769Sjkim		}
509246769Sjkim
510246769Sjkim	/* variance_blocks is the number of blocks of the hash that we have to
511246769Sjkim	 * calculate in constant time because they could be altered by the
512246769Sjkim	 * padding value.
513246769Sjkim	 *
514246769Sjkim	 * In SSLv3, the padding must be minimal so the end of the plaintext
515246769Sjkim	 * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
516246769Sjkim	 * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
517246769Sjkim	 * termination (0x80 + 64-bit length) don't fit in the final block, we
518246769Sjkim	 * say that the final two blocks can vary based on the padding.
519246769Sjkim	 *
520246769Sjkim	 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
521246769Sjkim	 * required to be minimal. Therefore we say that the final six blocks
522246769Sjkim	 * can vary based on the padding.
523246769Sjkim	 *
524246769Sjkim	 * Later in the function, if the message is short and there obviously
525246769Sjkim	 * cannot be this many blocks then variance_blocks can be reduced. */
526246769Sjkim	variance_blocks = is_sslv3 ? 2 : 6;
527246769Sjkim	/* From now on we're dealing with the MAC, which conceptually has 13
528246769Sjkim	 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
529246769Sjkim	 * (SSLv3) */
530246769Sjkim	len = data_plus_mac_plus_padding_size + header_length;
531246769Sjkim	/* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
532246769Sjkim	* |header|, assuming that there's no padding. */
533246769Sjkim	max_mac_bytes = len - md_size - 1;
534246769Sjkim	/* num_blocks is the maximum number of hash blocks. */
535246769Sjkim	num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
536246769Sjkim	/* In order to calculate the MAC in constant time we have to handle
537246769Sjkim	 * the final blocks specially because the padding value could cause the
538246769Sjkim	 * end to appear somewhere in the final |variance_blocks| blocks and we
539246769Sjkim	 * can't leak where. However, |num_starting_blocks| worth of data can
540246769Sjkim	 * be hashed right away because no padding value can affect whether
541246769Sjkim	 * they are plaintext. */
542246769Sjkim	num_starting_blocks = 0;
543246769Sjkim	/* k is the starting byte offset into the conceptual header||data where
544246769Sjkim	 * we start processing. */
545246769Sjkim	k = 0;
546246769Sjkim	/* mac_end_offset is the index just past the end of the data to be
547246769Sjkim	 * MACed. */
548246769Sjkim	mac_end_offset = data_plus_mac_size + header_length - md_size;
549246769Sjkim	/* c is the index of the 0x80 byte in the final hash block that
550246769Sjkim	 * contains application data. */
551246769Sjkim	c = mac_end_offset % md_block_size;
552246769Sjkim	/* index_a is the hash block number that contains the 0x80 terminating
553246769Sjkim	 * value. */
554246769Sjkim	index_a = mac_end_offset / md_block_size;
555246769Sjkim	/* index_b is the hash block number that contains the 64-bit hash
556246769Sjkim	 * length, in bits. */
557246769Sjkim	index_b = (mac_end_offset + md_length_size) / md_block_size;
558246769Sjkim	/* bits is the hash-length in bits. It includes the additional hash
559246769Sjkim	 * block for the masked HMAC key, or whole of |header| in the case of
560246769Sjkim	 * SSLv3. */
561246769Sjkim
562246769Sjkim	/* For SSLv3, if we're going to have any starting blocks then we need
563246769Sjkim	 * at least two because the header is larger than a single block. */
564246769Sjkim	if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0))
565246769Sjkim		{
566246769Sjkim		num_starting_blocks = num_blocks - variance_blocks;
567246769Sjkim		k = md_block_size*num_starting_blocks;
568246769Sjkim		}
569246769Sjkim
570246769Sjkim	bits = 8*mac_end_offset;
571246769Sjkim	if (!is_sslv3)
572246769Sjkim		{
573246769Sjkim		/* Compute the initial HMAC block. For SSLv3, the padding and
574246769Sjkim		 * secret bytes are included in |header| because they take more
575246769Sjkim		 * than a single block. */
576246769Sjkim		bits += 8*md_block_size;
577246769Sjkim		memset(hmac_pad, 0, md_block_size);
578246769Sjkim		OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
579246769Sjkim		memcpy(hmac_pad, mac_secret, mac_secret_length);
580246769Sjkim		for (i = 0; i < md_block_size; i++)
581246769Sjkim			hmac_pad[i] ^= 0x36;
582246769Sjkim
583246769Sjkim		md_transform(md_state.c, hmac_pad);
584246769Sjkim		}
585246769Sjkim
586246769Sjkim	if (length_is_big_endian)
587246769Sjkim		{
588246769Sjkim		memset(length_bytes,0,md_length_size-4);
589246769Sjkim		length_bytes[md_length_size-4] = (unsigned char)(bits>>24);
590246769Sjkim		length_bytes[md_length_size-3] = (unsigned char)(bits>>16);
591246769Sjkim		length_bytes[md_length_size-2] = (unsigned char)(bits>>8);
592246769Sjkim		length_bytes[md_length_size-1] = (unsigned char)bits;
593246769Sjkim		}
594246769Sjkim	else
595246769Sjkim		{
596246769Sjkim		memset(length_bytes,0,md_length_size);
597246769Sjkim		length_bytes[md_length_size-5] = (unsigned char)(bits>>24);
598246769Sjkim		length_bytes[md_length_size-6] = (unsigned char)(bits>>16);
599246769Sjkim		length_bytes[md_length_size-7] = (unsigned char)(bits>>8);
600246769Sjkim		length_bytes[md_length_size-8] = (unsigned char)bits;
601246769Sjkim		}
602246769Sjkim
603246769Sjkim	if (k > 0)
604246769Sjkim		{
605246769Sjkim		if (is_sslv3)
606246769Sjkim			{
607246769Sjkim			/* The SSLv3 header is larger than a single block.
608246769Sjkim			 * overhang is the number of bytes beyond a single
609246769Sjkim			 * block that the header consumes: either 7 bytes
610246769Sjkim			 * (SHA1) or 11 bytes (MD5). */
611246769Sjkim			unsigned overhang = header_length-md_block_size;
612246769Sjkim			md_transform(md_state.c, header);
613246769Sjkim			memcpy(first_block, header + md_block_size, overhang);
614246769Sjkim			memcpy(first_block + overhang, data, md_block_size-overhang);
615246769Sjkim			md_transform(md_state.c, first_block);
616246769Sjkim			for (i = 1; i < k/md_block_size - 1; i++)
617246769Sjkim				md_transform(md_state.c, data + md_block_size*i - overhang);
618246769Sjkim			}
619246769Sjkim		else
620246769Sjkim			{
621246769Sjkim			/* k is a multiple of md_block_size. */
622246769Sjkim			memcpy(first_block, header, 13);
623246769Sjkim			memcpy(first_block+13, data, md_block_size-13);
624246769Sjkim			md_transform(md_state.c, first_block);
625246769Sjkim			for (i = 1; i < k/md_block_size; i++)
626246769Sjkim				md_transform(md_state.c, data + md_block_size*i - 13);
627246769Sjkim			}
628246769Sjkim		}
629246769Sjkim
630246769Sjkim	memset(mac_out, 0, sizeof(mac_out));
631246769Sjkim
632246769Sjkim	/* We now process the final hash blocks. For each block, we construct
633246769Sjkim	 * it in constant time. If the |i==index_a| then we'll include the 0x80
634246769Sjkim	 * bytes and zero pad etc. For each block we selectively copy it, in
635246769Sjkim	 * constant time, to |mac_out|. */
636246769Sjkim	for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++)
637246769Sjkim		{
638246769Sjkim		unsigned char block[MAX_HASH_BLOCK_SIZE];
639246769Sjkim		unsigned char is_block_a = constant_time_eq_8(i, index_a);
640246769Sjkim		unsigned char is_block_b = constant_time_eq_8(i, index_b);
641246769Sjkim		for (j = 0; j < md_block_size; j++)
642246769Sjkim			{
643246769Sjkim			unsigned char b = 0, is_past_c, is_past_cp1;
644246769Sjkim			if (k < header_length)
645246769Sjkim				b = header[k];
646246769Sjkim			else if (k < data_plus_mac_plus_padding_size + header_length)
647246769Sjkim				b = data[k-header_length];
648246769Sjkim			k++;
649246769Sjkim
650279264Sdelphij			is_past_c = is_block_a & constant_time_ge_8(j, c);
651279264Sdelphij			is_past_cp1 = is_block_a & constant_time_ge_8(j, c+1);
652246769Sjkim			/* If this is the block containing the end of the
653246769Sjkim			 * application data, and we are at the offset for the
654246769Sjkim			 * 0x80 value, then overwrite b with 0x80. */
655279264Sdelphij                        b =  constant_time_select_8(is_past_c, 0x80, b);
656246769Sjkim			/* If this the the block containing the end of the
657246769Sjkim			 * application data and we're past the 0x80 value then
658246769Sjkim			 * just write zero. */
659246769Sjkim			b = b&~is_past_cp1;
660246769Sjkim			/* If this is index_b (the final block), but not
661246769Sjkim			 * index_a (the end of the data), then the 64-bit
662246769Sjkim			 * length didn't fit into index_a and we're having to
663246769Sjkim			 * add an extra block of zeros. */
664246769Sjkim			b &= ~is_block_b | is_block_a;
665246769Sjkim
666246769Sjkim			/* The final bytes of one of the blocks contains the
667246769Sjkim			 * length. */
668246769Sjkim			if (j >= md_block_size - md_length_size)
669246769Sjkim				{
670246769Sjkim				/* If this is index_b, write a length byte. */
671279264Sdelphij				b = constant_time_select_8(
672279264Sdelphij					is_block_b, length_bytes[j-(md_block_size-md_length_size)], b);
673246769Sjkim				}
674246769Sjkim			block[j] = b;
675246769Sjkim			}
676246769Sjkim
677246769Sjkim		md_transform(md_state.c, block);
678246769Sjkim		md_final_raw(md_state.c, block);
679246769Sjkim		/* If this is index_b, copy the hash value to |mac_out|. */
680246769Sjkim		for (j = 0; j < md_size; j++)
681246769Sjkim			mac_out[j] |= block[j]&is_block_b;
682246769Sjkim		}
683246769Sjkim
684246769Sjkim	EVP_MD_CTX_init(&md_ctx);
685246769Sjkim	EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */);
686246769Sjkim	if (is_sslv3)
687246769Sjkim		{
688246769Sjkim		/* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
689246769Sjkim		memset(hmac_pad, 0x5c, sslv3_pad_length);
690246769Sjkim
691246769Sjkim		EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
692246769Sjkim		EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
693246769Sjkim		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
694246769Sjkim		}
695246769Sjkim	else
696246769Sjkim		{
697246769Sjkim		/* Complete the HMAC in the standard manner. */
698246769Sjkim		for (i = 0; i < md_block_size; i++)
699246769Sjkim			hmac_pad[i] ^= 0x6a;
700246769Sjkim
701246769Sjkim		EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
702246769Sjkim		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
703246769Sjkim		}
704246769Sjkim	EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
705246769Sjkim	if (md_out_size)
706246769Sjkim		*md_out_size = md_out_size_u;
707246769Sjkim	EVP_MD_CTX_cleanup(&md_ctx);
708246769Sjkim	}
709246769Sjkim
710246769Sjkim#ifdef OPENSSL_FIPS
711246769Sjkim
712246769Sjkim/* Due to the need to use EVP in FIPS mode we can't reimplement digests but
713246769Sjkim * we can ensure the number of blocks processed is equal for all cases
714246769Sjkim * by digesting additional data.
715246769Sjkim */
716246769Sjkim
717246769Sjkimvoid tls_fips_digest_extra(
718246769Sjkim	const EVP_CIPHER_CTX *cipher_ctx, EVP_MD_CTX *mac_ctx,
719246769Sjkim	const unsigned char *data, size_t data_len, size_t orig_len)
720246769Sjkim	{
721246769Sjkim	size_t block_size, digest_pad, blocks_data, blocks_orig;
722246769Sjkim	if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
723246769Sjkim		return;
724246769Sjkim	block_size = EVP_MD_CTX_block_size(mac_ctx);
725246769Sjkim	/* We are in FIPS mode if we get this far so we know we have only SHA*
726246769Sjkim	 * digests and TLS to deal with.
727246769Sjkim	 * Minimum digest padding length is 17 for SHA384/SHA512 and 9
728246769Sjkim	 * otherwise.
729246769Sjkim	 * Additional header is 13 bytes. To get the number of digest blocks
730246769Sjkim	 * processed round up the amount of data plus padding to the nearest
731246769Sjkim	 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
732246769Sjkim	 * So we have:
733246769Sjkim	 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
734246769Sjkim	 * equivalently:
735246769Sjkim	 * blocks = (payload_len + digest_pad + 12)/block_size + 1
736246769Sjkim	 * HMAC adds a constant overhead.
737246769Sjkim	 * We're ultimately only interested in differences so this becomes
738246769Sjkim	 * blocks = (payload_len + 29)/128
739246769Sjkim	 * for SHA384/SHA512 and
740246769Sjkim	 * blocks = (payload_len + 21)/64
741246769Sjkim	 * otherwise.
742246769Sjkim	 */
743246769Sjkim	digest_pad = block_size == 64 ? 21 : 29;
744246769Sjkim	blocks_orig = (orig_len + digest_pad)/block_size;
745246769Sjkim	blocks_data = (data_len + digest_pad)/block_size;
746246769Sjkim	/* MAC enough blocks to make up the difference between the original
747246769Sjkim	 * and actual lengths plus one extra block to ensure this is never a
748246769Sjkim	 * no op. The "data" pointer should always have enough space to
749246769Sjkim	 * perform this operation as it is large enough for a maximum
750246769Sjkim	 * length TLS buffer.
751246769Sjkim	 */
752246769Sjkim	EVP_DigestSignUpdate(mac_ctx, data,
753246769Sjkim				(blocks_orig - blocks_data + 1) * block_size);
754246769Sjkim	}
755246769Sjkim#endif
756