bn_asm.c revision 277195
1/* crypto/bn/bn_asm.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59#ifndef BN_DEBUG
60# undef NDEBUG /* avoid conflicting definitions */
61# define NDEBUG
62#endif
63
64#include <stdio.h>
65#include <assert.h>
66#include "cryptlib.h"
67#include "bn_lcl.h"
68
69#if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
70
71BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
72	{
73	BN_ULONG c1=0;
74
75	assert(num >= 0);
76	if (num <= 0) return(c1);
77
78#ifndef OPENSSL_SMALL_FOOTPRINT
79	while (num&~3)
80		{
81		mul_add(rp[0],ap[0],w,c1);
82		mul_add(rp[1],ap[1],w,c1);
83		mul_add(rp[2],ap[2],w,c1);
84		mul_add(rp[3],ap[3],w,c1);
85		ap+=4; rp+=4; num-=4;
86		}
87#endif
88	while (num)
89		{
90		mul_add(rp[0],ap[0],w,c1);
91		ap++; rp++; num--;
92		}
93
94	return(c1);
95	}
96
97BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
98	{
99	BN_ULONG c1=0;
100
101	assert(num >= 0);
102	if (num <= 0) return(c1);
103
104#ifndef OPENSSL_SMALL_FOOTPRINT
105	while (num&~3)
106		{
107		mul(rp[0],ap[0],w,c1);
108		mul(rp[1],ap[1],w,c1);
109		mul(rp[2],ap[2],w,c1);
110		mul(rp[3],ap[3],w,c1);
111		ap+=4; rp+=4; num-=4;
112		}
113#endif
114	while (num)
115		{
116		mul(rp[0],ap[0],w,c1);
117		ap++; rp++; num--;
118		}
119	return(c1);
120	}
121
122void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
123        {
124	assert(n >= 0);
125	if (n <= 0) return;
126
127#ifndef OPENSSL_SMALL_FOOTPRINT
128	while (n&~3)
129		{
130		sqr(r[0],r[1],a[0]);
131		sqr(r[2],r[3],a[1]);
132		sqr(r[4],r[5],a[2]);
133		sqr(r[6],r[7],a[3]);
134		a+=4; r+=8; n-=4;
135		}
136#endif
137	while (n)
138		{
139		sqr(r[0],r[1],a[0]);
140		a++; r+=2; n--;
141		}
142	}
143
144#else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
145
146BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
147	{
148	BN_ULONG c=0;
149	BN_ULONG bl,bh;
150
151	assert(num >= 0);
152	if (num <= 0) return((BN_ULONG)0);
153
154	bl=LBITS(w);
155	bh=HBITS(w);
156
157#ifndef OPENSSL_SMALL_FOOTPRINT
158	while (num&~3)
159		{
160		mul_add(rp[0],ap[0],bl,bh,c);
161		mul_add(rp[1],ap[1],bl,bh,c);
162		mul_add(rp[2],ap[2],bl,bh,c);
163		mul_add(rp[3],ap[3],bl,bh,c);
164		ap+=4; rp+=4; num-=4;
165		}
166#endif
167	while (num)
168		{
169		mul_add(rp[0],ap[0],bl,bh,c);
170		ap++; rp++; num--;
171		}
172	return(c);
173	}
174
175BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
176	{
177	BN_ULONG carry=0;
178	BN_ULONG bl,bh;
179
180	assert(num >= 0);
181	if (num <= 0) return((BN_ULONG)0);
182
183	bl=LBITS(w);
184	bh=HBITS(w);
185
186#ifndef OPENSSL_SMALL_FOOTPRINT
187	while (num&~3)
188		{
189		mul(rp[0],ap[0],bl,bh,carry);
190		mul(rp[1],ap[1],bl,bh,carry);
191		mul(rp[2],ap[2],bl,bh,carry);
192		mul(rp[3],ap[3],bl,bh,carry);
193		ap+=4; rp+=4; num-=4;
194		}
195#endif
196	while (num)
197		{
198		mul(rp[0],ap[0],bl,bh,carry);
199		ap++; rp++; num--;
200		}
201	return(carry);
202	}
203
204void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
205        {
206	assert(n >= 0);
207	if (n <= 0) return;
208
209#ifndef OPENSSL_SMALL_FOOTPRINT
210	while (n&~3)
211		{
212		sqr64(r[0],r[1],a[0]);
213		sqr64(r[2],r[3],a[1]);
214		sqr64(r[4],r[5],a[2]);
215		sqr64(r[6],r[7],a[3]);
216		a+=4; r+=8; n-=4;
217		}
218#endif
219	while (n)
220		{
221		sqr64(r[0],r[1],a[0]);
222		a++; r+=2; n--;
223		}
224	}
225
226#endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
227
228#if defined(BN_LLONG) && defined(BN_DIV2W)
229
230BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
231	{
232	return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
233	}
234
235#else
236
237/* Divide h,l by d and return the result. */
238/* I need to test this some more :-( */
239BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
240	{
241	BN_ULONG dh,dl,q,ret=0,th,tl,t;
242	int i,count=2;
243
244	if (d == 0) return(BN_MASK2);
245
246	i=BN_num_bits_word(d);
247	assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));
248
249	i=BN_BITS2-i;
250	if (h >= d) h-=d;
251
252	if (i)
253		{
254		d<<=i;
255		h=(h<<i)|(l>>(BN_BITS2-i));
256		l<<=i;
257		}
258	dh=(d&BN_MASK2h)>>BN_BITS4;
259	dl=(d&BN_MASK2l);
260	for (;;)
261		{
262		if ((h>>BN_BITS4) == dh)
263			q=BN_MASK2l;
264		else
265			q=h/dh;
266
267		th=q*dh;
268		tl=dl*q;
269		for (;;)
270			{
271			t=h-th;
272			if ((t&BN_MASK2h) ||
273				((tl) <= (
274					(t<<BN_BITS4)|
275					((l&BN_MASK2h)>>BN_BITS4))))
276				break;
277			q--;
278			th-=dh;
279			tl-=dl;
280			}
281		t=(tl>>BN_BITS4);
282		tl=(tl<<BN_BITS4)&BN_MASK2h;
283		th+=t;
284
285		if (l < tl) th++;
286		l-=tl;
287		if (h < th)
288			{
289			h+=d;
290			q--;
291			}
292		h-=th;
293
294		if (--count == 0) break;
295
296		ret=q<<BN_BITS4;
297		h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
298		l=(l&BN_MASK2l)<<BN_BITS4;
299		}
300	ret|=q;
301	return(ret);
302	}
303#endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
304
305#ifdef BN_LLONG
306BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
307        {
308	BN_ULLONG ll=0;
309
310	assert(n >= 0);
311	if (n <= 0) return((BN_ULONG)0);
312
313#ifndef OPENSSL_SMALL_FOOTPRINT
314	while (n&~3)
315		{
316		ll+=(BN_ULLONG)a[0]+b[0];
317		r[0]=(BN_ULONG)ll&BN_MASK2;
318		ll>>=BN_BITS2;
319		ll+=(BN_ULLONG)a[1]+b[1];
320		r[1]=(BN_ULONG)ll&BN_MASK2;
321		ll>>=BN_BITS2;
322		ll+=(BN_ULLONG)a[2]+b[2];
323		r[2]=(BN_ULONG)ll&BN_MASK2;
324		ll>>=BN_BITS2;
325		ll+=(BN_ULLONG)a[3]+b[3];
326		r[3]=(BN_ULONG)ll&BN_MASK2;
327		ll>>=BN_BITS2;
328		a+=4; b+=4; r+=4; n-=4;
329		}
330#endif
331	while (n)
332		{
333		ll+=(BN_ULLONG)a[0]+b[0];
334		r[0]=(BN_ULONG)ll&BN_MASK2;
335		ll>>=BN_BITS2;
336		a++; b++; r++; n--;
337		}
338	return((BN_ULONG)ll);
339	}
340#else /* !BN_LLONG */
341BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
342        {
343	BN_ULONG c,l,t;
344
345	assert(n >= 0);
346	if (n <= 0) return((BN_ULONG)0);
347
348	c=0;
349#ifndef OPENSSL_SMALL_FOOTPRINT
350	while (n&~3)
351		{
352		t=a[0];
353		t=(t+c)&BN_MASK2;
354		c=(t < c);
355		l=(t+b[0])&BN_MASK2;
356		c+=(l < t);
357		r[0]=l;
358		t=a[1];
359		t=(t+c)&BN_MASK2;
360		c=(t < c);
361		l=(t+b[1])&BN_MASK2;
362		c+=(l < t);
363		r[1]=l;
364		t=a[2];
365		t=(t+c)&BN_MASK2;
366		c=(t < c);
367		l=(t+b[2])&BN_MASK2;
368		c+=(l < t);
369		r[2]=l;
370		t=a[3];
371		t=(t+c)&BN_MASK2;
372		c=(t < c);
373		l=(t+b[3])&BN_MASK2;
374		c+=(l < t);
375		r[3]=l;
376		a+=4; b+=4; r+=4; n-=4;
377		}
378#endif
379	while(n)
380		{
381		t=a[0];
382		t=(t+c)&BN_MASK2;
383		c=(t < c);
384		l=(t+b[0])&BN_MASK2;
385		c+=(l < t);
386		r[0]=l;
387		a++; b++; r++; n--;
388		}
389	return((BN_ULONG)c);
390	}
391#endif /* !BN_LLONG */
392
393BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
394        {
395	BN_ULONG t1,t2;
396	int c=0;
397
398	assert(n >= 0);
399	if (n <= 0) return((BN_ULONG)0);
400
401#ifndef OPENSSL_SMALL_FOOTPRINT
402	while (n&~3)
403		{
404		t1=a[0]; t2=b[0];
405		r[0]=(t1-t2-c)&BN_MASK2;
406		if (t1 != t2) c=(t1 < t2);
407		t1=a[1]; t2=b[1];
408		r[1]=(t1-t2-c)&BN_MASK2;
409		if (t1 != t2) c=(t1 < t2);
410		t1=a[2]; t2=b[2];
411		r[2]=(t1-t2-c)&BN_MASK2;
412		if (t1 != t2) c=(t1 < t2);
413		t1=a[3]; t2=b[3];
414		r[3]=(t1-t2-c)&BN_MASK2;
415		if (t1 != t2) c=(t1 < t2);
416		a+=4; b+=4; r+=4; n-=4;
417		}
418#endif
419	while (n)
420		{
421		t1=a[0]; t2=b[0];
422		r[0]=(t1-t2-c)&BN_MASK2;
423		if (t1 != t2) c=(t1 < t2);
424		a++; b++; r++; n--;
425		}
426	return(c);
427	}
428
429#if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
430
431#undef bn_mul_comba8
432#undef bn_mul_comba4
433#undef bn_sqr_comba8
434#undef bn_sqr_comba4
435
436/* mul_add_c(a,b,c0,c1,c2)  -- c+=a*b for three word number c=(c2,c1,c0) */
437/* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
438/* sqr_add_c(a,i,c0,c1,c2)  -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
439/* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
440
441/*
442 * Keep in mind that carrying into high part of multiplication result
443 * can not overflow, because it cannot be all-ones.
444 */
445#ifdef BN_LLONG
446#define mul_add_c(a,b,c0,c1,c2) \
447	t=(BN_ULLONG)a*b; \
448	t1=(BN_ULONG)Lw(t); \
449	t2=(BN_ULONG)Hw(t); \
450	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
451	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
452
453#define mul_add_c2(a,b,c0,c1,c2) \
454	t=(BN_ULLONG)a*b; \
455	tt=(t+t)&BN_MASK; \
456	if (tt < t) c2++; \
457	t1=(BN_ULONG)Lw(tt); \
458	t2=(BN_ULONG)Hw(tt); \
459	c0=(c0+t1)&BN_MASK2;  \
460	if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
461	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
462
463#define sqr_add_c(a,i,c0,c1,c2) \
464	t=(BN_ULLONG)a[i]*a[i]; \
465	t1=(BN_ULONG)Lw(t); \
466	t2=(BN_ULONG)Hw(t); \
467	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
468	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
469
470#define sqr_add_c2(a,i,j,c0,c1,c2) \
471	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
472
473#elif defined(BN_UMULT_LOHI)
474
475#define mul_add_c(a,b,c0,c1,c2)	{	\
476	BN_ULONG ta=(a),tb=(b);		\
477	BN_UMULT_LOHI(t1,t2,ta,tb);	\
478	c0 += t1; t2 += (c0<t1)?1:0;	\
479	c1 += t2; c2 += (c1<t2)?1:0;	\
480	}
481
482#define mul_add_c2(a,b,c0,c1,c2) {	\
483	BN_ULONG ta=(a),tb=(b),t0;	\
484	BN_UMULT_LOHI(t0,t1,ta,tb);	\
485	c0 += t0; t2 = t1+((c0<t0)?1:0);\
486	c1 += t2; c2 += (c1<t2)?1:0;	\
487	c0 += t0; t1 += (c0<t0)?1:0;	\
488	c1 += t1; c2 += (c1<t1)?1:0;	\
489	}
490
491#define sqr_add_c(a,i,c0,c1,c2)	{	\
492	BN_ULONG ta=(a)[i];		\
493	BN_UMULT_LOHI(t1,t2,ta,ta);	\
494	c0 += t1; t2 += (c0<t1)?1:0;	\
495	c1 += t2; c2 += (c1<t2)?1:0;	\
496	}
497
498#define sqr_add_c2(a,i,j,c0,c1,c2)	\
499	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
500
501#elif defined(BN_UMULT_HIGH)
502
503#define mul_add_c(a,b,c0,c1,c2)	{	\
504	BN_ULONG ta=(a),tb=(b);		\
505	t1 = ta * tb;			\
506	t2 = BN_UMULT_HIGH(ta,tb);	\
507	c0 += t1; t2 += (c0<t1)?1:0;	\
508	c1 += t2; c2 += (c1<t2)?1:0;	\
509	}
510
511#define mul_add_c2(a,b,c0,c1,c2) {	\
512	BN_ULONG ta=(a),tb=(b),t0;	\
513	t1 = BN_UMULT_HIGH(ta,tb);	\
514	t0 = ta * tb;			\
515	c0 += t0; t2 = t1+((c0<t0)?1:0);\
516	c1 += t2; c2 += (c1<t2)?1:0;	\
517	c0 += t0; t1 += (c0<t0)?1:0;	\
518	c1 += t1; c2 += (c1<t1)?1:0;	\
519	}
520
521#define sqr_add_c(a,i,c0,c1,c2)	{	\
522	BN_ULONG ta=(a)[i];		\
523	t1 = ta * ta;			\
524	t2 = BN_UMULT_HIGH(ta,ta);	\
525	c0 += t1; t2 += (c0<t1)?1:0;	\
526	c1 += t2; c2 += (c1<t2)?1:0;	\
527	}
528
529#define sqr_add_c2(a,i,j,c0,c1,c2)	\
530	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
531
532#else /* !BN_LLONG */
533#define mul_add_c(a,b,c0,c1,c2) \
534	t1=LBITS(a); t2=HBITS(a); \
535	bl=LBITS(b); bh=HBITS(b); \
536	mul64(t1,t2,bl,bh); \
537	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
538	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
539
540#define mul_add_c2(a,b,c0,c1,c2) \
541	t1=LBITS(a); t2=HBITS(a); \
542	bl=LBITS(b); bh=HBITS(b); \
543	mul64(t1,t2,bl,bh); \
544	if (t2 & BN_TBIT) c2++; \
545	t2=(t2+t2)&BN_MASK2; \
546	if (t1 & BN_TBIT) t2++; \
547	t1=(t1+t1)&BN_MASK2; \
548	c0=(c0+t1)&BN_MASK2;  \
549	if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
550	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
551
552#define sqr_add_c(a,i,c0,c1,c2) \
553	sqr64(t1,t2,(a)[i]); \
554	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
555	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
556
557#define sqr_add_c2(a,i,j,c0,c1,c2) \
558	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
559#endif /* !BN_LLONG */
560
561void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
562	{
563#ifdef BN_LLONG
564	BN_ULLONG t;
565#else
566	BN_ULONG bl,bh;
567#endif
568	BN_ULONG t1,t2;
569	BN_ULONG c1,c2,c3;
570
571	c1=0;
572	c2=0;
573	c3=0;
574	mul_add_c(a[0],b[0],c1,c2,c3);
575	r[0]=c1;
576	c1=0;
577	mul_add_c(a[0],b[1],c2,c3,c1);
578	mul_add_c(a[1],b[0],c2,c3,c1);
579	r[1]=c2;
580	c2=0;
581	mul_add_c(a[2],b[0],c3,c1,c2);
582	mul_add_c(a[1],b[1],c3,c1,c2);
583	mul_add_c(a[0],b[2],c3,c1,c2);
584	r[2]=c3;
585	c3=0;
586	mul_add_c(a[0],b[3],c1,c2,c3);
587	mul_add_c(a[1],b[2],c1,c2,c3);
588	mul_add_c(a[2],b[1],c1,c2,c3);
589	mul_add_c(a[3],b[0],c1,c2,c3);
590	r[3]=c1;
591	c1=0;
592	mul_add_c(a[4],b[0],c2,c3,c1);
593	mul_add_c(a[3],b[1],c2,c3,c1);
594	mul_add_c(a[2],b[2],c2,c3,c1);
595	mul_add_c(a[1],b[3],c2,c3,c1);
596	mul_add_c(a[0],b[4],c2,c3,c1);
597	r[4]=c2;
598	c2=0;
599	mul_add_c(a[0],b[5],c3,c1,c2);
600	mul_add_c(a[1],b[4],c3,c1,c2);
601	mul_add_c(a[2],b[3],c3,c1,c2);
602	mul_add_c(a[3],b[2],c3,c1,c2);
603	mul_add_c(a[4],b[1],c3,c1,c2);
604	mul_add_c(a[5],b[0],c3,c1,c2);
605	r[5]=c3;
606	c3=0;
607	mul_add_c(a[6],b[0],c1,c2,c3);
608	mul_add_c(a[5],b[1],c1,c2,c3);
609	mul_add_c(a[4],b[2],c1,c2,c3);
610	mul_add_c(a[3],b[3],c1,c2,c3);
611	mul_add_c(a[2],b[4],c1,c2,c3);
612	mul_add_c(a[1],b[5],c1,c2,c3);
613	mul_add_c(a[0],b[6],c1,c2,c3);
614	r[6]=c1;
615	c1=0;
616	mul_add_c(a[0],b[7],c2,c3,c1);
617	mul_add_c(a[1],b[6],c2,c3,c1);
618	mul_add_c(a[2],b[5],c2,c3,c1);
619	mul_add_c(a[3],b[4],c2,c3,c1);
620	mul_add_c(a[4],b[3],c2,c3,c1);
621	mul_add_c(a[5],b[2],c2,c3,c1);
622	mul_add_c(a[6],b[1],c2,c3,c1);
623	mul_add_c(a[7],b[0],c2,c3,c1);
624	r[7]=c2;
625	c2=0;
626	mul_add_c(a[7],b[1],c3,c1,c2);
627	mul_add_c(a[6],b[2],c3,c1,c2);
628	mul_add_c(a[5],b[3],c3,c1,c2);
629	mul_add_c(a[4],b[4],c3,c1,c2);
630	mul_add_c(a[3],b[5],c3,c1,c2);
631	mul_add_c(a[2],b[6],c3,c1,c2);
632	mul_add_c(a[1],b[7],c3,c1,c2);
633	r[8]=c3;
634	c3=0;
635	mul_add_c(a[2],b[7],c1,c2,c3);
636	mul_add_c(a[3],b[6],c1,c2,c3);
637	mul_add_c(a[4],b[5],c1,c2,c3);
638	mul_add_c(a[5],b[4],c1,c2,c3);
639	mul_add_c(a[6],b[3],c1,c2,c3);
640	mul_add_c(a[7],b[2],c1,c2,c3);
641	r[9]=c1;
642	c1=0;
643	mul_add_c(a[7],b[3],c2,c3,c1);
644	mul_add_c(a[6],b[4],c2,c3,c1);
645	mul_add_c(a[5],b[5],c2,c3,c1);
646	mul_add_c(a[4],b[6],c2,c3,c1);
647	mul_add_c(a[3],b[7],c2,c3,c1);
648	r[10]=c2;
649	c2=0;
650	mul_add_c(a[4],b[7],c3,c1,c2);
651	mul_add_c(a[5],b[6],c3,c1,c2);
652	mul_add_c(a[6],b[5],c3,c1,c2);
653	mul_add_c(a[7],b[4],c3,c1,c2);
654	r[11]=c3;
655	c3=0;
656	mul_add_c(a[7],b[5],c1,c2,c3);
657	mul_add_c(a[6],b[6],c1,c2,c3);
658	mul_add_c(a[5],b[7],c1,c2,c3);
659	r[12]=c1;
660	c1=0;
661	mul_add_c(a[6],b[7],c2,c3,c1);
662	mul_add_c(a[7],b[6],c2,c3,c1);
663	r[13]=c2;
664	c2=0;
665	mul_add_c(a[7],b[7],c3,c1,c2);
666	r[14]=c3;
667	r[15]=c1;
668	}
669
670void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
671	{
672#ifdef BN_LLONG
673	BN_ULLONG t;
674#else
675	BN_ULONG bl,bh;
676#endif
677	BN_ULONG t1,t2;
678	BN_ULONG c1,c2,c3;
679
680	c1=0;
681	c2=0;
682	c3=0;
683	mul_add_c(a[0],b[0],c1,c2,c3);
684	r[0]=c1;
685	c1=0;
686	mul_add_c(a[0],b[1],c2,c3,c1);
687	mul_add_c(a[1],b[0],c2,c3,c1);
688	r[1]=c2;
689	c2=0;
690	mul_add_c(a[2],b[0],c3,c1,c2);
691	mul_add_c(a[1],b[1],c3,c1,c2);
692	mul_add_c(a[0],b[2],c3,c1,c2);
693	r[2]=c3;
694	c3=0;
695	mul_add_c(a[0],b[3],c1,c2,c3);
696	mul_add_c(a[1],b[2],c1,c2,c3);
697	mul_add_c(a[2],b[1],c1,c2,c3);
698	mul_add_c(a[3],b[0],c1,c2,c3);
699	r[3]=c1;
700	c1=0;
701	mul_add_c(a[3],b[1],c2,c3,c1);
702	mul_add_c(a[2],b[2],c2,c3,c1);
703	mul_add_c(a[1],b[3],c2,c3,c1);
704	r[4]=c2;
705	c2=0;
706	mul_add_c(a[2],b[3],c3,c1,c2);
707	mul_add_c(a[3],b[2],c3,c1,c2);
708	r[5]=c3;
709	c3=0;
710	mul_add_c(a[3],b[3],c1,c2,c3);
711	r[6]=c1;
712	r[7]=c2;
713	}
714
715void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
716	{
717#ifdef BN_LLONG
718	BN_ULLONG t,tt;
719#else
720	BN_ULONG bl,bh;
721#endif
722	BN_ULONG t1,t2;
723	BN_ULONG c1,c2,c3;
724
725	c1=0;
726	c2=0;
727	c3=0;
728	sqr_add_c(a,0,c1,c2,c3);
729	r[0]=c1;
730	c1=0;
731	sqr_add_c2(a,1,0,c2,c3,c1);
732	r[1]=c2;
733	c2=0;
734	sqr_add_c(a,1,c3,c1,c2);
735	sqr_add_c2(a,2,0,c3,c1,c2);
736	r[2]=c3;
737	c3=0;
738	sqr_add_c2(a,3,0,c1,c2,c3);
739	sqr_add_c2(a,2,1,c1,c2,c3);
740	r[3]=c1;
741	c1=0;
742	sqr_add_c(a,2,c2,c3,c1);
743	sqr_add_c2(a,3,1,c2,c3,c1);
744	sqr_add_c2(a,4,0,c2,c3,c1);
745	r[4]=c2;
746	c2=0;
747	sqr_add_c2(a,5,0,c3,c1,c2);
748	sqr_add_c2(a,4,1,c3,c1,c2);
749	sqr_add_c2(a,3,2,c3,c1,c2);
750	r[5]=c3;
751	c3=0;
752	sqr_add_c(a,3,c1,c2,c3);
753	sqr_add_c2(a,4,2,c1,c2,c3);
754	sqr_add_c2(a,5,1,c1,c2,c3);
755	sqr_add_c2(a,6,0,c1,c2,c3);
756	r[6]=c1;
757	c1=0;
758	sqr_add_c2(a,7,0,c2,c3,c1);
759	sqr_add_c2(a,6,1,c2,c3,c1);
760	sqr_add_c2(a,5,2,c2,c3,c1);
761	sqr_add_c2(a,4,3,c2,c3,c1);
762	r[7]=c2;
763	c2=0;
764	sqr_add_c(a,4,c3,c1,c2);
765	sqr_add_c2(a,5,3,c3,c1,c2);
766	sqr_add_c2(a,6,2,c3,c1,c2);
767	sqr_add_c2(a,7,1,c3,c1,c2);
768	r[8]=c3;
769	c3=0;
770	sqr_add_c2(a,7,2,c1,c2,c3);
771	sqr_add_c2(a,6,3,c1,c2,c3);
772	sqr_add_c2(a,5,4,c1,c2,c3);
773	r[9]=c1;
774	c1=0;
775	sqr_add_c(a,5,c2,c3,c1);
776	sqr_add_c2(a,6,4,c2,c3,c1);
777	sqr_add_c2(a,7,3,c2,c3,c1);
778	r[10]=c2;
779	c2=0;
780	sqr_add_c2(a,7,4,c3,c1,c2);
781	sqr_add_c2(a,6,5,c3,c1,c2);
782	r[11]=c3;
783	c3=0;
784	sqr_add_c(a,6,c1,c2,c3);
785	sqr_add_c2(a,7,5,c1,c2,c3);
786	r[12]=c1;
787	c1=0;
788	sqr_add_c2(a,7,6,c2,c3,c1);
789	r[13]=c2;
790	c2=0;
791	sqr_add_c(a,7,c3,c1,c2);
792	r[14]=c3;
793	r[15]=c1;
794	}
795
796void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
797	{
798#ifdef BN_LLONG
799	BN_ULLONG t,tt;
800#else
801	BN_ULONG bl,bh;
802#endif
803	BN_ULONG t1,t2;
804	BN_ULONG c1,c2,c3;
805
806	c1=0;
807	c2=0;
808	c3=0;
809	sqr_add_c(a,0,c1,c2,c3);
810	r[0]=c1;
811	c1=0;
812	sqr_add_c2(a,1,0,c2,c3,c1);
813	r[1]=c2;
814	c2=0;
815	sqr_add_c(a,1,c3,c1,c2);
816	sqr_add_c2(a,2,0,c3,c1,c2);
817	r[2]=c3;
818	c3=0;
819	sqr_add_c2(a,3,0,c1,c2,c3);
820	sqr_add_c2(a,2,1,c1,c2,c3);
821	r[3]=c1;
822	c1=0;
823	sqr_add_c(a,2,c2,c3,c1);
824	sqr_add_c2(a,3,1,c2,c3,c1);
825	r[4]=c2;
826	c2=0;
827	sqr_add_c2(a,3,2,c3,c1,c2);
828	r[5]=c3;
829	c3=0;
830	sqr_add_c(a,3,c1,c2,c3);
831	r[6]=c1;
832	r[7]=c2;
833	}
834
835#ifdef OPENSSL_NO_ASM
836#ifdef OPENSSL_BN_ASM_MONT
837#include <alloca.h>
838/*
839 * This is essentially reference implementation, which may or may not
840 * result in performance improvement. E.g. on IA-32 this routine was
841 * observed to give 40% faster rsa1024 private key operations and 10%
842 * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
843 * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
844 * reference implementation, one to be used as starting point for
845 * platform-specific assembler. Mentioned numbers apply to compiler
846 * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
847 * can vary not only from platform to platform, but even for compiler
848 * versions. Assembler vs. assembler improvement coefficients can
849 * [and are known to] differ and are to be documented elsewhere.
850 */
851int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
852	{
853	BN_ULONG c0,c1,ml,*tp,n0;
854#ifdef mul64
855	BN_ULONG mh;
856#endif
857	volatile BN_ULONG *vp;
858	int i=0,j;
859
860#if 0	/* template for platform-specific implementation */
861	if (ap==bp)	return bn_sqr_mont(rp,ap,np,n0p,num);
862#endif
863	vp = tp = alloca((num+2)*sizeof(BN_ULONG));
864
865	n0 = *n0p;
866
867	c0 = 0;
868	ml = bp[0];
869#ifdef mul64
870	mh = HBITS(ml);
871	ml = LBITS(ml);
872	for (j=0;j<num;++j)
873		mul(tp[j],ap[j],ml,mh,c0);
874#else
875	for (j=0;j<num;++j)
876		mul(tp[j],ap[j],ml,c0);
877#endif
878
879	tp[num]   = c0;
880	tp[num+1] = 0;
881	goto enter;
882
883	for(i=0;i<num;i++)
884		{
885		c0 = 0;
886		ml = bp[i];
887#ifdef mul64
888		mh = HBITS(ml);
889		ml = LBITS(ml);
890		for (j=0;j<num;++j)
891			mul_add(tp[j],ap[j],ml,mh,c0);
892#else
893		for (j=0;j<num;++j)
894			mul_add(tp[j],ap[j],ml,c0);
895#endif
896		c1 = (tp[num] + c0)&BN_MASK2;
897		tp[num]   = c1;
898		tp[num+1] = (c1<c0?1:0);
899	enter:
900		c1  = tp[0];
901		ml = (c1*n0)&BN_MASK2;
902		c0 = 0;
903#ifdef mul64
904		mh = HBITS(ml);
905		ml = LBITS(ml);
906		mul_add(c1,np[0],ml,mh,c0);
907#else
908		mul_add(c1,ml,np[0],c0);
909#endif
910		for(j=1;j<num;j++)
911			{
912			c1 = tp[j];
913#ifdef mul64
914			mul_add(c1,np[j],ml,mh,c0);
915#else
916			mul_add(c1,ml,np[j],c0);
917#endif
918			tp[j-1] = c1&BN_MASK2;
919			}
920		c1        = (tp[num] + c0)&BN_MASK2;
921		tp[num-1] = c1;
922		tp[num]   = tp[num+1] + (c1<c0?1:0);
923		}
924
925	if (tp[num]!=0 || tp[num-1]>=np[num-1])
926		{
927		c0 = bn_sub_words(rp,tp,np,num);
928		if (tp[num]!=0 || c0==0)
929			{
930			for(i=0;i<num+2;i++)	vp[i] = 0;
931			return 1;
932			}
933		}
934	for(i=0;i<num;i++)	rp[i] = tp[i],	vp[i] = 0;
935	vp[num]   = 0;
936	vp[num+1] = 0;
937	return 1;
938	}
939#else
940/*
941 * Return value of 0 indicates that multiplication/convolution was not
942 * performed to signal the caller to fall down to alternative/original
943 * code-path.
944 */
945int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
946{	return 0;	}
947#endif /* OPENSSL_BN_ASM_MONT */
948#endif
949
950#else /* !BN_MUL_COMBA */
951
952/* hmm... is it faster just to do a multiply? */
953#undef bn_sqr_comba4
954void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
955	{
956	BN_ULONG t[8];
957	bn_sqr_normal(r,a,4,t);
958	}
959
960#undef bn_sqr_comba8
961void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
962	{
963	BN_ULONG t[16];
964	bn_sqr_normal(r,a,8,t);
965	}
966
967void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
968	{
969	r[4]=bn_mul_words(    &(r[0]),a,4,b[0]);
970	r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
971	r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
972	r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
973	}
974
975void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
976	{
977	r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
978	r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
979	r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
980	r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
981	r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
982	r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
983	r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
984	r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
985	}
986
987#ifdef OPENSSL_NO_ASM
988#ifdef OPENSSL_BN_ASM_MONT
989#include <alloca.h>
990int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
991	{
992	BN_ULONG c0,c1,*tp,n0=*n0p;
993	volatile BN_ULONG *vp;
994	int i=0,j;
995
996	vp = tp = alloca((num+2)*sizeof(BN_ULONG));
997
998	for(i=0;i<=num;i++)	tp[i]=0;
999
1000	for(i=0;i<num;i++)
1001		{
1002		c0         = bn_mul_add_words(tp,ap,num,bp[i]);
1003		c1         = (tp[num] + c0)&BN_MASK2;
1004		tp[num]    = c1;
1005		tp[num+1]  = (c1<c0?1:0);
1006
1007		c0         = bn_mul_add_words(tp,np,num,tp[0]*n0);
1008		c1         = (tp[num] + c0)&BN_MASK2;
1009		tp[num]    = c1;
1010		tp[num+1] += (c1<c0?1:0);
1011		for(j=0;j<=num;j++)	tp[j]=tp[j+1];
1012		}
1013
1014	if (tp[num]!=0 || tp[num-1]>=np[num-1])
1015		{
1016		c0 = bn_sub_words(rp,tp,np,num);
1017		if (tp[num]!=0 || c0==0)
1018			{
1019			for(i=0;i<num+2;i++)	vp[i] = 0;
1020			return 1;
1021			}
1022		}
1023	for(i=0;i<num;i++)	rp[i] = tp[i],	vp[i] = 0;
1024	vp[num]   = 0;
1025	vp[num+1] = 0;
1026	return 1;
1027	}
1028#else
1029int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
1030{	return 0;	}
1031#endif /* OPENSSL_BN_ASM_MONT */
1032#endif
1033
1034#endif /* !BN_MUL_COMBA */
1035