umac.c revision 181111
1101099Srwatson/* $OpenBSD: umac.c,v 1.3 2008/05/12 20:52:20 pvalchev Exp $ */
2101099Srwatson/* -----------------------------------------------------------------------
3115497Srwatson *
4101099Srwatson * umac.c -- C Implementation UMAC Message Authentication
5101099Srwatson *
6101099Srwatson * Version 0.93b of rfc4418.txt -- 2006 July 18
7101099Srwatson *
8106393Srwatson * For a full description of UMAC message authentication see the UMAC
9106393Srwatson * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10106393Srwatson * Please report bugs and suggestions to the UMAC webpage.
11106393Srwatson *
12101099Srwatson * Copyright (c) 1999-2006 Ted Krovetz
13101099Srwatson *
14101099Srwatson * Permission to use, copy, modify, and distribute this software and
15101099Srwatson * its documentation for any purpose and with or without fee, is hereby
16101099Srwatson * granted provided that the above copyright notice appears in all copies
17101099Srwatson * and in supporting documentation, and that the name of the copyright
18101099Srwatson * holder not be used in advertising or publicity pertaining to
19101099Srwatson * distribution of the software without specific, written prior permission.
20101099Srwatson *
21101099Srwatson * Comments should be directed to Ted Krovetz (tdk@acm.org)
22101099Srwatson *
23101099Srwatson * ---------------------------------------------------------------------- */
24101099Srwatson
25101099Srwatson /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26101099Srwatson  *
27101099Srwatson  * 1) This version does not work properly on messages larger than 16MB
28101099Srwatson  *
29101099Srwatson  * 2) If you set the switch to use SSE2, then all data must be 16-byte
30101099Srwatson  *    aligned
31101099Srwatson  *
32101099Srwatson  * 3) When calling the function umac(), it is assumed that msg is in
33101099Srwatson  * a writable buffer of length divisible by 32 bytes. The message itself
34101099Srwatson  * does not have to fill the entire buffer, but bytes beyond msg may be
35101099Srwatson  * zeroed.
36101099Srwatson  *
37101099Srwatson  * 4) Three free AES implementations are supported by this implementation of
38101099Srwatson  * UMAC. Paulo Barreto's version is in the public domain and can be found
39101099Srwatson  * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40101099Srwatson  * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41101099Srwatson  * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42101099Srwatson  * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43101099Srwatson  * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44101099Srwatson  * the third.
45101099Srwatson  *
46105988Srwatson  * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47101099Srwatson  * produced under gcc with optimizations set -O3 or higher. Dunno why.
48101099Srwatson  *
49103183Sbde  /////////////////////////////////////////////////////////////////////// */
50101099Srwatson
51101099Srwatson/* ---------------------------------------------------------------------- */
52115497Srwatson/* --- User Switches ---------------------------------------------------- */
53101099Srwatson/* ---------------------------------------------------------------------- */
54101099Srwatson
55101099Srwatson#define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
56105696Srwatson/* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
57101099Srwatson/* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
58101099Srwatson/* #define SSE2                0  Is SSE2 is available?                   */
59101099Srwatson/* #define RUN_TESTS           0  Run basic correctness/speed tests       */
60101099Srwatson/* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
61101099Srwatson
62101099Srwatson/* ---------------------------------------------------------------------- */
63101099Srwatson/* -- Global Includes --------------------------------------------------- */
64101099Srwatson/* ---------------------------------------------------------------------- */
65101099Srwatson
66101099Srwatson#include "includes.h"
67101099Srwatson#include <sys/types.h>
68101099Srwatson
69101099Srwatson#include "xmalloc.h"
70101099Srwatson#include "umac.h"
71101099Srwatson#include <string.h>
72122875Srwatson#include <stdlib.h>
73101099Srwatson#include <stddef.h>
74101099Srwatson
75122879Srwatson/* ---------------------------------------------------------------------- */
76101099Srwatson/* --- Primitive Data Types ---                                           */
77101099Srwatson/* ---------------------------------------------------------------------- */
78101099Srwatson
79101099Srwatson/* The following assumptions may need change on your system */
80101099Srwatsontypedef u_int8_t	UINT8;  /* 1 byte   */
81101099Srwatsontypedef u_int16_t	UINT16; /* 2 byte   */
82101099Srwatsontypedef u_int32_t	UINT32; /* 4 byte   */
83101099Srwatsontypedef u_int64_t	UINT64; /* 8 bytes  */
84101099Srwatsontypedef unsigned int	UWORD;  /* Register */
85101099Srwatson
86101099Srwatson/* ---------------------------------------------------------------------- */
87105988Srwatson/* --- Constants -------------------------------------------------------- */
88105988Srwatson/* ---------------------------------------------------------------------- */
89105988Srwatson
90105988Srwatson#define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
91107731Srwatson
92101099Srwatson/* Message "words" are read from memory in an endian-specific manner.     */
93101099Srwatson/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
94102980Srwatson/* be set true if the host computer is little-endian.                     */
95101099Srwatson
96101099Srwatson#if BYTE_ORDER == LITTLE_ENDIAN
97101099Srwatson#define __LITTLE_ENDIAN__ 1
98101099Srwatson#else
99101099Srwatson#define __LITTLE_ENDIAN__ 0
100101099Srwatson#endif
101101099Srwatson
102101099Srwatson/* ---------------------------------------------------------------------- */
103101099Srwatson/* ---------------------------------------------------------------------- */
104101099Srwatson/* ----- Architecture Specific ------------------------------------------ */
105101099Srwatson/* ---------------------------------------------------------------------- */
106101099Srwatson/* ---------------------------------------------------------------------- */
107101099Srwatson
108101099Srwatson
109101099Srwatson/* ---------------------------------------------------------------------- */
110101099Srwatson/* ---------------------------------------------------------------------- */
111105643Srwatson/* ----- Primitive Routines --------------------------------------------- */
112105643Srwatson/* ---------------------------------------------------------------------- */
113105643Srwatson/* ---------------------------------------------------------------------- */
114105643Srwatson
115105606Srwatson
116105606Srwatson/* ---------------------------------------------------------------------- */
117105606Srwatson/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
118105606Srwatson/* ---------------------------------------------------------------------- */
119105606Srwatson
120105637Srwatson#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
121101099Srwatson
122105637Srwatson/* ---------------------------------------------------------------------- */
123105637Srwatson/* --- Endian Conversion --- Forcing assembly on some platforms           */
124101099Srwatson/* ---------------------------------------------------------------------- */
125101099Srwatson
126101099Srwatson#if HAVE_SWAP32
127101099Srwatson#define LOAD_UINT32_REVERSED(p)		(swap32(*(UINT32 *)(p)))
128122879Srwatson#define STORE_UINT32_REVERSED(p,v) 	(*(UINT32 *)(p) = swap32(v))
129101099Srwatson#else /* HAVE_SWAP32 */
130105643Srwatson
131105643Srwatsonstatic UINT32 LOAD_UINT32_REVERSED(void *ptr)
132105643Srwatson{
133105643Srwatson    UINT32 temp = *(UINT32 *)ptr;
134105643Srwatson    temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
135105643Srwatson         | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
136105643Srwatson    return (UINT32)temp;
137105643Srwatson}
138105643Srwatson
139105643Srwatson# if (__LITTLE_ENDIAN__)
140101099Srwatsonstatic void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
141104514Srwatson{
142101099Srwatson    UINT32 i = (UINT32)x;
143101099Srwatson    *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
144122879Srwatson                   | ((i & 0x0000FF00) << 8 ) | (i << 24);
145101099Srwatson}
146101099Srwatson# endif /* __LITTLE_ENDIAN */
147101099Srwatson#endif /* HAVE_SWAP32 */
148101099Srwatson
149101099Srwatson/* The following definitions use the above reversal-primitives to do the right
150101099Srwatson * thing on endian specific load and stores.
151101099Srwatson */
152122879Srwatson
153101099Srwatson#if (__LITTLE_ENDIAN__)
154101099Srwatson#define LOAD_UINT32_LITTLE(ptr)     (*(UINT32 *)(ptr))
155101099Srwatson#define STORE_UINT32_BIG(ptr,x)     STORE_UINT32_REVERSED(ptr,x)
156101099Srwatson#else
157101099Srwatson#define LOAD_UINT32_LITTLE(ptr)     LOAD_UINT32_REVERSED(ptr)
158105634Srwatson#define STORE_UINT32_BIG(ptr,x)     (*(UINT32 *)(ptr) = (UINT32)(x))
159105634Srwatson#endif
160105634Srwatson
161105634Srwatson/* ---------------------------------------------------------------------- */
162105634Srwatson/* ---------------------------------------------------------------------- */
163105634Srwatson/* ----- Begin KDF & PDF Section ---------------------------------------- */
164105634Srwatson/* ---------------------------------------------------------------------- */
165105634Srwatson/* ---------------------------------------------------------------------- */
166105634Srwatson
167101099Srwatson/* UMAC uses AES with 16 byte block and key lengths */
168101099Srwatson#define AES_BLOCK_LEN  16
169101099Srwatson
170105643Srwatson/* OpenSSL's AES */
171101099Srwatson#include "openbsd-compat/openssl-compat.h"
172105736Srwatson#ifndef USE_BUILTIN_RIJNDAEL
173101099Srwatson# include <openssl/aes.h>
174101099Srwatson#endif
175101099Srwatsontypedef AES_KEY aes_int_key[1];
176101099Srwatson#define aes_encryption(in,out,int_key)                  \
177101099Srwatson  AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
178101099Srwatson#define aes_key_setup(key,int_key)                      \
179101099Srwatson  AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
180101099Srwatson
181101099Srwatson/* The user-supplied UMAC key is stretched using AES in a counter
182101099Srwatson * mode to supply all random bits needed by UMAC. The kdf function takes
183101099Srwatson * an AES internal key representation 'key' and writes a stream of
184101099Srwatson * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
185101099Srwatson * 'ndx' causes a distinct byte stream.
186101099Srwatson */
187101099Srwatsonstatic void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
188101099Srwatson{
189101099Srwatson    UINT8 in_buf[AES_BLOCK_LEN] = {0};
190101099Srwatson    UINT8 out_buf[AES_BLOCK_LEN];
191101099Srwatson    UINT8 *dst_buf = (UINT8 *)bufp;
192101099Srwatson    int i;
193101099Srwatson
194101099Srwatson    /* Setup the initial value */
195101099Srwatson    in_buf[AES_BLOCK_LEN-9] = ndx;
196101099Srwatson    in_buf[AES_BLOCK_LEN-1] = i = 1;
197101099Srwatson
198101099Srwatson    while (nbytes >= AES_BLOCK_LEN) {
199101099Srwatson        aes_encryption(in_buf, out_buf, key);
200101099Srwatson        memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
201105643Srwatson        in_buf[AES_BLOCK_LEN-1] = ++i;
202105643Srwatson        nbytes -= AES_BLOCK_LEN;
203105643Srwatson        dst_buf += AES_BLOCK_LEN;
204105643Srwatson    }
205105643Srwatson    if (nbytes) {
206101099Srwatson        aes_encryption(in_buf, out_buf, key);
207101099Srwatson        memcpy(dst_buf,out_buf,nbytes);
208101099Srwatson    }
209101099Srwatson}
210101099Srwatson
211101099Srwatson/* The final UHASH result is XOR'd with the output of a pseudorandom
212101099Srwatson * function. Here, we use AES to generate random output and
213101099Srwatson * xor the appropriate bytes depending on the last bits of nonce.
214101099Srwatson * This scheme is optimized for sequential, increasing big-endian nonces.
215101099Srwatson */
216101099Srwatson
217101099Srwatsontypedef struct {
218101099Srwatson    UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
219101099Srwatson    UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
220105988Srwatson    aes_int_key prf_key;         /* Expanded AES key for PDF          */
221105988Srwatson} pdf_ctx;
222105988Srwatson
223105988Srwatsonstatic void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
224106174Srwatson{
225105988Srwatson    UINT8 buf[UMAC_KEY_LEN];
226105988Srwatson
227105988Srwatson    kdf(buf, prf_key, 0, UMAC_KEY_LEN);
228105988Srwatson    aes_key_setup(buf, pc->prf_key);
229105988Srwatson
230105988Srwatson    /* Initialize pdf and cache */
231105988Srwatson    memset(pc->nonce, 0, sizeof(pc->nonce));
232105988Srwatson    aes_encryption(pc->nonce, pc->cache, pc->prf_key);
233101099Srwatson}
234101099Srwatson
235101099Srwatsonstatic void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
236101099Srwatson{
237101099Srwatson    /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
238101099Srwatson     * of the AES output. If last time around we returned the ndx-1st
239101099Srwatson     * element, then we may have the result in the cache already.
240101099Srwatson     */
241101099Srwatson
242101099Srwatson#if (UMAC_OUTPUT_LEN == 4)
243101099Srwatson#define LOW_BIT_MASK 3
244101099Srwatson#elif (UMAC_OUTPUT_LEN == 8)
245101099Srwatson#define LOW_BIT_MASK 1
246103750Srwatson#elif (UMAC_OUTPUT_LEN > 8)
247101099Srwatson#define LOW_BIT_MASK 0
248103750Srwatson#endif
249101099Srwatson
250101099Srwatson    UINT8 tmp_nonce_lo[4];
251101099Srwatson#if LOW_BIT_MASK != 0
252101099Srwatson    int ndx = nonce[7] & LOW_BIT_MASK;
253101099Srwatson#endif
254101099Srwatson    *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
255101099Srwatson    tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
256101099Srwatson
257101099Srwatson    if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
258101099Srwatson         (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
259101099Srwatson    {
260101099Srwatson        ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
261101099Srwatson        ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
262101099Srwatson        aes_encryption(pc->nonce, pc->cache, pc->prf_key);
263101099Srwatson    }
264101099Srwatson
265101099Srwatson#if (UMAC_OUTPUT_LEN == 4)
266101099Srwatson    *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
267101099Srwatson#elif (UMAC_OUTPUT_LEN == 8)
268101099Srwatson    *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
269101099Srwatson#elif (UMAC_OUTPUT_LEN == 12)
270101099Srwatson    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
271101099Srwatson    ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
272101099Srwatson#elif (UMAC_OUTPUT_LEN == 16)
273101099Srwatson    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
274101099Srwatson    ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
275101099Srwatson#endif
276101099Srwatson}
277101099Srwatson
278101099Srwatson/* ---------------------------------------------------------------------- */
279101099Srwatson/* ---------------------------------------------------------------------- */
280101099Srwatson/* ----- Begin NH Hash Section ------------------------------------------ */
281101099Srwatson/* ---------------------------------------------------------------------- */
282101099Srwatson/* ---------------------------------------------------------------------- */
283101099Srwatson
284101099Srwatson/* The NH-based hash functions used in UMAC are described in the UMAC paper
285101099Srwatson * and specification, both of which can be found at the UMAC website.
286101099Srwatson * The interface to this implementation has two
287101099Srwatson * versions, one expects the entire message being hashed to be passed
288101099Srwatson * in a single buffer and returns the hash result immediately. The second
289101099Srwatson * allows the message to be passed in a sequence of buffers. In the
290101099Srwatson * muliple-buffer interface, the client calls the routine nh_update() as
291101099Srwatson * many times as necessary. When there is no more data to be fed to the
292101099Srwatson * hash, the client calls nh_final() which calculates the hash output.
293101099Srwatson * Before beginning another hash calculation the nh_reset() routine
294105634Srwatson * must be called. The single-buffer routine, nh(), is equivalent to
295105634Srwatson * the sequence of calls nh_update() and nh_final(); however it is
296105634Srwatson * optimized and should be prefered whenever the multiple-buffer interface
297105634Srwatson * is not necessary. When using either interface, it is the client's
298105634Srwatson * responsability to pass no more than L1_KEY_LEN bytes per hash result.
299105634Srwatson *
300105634Srwatson * The routine nh_init() initializes the nh_ctx data structure and
301105634Srwatson * must be called once, before any other PDF routine.
302105634Srwatson */
303105634Srwatson
304105634Srwatson /* The "nh_aux" routines do the actual NH hashing work. They
305105637Srwatson  * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
306105634Srwatson  * produce output for all STREAMS NH iterations in one call,
307105634Srwatson  * allowing the parallel implementation of the streams.
308105634Srwatson  */
309105634Srwatson
310105634Srwatson#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
311105634Srwatson#define L1_KEY_LEN         1024     /* Internal key bytes                 */
312106090Srwatson#define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
313105634Srwatson#define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
314105634Srwatson#define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
315105634Srwatson#define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
316105634Srwatson
317106090Srwatsontypedef struct {
318105634Srwatson    UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
319105634Srwatson    UINT8  data   [HASH_BUF_BYTES];    /* Incomming data buffer           */
320105634Srwatson    int next_data_empty;    /* Bookeeping variable for data buffer.       */
321105634Srwatson    int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
322105634Srwatson    UINT64 state[STREAMS];               /* on-line state     */
323105634Srwatson} nh_ctx;
324105634Srwatson
325105634Srwatson
326105634Srwatson#if (UMAC_OUTPUT_LEN == 4)
327105634Srwatson
328105634Srwatsonstatic void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
329105634Srwatson/* NH hashing primitive. Previous (partial) hash result is loaded and
330105634Srwatson* then stored via hp pointer. The length of the data pointed at by "dp",
331105634Srwatson* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
332105634Srwatson* is expected to be endian compensated in memory at key setup.
333105634Srwatson*/
334105634Srwatson{
335105634Srwatson    UINT64 h;
336105634Srwatson    UWORD c = dlen / 32;
337106091Srwatson    UINT32 *k = (UINT32 *)kp;
338105988Srwatson    UINT32 *d = (UINT32 *)dp;
339105988Srwatson    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
340105988Srwatson    UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
341105988Srwatson
342105988Srwatson    h = *((UINT64 *)hp);
343105988Srwatson    do {
344105988Srwatson        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
345105988Srwatson        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
346105988Srwatson        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
347105634Srwatson        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
348101099Srwatson        k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
349101099Srwatson        k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
350101099Srwatson        h += MUL64((k0 + d0), (k4 + d4));
351101099Srwatson        h += MUL64((k1 + d1), (k5 + d5));
352101099Srwatson        h += MUL64((k2 + d2), (k6 + d6));
353101099Srwatson        h += MUL64((k3 + d3), (k7 + d7));
354101099Srwatson
355101099Srwatson        d += 8;
356101099Srwatson        k += 8;
357101099Srwatson    } while (--c);
358101099Srwatson  *((UINT64 *)hp) = h;
359105643Srwatson}
360105643Srwatson
361105643Srwatson#elif (UMAC_OUTPUT_LEN == 8)
362101099Srwatson
363101099Srwatsonstatic void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
364101099Srwatson/* Same as previous nh_aux, but two streams are handled in one pass,
365101099Srwatson * reading and writing 16 bytes of hash-state per call.
366101099Srwatson */
367101099Srwatson{
368101099Srwatson  UINT64 h1,h2;
369101099Srwatson  UWORD c = dlen / 32;
370101099Srwatson  UINT32 *k = (UINT32 *)kp;
371101099Srwatson  UINT32 *d = (UINT32 *)dp;
372101099Srwatson  UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
373101099Srwatson  UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
374101099Srwatson        k8,k9,k10,k11;
375101099Srwatson
376101099Srwatson  h1 = *((UINT64 *)hp);
377101099Srwatson  h2 = *((UINT64 *)hp + 1);
378101099Srwatson  k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
379101099Srwatson  do {
380101099Srwatson    d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
381105643Srwatson    d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
382105643Srwatson    d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
383105643Srwatson    d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
384101099Srwatson    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
385101099Srwatson    k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
386101099Srwatson
387101099Srwatson    h1 += MUL64((k0 + d0), (k4 + d4));
388101099Srwatson    h2 += MUL64((k4 + d0), (k8 + d4));
389101099Srwatson
390101099Srwatson    h1 += MUL64((k1 + d1), (k5 + d5));
391101099Srwatson    h2 += MUL64((k5 + d1), (k9 + d5));
392101099Srwatson
393101099Srwatson    h1 += MUL64((k2 + d2), (k6 + d6));
394101099Srwatson    h2 += MUL64((k6 + d2), (k10 + d6));
395101099Srwatson
396101099Srwatson    h1 += MUL64((k3 + d3), (k7 + d7));
397101099Srwatson    h2 += MUL64((k7 + d3), (k11 + d7));
398105643Srwatson
399105643Srwatson    k0 = k8; k1 = k9; k2 = k10; k3 = k11;
400105643Srwatson
401101099Srwatson    d += 8;
402101099Srwatson    k += 8;
403101099Srwatson  } while (--c);
404101099Srwatson  ((UINT64 *)hp)[0] = h1;
405101099Srwatson  ((UINT64 *)hp)[1] = h2;
406101099Srwatson}
407101099Srwatson
408101099Srwatson#elif (UMAC_OUTPUT_LEN == 12)
409101099Srwatson
410101099Srwatsonstatic void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
411101099Srwatson/* Same as previous nh_aux, but two streams are handled in one pass,
412101099Srwatson * reading and writing 24 bytes of hash-state per call.
413101099Srwatson*/
414101099Srwatson{
415101099Srwatson    UINT64 h1,h2,h3;
416101099Srwatson    UWORD c = dlen / 32;
417101099Srwatson    UINT32 *k = (UINT32 *)kp;
418101099Srwatson    UINT32 *d = (UINT32 *)dp;
419101099Srwatson    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
420101099Srwatson    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
421105643Srwatson        k8,k9,k10,k11,k12,k13,k14,k15;
422105643Srwatson
423101099Srwatson    h1 = *((UINT64 *)hp);
424101099Srwatson    h2 = *((UINT64 *)hp + 1);
425101099Srwatson    h3 = *((UINT64 *)hp + 2);
426101099Srwatson    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
427105643Srwatson    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
428105643Srwatson    do {
429105643Srwatson        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
430105643Srwatson        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
431101099Srwatson        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
432101099Srwatson        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
433105643Srwatson        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
434105643Srwatson        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
435105643Srwatson
436105643Srwatson        h1 += MUL64((k0 + d0), (k4 + d4));
437101099Srwatson        h2 += MUL64((k4 + d0), (k8 + d4));
438101099Srwatson        h3 += MUL64((k8 + d0), (k12 + d4));
439101099Srwatson
440101099Srwatson        h1 += MUL64((k1 + d1), (k5 + d5));
441105643Srwatson        h2 += MUL64((k5 + d1), (k9 + d5));
442105643Srwatson        h3 += MUL64((k9 + d1), (k13 + d5));
443101099Srwatson
444101099Srwatson        h1 += MUL64((k2 + d2), (k6 + d6));
445101099Srwatson        h2 += MUL64((k6 + d2), (k10 + d6));
446101099Srwatson        h3 += MUL64((k10 + d2), (k14 + d6));
447105643Srwatson
448105643Srwatson        h1 += MUL64((k3 + d3), (k7 + d7));
449105643Srwatson        h2 += MUL64((k7 + d3), (k11 + d7));
450101099Srwatson        h3 += MUL64((k11 + d3), (k15 + d7));
451101099Srwatson
452101099Srwatson        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
453101099Srwatson        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
454101099Srwatson
455101099Srwatson        d += 8;
456105643Srwatson        k += 8;
457101099Srwatson    } while (--c);
458101099Srwatson    ((UINT64 *)hp)[0] = h1;
459101099Srwatson    ((UINT64 *)hp)[1] = h2;
460101099Srwatson    ((UINT64 *)hp)[2] = h3;
461101099Srwatson}
462101099Srwatson
463101099Srwatson#elif (UMAC_OUTPUT_LEN == 16)
464101099Srwatson
465101099Srwatsonstatic void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
466101099Srwatson/* Same as previous nh_aux, but two streams are handled in one pass,
467101099Srwatson * reading and writing 24 bytes of hash-state per call.
468101099Srwatson*/
469101099Srwatson{
470101099Srwatson    UINT64 h1,h2,h3,h4;
471101099Srwatson    UWORD c = dlen / 32;
472101099Srwatson    UINT32 *k = (UINT32 *)kp;
473101099Srwatson    UINT32 *d = (UINT32 *)dp;
474101099Srwatson    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
475101099Srwatson    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
476105656Srwatson        k8,k9,k10,k11,k12,k13,k14,k15,
477105656Srwatson        k16,k17,k18,k19;
478105656Srwatson
479105656Srwatson    h1 = *((UINT64 *)hp);
480105656Srwatson    h2 = *((UINT64 *)hp + 1);
481105656Srwatson    h3 = *((UINT64 *)hp + 2);
482105656Srwatson    h4 = *((UINT64 *)hp + 3);
483105656Srwatson    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
484105656Srwatson    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
485105656Srwatson    do {
486101099Srwatson        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
487101099Srwatson        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
488101099Srwatson        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
489101099Srwatson        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
490101099Srwatson        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
491101099Srwatson        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
492101099Srwatson        k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
493122879Srwatson
494122879Srwatson        h1 += MUL64((k0 + d0), (k4 + d4));
495101099Srwatson        h2 += MUL64((k4 + d0), (k8 + d4));
496101099Srwatson        h3 += MUL64((k8 + d0), (k12 + d4));
497101099Srwatson        h4 += MUL64((k12 + d0), (k16 + d4));
498101099Srwatson
499101099Srwatson        h1 += MUL64((k1 + d1), (k5 + d5));
500101099Srwatson        h2 += MUL64((k5 + d1), (k9 + d5));
501104514Srwatson        h3 += MUL64((k9 + d1), (k13 + d5));
502101099Srwatson        h4 += MUL64((k13 + d1), (k17 + d5));
503101099Srwatson
504111119Simp        h1 += MUL64((k2 + d2), (k6 + d6));
505101099Srwatson        h2 += MUL64((k6 + d2), (k10 + d6));
506101099Srwatson        h3 += MUL64((k10 + d2), (k14 + d6));
507101099Srwatson        h4 += MUL64((k14 + d2), (k18 + d6));
508104514Srwatson
509101099Srwatson        h1 += MUL64((k3 + d3), (k7 + d7));
510101099Srwatson        h2 += MUL64((k7 + d3), (k11 + d7));
511104514Srwatson        h3 += MUL64((k11 + d3), (k15 + d7));
512101099Srwatson        h4 += MUL64((k15 + d3), (k19 + d7));
513101099Srwatson
514101099Srwatson        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
515101099Srwatson        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
516101099Srwatson        k8 = k16; k9 = k17; k10 = k18; k11 = k19;
517101099Srwatson
518101099Srwatson        d += 8;
519104514Srwatson        k += 8;
520101099Srwatson    } while (--c);
521101099Srwatson    ((UINT64 *)hp)[0] = h1;
522101099Srwatson    ((UINT64 *)hp)[1] = h2;
523101099Srwatson    ((UINT64 *)hp)[2] = h3;
524101099Srwatson    ((UINT64 *)hp)[3] = h4;
525101099Srwatson}
526105696Srwatson
527115497Srwatson/* ---------------------------------------------------------------------- */
528115497Srwatson#endif  /* UMAC_OUTPUT_LENGTH */
529115497Srwatson/* ---------------------------------------------------------------------- */
530105696Srwatson
531115497Srwatson
532115497Srwatson/* ---------------------------------------------------------------------- */
533105696Srwatson
534115497Srwatsonstatic void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
535105696Srwatson/* This function is a wrapper for the primitive NH hash functions. It takes
536105696Srwatson * as argument "hc" the current hash context and a buffer which must be a
537105696Srwatson * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
538115497Srwatson * appropriately according to how much message has been hashed already.
539105696Srwatson */
540105696Srwatson{
541115497Srwatson    UINT8 *key;
542105696Srwatson
543105696Srwatson    key = hc->nh_key + hc->bytes_hashed;
544115497Srwatson    nh_aux(key, buf, hc->state, nbytes);
545105696Srwatson}
546105696Srwatson
547115497Srwatson/* ---------------------------------------------------------------------- */
548115497Srwatson
549115497Srwatson#if (__LITTLE_ENDIAN__)
550115497Srwatsonstatic void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
551115497Srwatson/* We endian convert the keys on little-endian computers to               */
552115497Srwatson/* compensate for the lack of big-endian memory reads during hashing.     */
553115497Srwatson{
554115497Srwatson    UWORD iters = num_bytes / bpw;
555115497Srwatson    if (bpw == 4) {
556115497Srwatson        UINT32 *p = (UINT32 *)buf;
557115497Srwatson        do {
558115497Srwatson            *p = LOAD_UINT32_REVERSED(p);
559115497Srwatson            p++;
560115497Srwatson        } while (--iters);
561115497Srwatson    } else if (bpw == 8) {
562115497Srwatson        UINT32 *p = (UINT32 *)buf;
563115497Srwatson        UINT32 t;
564105696Srwatson        do {
565115497Srwatson            t = LOAD_UINT32_REVERSED(p+1);
566105696Srwatson            p[1] = LOAD_UINT32_REVERSED(p);
567105696Srwatson            p[0] = t;
568105696Srwatson            p += 2;
569105696Srwatson        } while (--iters);
570105696Srwatson    }
571105696Srwatson}
572105696Srwatson#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
573115497Srwatson#else
574116701Srwatson#define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
575116701Srwatson#endif
576116701Srwatson
577116701Srwatson/* ---------------------------------------------------------------------- */
578116701Srwatson
579115497Srwatsonstatic void nh_reset(nh_ctx *hc)
580101099Srwatson/* Reset nh_ctx to ready for hashing of new data */
581116701Srwatson{
582101099Srwatson    hc->bytes_hashed = 0;
583105696Srwatson    hc->next_data_empty = 0;
584105696Srwatson    hc->state[0] = 0;
585116701Srwatson#if (UMAC_OUTPUT_LEN >= 8)
586115497Srwatson    hc->state[1] = 0;
587105696Srwatson#endif
588105696Srwatson#if (UMAC_OUTPUT_LEN >= 12)
589105696Srwatson    hc->state[2] = 0;
590105696Srwatson#endif
591116701Srwatson#if (UMAC_OUTPUT_LEN == 16)
592105696Srwatson    hc->state[3] = 0;
593105696Srwatson#endif
594116701Srwatson
595115497Srwatson}
596105696Srwatson
597105696Srwatson/* ---------------------------------------------------------------------- */
598116701Srwatson
599105696Srwatsonstatic void nh_init(nh_ctx *hc, aes_int_key prf_key)
600105696Srwatson/* Generate nh_key, endian convert and reset to be ready for hashing.   */
601116701Srwatson{
602115497Srwatson    kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
603105696Srwatson    endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
604105696Srwatson    nh_reset(hc);
605116701Srwatson}
606105696Srwatson
607105696Srwatson/* ---------------------------------------------------------------------- */
608105696Srwatson
609105696Srwatsonstatic void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
610105696Srwatson/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
611105696Srwatson/* even multiple of HASH_BUF_BYTES.                                       */
612105696Srwatson{
613105696Srwatson    UINT32 i,j;
614116701Srwatson
615105696Srwatson    j = hc->next_data_empty;
616101099Srwatson    if ((j + nbytes) >= HASH_BUF_BYTES) {
617101099Srwatson        if (j) {
618105696Srwatson            i = HASH_BUF_BYTES - j;
619105696Srwatson            memcpy(hc->data+j, buf, i);
620105696Srwatson            nh_transform(hc,hc->data,HASH_BUF_BYTES);
621105696Srwatson            nbytes -= i;
622105696Srwatson            buf += i;
623101099Srwatson            hc->bytes_hashed += HASH_BUF_BYTES;
624116701Srwatson        }
625105696Srwatson        if (nbytes >= HASH_BUF_BYTES) {
626105696Srwatson            i = nbytes & ~(HASH_BUF_BYTES - 1);
627105696Srwatson            nh_transform(hc, buf, i);
628105696Srwatson            nbytes -= i;
629101099Srwatson            buf += i;
630115395Srwatson            hc->bytes_hashed += i;
631115395Srwatson        }
632105696Srwatson        j = 0;
633105696Srwatson    }
634105696Srwatson    memcpy(hc->data + j, buf, nbytes);
635105696Srwatson    hc->next_data_empty = j + nbytes;
636105696Srwatson}
637105696Srwatson
638105696Srwatson/* ---------------------------------------------------------------------- */
639105696Srwatson
640105696Srwatsonstatic void zero_pad(UINT8 *p, int nbytes)
641105696Srwatson{
642105696Srwatson/* Write "nbytes" of zeroes, beginning at "p" */
643105696Srwatson    if (nbytes >= (int)sizeof(UWORD)) {
644105696Srwatson        while ((ptrdiff_t)p % sizeof(UWORD)) {
645105696Srwatson            *p = 0;
646115395Srwatson            nbytes--;
647105696Srwatson            p++;
648115395Srwatson        }
649115395Srwatson        while (nbytes >= (int)sizeof(UWORD)) {
650115395Srwatson            *(UWORD *)p = 0;
651115395Srwatson            nbytes -= sizeof(UWORD);
652115395Srwatson            p += sizeof(UWORD);
653115395Srwatson        }
654105696Srwatson    }
655115395Srwatson    while (nbytes) {
656115395Srwatson        *p = 0;
657115395Srwatson        nbytes--;
658105696Srwatson        p++;
659115395Srwatson    }
660115395Srwatson}
661115395Srwatson
662115395Srwatson/* ---------------------------------------------------------------------- */
663115395Srwatson
664115395Srwatsonstatic void nh_final(nh_ctx *hc, UINT8 *result)
665115395Srwatson/* After passing some number of data buffers to nh_update() for integration
666115395Srwatson * into an NH context, nh_final is called to produce a hash result. If any
667115395Srwatson * bytes are in the buffer hc->data, incorporate them into the
668105696Srwatson * NH context. Finally, add into the NH accumulation "state" the total number
669115395Srwatson * of bits hashed. The resulting numbers are written to the buffer "result".
670115395Srwatson * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
671115395Srwatson */
672105696Srwatson{
673115395Srwatson    int nh_len, nbits;
674105696Srwatson
675115395Srwatson    if (hc->next_data_empty != 0) {
676105696Srwatson        nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
677105696Srwatson                                                ~(L1_PAD_BOUNDARY - 1));
678105696Srwatson        zero_pad(hc->data + hc->next_data_empty,
679105696Srwatson                                          nh_len - hc->next_data_empty);
680105696Srwatson        nh_transform(hc, hc->data, nh_len);
681105696Srwatson        hc->bytes_hashed += hc->next_data_empty;
682105696Srwatson    } else if (hc->bytes_hashed == 0) {
683105696Srwatson    	nh_len = L1_PAD_BOUNDARY;
684105696Srwatson        zero_pad(hc->data, L1_PAD_BOUNDARY);
685105696Srwatson        nh_transform(hc, hc->data, nh_len);
686105696Srwatson    }
687105696Srwatson
688105696Srwatson    nbits = (hc->bytes_hashed << 3);
689115395Srwatson    ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
690101099Srwatson#if (UMAC_OUTPUT_LEN >= 8)
691101099Srwatson    ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
692115395Srwatson#endif
693115395Srwatson#if (UMAC_OUTPUT_LEN >= 12)
694105696Srwatson    ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
695115395Srwatson#endif
696115395Srwatson#if (UMAC_OUTPUT_LEN == 16)
697115395Srwatson    ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
698115395Srwatson#endif
699105696Srwatson    nh_reset(hc);
700115395Srwatson}
701115395Srwatson
702105696Srwatson/* ---------------------------------------------------------------------- */
703115395Srwatson
704105696Srwatsonstatic void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
705115395Srwatson               UINT32 unpadded_len, UINT8 *result)
706115395Srwatson/* All-in-one nh_update() and nh_final() equivalent.
707115395Srwatson * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
708105696Srwatson * well aligned
709115395Srwatson */
710105696Srwatson{
711105696Srwatson    UINT32 nbits;
712115395Srwatson
713101099Srwatson    /* Initialize the hash state */
714105696Srwatson    nbits = (unpadded_len << 3);
715105696Srwatson
716105696Srwatson    ((UINT64 *)result)[0] = nbits;
717105696Srwatson#if (UMAC_OUTPUT_LEN >= 8)
718105696Srwatson    ((UINT64 *)result)[1] = nbits;
719105696Srwatson#endif
720105696Srwatson#if (UMAC_OUTPUT_LEN >= 12)
721105696Srwatson    ((UINT64 *)result)[2] = nbits;
722105696Srwatson#endif
723105696Srwatson#if (UMAC_OUTPUT_LEN == 16)
724105696Srwatson    ((UINT64 *)result)[3] = nbits;
725105696Srwatson#endif
726105696Srwatson
727105696Srwatson    nh_aux(hc->nh_key, buf, result, padded_len);
728105696Srwatson}
729105696Srwatson
730105696Srwatson/* ---------------------------------------------------------------------- */
731105696Srwatson/* ---------------------------------------------------------------------- */
732105696Srwatson/* ----- Begin UHASH Section -------------------------------------------- */
733105696Srwatson/* ---------------------------------------------------------------------- */
734101099Srwatson/* ---------------------------------------------------------------------- */
735101099Srwatson
736101099Srwatson/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
737101099Srwatson * hashed by NH. The NH output is then hashed by a polynomial-hash layer
738105696Srwatson * unless the initial data to be hashed is short. After the polynomial-
739105696Srwatson * layer, an inner-product hash is used to produce the final UHASH output.
740101099Srwatson *
741105696Srwatson * UHASH provides two interfaces, one all-at-once and another where data
742105696Srwatson * buffers are presented sequentially. In the sequential interface, the
743105696Srwatson * UHASH client calls the routine uhash_update() as many times as necessary.
744105696Srwatson * When there is no more data to be fed to UHASH, the client calls
745105696Srwatson * uhash_final() which
746105696Srwatson * calculates the UHASH output. Before beginning another UHASH calculation
747105696Srwatson * the uhash_reset() routine must be called. The all-at-once UHASH routine,
748105696Srwatson * uhash(), is equivalent to the sequence of calls uhash_update() and
749105696Srwatson * uhash_final(); however it is optimized and should be
750105696Srwatson * used whenever the sequential interface is not necessary.
751105696Srwatson *
752105696Srwatson * The routine uhash_init() initializes the uhash_ctx data structure and
753105696Srwatson * must be called once, before any other UHASH routine.
754105696Srwatson */
755105696Srwatson
756105696Srwatson/* ---------------------------------------------------------------------- */
757105696Srwatson/* ----- Constants and uhash_ctx ---------------------------------------- */
758105696Srwatson/* ---------------------------------------------------------------------- */
759105696Srwatson
760101099Srwatson/* ---------------------------------------------------------------------- */
761101099Srwatson/* ----- Poly hash and Inner-Product hash Constants --------------------- */
762101099Srwatson/* ---------------------------------------------------------------------- */
763105696Srwatson
764105696Srwatson/* Primes and masks */
765105696Srwatson#define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
766105696Srwatson#define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
767105696Srwatson#define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
768105696Srwatson
769105696Srwatson
770101099Srwatson/* ---------------------------------------------------------------------- */
771101099Srwatson
772101099Srwatsontypedef struct uhash_ctx {
773101099Srwatson    nh_ctx hash;                          /* Hash context for L1 NH hash  */
774101099Srwatson    UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
775107698Srwatson    UINT64 poly_accum[STREAMS];           /* poly hash result             */
776107698Srwatson    UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
777101099Srwatson    UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
778101099Srwatson    UINT32 msg_len;                       /* Total length of data passed  */
779101099Srwatson                                          /* to uhash */
780101099Srwatson} uhash_ctx;
781101099Srwatsontypedef struct uhash_ctx *uhash_ctx_t;
782101099Srwatson
783101099Srwatson/* ---------------------------------------------------------------------- */
784101099Srwatson
785101099Srwatson
786101099Srwatson/* The polynomial hashes use Horner's rule to evaluate a polynomial one
787105606Srwatson * word at a time. As described in the specification, poly32 and poly64
788105606Srwatson * require keys from special domains. The following implementations exploit
789105606Srwatson * the special domains to avoid overflow. The results are not guaranteed to
790105606Srwatson * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
791101099Srwatson * patches any errant values.
792101099Srwatson */
793105643Srwatson
794101099Srwatsonstatic UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
795101099Srwatson{
796101099Srwatson    UINT32 key_hi = (UINT32)(key >> 32),
797107698Srwatson           key_lo = (UINT32)key,
798107698Srwatson           cur_hi = (UINT32)(cur >> 32),
799101099Srwatson           cur_lo = (UINT32)cur,
800101099Srwatson           x_lo,
801101099Srwatson           x_hi;
802101099Srwatson    UINT64 X,T,res;
803105643Srwatson
804101099Srwatson    X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
805101099Srwatson    x_lo = (UINT32)X;
806101099Srwatson    x_hi = (UINT32)(X >> 32);
807107698Srwatson
808107698Srwatson    res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
809122563Srwatson
810104535Srwatson    T = ((UINT64)x_lo << 32);
811104535Srwatson    res += T;
812104535Srwatson    if (res < T)
813122524Srwatson        res += 59;
814104535Srwatson
815104535Srwatson    res += data;
816104535Srwatson    if (res < data)
817104535Srwatson        res += 59;
818104535Srwatson
819104535Srwatson    return res;
820101099Srwatson}
821101099Srwatson
822101099Srwatson
823101099Srwatson/* Although UMAC is specified to use a ramped polynomial hash scheme, this
824101099Srwatson * implementation does not handle all ramp levels. Because we don't handle
825122524Srwatson * the ramp up to p128 modulus in this implementation, we are limited to
826101099Srwatson * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
827101099Srwatson * bytes input to UMAC per tag, ie. 16MB).
828101099Srwatson */
829101099Srwatsonstatic void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
830101099Srwatson{
831101099Srwatson    int i;
832101099Srwatson    UINT64 *data=(UINT64*)data_in;
833101099Srwatson
834101099Srwatson    for (i = 0; i < STREAMS; i++) {
835101099Srwatson        if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
836101099Srwatson            hc->poly_accum[i] = poly64(hc->poly_accum[i],
837101099Srwatson                                       hc->poly_key_8[i], p64 - 1);
838101099Srwatson            hc->poly_accum[i] = poly64(hc->poly_accum[i],
839101099Srwatson                                       hc->poly_key_8[i], (data[i] - 59));
840105643Srwatson        } else {
841101099Srwatson            hc->poly_accum[i] = poly64(hc->poly_accum[i],
842105643Srwatson                                       hc->poly_key_8[i], data[i]);
843101099Srwatson        }
844101099Srwatson    }
845101099Srwatson}
846101099Srwatson
847101099Srwatson
848101099Srwatson/* ---------------------------------------------------------------------- */
849101099Srwatson
850101099Srwatson
851101099Srwatson/* The final step in UHASH is an inner-product hash. The poly hash
852101099Srwatson * produces a result not neccesarily WORD_LEN bytes long. The inner-
853101099Srwatson * product hash breaks the polyhash output into 16-bit chunks and
854105656Srwatson * multiplies each with a 36 bit key.
855101099Srwatson */
856101099Srwatson
857101099Srwatsonstatic UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
858107698Srwatson{
859107698Srwatson    t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
860107698Srwatson    t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
861101099Srwatson    t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
862101099Srwatson    t = t + ipkp[3] * (UINT64)(UINT16)(data);
863101099Srwatson
864101099Srwatson    return t;
865101099Srwatson}
866101099Srwatson
867105656Srwatsonstatic UINT32 ip_reduce_p36(UINT64 t)
868101099Srwatson{
869101099Srwatson/* Divisionless modular reduction */
870101099Srwatson    UINT64 ret;
871105988Srwatson
872105988Srwatson    ret = (t & m36) + 5 * (t >> 36);
873105988Srwatson    if (ret >= p36)
874101099Srwatson        ret -= p36;
875101099Srwatson
876101099Srwatson    /* return least significant 32 bits */
877105988Srwatson    return (UINT32)(ret);
878105988Srwatson}
879101099Srwatson
880101099Srwatson
881101099Srwatson/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
882101099Srwatson * the polyhash stage is skipped and ip_short is applied directly to the
883101099Srwatson * NH output.
884105988Srwatson */
885105988Srwatsonstatic void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
886101099Srwatson{
887105988Srwatson    UINT64 t;
888106354Smux    UINT64 *nhp = (UINT64 *)nh_res;
889101099Srwatson
890105988Srwatson    t  = ip_aux(0,ahc->ip_keys, nhp[0]);
891105988Srwatson    STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
892101099Srwatson#if (UMAC_OUTPUT_LEN >= 8)
893105988Srwatson    t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
894105988Srwatson    STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
895105988Srwatson#endif
896105988Srwatson#if (UMAC_OUTPUT_LEN >= 12)
897105988Srwatson    t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
898105988Srwatson    STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
899105988Srwatson#endif
900105988Srwatson#if (UMAC_OUTPUT_LEN == 16)
901105988Srwatson    t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
902105988Srwatson    STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
903101099Srwatson#endif
904101099Srwatson}
905105988Srwatson
906105988Srwatson/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
907105988Srwatson * the polyhash stage is not skipped and ip_long is applied to the
908105988Srwatson * polyhash output.
909105988Srwatson */
910105988Srwatsonstatic void ip_long(uhash_ctx_t ahc, u_char *res)
911105988Srwatson{
912105988Srwatson    int i;
913105988Srwatson    UINT64 t;
914105988Srwatson
915105988Srwatson    for (i = 0; i < STREAMS; i++) {
916105988Srwatson        /* fix polyhash output not in Z_p64 */
917105988Srwatson        if (ahc->poly_accum[i] >= p64)
918101099Srwatson            ahc->poly_accum[i] -= p64;
919105988Srwatson        t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
920101099Srwatson        STORE_UINT32_BIG((UINT32 *)res+i,
921101099Srwatson                         ip_reduce_p36(t) ^ ahc->ip_trans[i]);
922101099Srwatson    }
923101099Srwatson}
924105988Srwatson
925105988Srwatson
926101099Srwatson/* ---------------------------------------------------------------------- */
927101099Srwatson
928101099Srwatson/* ---------------------------------------------------------------------- */
929101099Srwatson
930105988Srwatson/* Reset uhash context for next hash session */
931101099Srwatsonstatic int uhash_reset(uhash_ctx_t pc)
932101099Srwatson{
933101099Srwatson    nh_reset(&pc->hash);
934101099Srwatson    pc->msg_len = 0;
935105988Srwatson    pc->poly_accum[0] = 1;
936105988Srwatson#if (UMAC_OUTPUT_LEN >= 8)
937105988Srwatson    pc->poly_accum[1] = 1;
938105988Srwatson#endif
939105988Srwatson#if (UMAC_OUTPUT_LEN >= 12)
940105988Srwatson    pc->poly_accum[2] = 1;
941105988Srwatson#endif
942105988Srwatson#if (UMAC_OUTPUT_LEN == 16)
943105988Srwatson    pc->poly_accum[3] = 1;
944105988Srwatson#endif
945105988Srwatson    return 1;
946105988Srwatson}
947122524Srwatson
948105988Srwatson/* ---------------------------------------------------------------------- */
949105988Srwatson
950105988Srwatson/* Given a pointer to the internal key needed by kdf() and a uhash context,
951105988Srwatson * initialize the NH context and generate keys needed for poly and inner-
952105988Srwatson * product hashing. All keys are endian adjusted in memory so that native
953105988Srwatson * loads cause correct keys to be in registers during calculation.
954105988Srwatson */
955105988Srwatsonstatic void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
956105988Srwatson{
957105988Srwatson    int i;
958105988Srwatson    UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
959105988Srwatson
960105988Srwatson    /* Zero the entire uhash context */
961105988Srwatson    memset(ahc, 0, sizeof(uhash_ctx));
962105988Srwatson
963105988Srwatson    /* Initialize the L1 hash */
964105988Srwatson    nh_init(&ahc->hash, prf_key);
965105988Srwatson
966105988Srwatson    /* Setup L2 hash variables */
967105988Srwatson    kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
968105988Srwatson    for (i = 0; i < STREAMS; i++) {
969105988Srwatson        /* Fill keys from the buffer, skipping bytes in the buffer not
970105988Srwatson         * used by this implementation. Endian reverse the keys if on a
971105988Srwatson         * little-endian computer.
972105988Srwatson         */
973105988Srwatson        memcpy(ahc->poly_key_8+i, buf+24*i, 8);
974105988Srwatson        endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
975105988Srwatson        /* Mask the 64-bit keys to their special domain */
976105988Srwatson        ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
977105988Srwatson        ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
978105988Srwatson    }
979105988Srwatson
980101099Srwatson    /* Setup L3-1 hash variables */
981101099Srwatson    kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
982101099Srwatson    for (i = 0; i < STREAMS; i++)
983101099Srwatson          memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
984122875Srwatson                                                 4*sizeof(UINT64));
985122875Srwatson    endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
986122875Srwatson                                                  sizeof(ahc->ip_keys));
987122875Srwatson    for (i = 0; i < STREAMS*4; i++)
988122875Srwatson        ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
989122875Srwatson
990122875Srwatson    /* Setup L3-2 hash variables    */
991122875Srwatson    /* Fill buffer with index 4 key */
992122875Srwatson    kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
993122875Srwatson    endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
994122875Srwatson                         STREAMS * sizeof(UINT32));
995122875Srwatson}
996101099Srwatson
997101099Srwatson/* ---------------------------------------------------------------------- */
998101099Srwatson
999101099Srwatson#if 0
1000101099Srwatsonstatic uhash_ctx_t uhash_alloc(u_char key[])
1001101099Srwatson{
1002101099Srwatson/* Allocate memory and force to a 16-byte boundary. */
1003101099Srwatson    uhash_ctx_t ctx;
1004101099Srwatson    u_char bytes_to_add;
1005101099Srwatson    aes_int_key prf_key;
1006101099Srwatson
1007101099Srwatson    ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1008101099Srwatson    if (ctx) {
1009101099Srwatson        if (ALLOC_BOUNDARY) {
1010101099Srwatson            bytes_to_add = ALLOC_BOUNDARY -
1011101099Srwatson                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1012101099Srwatson            ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1013122524Srwatson            *((u_char *)ctx - 1) = bytes_to_add;
1014101099Srwatson        }
1015101099Srwatson        aes_key_setup(key,prf_key);
1016101099Srwatson        uhash_init(ctx, prf_key);
1017101099Srwatson    }
1018101099Srwatson    return (ctx);
1019101099Srwatson}
1020101099Srwatson#endif
1021101099Srwatson
1022101099Srwatson/* ---------------------------------------------------------------------- */
1023101099Srwatson
1024101099Srwatson#if 0
1025122524Srwatsonstatic int uhash_free(uhash_ctx_t ctx)
1026101099Srwatson{
1027101099Srwatson/* Free memory allocated by uhash_alloc */
1028101099Srwatson    u_char bytes_to_sub;
1029101099Srwatson
1030101099Srwatson    if (ctx) {
1031101099Srwatson        if (ALLOC_BOUNDARY) {
1032101099Srwatson            bytes_to_sub = *((u_char *)ctx - 1);
1033101099Srwatson            ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1034101099Srwatson        }
1035101099Srwatson        free(ctx);
1036101099Srwatson    }
1037101099Srwatson    return (1);
1038101099Srwatson}
1039101099Srwatson#endif
1040101099Srwatson/* ---------------------------------------------------------------------- */
1041101099Srwatson
1042101099Srwatsonstatic int uhash_update(uhash_ctx_t ctx, u_char *input, long len)
1043101099Srwatson/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1044101099Srwatson * hash each one with NH, calling the polyhash on each NH output.
1045101099Srwatson */
1046101099Srwatson{
1047101099Srwatson    UWORD bytes_hashed, bytes_remaining;
1048101099Srwatson    UINT64 result_buf[STREAMS];
1049101099Srwatson    UINT8 *nh_result = (UINT8 *)&result_buf;
1050101099Srwatson
1051101099Srwatson    if (ctx->msg_len + len <= L1_KEY_LEN) {
1052101099Srwatson        nh_update(&ctx->hash, (UINT8 *)input, len);
1053105656Srwatson        ctx->msg_len += len;
1054101099Srwatson    } else {
1055101099Srwatson
1056101099Srwatson         bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1057101099Srwatson         if (ctx->msg_len == L1_KEY_LEN)
1058101099Srwatson             bytes_hashed = L1_KEY_LEN;
1059101099Srwatson
1060101099Srwatson         if (bytes_hashed + len >= L1_KEY_LEN) {
1061101099Srwatson
1062101099Srwatson             /* If some bytes have been passed to the hash function      */
1063101099Srwatson             /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1064101099Srwatson             /* bytes to complete the current nh_block.                  */
1065105656Srwatson             if (bytes_hashed) {
1066101099Srwatson                 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1067101099Srwatson                 nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
1068101099Srwatson                 nh_final(&ctx->hash, nh_result);
1069101099Srwatson                 ctx->msg_len += bytes_remaining;
1070101099Srwatson                 poly_hash(ctx,(UINT32 *)nh_result);
1071101099Srwatson                 len -= bytes_remaining;
1072101099Srwatson                 input += bytes_remaining;
1073101099Srwatson             }
1074101099Srwatson
1075101099Srwatson             /* Hash directly from input stream if enough bytes */
1076101099Srwatson             while (len >= L1_KEY_LEN) {
1077101099Srwatson                 nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
1078101099Srwatson                                   L1_KEY_LEN, nh_result);
1079101099Srwatson                 ctx->msg_len += L1_KEY_LEN;
1080101099Srwatson                 len -= L1_KEY_LEN;
1081101099Srwatson                 input += L1_KEY_LEN;
1082101099Srwatson                 poly_hash(ctx,(UINT32 *)nh_result);
1083101099Srwatson             }
1084101099Srwatson         }
1085101099Srwatson
1086101099Srwatson         /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1087101099Srwatson         if (len) {
1088101099Srwatson             nh_update(&ctx->hash, (UINT8 *)input, len);
1089101099Srwatson             ctx->msg_len += len;
1090101099Srwatson         }
1091101099Srwatson     }
1092101099Srwatson
1093101099Srwatson    return (1);
1094101099Srwatson}
1095101099Srwatson
1096101099Srwatson/* ---------------------------------------------------------------------- */
1097101099Srwatson
1098101099Srwatsonstatic int uhash_final(uhash_ctx_t ctx, u_char *res)
1099101099Srwatson/* Incorporate any pending data, pad, and generate tag */
1100101099Srwatson{
1101101099Srwatson    UINT64 result_buf[STREAMS];
1102122524Srwatson    UINT8 *nh_result = (UINT8 *)&result_buf;
1103101099Srwatson
1104101099Srwatson    if (ctx->msg_len > L1_KEY_LEN) {
1105101099Srwatson        if (ctx->msg_len % L1_KEY_LEN) {
1106101099Srwatson            nh_final(&ctx->hash, nh_result);
1107101099Srwatson            poly_hash(ctx,(UINT32 *)nh_result);
1108101099Srwatson        }
1109101099Srwatson        ip_long(ctx, res);
1110101099Srwatson    } else {
1111121816Sbrooks        nh_final(&ctx->hash, nh_result);
1112101099Srwatson        ip_short(ctx,nh_result, res);
1113101099Srwatson    }
1114110350Srwatson    uhash_reset(ctx);
1115101099Srwatson    return (1);
1116101099Srwatson}
1117101099Srwatson
1118101099Srwatson/* ---------------------------------------------------------------------- */
1119110350Srwatson
1120101099Srwatson#if 0
1121101099Srwatsonstatic int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1122101099Srwatson/* assumes that msg is in a writable buffer of length divisible by */
1123101099Srwatson/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1124110350Srwatson{
1125101099Srwatson    UINT8 nh_result[STREAMS*sizeof(UINT64)];
1126101099Srwatson    UINT32 nh_len;
1127101099Srwatson    int extra_zeroes_needed;
1128110350Srwatson
1129101099Srwatson    /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1130101099Srwatson     * the polyhash.
1131101099Srwatson     */
1132101099Srwatson    if (len <= L1_KEY_LEN) {
1133101099Srwatson    	if (len == 0)                  /* If zero length messages will not */
1134106089Srwatson    		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1135101099Srwatson    	else
1136101099Srwatson        	nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1137101099Srwatson        extra_zeroes_needed = nh_len - len;
1138101099Srwatson        zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1139101099Srwatson        nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1140101099Srwatson        ip_short(ahc,nh_result, res);
1141101099Srwatson    } else {
1142101099Srwatson        /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1143101099Srwatson         * output to poly_hash().
1144101099Srwatson         */
1145121816Sbrooks        do {
1146110350Srwatson            nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1147101099Srwatson            poly_hash(ahc,(UINT32 *)nh_result);
1148101099Srwatson            len -= L1_KEY_LEN;
1149106089Srwatson            msg += L1_KEY_LEN;
1150106089Srwatson        } while (len >= L1_KEY_LEN);
1151106089Srwatson        if (len) {
1152106089Srwatson            nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1153106089Srwatson            extra_zeroes_needed = nh_len - len;
1154101099Srwatson            zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1155101099Srwatson            nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1156101099Srwatson            poly_hash(ahc,(UINT32 *)nh_result);
1157101099Srwatson        }
1158101099Srwatson
1159101099Srwatson        ip_long(ahc, res);
1160101099Srwatson    }
1161110350Srwatson
1162110350Srwatson    uhash_reset(ahc);
1163101099Srwatson    return 1;
1164101099Srwatson}
1165101099Srwatson#endif
1166101099Srwatson
1167101099Srwatson/* ---------------------------------------------------------------------- */
1168101099Srwatson/* ---------------------------------------------------------------------- */
1169101099Srwatson/* ----- Begin UMAC Section --------------------------------------------- */
1170101099Srwatson/* ---------------------------------------------------------------------- */
1171101099Srwatson/* ---------------------------------------------------------------------- */
1172101099Srwatson
1173101099Srwatson/* The UMAC interface has two interfaces, an all-at-once interface where
1174101099Srwatson * the entire message to be authenticated is passed to UMAC in one buffer,
1175101099Srwatson * and a sequential interface where the message is presented a little at a
1176101099Srwatson * time. The all-at-once is more optimaized than the sequential version and
1177101099Srwatson * should be preferred when the sequential interface is not required.
1178101099Srwatson */
1179101099Srwatsonstruct umac_ctx {
1180101099Srwatson    uhash_ctx hash;          /* Hash function for message compression    */
1181101099Srwatson    pdf_ctx pdf;             /* PDF for hashed output                    */
1182101099Srwatson    void *free_ptr;          /* Address to free this struct via          */
1183101099Srwatson} umac_ctx;
1184101099Srwatson
1185101099Srwatson/* ---------------------------------------------------------------------- */
1186101099Srwatson
1187101099Srwatson#if 0
1188101099Srwatsonint umac_reset(struct umac_ctx *ctx)
1189101099Srwatson/* Reset the hash function to begin a new authentication.        */
1190101099Srwatson{
1191101099Srwatson    uhash_reset(&ctx->hash);
1192101099Srwatson    return (1);
1193101099Srwatson}
1194101099Srwatson#endif
1195101099Srwatson
1196101099Srwatson/* ---------------------------------------------------------------------- */
1197101099Srwatson
1198101099Srwatsonint umac_delete(struct umac_ctx *ctx)
1199101099Srwatson/* Deallocate the ctx structure */
1200101099Srwatson{
1201101099Srwatson    if (ctx) {
1202101099Srwatson        if (ALLOC_BOUNDARY)
1203101099Srwatson            ctx = (struct umac_ctx *)ctx->free_ptr;
1204101099Srwatson        xfree(ctx);
1205101099Srwatson    }
1206101099Srwatson    return (1);
1207101099Srwatson}
1208101099Srwatson
1209101099Srwatson/* ---------------------------------------------------------------------- */
1210101099Srwatson
1211101099Srwatsonstruct umac_ctx *umac_new(u_char key[])
1212105656Srwatson/* Dynamically allocate a umac_ctx struct, initialize variables,
1213105656Srwatson * generate subkeys from key. Align to 16-byte boundary.
1214105696Srwatson */
1215105656Srwatson{
1216105656Srwatson    struct umac_ctx *ctx, *octx;
1217105656Srwatson    size_t bytes_to_add;
1218105656Srwatson    aes_int_key prf_key;
1219105656Srwatson
1220105656Srwatson    octx = ctx = xmalloc(sizeof(*ctx) + ALLOC_BOUNDARY);
1221101099Srwatson    if (ctx) {
1222101099Srwatson        if (ALLOC_BOUNDARY) {
1223101099Srwatson            bytes_to_add = ALLOC_BOUNDARY -
1224101099Srwatson                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1225101099Srwatson            ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1226101099Srwatson        }
1227101099Srwatson        ctx->free_ptr = octx;
1228101099Srwatson        aes_key_setup(key,prf_key);
1229101099Srwatson        pdf_init(&ctx->pdf, prf_key);
1230101099Srwatson        uhash_init(&ctx->hash, prf_key);
1231105643Srwatson    }
1232101099Srwatson
1233101099Srwatson    return (ctx);
1234101099Srwatson}
1235101099Srwatson
1236101099Srwatson/* ---------------------------------------------------------------------- */
1237101099Srwatson
1238101099Srwatsonint umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8])
1239101099Srwatson/* Incorporate any pending data, pad, and generate tag */
1240101099Srwatson{
1241101099Srwatson    uhash_final(&ctx->hash, (u_char *)tag);
1242101099Srwatson    pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1243101099Srwatson
1244101099Srwatson    return (1);
1245101099Srwatson}
1246101099Srwatson
1247101099Srwatson/* ---------------------------------------------------------------------- */
1248101099Srwatson
1249101099Srwatsonint umac_update(struct umac_ctx *ctx, u_char *input, long len)
1250101099Srwatson/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1251101099Srwatson/* hash each one, calling the PDF on the hashed output whenever the hash- */
1252101099Srwatson/* output buffer is full.                                                 */
1253101099Srwatson{
1254101099Srwatson    uhash_update(&ctx->hash, input, len);
1255101099Srwatson    return (1);
1256101099Srwatson}
1257101099Srwatson
1258101099Srwatson/* ---------------------------------------------------------------------- */
1259101099Srwatson
1260101099Srwatson#if 0
1261101099Srwatsonint umac(struct umac_ctx *ctx, u_char *input,
1262101099Srwatson         long len, u_char tag[],
1263101099Srwatson         u_char nonce[8])
1264101099Srwatson/* All-in-one version simply calls umac_update() and umac_final().        */
1265101099Srwatson{
1266101099Srwatson    uhash(&ctx->hash, input, len, (u_char *)tag);
1267101099Srwatson    pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1268101099Srwatson
1269101099Srwatson    return (1);
1270101099Srwatson}
1271101099Srwatson#endif
1272101099Srwatson
1273101099Srwatson/* ---------------------------------------------------------------------- */
1274101099Srwatson/* ---------------------------------------------------------------------- */
1275101099Srwatson/* ----- End UMAC Section ----------------------------------------------- */
1276101099Srwatson/* ---------------------------------------------------------------------- */
1277101099Srwatson/* ---------------------------------------------------------------------- */
1278101099Srwatson