umac.c revision 180744
1/* $OpenBSD: umac.c,v 1.1 2007/06/07 19:37:34 pvalchev Exp $ */
2/* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26  *
27  * 1) This version does not work properly on messages larger than 16MB
28  *
29  * 2) If you set the switch to use SSE2, then all data must be 16-byte
30  *    aligned
31  *
32  * 3) When calling the function umac(), it is assumed that msg is in
33  * a writable buffer of length divisible by 32 bytes. The message itself
34  * does not have to fill the entire buffer, but bytes beyond msg may be
35  * zeroed.
36  *
37  * 4) Three free AES implementations are supported by this implementation of
38  * UMAC. Paulo Barreto's version is in the public domain and can be found
39  * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40  * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41  * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42  * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43  * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44  * the third.
45  *
46  * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47  * produced under gcc with optimizations set -O3 or higher. Dunno why.
48  *
49  /////////////////////////////////////////////////////////////////////// */
50
51/* ---------------------------------------------------------------------- */
52/* --- User Switches ---------------------------------------------------- */
53/* ---------------------------------------------------------------------- */
54
55#define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
56/* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
57/* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
58/* #define SSE2                0  Is SSE2 is available?                   */
59/* #define RUN_TESTS           0  Run basic correctness/speed tests       */
60/* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
61
62/* ---------------------------------------------------------------------- */
63/* -- Global Includes --------------------------------------------------- */
64/* ---------------------------------------------------------------------- */
65
66#include "includes.h"
67#include <sys/types.h>
68
69#include "umac.h"
70#include <string.h>
71#include <stdlib.h>
72#include <stddef.h>
73
74/* ---------------------------------------------------------------------- */
75/* --- Primitive Data Types ---                                           */
76/* ---------------------------------------------------------------------- */
77
78/* The following assumptions may need change on your system */
79typedef u_int8_t	UINT8;  /* 1 byte   */
80typedef u_int16_t	UINT16; /* 2 byte   */
81typedef u_int32_t	UINT32; /* 4 byte   */
82typedef u_int64_t	UINT64; /* 8 bytes  */
83typedef unsigned int	UWORD;  /* Register */
84
85/* ---------------------------------------------------------------------- */
86/* --- Constants -------------------------------------------------------- */
87/* ---------------------------------------------------------------------- */
88
89#define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
90
91/* Message "words" are read from memory in an endian-specific manner.     */
92/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
93/* be set true if the host computer is little-endian.                     */
94
95#if BYTE_ORDER == LITTLE_ENDIAN
96#define __LITTLE_ENDIAN__ 1
97#else
98#define __LITTLE_ENDIAN__ 0
99#endif
100
101/* ---------------------------------------------------------------------- */
102/* ---------------------------------------------------------------------- */
103/* ----- Architecture Specific ------------------------------------------ */
104/* ---------------------------------------------------------------------- */
105/* ---------------------------------------------------------------------- */
106
107
108/* ---------------------------------------------------------------------- */
109/* ---------------------------------------------------------------------- */
110/* ----- Primitive Routines --------------------------------------------- */
111/* ---------------------------------------------------------------------- */
112/* ---------------------------------------------------------------------- */
113
114
115/* ---------------------------------------------------------------------- */
116/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
117/* ---------------------------------------------------------------------- */
118
119#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
120
121/* ---------------------------------------------------------------------- */
122/* --- Endian Conversion --- Forcing assembly on some platforms           */
123/* ---------------------------------------------------------------------- */
124
125#if HAVE_SWAP32
126#define LOAD_UINT32_REVERSED(p)		(swap32(*(UINT32 *)(p)))
127#define STORE_UINT32_REVERSED(p,v) 	(*(UINT32 *)(p) = swap32(v))
128#else /* HAVE_SWAP32 */
129
130static UINT32 LOAD_UINT32_REVERSED(void *ptr)
131{
132    UINT32 temp = *(UINT32 *)ptr;
133    temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
134         | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
135    return (UINT32)temp;
136}
137
138static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
139{
140    UINT32 i = (UINT32)x;
141    *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
142                   | ((i & 0x0000FF00) << 8 ) | (i << 24);
143}
144#endif /* HAVE_SWAP32 */
145
146/* The following definitions use the above reversal-primitives to do the right
147 * thing on endian specific load and stores.
148 */
149
150#if (__LITTLE_ENDIAN__)
151#define LOAD_UINT32_LITTLE(ptr)     (*(UINT32 *)(ptr))
152#define STORE_UINT32_BIG(ptr,x)     STORE_UINT32_REVERSED(ptr,x)
153#else
154#define LOAD_UINT32_LITTLE(ptr)     LOAD_UINT32_REVERSED(ptr)
155#define STORE_UINT32_BIG(ptr,x)     (*(UINT32 *)(ptr) = (UINT32)(x))
156#endif
157
158/* ---------------------------------------------------------------------- */
159/* ---------------------------------------------------------------------- */
160/* ----- Begin KDF & PDF Section ---------------------------------------- */
161/* ---------------------------------------------------------------------- */
162/* ---------------------------------------------------------------------- */
163
164/* UMAC uses AES with 16 byte block and key lengths */
165#define AES_BLOCK_LEN  16
166
167/* OpenSSL's AES */
168#include "openbsd-compat/openssl-compat.h"
169#ifndef USE_BUILTIN_RIJNDAEL
170# include <openssl/aes.h>
171#endif
172typedef AES_KEY aes_int_key[1];
173#define aes_encryption(in,out,int_key)                  \
174  AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
175#define aes_key_setup(key,int_key)                      \
176  AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
177
178/* The user-supplied UMAC key is stretched using AES in a counter
179 * mode to supply all random bits needed by UMAC. The kdf function takes
180 * an AES internal key representation 'key' and writes a stream of
181 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
182 * 'ndx' causes a distinct byte stream.
183 */
184static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
185{
186    UINT8 in_buf[AES_BLOCK_LEN] = {0};
187    UINT8 out_buf[AES_BLOCK_LEN];
188    UINT8 *dst_buf = (UINT8 *)buffer_ptr;
189    int i;
190
191    /* Setup the initial value */
192    in_buf[AES_BLOCK_LEN-9] = ndx;
193    in_buf[AES_BLOCK_LEN-1] = i = 1;
194
195    while (nbytes >= AES_BLOCK_LEN) {
196        aes_encryption(in_buf, out_buf, key);
197        memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
198        in_buf[AES_BLOCK_LEN-1] = ++i;
199        nbytes -= AES_BLOCK_LEN;
200        dst_buf += AES_BLOCK_LEN;
201    }
202    if (nbytes) {
203        aes_encryption(in_buf, out_buf, key);
204        memcpy(dst_buf,out_buf,nbytes);
205    }
206}
207
208/* The final UHASH result is XOR'd with the output of a pseudorandom
209 * function. Here, we use AES to generate random output and
210 * xor the appropriate bytes depending on the last bits of nonce.
211 * This scheme is optimized for sequential, increasing big-endian nonces.
212 */
213
214typedef struct {
215    UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
216    UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
217    aes_int_key prf_key;         /* Expanded AES key for PDF          */
218} pdf_ctx;
219
220static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
221{
222    UINT8 buf[UMAC_KEY_LEN];
223
224    kdf(buf, prf_key, 0, UMAC_KEY_LEN);
225    aes_key_setup(buf, pc->prf_key);
226
227    /* Initialize pdf and cache */
228    memset(pc->nonce, 0, sizeof(pc->nonce));
229    aes_encryption(pc->nonce, pc->cache, pc->prf_key);
230}
231
232static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
233{
234    /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
235     * of the AES output. If last time around we returned the ndx-1st
236     * element, then we may have the result in the cache already.
237     */
238
239#if (UMAC_OUTPUT_LEN == 4)
240#define LOW_BIT_MASK 3
241#elif (UMAC_OUTPUT_LEN == 8)
242#define LOW_BIT_MASK 1
243#elif (UMAC_OUTPUT_LEN > 8)
244#define LOW_BIT_MASK 0
245#endif
246
247    UINT8 tmp_nonce_lo[4];
248#if LOW_BIT_MASK != 0
249    int ndx = nonce[7] & LOW_BIT_MASK;
250#endif
251    *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
252    tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
253
254    if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
255         (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
256    {
257        ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
258        ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
259        aes_encryption(pc->nonce, pc->cache, pc->prf_key);
260    }
261
262#if (UMAC_OUTPUT_LEN == 4)
263    *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
264#elif (UMAC_OUTPUT_LEN == 8)
265    *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
266#elif (UMAC_OUTPUT_LEN == 12)
267    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
268    ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
269#elif (UMAC_OUTPUT_LEN == 16)
270    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
271    ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
272#endif
273}
274
275/* ---------------------------------------------------------------------- */
276/* ---------------------------------------------------------------------- */
277/* ----- Begin NH Hash Section ------------------------------------------ */
278/* ---------------------------------------------------------------------- */
279/* ---------------------------------------------------------------------- */
280
281/* The NH-based hash functions used in UMAC are described in the UMAC paper
282 * and specification, both of which can be found at the UMAC website.
283 * The interface to this implementation has two
284 * versions, one expects the entire message being hashed to be passed
285 * in a single buffer and returns the hash result immediately. The second
286 * allows the message to be passed in a sequence of buffers. In the
287 * muliple-buffer interface, the client calls the routine nh_update() as
288 * many times as necessary. When there is no more data to be fed to the
289 * hash, the client calls nh_final() which calculates the hash output.
290 * Before beginning another hash calculation the nh_reset() routine
291 * must be called. The single-buffer routine, nh(), is equivalent to
292 * the sequence of calls nh_update() and nh_final(); however it is
293 * optimized and should be prefered whenever the multiple-buffer interface
294 * is not necessary. When using either interface, it is the client's
295 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
296 *
297 * The routine nh_init() initializes the nh_ctx data structure and
298 * must be called once, before any other PDF routine.
299 */
300
301 /* The "nh_aux" routines do the actual NH hashing work. They
302  * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
303  * produce output for all STREAMS NH iterations in one call,
304  * allowing the parallel implementation of the streams.
305  */
306
307#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
308#define L1_KEY_LEN         1024     /* Internal key bytes                 */
309#define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
310#define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
311#define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
312#define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
313
314typedef struct {
315    UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
316    UINT8  data   [HASH_BUF_BYTES];    /* Incomming data buffer           */
317    int next_data_empty;    /* Bookeeping variable for data buffer.       */
318    int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
319    UINT64 state[STREAMS];               /* on-line state     */
320} nh_ctx;
321
322
323#if (UMAC_OUTPUT_LEN == 4)
324
325static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
326/* NH hashing primitive. Previous (partial) hash result is loaded and
327* then stored via hp pointer. The length of the data pointed at by "dp",
328* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
329* is expected to be endian compensated in memory at key setup.
330*/
331{
332    UINT64 h;
333    UWORD c = dlen / 32;
334    UINT32 *k = (UINT32 *)kp;
335    UINT32 *d = (UINT32 *)dp;
336    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
337    UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
338
339    h = *((UINT64 *)hp);
340    do {
341        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
342        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
343        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
344        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
345        k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
346        k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
347        h += MUL64((k0 + d0), (k4 + d4));
348        h += MUL64((k1 + d1), (k5 + d5));
349        h += MUL64((k2 + d2), (k6 + d6));
350        h += MUL64((k3 + d3), (k7 + d7));
351
352        d += 8;
353        k += 8;
354    } while (--c);
355  *((UINT64 *)hp) = h;
356}
357
358#elif (UMAC_OUTPUT_LEN == 8)
359
360static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
361/* Same as previous nh_aux, but two streams are handled in one pass,
362 * reading and writing 16 bytes of hash-state per call.
363 */
364{
365  UINT64 h1,h2;
366  UWORD c = dlen / 32;
367  UINT32 *k = (UINT32 *)kp;
368  UINT32 *d = (UINT32 *)dp;
369  UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
370  UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
371        k8,k9,k10,k11;
372
373  h1 = *((UINT64 *)hp);
374  h2 = *((UINT64 *)hp + 1);
375  k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
376  do {
377    d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
378    d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
379    d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
380    d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
381    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
382    k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
383
384    h1 += MUL64((k0 + d0), (k4 + d4));
385    h2 += MUL64((k4 + d0), (k8 + d4));
386
387    h1 += MUL64((k1 + d1), (k5 + d5));
388    h2 += MUL64((k5 + d1), (k9 + d5));
389
390    h1 += MUL64((k2 + d2), (k6 + d6));
391    h2 += MUL64((k6 + d2), (k10 + d6));
392
393    h1 += MUL64((k3 + d3), (k7 + d7));
394    h2 += MUL64((k7 + d3), (k11 + d7));
395
396    k0 = k8; k1 = k9; k2 = k10; k3 = k11;
397
398    d += 8;
399    k += 8;
400  } while (--c);
401  ((UINT64 *)hp)[0] = h1;
402  ((UINT64 *)hp)[1] = h2;
403}
404
405#elif (UMAC_OUTPUT_LEN == 12)
406
407static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
408/* Same as previous nh_aux, but two streams are handled in one pass,
409 * reading and writing 24 bytes of hash-state per call.
410*/
411{
412    UINT64 h1,h2,h3;
413    UWORD c = dlen / 32;
414    UINT32 *k = (UINT32 *)kp;
415    UINT32 *d = (UINT32 *)dp;
416    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
417    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
418        k8,k9,k10,k11,k12,k13,k14,k15;
419
420    h1 = *((UINT64 *)hp);
421    h2 = *((UINT64 *)hp + 1);
422    h3 = *((UINT64 *)hp + 2);
423    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
424    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
425    do {
426        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
427        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
428        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
429        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
430        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
431        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
432
433        h1 += MUL64((k0 + d0), (k4 + d4));
434        h2 += MUL64((k4 + d0), (k8 + d4));
435        h3 += MUL64((k8 + d0), (k12 + d4));
436
437        h1 += MUL64((k1 + d1), (k5 + d5));
438        h2 += MUL64((k5 + d1), (k9 + d5));
439        h3 += MUL64((k9 + d1), (k13 + d5));
440
441        h1 += MUL64((k2 + d2), (k6 + d6));
442        h2 += MUL64((k6 + d2), (k10 + d6));
443        h3 += MUL64((k10 + d2), (k14 + d6));
444
445        h1 += MUL64((k3 + d3), (k7 + d7));
446        h2 += MUL64((k7 + d3), (k11 + d7));
447        h3 += MUL64((k11 + d3), (k15 + d7));
448
449        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
450        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
451
452        d += 8;
453        k += 8;
454    } while (--c);
455    ((UINT64 *)hp)[0] = h1;
456    ((UINT64 *)hp)[1] = h2;
457    ((UINT64 *)hp)[2] = h3;
458}
459
460#elif (UMAC_OUTPUT_LEN == 16)
461
462static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
463/* Same as previous nh_aux, but two streams are handled in one pass,
464 * reading and writing 24 bytes of hash-state per call.
465*/
466{
467    UINT64 h1,h2,h3,h4;
468    UWORD c = dlen / 32;
469    UINT32 *k = (UINT32 *)kp;
470    UINT32 *d = (UINT32 *)dp;
471    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
472    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
473        k8,k9,k10,k11,k12,k13,k14,k15,
474        k16,k17,k18,k19;
475
476    h1 = *((UINT64 *)hp);
477    h2 = *((UINT64 *)hp + 1);
478    h3 = *((UINT64 *)hp + 2);
479    h4 = *((UINT64 *)hp + 3);
480    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
481    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
482    do {
483        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
484        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
485        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
486        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
487        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
488        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
489        k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
490
491        h1 += MUL64((k0 + d0), (k4 + d4));
492        h2 += MUL64((k4 + d0), (k8 + d4));
493        h3 += MUL64((k8 + d0), (k12 + d4));
494        h4 += MUL64((k12 + d0), (k16 + d4));
495
496        h1 += MUL64((k1 + d1), (k5 + d5));
497        h2 += MUL64((k5 + d1), (k9 + d5));
498        h3 += MUL64((k9 + d1), (k13 + d5));
499        h4 += MUL64((k13 + d1), (k17 + d5));
500
501        h1 += MUL64((k2 + d2), (k6 + d6));
502        h2 += MUL64((k6 + d2), (k10 + d6));
503        h3 += MUL64((k10 + d2), (k14 + d6));
504        h4 += MUL64((k14 + d2), (k18 + d6));
505
506        h1 += MUL64((k3 + d3), (k7 + d7));
507        h2 += MUL64((k7 + d3), (k11 + d7));
508        h3 += MUL64((k11 + d3), (k15 + d7));
509        h4 += MUL64((k15 + d3), (k19 + d7));
510
511        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
512        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
513        k8 = k16; k9 = k17; k10 = k18; k11 = k19;
514
515        d += 8;
516        k += 8;
517    } while (--c);
518    ((UINT64 *)hp)[0] = h1;
519    ((UINT64 *)hp)[1] = h2;
520    ((UINT64 *)hp)[2] = h3;
521    ((UINT64 *)hp)[3] = h4;
522}
523
524/* ---------------------------------------------------------------------- */
525#endif  /* UMAC_OUTPUT_LENGTH */
526/* ---------------------------------------------------------------------- */
527
528
529/* ---------------------------------------------------------------------- */
530
531static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
532/* This function is a wrapper for the primitive NH hash functions. It takes
533 * as argument "hc" the current hash context and a buffer which must be a
534 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
535 * appropriately according to how much message has been hashed already.
536 */
537{
538    UINT8 *key;
539
540    key = hc->nh_key + hc->bytes_hashed;
541    nh_aux(key, buf, hc->state, nbytes);
542}
543
544/* ---------------------------------------------------------------------- */
545
546static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
547/* We endian convert the keys on little-endian computers to               */
548/* compensate for the lack of big-endian memory reads during hashing.     */
549{
550    UWORD iters = num_bytes / bpw;
551    if (bpw == 4) {
552        UINT32 *p = (UINT32 *)buf;
553        do {
554            *p = LOAD_UINT32_REVERSED(p);
555            p++;
556        } while (--iters);
557    } else if (bpw == 8) {
558        UINT32 *p = (UINT32 *)buf;
559        UINT32 t;
560        do {
561            t = LOAD_UINT32_REVERSED(p+1);
562            p[1] = LOAD_UINT32_REVERSED(p);
563            p[0] = t;
564            p += 2;
565        } while (--iters);
566    }
567}
568#if (__LITTLE_ENDIAN__)
569#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
570#else
571#define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
572#endif
573
574/* ---------------------------------------------------------------------- */
575
576static void nh_reset(nh_ctx *hc)
577/* Reset nh_ctx to ready for hashing of new data */
578{
579    hc->bytes_hashed = 0;
580    hc->next_data_empty = 0;
581    hc->state[0] = 0;
582#if (UMAC_OUTPUT_LEN >= 8)
583    hc->state[1] = 0;
584#endif
585#if (UMAC_OUTPUT_LEN >= 12)
586    hc->state[2] = 0;
587#endif
588#if (UMAC_OUTPUT_LEN == 16)
589    hc->state[3] = 0;
590#endif
591
592}
593
594/* ---------------------------------------------------------------------- */
595
596static void nh_init(nh_ctx *hc, aes_int_key prf_key)
597/* Generate nh_key, endian convert and reset to be ready for hashing.   */
598{
599    kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
600    endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
601    nh_reset(hc);
602}
603
604/* ---------------------------------------------------------------------- */
605
606static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
607/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
608/* even multiple of HASH_BUF_BYTES.                                       */
609{
610    UINT32 i,j;
611
612    j = hc->next_data_empty;
613    if ((j + nbytes) >= HASH_BUF_BYTES) {
614        if (j) {
615            i = HASH_BUF_BYTES - j;
616            memcpy(hc->data+j, buf, i);
617            nh_transform(hc,hc->data,HASH_BUF_BYTES);
618            nbytes -= i;
619            buf += i;
620            hc->bytes_hashed += HASH_BUF_BYTES;
621        }
622        if (nbytes >= HASH_BUF_BYTES) {
623            i = nbytes & ~(HASH_BUF_BYTES - 1);
624            nh_transform(hc, buf, i);
625            nbytes -= i;
626            buf += i;
627            hc->bytes_hashed += i;
628        }
629        j = 0;
630    }
631    memcpy(hc->data + j, buf, nbytes);
632    hc->next_data_empty = j + nbytes;
633}
634
635/* ---------------------------------------------------------------------- */
636
637static void zero_pad(UINT8 *p, int nbytes)
638{
639/* Write "nbytes" of zeroes, beginning at "p" */
640    if (nbytes >= (int)sizeof(UWORD)) {
641        while ((ptrdiff_t)p % sizeof(UWORD)) {
642            *p = 0;
643            nbytes--;
644            p++;
645        }
646        while (nbytes >= (int)sizeof(UWORD)) {
647            *(UWORD *)p = 0;
648            nbytes -= sizeof(UWORD);
649            p += sizeof(UWORD);
650        }
651    }
652    while (nbytes) {
653        *p = 0;
654        nbytes--;
655        p++;
656    }
657}
658
659/* ---------------------------------------------------------------------- */
660
661static void nh_final(nh_ctx *hc, UINT8 *result)
662/* After passing some number of data buffers to nh_update() for integration
663 * into an NH context, nh_final is called to produce a hash result. If any
664 * bytes are in the buffer hc->data, incorporate them into the
665 * NH context. Finally, add into the NH accumulation "state" the total number
666 * of bits hashed. The resulting numbers are written to the buffer "result".
667 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
668 */
669{
670    int nh_len, nbits;
671
672    if (hc->next_data_empty != 0) {
673        nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
674                                                ~(L1_PAD_BOUNDARY - 1));
675        zero_pad(hc->data + hc->next_data_empty,
676                                          nh_len - hc->next_data_empty);
677        nh_transform(hc, hc->data, nh_len);
678        hc->bytes_hashed += hc->next_data_empty;
679    } else if (hc->bytes_hashed == 0) {
680    	nh_len = L1_PAD_BOUNDARY;
681        zero_pad(hc->data, L1_PAD_BOUNDARY);
682        nh_transform(hc, hc->data, nh_len);
683    }
684
685    nbits = (hc->bytes_hashed << 3);
686    ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
687#if (UMAC_OUTPUT_LEN >= 8)
688    ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
689#endif
690#if (UMAC_OUTPUT_LEN >= 12)
691    ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
692#endif
693#if (UMAC_OUTPUT_LEN == 16)
694    ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
695#endif
696    nh_reset(hc);
697}
698
699/* ---------------------------------------------------------------------- */
700
701static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
702               UINT32 unpadded_len, UINT8 *result)
703/* All-in-one nh_update() and nh_final() equivalent.
704 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
705 * well aligned
706 */
707{
708    UINT32 nbits;
709
710    /* Initialize the hash state */
711    nbits = (unpadded_len << 3);
712
713    ((UINT64 *)result)[0] = nbits;
714#if (UMAC_OUTPUT_LEN >= 8)
715    ((UINT64 *)result)[1] = nbits;
716#endif
717#if (UMAC_OUTPUT_LEN >= 12)
718    ((UINT64 *)result)[2] = nbits;
719#endif
720#if (UMAC_OUTPUT_LEN == 16)
721    ((UINT64 *)result)[3] = nbits;
722#endif
723
724    nh_aux(hc->nh_key, buf, result, padded_len);
725}
726
727/* ---------------------------------------------------------------------- */
728/* ---------------------------------------------------------------------- */
729/* ----- Begin UHASH Section -------------------------------------------- */
730/* ---------------------------------------------------------------------- */
731/* ---------------------------------------------------------------------- */
732
733/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
734 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
735 * unless the initial data to be hashed is short. After the polynomial-
736 * layer, an inner-product hash is used to produce the final UHASH output.
737 *
738 * UHASH provides two interfaces, one all-at-once and another where data
739 * buffers are presented sequentially. In the sequential interface, the
740 * UHASH client calls the routine uhash_update() as many times as necessary.
741 * When there is no more data to be fed to UHASH, the client calls
742 * uhash_final() which
743 * calculates the UHASH output. Before beginning another UHASH calculation
744 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
745 * uhash(), is equivalent to the sequence of calls uhash_update() and
746 * uhash_final(); however it is optimized and should be
747 * used whenever the sequential interface is not necessary.
748 *
749 * The routine uhash_init() initializes the uhash_ctx data structure and
750 * must be called once, before any other UHASH routine.
751 */
752
753/* ---------------------------------------------------------------------- */
754/* ----- Constants and uhash_ctx ---------------------------------------- */
755/* ---------------------------------------------------------------------- */
756
757/* ---------------------------------------------------------------------- */
758/* ----- Poly hash and Inner-Product hash Constants --------------------- */
759/* ---------------------------------------------------------------------- */
760
761/* Primes and masks */
762#define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
763#define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
764#define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
765
766
767/* ---------------------------------------------------------------------- */
768
769typedef struct uhash_ctx {
770    nh_ctx hash;                          /* Hash context for L1 NH hash  */
771    UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
772    UINT64 poly_accum[STREAMS];           /* poly hash result             */
773    UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
774    UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
775    UINT32 msg_len;                       /* Total length of data passed  */
776                                          /* to uhash */
777} uhash_ctx;
778typedef struct uhash_ctx *uhash_ctx_t;
779
780/* ---------------------------------------------------------------------- */
781
782
783/* The polynomial hashes use Horner's rule to evaluate a polynomial one
784 * word at a time. As described in the specification, poly32 and poly64
785 * require keys from special domains. The following implementations exploit
786 * the special domains to avoid overflow. The results are not guaranteed to
787 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
788 * patches any errant values.
789 */
790
791static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
792{
793    UINT32 key_hi = (UINT32)(key >> 32),
794           key_lo = (UINT32)key,
795           cur_hi = (UINT32)(cur >> 32),
796           cur_lo = (UINT32)cur,
797           x_lo,
798           x_hi;
799    UINT64 X,T,res;
800
801    X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
802    x_lo = (UINT32)X;
803    x_hi = (UINT32)(X >> 32);
804
805    res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
806
807    T = ((UINT64)x_lo << 32);
808    res += T;
809    if (res < T)
810        res += 59;
811
812    res += data;
813    if (res < data)
814        res += 59;
815
816    return res;
817}
818
819
820/* Although UMAC is specified to use a ramped polynomial hash scheme, this
821 * implementation does not handle all ramp levels. Because we don't handle
822 * the ramp up to p128 modulus in this implementation, we are limited to
823 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
824 * bytes input to UMAC per tag, ie. 16MB).
825 */
826static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
827{
828    int i;
829    UINT64 *data=(UINT64*)data_in;
830
831    for (i = 0; i < STREAMS; i++) {
832        if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
833            hc->poly_accum[i] = poly64(hc->poly_accum[i],
834                                       hc->poly_key_8[i], p64 - 1);
835            hc->poly_accum[i] = poly64(hc->poly_accum[i],
836                                       hc->poly_key_8[i], (data[i] - 59));
837        } else {
838            hc->poly_accum[i] = poly64(hc->poly_accum[i],
839                                       hc->poly_key_8[i], data[i]);
840        }
841    }
842}
843
844
845/* ---------------------------------------------------------------------- */
846
847
848/* The final step in UHASH is an inner-product hash. The poly hash
849 * produces a result not neccesarily WORD_LEN bytes long. The inner-
850 * product hash breaks the polyhash output into 16-bit chunks and
851 * multiplies each with a 36 bit key.
852 */
853
854static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
855{
856    t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
857    t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
858    t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
859    t = t + ipkp[3] * (UINT64)(UINT16)(data);
860
861    return t;
862}
863
864static UINT32 ip_reduce_p36(UINT64 t)
865{
866/* Divisionless modular reduction */
867    UINT64 ret;
868
869    ret = (t & m36) + 5 * (t >> 36);
870    if (ret >= p36)
871        ret -= p36;
872
873    /* return least significant 32 bits */
874    return (UINT32)(ret);
875}
876
877
878/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
879 * the polyhash stage is skipped and ip_short is applied directly to the
880 * NH output.
881 */
882static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
883{
884    UINT64 t;
885    UINT64 *nhp = (UINT64 *)nh_res;
886
887    t  = ip_aux(0,ahc->ip_keys, nhp[0]);
888    STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
889#if (UMAC_OUTPUT_LEN >= 8)
890    t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
891    STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
892#endif
893#if (UMAC_OUTPUT_LEN >= 12)
894    t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
895    STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
896#endif
897#if (UMAC_OUTPUT_LEN == 16)
898    t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
899    STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
900#endif
901}
902
903/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
904 * the polyhash stage is not skipped and ip_long is applied to the
905 * polyhash output.
906 */
907static void ip_long(uhash_ctx_t ahc, u_char *res)
908{
909    int i;
910    UINT64 t;
911
912    for (i = 0; i < STREAMS; i++) {
913        /* fix polyhash output not in Z_p64 */
914        if (ahc->poly_accum[i] >= p64)
915            ahc->poly_accum[i] -= p64;
916        t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
917        STORE_UINT32_BIG((UINT32 *)res+i,
918                         ip_reduce_p36(t) ^ ahc->ip_trans[i]);
919    }
920}
921
922
923/* ---------------------------------------------------------------------- */
924
925/* ---------------------------------------------------------------------- */
926
927/* Reset uhash context for next hash session */
928static int uhash_reset(uhash_ctx_t pc)
929{
930    nh_reset(&pc->hash);
931    pc->msg_len = 0;
932    pc->poly_accum[0] = 1;
933#if (UMAC_OUTPUT_LEN >= 8)
934    pc->poly_accum[1] = 1;
935#endif
936#if (UMAC_OUTPUT_LEN >= 12)
937    pc->poly_accum[2] = 1;
938#endif
939#if (UMAC_OUTPUT_LEN == 16)
940    pc->poly_accum[3] = 1;
941#endif
942    return 1;
943}
944
945/* ---------------------------------------------------------------------- */
946
947/* Given a pointer to the internal key needed by kdf() and a uhash context,
948 * initialize the NH context and generate keys needed for poly and inner-
949 * product hashing. All keys are endian adjusted in memory so that native
950 * loads cause correct keys to be in registers during calculation.
951 */
952static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
953{
954    int i;
955    UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
956
957    /* Zero the entire uhash context */
958    memset(ahc, 0, sizeof(uhash_ctx));
959
960    /* Initialize the L1 hash */
961    nh_init(&ahc->hash, prf_key);
962
963    /* Setup L2 hash variables */
964    kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
965    for (i = 0; i < STREAMS; i++) {
966        /* Fill keys from the buffer, skipping bytes in the buffer not
967         * used by this implementation. Endian reverse the keys if on a
968         * little-endian computer.
969         */
970        memcpy(ahc->poly_key_8+i, buf+24*i, 8);
971        endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
972        /* Mask the 64-bit keys to their special domain */
973        ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
974        ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
975    }
976
977    /* Setup L3-1 hash variables */
978    kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
979    for (i = 0; i < STREAMS; i++)
980          memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
981                                                 4*sizeof(UINT64));
982    endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
983                                                  sizeof(ahc->ip_keys));
984    for (i = 0; i < STREAMS*4; i++)
985        ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
986
987    /* Setup L3-2 hash variables    */
988    /* Fill buffer with index 4 key */
989    kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
990    endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
991                         STREAMS * sizeof(UINT32));
992}
993
994/* ---------------------------------------------------------------------- */
995
996#if 0
997static uhash_ctx_t uhash_alloc(u_char key[])
998{
999/* Allocate memory and force to a 16-byte boundary. */
1000    uhash_ctx_t ctx;
1001    u_char bytes_to_add;
1002    aes_int_key prf_key;
1003
1004    ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1005    if (ctx) {
1006        if (ALLOC_BOUNDARY) {
1007            bytes_to_add = ALLOC_BOUNDARY -
1008                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1009            ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1010            *((u_char *)ctx - 1) = bytes_to_add;
1011        }
1012        aes_key_setup(key,prf_key);
1013        uhash_init(ctx, prf_key);
1014    }
1015    return (ctx);
1016}
1017#endif
1018
1019/* ---------------------------------------------------------------------- */
1020
1021#if 0
1022static int uhash_free(uhash_ctx_t ctx)
1023{
1024/* Free memory allocated by uhash_alloc */
1025    u_char bytes_to_sub;
1026
1027    if (ctx) {
1028        if (ALLOC_BOUNDARY) {
1029            bytes_to_sub = *((u_char *)ctx - 1);
1030            ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1031        }
1032        free(ctx);
1033    }
1034    return (1);
1035}
1036#endif
1037/* ---------------------------------------------------------------------- */
1038
1039static int uhash_update(uhash_ctx_t ctx, u_char *input, long len)
1040/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1041 * hash each one with NH, calling the polyhash on each NH output.
1042 */
1043{
1044    UWORD bytes_hashed, bytes_remaining;
1045    UINT8 nh_result[STREAMS*sizeof(UINT64)];
1046
1047    if (ctx->msg_len + len <= L1_KEY_LEN) {
1048        nh_update(&ctx->hash, (UINT8 *)input, len);
1049        ctx->msg_len += len;
1050    } else {
1051
1052         bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1053         if (ctx->msg_len == L1_KEY_LEN)
1054             bytes_hashed = L1_KEY_LEN;
1055
1056         if (bytes_hashed + len >= L1_KEY_LEN) {
1057
1058             /* If some bytes have been passed to the hash function      */
1059             /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1060             /* bytes to complete the current nh_block.                  */
1061             if (bytes_hashed) {
1062                 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1063                 nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
1064                 nh_final(&ctx->hash, nh_result);
1065                 ctx->msg_len += bytes_remaining;
1066                 poly_hash(ctx,(UINT32 *)nh_result);
1067                 len -= bytes_remaining;
1068                 input += bytes_remaining;
1069             }
1070
1071             /* Hash directly from input stream if enough bytes */
1072             while (len >= L1_KEY_LEN) {
1073                 nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
1074                                   L1_KEY_LEN, nh_result);
1075                 ctx->msg_len += L1_KEY_LEN;
1076                 len -= L1_KEY_LEN;
1077                 input += L1_KEY_LEN;
1078                 poly_hash(ctx,(UINT32 *)nh_result);
1079             }
1080         }
1081
1082         /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1083         if (len) {
1084             nh_update(&ctx->hash, (UINT8 *)input, len);
1085             ctx->msg_len += len;
1086         }
1087     }
1088
1089    return (1);
1090}
1091
1092/* ---------------------------------------------------------------------- */
1093
1094static int uhash_final(uhash_ctx_t ctx, u_char *res)
1095/* Incorporate any pending data, pad, and generate tag */
1096{
1097    UINT8 nh_result[STREAMS*sizeof(UINT64)];
1098
1099    if (ctx->msg_len > L1_KEY_LEN) {
1100        if (ctx->msg_len % L1_KEY_LEN) {
1101            nh_final(&ctx->hash, nh_result);
1102            poly_hash(ctx,(UINT32 *)nh_result);
1103        }
1104        ip_long(ctx, res);
1105    } else {
1106        nh_final(&ctx->hash, nh_result);
1107        ip_short(ctx,nh_result, res);
1108    }
1109    uhash_reset(ctx);
1110    return (1);
1111}
1112
1113/* ---------------------------------------------------------------------- */
1114
1115#if 0
1116static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1117/* assumes that msg is in a writable buffer of length divisible by */
1118/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1119{
1120    UINT8 nh_result[STREAMS*sizeof(UINT64)];
1121    UINT32 nh_len;
1122    int extra_zeroes_needed;
1123
1124    /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1125     * the polyhash.
1126     */
1127    if (len <= L1_KEY_LEN) {
1128    	if (len == 0)                  /* If zero length messages will not */
1129    		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1130    	else
1131        	nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1132        extra_zeroes_needed = nh_len - len;
1133        zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1134        nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1135        ip_short(ahc,nh_result, res);
1136    } else {
1137        /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1138         * output to poly_hash().
1139         */
1140        do {
1141            nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1142            poly_hash(ahc,(UINT32 *)nh_result);
1143            len -= L1_KEY_LEN;
1144            msg += L1_KEY_LEN;
1145        } while (len >= L1_KEY_LEN);
1146        if (len) {
1147            nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1148            extra_zeroes_needed = nh_len - len;
1149            zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1150            nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1151            poly_hash(ahc,(UINT32 *)nh_result);
1152        }
1153
1154        ip_long(ahc, res);
1155    }
1156
1157    uhash_reset(ahc);
1158    return 1;
1159}
1160#endif
1161
1162/* ---------------------------------------------------------------------- */
1163/* ---------------------------------------------------------------------- */
1164/* ----- Begin UMAC Section --------------------------------------------- */
1165/* ---------------------------------------------------------------------- */
1166/* ---------------------------------------------------------------------- */
1167
1168/* The UMAC interface has two interfaces, an all-at-once interface where
1169 * the entire message to be authenticated is passed to UMAC in one buffer,
1170 * and a sequential interface where the message is presented a little at a
1171 * time. The all-at-once is more optimaized than the sequential version and
1172 * should be preferred when the sequential interface is not required.
1173 */
1174struct umac_ctx {
1175    uhash_ctx hash;          /* Hash function for message compression    */
1176    pdf_ctx pdf;             /* PDF for hashed output                    */
1177    void *free_ptr;          /* Address to free this struct via          */
1178} umac_ctx;
1179
1180/* ---------------------------------------------------------------------- */
1181
1182#if 0
1183int umac_reset(struct umac_ctx *ctx)
1184/* Reset the hash function to begin a new authentication.        */
1185{
1186    uhash_reset(&ctx->hash);
1187    return (1);
1188}
1189#endif
1190
1191/* ---------------------------------------------------------------------- */
1192
1193int umac_delete(struct umac_ctx *ctx)
1194/* Deallocate the ctx structure */
1195{
1196    if (ctx) {
1197        if (ALLOC_BOUNDARY)
1198            ctx = (struct umac_ctx *)ctx->free_ptr;
1199        free(ctx);
1200    }
1201    return (1);
1202}
1203
1204/* ---------------------------------------------------------------------- */
1205
1206struct umac_ctx *umac_new(u_char key[])
1207/* Dynamically allocate a umac_ctx struct, initialize variables,
1208 * generate subkeys from key. Align to 16-byte boundary.
1209 */
1210{
1211    struct umac_ctx *ctx, *octx;
1212    size_t bytes_to_add;
1213    aes_int_key prf_key;
1214
1215    octx = ctx = malloc(sizeof(*ctx) + ALLOC_BOUNDARY);
1216    if (ctx) {
1217        if (ALLOC_BOUNDARY) {
1218            bytes_to_add = ALLOC_BOUNDARY -
1219                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1220            ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1221        }
1222        ctx->free_ptr = octx;
1223        aes_key_setup(key,prf_key);
1224        pdf_init(&ctx->pdf, prf_key);
1225        uhash_init(&ctx->hash, prf_key);
1226    }
1227
1228    return (ctx);
1229}
1230
1231/* ---------------------------------------------------------------------- */
1232
1233int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8])
1234/* Incorporate any pending data, pad, and generate tag */
1235{
1236    uhash_final(&ctx->hash, (u_char *)tag);
1237    pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1238
1239    return (1);
1240}
1241
1242/* ---------------------------------------------------------------------- */
1243
1244int umac_update(struct umac_ctx *ctx, u_char *input, long len)
1245/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1246/* hash each one, calling the PDF on the hashed output whenever the hash- */
1247/* output buffer is full.                                                 */
1248{
1249    uhash_update(&ctx->hash, input, len);
1250    return (1);
1251}
1252
1253/* ---------------------------------------------------------------------- */
1254
1255#if 0
1256int umac(struct umac_ctx *ctx, u_char *input,
1257         long len, u_char tag[],
1258         u_char nonce[8])
1259/* All-in-one version simply calls umac_update() and umac_final().        */
1260{
1261    uhash(&ctx->hash, input, len, (u_char *)tag);
1262    pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1263
1264    return (1);
1265}
1266#endif
1267
1268/* ---------------------------------------------------------------------- */
1269/* ---------------------------------------------------------------------- */
1270/* ----- End UMAC Section ----------------------------------------------- */
1271/* ---------------------------------------------------------------------- */
1272/* ---------------------------------------------------------------------- */
1273