ntp_monitor.c revision 132452
1264790Sbapt/*
2264790Sbapt * ntp_monitor - monitor ntpd statistics
3264790Sbapt */
4264790Sbapt#ifdef HAVE_CONFIG_H
5264790Sbapt# include <config.h>
6264790Sbapt#endif
7264790Sbapt
8264790Sbapt#include "ntpd.h"
9264790Sbapt#include "ntp_io.h"
10264790Sbapt#include "ntp_if.h"
11264790Sbapt#include "ntp_stdlib.h"
12264790Sbapt
13264790Sbapt#include <stdio.h>
14264790Sbapt#include <signal.h>
15#ifdef HAVE_SYS_IOCTL_H
16# include <sys/ioctl.h>
17#endif
18
19/*
20 * I'm still not sure I like what I've done here. It certainly consumes
21 * memory like it is going out of style, and also may not be as low
22 * overhead as I'd imagined.
23 *
24 * Anyway, we record statistics based on source address, mode and
25 * version (for now, anyway. Check the code).  The receive procedure
26 * calls us with the incoming rbufp before it does anything else.
27 *
28 * Each entry is doubly linked into two lists, a hash table and a
29 * most-recently-used list. When a packet arrives it is looked up in
30 * the hash table.  If found, the statistics are updated and the entry
31 * relinked at the head of the MRU list. If not found, a new entry is
32 * allocated, initialized and linked into both the hash table and at the
33 * head of the MRU list.
34 *
35 * Memory is usually allocated by grabbing a big chunk of new memory and
36 * cutting it up into littler pieces. The exception to this when we hit
37 * the memory limit. Then we free memory by grabbing entries off the
38 * tail for the MRU list, unlinking from the hash table, and
39 * reinitializing.
40 *
41 * trimmed back memory consumption ... jdg 8/94
42 */
43/*
44 * Limits on the number of structures allocated.  This limit is picked
45 * with the illicit knowlege that we can only return somewhat less
46 * than 8K bytes in a mode 7 response packet, and that each structure
47 * will require about 20 bytes of space in the response.
48 *
49 * ... I don't believe the above is true anymore ... jdg
50 */
51#ifndef MAXMONMEM
52#define	MAXMONMEM	600	/* we allocate up to 600 structures */
53#endif
54#ifndef MONMEMINC
55#define	MONMEMINC	40	/* allocate them 40 at a time */
56#endif
57
58/*
59 * Hashing stuff
60 */
61#define	MON_HASH_SIZE	128
62#define	MON_HASH_MASK	(MON_HASH_SIZE-1)
63#define	MON_HASH(addr)	sock_hash(addr)
64
65/*
66 * Pointers to the hash table, the MRU list and the count table.  Memory
67 * for the hash and count tables is only allocated if monitoring is
68 * turned on.
69 */
70static	struct mon_data *mon_hash[MON_HASH_SIZE];  /* list ptrs */
71struct	mon_data mon_mru_list;
72
73/*
74 * List of free structures structures, and counters of free and total
75 * structures.  The free structures are linked with the hash_next field.
76 */
77static  struct mon_data *mon_free;      /* free list or null if none */
78static	int mon_total_mem;		/* total structures allocated */
79static	int mon_mem_increments;		/* times called malloc() */
80
81/*
82 * Initialization state.  We may be monitoring, we may not.  If
83 * we aren't, we may not even have allocated any memory yet.
84 */
85int	mon_enabled;			/* enable switch */
86u_long	mon_age = 3000;			/* preemption limit */
87static	int mon_have_memory;
88static	void	mon_getmoremem	P((void));
89static	void	remove_from_hash P((struct mon_data *));
90
91/*
92 * init_mon - initialize monitoring global data
93 */
94void
95init_mon(void)
96{
97	/*
98	 * Don't do much of anything here.  We don't allocate memory
99	 * until someone explicitly starts us.
100	 */
101	mon_enabled = MON_OFF;
102	mon_have_memory = 0;
103
104	mon_total_mem = 0;
105	mon_mem_increments = 0;
106	mon_free = NULL;
107	memset(&mon_hash[0], 0, sizeof mon_hash);
108	memset(&mon_mru_list, 0, sizeof mon_mru_list);
109}
110
111
112/*
113 * mon_start - start up the monitoring software
114 */
115void
116mon_start(
117	int mode
118	)
119{
120
121	if (mon_enabled != MON_OFF) {
122		mon_enabled |= mode;
123		return;
124	}
125	if (mode == MON_OFF)
126	    return;
127
128	if (!mon_have_memory) {
129		mon_total_mem = 0;
130		mon_mem_increments = 0;
131		mon_free = NULL;
132		mon_getmoremem();
133		mon_have_memory = 1;
134	}
135
136	mon_mru_list.mru_next = &mon_mru_list;
137	mon_mru_list.mru_prev = &mon_mru_list;
138	mon_enabled = mode;
139}
140
141
142/*
143 * mon_stop - stop the monitoring software
144 */
145void
146mon_stop(
147	int mode
148	)
149{
150	register struct mon_data *md, *md_next;
151	register int i;
152
153	if (mon_enabled == MON_OFF)
154	    return;
155	if ((mon_enabled & mode) == 0 || mode == MON_OFF)
156	    return;
157
158	mon_enabled &= ~mode;
159	if (mon_enabled != MON_OFF)
160	    return;
161
162	/*
163	 * Put everything back on the free list
164	 */
165	for (i = 0; i < MON_HASH_SIZE; i++) {
166		md = mon_hash[i];               /* get next list */
167		mon_hash[i] = NULL;             /* zero the list head */
168		while (md != NULL) {
169			md_next = md->hash_next;
170			md->hash_next = mon_free;
171			mon_free = md;
172			md = md_next;
173		}
174	}
175
176	mon_mru_list.mru_next = &mon_mru_list;
177	mon_mru_list.mru_prev = &mon_mru_list;
178}
179
180
181/*
182 * ntp_monitor - record stats about this packet
183 */
184void
185ntp_monitor(
186	struct recvbuf *rbufp
187	)
188{
189	register struct pkt *pkt;
190	register struct mon_data *md;
191        struct sockaddr_storage addr;
192	register int hash;
193	register int mode;
194
195	if (mon_enabled == MON_OFF)
196		return;
197
198	pkt = &rbufp->recv_pkt;
199	memset(&addr, 0, sizeof(addr));
200	memcpy(&addr, &(rbufp->recv_srcadr), sizeof(addr));
201	hash = MON_HASH(&addr);
202	mode = PKT_MODE(pkt->li_vn_mode);
203	md = mon_hash[hash];
204	while (md != NULL) {
205
206		/*
207		 * Match address only to conserve MRU size.
208		 */
209		if (SOCKCMP(&md->rmtadr, &addr)) {
210			md->drop_count = current_time - md->lasttime;
211			md->lasttime = current_time;
212			md->count++;
213			md->rmtport = NSRCPORT(&rbufp->recv_srcadr);
214			md->mode = (u_char) mode;
215			md->version = PKT_VERSION(pkt->li_vn_mode);
216
217			/*
218			 * Shuffle to the head of the MRU list.
219			 */
220			md->mru_next->mru_prev = md->mru_prev;
221			md->mru_prev->mru_next = md->mru_next;
222			md->mru_next = mon_mru_list.mru_next;
223			md->mru_prev = &mon_mru_list;
224			mon_mru_list.mru_next->mru_prev = md;
225			mon_mru_list.mru_next = md;
226			return;
227		}
228		md = md->hash_next;
229	}
230
231	/*
232	 * If we got here, this is the first we've heard of this
233	 * guy.  Get him some memory, either from the free list
234	 * or from the tail of the MRU list.
235	 */
236	if (mon_free == NULL && mon_total_mem >= MAXMONMEM) {
237
238		/*
239		 * Preempt from the MRU list if old enough.
240		 */
241		md = mon_mru_list.mru_prev;
242		if (((u_long)RANDOM & 0xffffffff) / FRAC >
243		    (double)(current_time - md->lasttime) / mon_age)
244			return;
245
246		md->mru_prev->mru_next = &mon_mru_list;
247		mon_mru_list.mru_prev = md->mru_prev;
248		remove_from_hash(md);
249	} else {
250		if (mon_free == NULL)
251			mon_getmoremem();
252		md = mon_free;
253		mon_free = md->hash_next;
254	}
255
256	/*
257	 * Got one, initialize it
258	 */
259	md->avg_interval = 0;
260	md->lasttime = current_time;
261	md->count = 1;
262	md->drop_count = 0;
263	memset(&md->rmtadr, 0, sizeof(md->rmtadr));
264	memcpy(&md->rmtadr, &addr, sizeof(addr));
265	md->rmtport = NSRCPORT(&rbufp->recv_srcadr);
266	md->mode = (u_char) mode;
267	md->version = PKT_VERSION(pkt->li_vn_mode);
268	md->interface = rbufp->dstadr;
269	md->cast_flags = (u_char)(((rbufp->dstadr->flags & INT_MULTICAST) &&
270	    rbufp->fd == md->interface->fd) ? MDF_MCAST: rbufp->fd ==
271		md->interface->bfd ? MDF_BCAST : MDF_UCAST);
272
273	/*
274	 * Drop him into front of the hash table. Also put him on top of
275	 * the MRU list.
276	 */
277	md->hash_next = mon_hash[hash];
278	mon_hash[hash] = md;
279	md->mru_next = mon_mru_list.mru_next;
280	md->mru_prev = &mon_mru_list;
281	mon_mru_list.mru_next->mru_prev = md;
282	mon_mru_list.mru_next = md;
283}
284
285
286/*
287 * mon_getmoremem - get more memory and put it on the free list
288 */
289static void
290mon_getmoremem(void)
291{
292	register struct mon_data *md;
293	register int i;
294	struct mon_data *freedata;      /* 'old' free list (null) */
295
296	md = (struct mon_data *)emalloc(MONMEMINC *
297	    sizeof(struct mon_data));
298	freedata = mon_free;
299	mon_free = md;
300	for (i = 0; i < (MONMEMINC-1); i++) {
301		md->hash_next = (md + 1);
302		md++;
303	}
304
305	/*
306	 * md now points at the last.  Link in the rest of the chain.
307	 */
308	md->hash_next = freedata;
309	mon_total_mem += MONMEMINC;
310	mon_mem_increments++;
311}
312
313static void
314remove_from_hash(
315	struct mon_data *md
316	)
317{
318	register int hash;
319	register struct mon_data *md_prev;
320
321	hash = MON_HASH(&md->rmtadr);
322	if (mon_hash[hash] == md) {
323		mon_hash[hash] = md->hash_next;
324	} else {
325		md_prev = mon_hash[hash];
326		while (md_prev->hash_next != md) {
327			md_prev = md_prev->hash_next;
328			if (md_prev == NULL) {
329				/* logic error */
330				return;
331			}
332		}
333		md_prev->hash_next = md->hash_next;
334	}
335}
336