SubtargetEmitter.cpp revision 249423
1//===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits subtarget enumerations.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "subtarget-emitter"
15
16#include "CodeGenTarget.h"
17#include "CodeGenSchedule.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/MC/MCInstrItineraries.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/Format.h"
23#include "llvm/TableGen/Error.h"
24#include "llvm/TableGen/Record.h"
25#include "llvm/TableGen/TableGenBackend.h"
26#include <algorithm>
27#include <map>
28#include <string>
29#include <vector>
30using namespace llvm;
31
32namespace {
33class SubtargetEmitter {
34  // Each processor has a SchedClassDesc table with an entry for each SchedClass.
35  // The SchedClassDesc table indexes into a global write resource table, write
36  // latency table, and read advance table.
37  struct SchedClassTables {
38    std::vector<std::vector<MCSchedClassDesc> > ProcSchedClasses;
39    std::vector<MCWriteProcResEntry> WriteProcResources;
40    std::vector<MCWriteLatencyEntry> WriteLatencies;
41    std::vector<std::string> WriterNames;
42    std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
43
44    // Reserve an invalid entry at index 0
45    SchedClassTables() {
46      ProcSchedClasses.resize(1);
47      WriteProcResources.resize(1);
48      WriteLatencies.resize(1);
49      WriterNames.push_back("InvalidWrite");
50      ReadAdvanceEntries.resize(1);
51    }
52  };
53
54  struct LessWriteProcResources {
55    bool operator()(const MCWriteProcResEntry &LHS,
56                    const MCWriteProcResEntry &RHS) {
57      return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
58    }
59  };
60
61  RecordKeeper &Records;
62  CodeGenSchedModels &SchedModels;
63  std::string Target;
64
65  void Enumeration(raw_ostream &OS, const char *ClassName, bool isBits);
66  unsigned FeatureKeyValues(raw_ostream &OS);
67  unsigned CPUKeyValues(raw_ostream &OS);
68  void FormItineraryStageString(const std::string &Names,
69                                Record *ItinData, std::string &ItinString,
70                                unsigned &NStages);
71  void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
72                                       unsigned &NOperandCycles);
73  void FormItineraryBypassString(const std::string &Names,
74                                 Record *ItinData,
75                                 std::string &ItinString, unsigned NOperandCycles);
76  void EmitStageAndOperandCycleData(raw_ostream &OS,
77                                    std::vector<std::vector<InstrItinerary> >
78                                      &ProcItinLists);
79  void EmitItineraries(raw_ostream &OS,
80                       std::vector<std::vector<InstrItinerary> >
81                         &ProcItinLists);
82  void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name,
83                         char Separator);
84  void EmitProcessorResources(const CodeGenProcModel &ProcModel,
85                              raw_ostream &OS);
86  Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
87                             const CodeGenProcModel &ProcModel);
88  Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
89                          const CodeGenProcModel &ProcModel);
90  void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
91                           const CodeGenProcModel &ProcModel);
92  void GenSchedClassTables(const CodeGenProcModel &ProcModel,
93                           SchedClassTables &SchedTables);
94  void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
95  void EmitProcessorModels(raw_ostream &OS);
96  void EmitProcessorLookup(raw_ostream &OS);
97  void EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS);
98  void EmitSchedModel(raw_ostream &OS);
99  void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
100                             unsigned NumProcs);
101
102public:
103  SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT):
104    Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {}
105
106  void run(raw_ostream &o);
107
108};
109} // End anonymous namespace
110
111//
112// Enumeration - Emit the specified class as an enumeration.
113//
114void SubtargetEmitter::Enumeration(raw_ostream &OS,
115                                   const char *ClassName,
116                                   bool isBits) {
117  // Get all records of class and sort
118  std::vector<Record*> DefList = Records.getAllDerivedDefinitions(ClassName);
119  std::sort(DefList.begin(), DefList.end(), LessRecord());
120
121  unsigned N = DefList.size();
122  if (N == 0)
123    return;
124  if (N > 64) {
125    errs() << "Too many (> 64) subtarget features!\n";
126    exit(1);
127  }
128
129  OS << "namespace " << Target << " {\n";
130
131  // For bit flag enumerations with more than 32 items, emit constants.
132  // Emit an enum for everything else.
133  if (isBits && N > 32) {
134    // For each record
135    for (unsigned i = 0; i < N; i++) {
136      // Next record
137      Record *Def = DefList[i];
138
139      // Get and emit name and expression (1 << i)
140      OS << "  const uint64_t " << Def->getName() << " = 1ULL << " << i << ";\n";
141    }
142  } else {
143    // Open enumeration
144    OS << "enum {\n";
145
146    // For each record
147    for (unsigned i = 0; i < N;) {
148      // Next record
149      Record *Def = DefList[i];
150
151      // Get and emit name
152      OS << "  " << Def->getName();
153
154      // If bit flags then emit expression (1 << i)
155      if (isBits)  OS << " = " << " 1ULL << " << i;
156
157      // Depending on 'if more in the list' emit comma
158      if (++i < N) OS << ",";
159
160      OS << "\n";
161    }
162
163    // Close enumeration
164    OS << "};\n";
165  }
166
167  OS << "}\n";
168}
169
170//
171// FeatureKeyValues - Emit data of all the subtarget features.  Used by the
172// command line.
173//
174unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) {
175  // Gather and sort all the features
176  std::vector<Record*> FeatureList =
177                           Records.getAllDerivedDefinitions("SubtargetFeature");
178
179  if (FeatureList.empty())
180    return 0;
181
182  std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName());
183
184  // Begin feature table
185  OS << "// Sorted (by key) array of values for CPU features.\n"
186     << "extern const llvm::SubtargetFeatureKV " << Target
187     << "FeatureKV[] = {\n";
188
189  // For each feature
190  unsigned NumFeatures = 0;
191  for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
192    // Next feature
193    Record *Feature = FeatureList[i];
194
195    const std::string &Name = Feature->getName();
196    const std::string &CommandLineName = Feature->getValueAsString("Name");
197    const std::string &Desc = Feature->getValueAsString("Desc");
198
199    if (CommandLineName.empty()) continue;
200
201    // Emit as { "feature", "description", featureEnum, i1 | i2 | ... | in }
202    OS << "  { "
203       << "\"" << CommandLineName << "\", "
204       << "\"" << Desc << "\", "
205       << Target << "::" << Name << ", ";
206
207    const std::vector<Record*> &ImpliesList =
208      Feature->getValueAsListOfDefs("Implies");
209
210    if (ImpliesList.empty()) {
211      OS << "0ULL";
212    } else {
213      for (unsigned j = 0, M = ImpliesList.size(); j < M;) {
214        OS << Target << "::" << ImpliesList[j]->getName();
215        if (++j < M) OS << " | ";
216      }
217    }
218
219    OS << " }";
220    ++NumFeatures;
221
222    // Depending on 'if more in the list' emit comma
223    if ((i + 1) < N) OS << ",";
224
225    OS << "\n";
226  }
227
228  // End feature table
229  OS << "};\n";
230
231  return NumFeatures;
232}
233
234//
235// CPUKeyValues - Emit data of all the subtarget processors.  Used by command
236// line.
237//
238unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) {
239  // Gather and sort processor information
240  std::vector<Record*> ProcessorList =
241                          Records.getAllDerivedDefinitions("Processor");
242  std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
243
244  // Begin processor table
245  OS << "// Sorted (by key) array of values for CPU subtype.\n"
246     << "extern const llvm::SubtargetFeatureKV " << Target
247     << "SubTypeKV[] = {\n";
248
249  // For each processor
250  for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
251    // Next processor
252    Record *Processor = ProcessorList[i];
253
254    const std::string &Name = Processor->getValueAsString("Name");
255    const std::vector<Record*> &FeatureList =
256      Processor->getValueAsListOfDefs("Features");
257
258    // Emit as { "cpu", "description", f1 | f2 | ... fn },
259    OS << "  { "
260       << "\"" << Name << "\", "
261       << "\"Select the " << Name << " processor\", ";
262
263    if (FeatureList.empty()) {
264      OS << "0ULL";
265    } else {
266      for (unsigned j = 0, M = FeatureList.size(); j < M;) {
267        OS << Target << "::" << FeatureList[j]->getName();
268        if (++j < M) OS << " | ";
269      }
270    }
271
272    // The "0" is for the "implies" section of this data structure.
273    OS << ", 0ULL }";
274
275    // Depending on 'if more in the list' emit comma
276    if (++i < N) OS << ",";
277
278    OS << "\n";
279  }
280
281  // End processor table
282  OS << "};\n";
283
284  return ProcessorList.size();
285}
286
287//
288// FormItineraryStageString - Compose a string containing the stage
289// data initialization for the specified itinerary.  N is the number
290// of stages.
291//
292void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
293                                                Record *ItinData,
294                                                std::string &ItinString,
295                                                unsigned &NStages) {
296  // Get states list
297  const std::vector<Record*> &StageList =
298    ItinData->getValueAsListOfDefs("Stages");
299
300  // For each stage
301  unsigned N = NStages = StageList.size();
302  for (unsigned i = 0; i < N;) {
303    // Next stage
304    const Record *Stage = StageList[i];
305
306    // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
307    int Cycles = Stage->getValueAsInt("Cycles");
308    ItinString += "  { " + itostr(Cycles) + ", ";
309
310    // Get unit list
311    const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units");
312
313    // For each unit
314    for (unsigned j = 0, M = UnitList.size(); j < M;) {
315      // Add name and bitwise or
316      ItinString += Name + "FU::" + UnitList[j]->getName();
317      if (++j < M) ItinString += " | ";
318    }
319
320    int TimeInc = Stage->getValueAsInt("TimeInc");
321    ItinString += ", " + itostr(TimeInc);
322
323    int Kind = Stage->getValueAsInt("Kind");
324    ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
325
326    // Close off stage
327    ItinString += " }";
328    if (++i < N) ItinString += ", ";
329  }
330}
331
332//
333// FormItineraryOperandCycleString - Compose a string containing the
334// operand cycle initialization for the specified itinerary.  N is the
335// number of operands that has cycles specified.
336//
337void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
338                         std::string &ItinString, unsigned &NOperandCycles) {
339  // Get operand cycle list
340  const std::vector<int64_t> &OperandCycleList =
341    ItinData->getValueAsListOfInts("OperandCycles");
342
343  // For each operand cycle
344  unsigned N = NOperandCycles = OperandCycleList.size();
345  for (unsigned i = 0; i < N;) {
346    // Next operand cycle
347    const int OCycle = OperandCycleList[i];
348
349    ItinString += "  " + itostr(OCycle);
350    if (++i < N) ItinString += ", ";
351  }
352}
353
354void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
355                                                 Record *ItinData,
356                                                 std::string &ItinString,
357                                                 unsigned NOperandCycles) {
358  const std::vector<Record*> &BypassList =
359    ItinData->getValueAsListOfDefs("Bypasses");
360  unsigned N = BypassList.size();
361  unsigned i = 0;
362  for (; i < N;) {
363    ItinString += Name + "Bypass::" + BypassList[i]->getName();
364    if (++i < NOperandCycles) ItinString += ", ";
365  }
366  for (; i < NOperandCycles;) {
367    ItinString += " 0";
368    if (++i < NOperandCycles) ItinString += ", ";
369  }
370}
371
372//
373// EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
374// cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
375// by CodeGenSchedClass::Index.
376//
377void SubtargetEmitter::
378EmitStageAndOperandCycleData(raw_ostream &OS,
379                             std::vector<std::vector<InstrItinerary> >
380                               &ProcItinLists) {
381
382  // Multiple processor models may share an itinerary record. Emit it once.
383  SmallPtrSet<Record*, 8> ItinsDefSet;
384
385  // Emit functional units for all the itineraries.
386  for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
387         PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
388
389    if (!ItinsDefSet.insert(PI->ItinsDef))
390      continue;
391
392    std::vector<Record*> FUs = PI->ItinsDef->getValueAsListOfDefs("FU");
393    if (FUs.empty())
394      continue;
395
396    const std::string &Name = PI->ItinsDef->getName();
397    OS << "\n// Functional units for \"" << Name << "\"\n"
398       << "namespace " << Name << "FU {\n";
399
400    for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
401      OS << "  const unsigned " << FUs[j]->getName()
402         << " = 1 << " << j << ";\n";
403
404    OS << "}\n";
405
406    std::vector<Record*> BPs = PI->ItinsDef->getValueAsListOfDefs("BP");
407    if (BPs.size()) {
408      OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name
409         << "\"\n" << "namespace " << Name << "Bypass {\n";
410
411      OS << "  const unsigned NoBypass = 0;\n";
412      for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
413        OS << "  const unsigned " << BPs[j]->getName()
414           << " = 1 << " << j << ";\n";
415
416      OS << "}\n";
417    }
418  }
419
420  // Begin stages table
421  std::string StageTable = "\nextern const llvm::InstrStage " + Target +
422                           "Stages[] = {\n";
423  StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
424
425  // Begin operand cycle table
426  std::string OperandCycleTable = "extern const unsigned " + Target +
427    "OperandCycles[] = {\n";
428  OperandCycleTable += "  0, // No itinerary\n";
429
430  // Begin pipeline bypass table
431  std::string BypassTable = "extern const unsigned " + Target +
432    "ForwardingPaths[] = {\n";
433  BypassTable += " 0, // No itinerary\n";
434
435  // For each Itinerary across all processors, add a unique entry to the stages,
436  // operand cycles, and pipepine bypess tables. Then add the new Itinerary
437  // object with computed offsets to the ProcItinLists result.
438  unsigned StageCount = 1, OperandCycleCount = 1;
439  std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
440  for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
441         PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
442    const CodeGenProcModel &ProcModel = *PI;
443
444    // Add process itinerary to the list.
445    ProcItinLists.resize(ProcItinLists.size()+1);
446
447    // If this processor defines no itineraries, then leave the itinerary list
448    // empty.
449    std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
450    if (!ProcModel.hasItineraries())
451      continue;
452
453    const std::string &Name = ProcModel.ItinsDef->getName();
454
455    ItinList.resize(SchedModels.numInstrSchedClasses());
456    assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
457
458    for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
459         SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
460
461      // Next itinerary data
462      Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
463
464      // Get string and stage count
465      std::string ItinStageString;
466      unsigned NStages = 0;
467      if (ItinData)
468        FormItineraryStageString(Name, ItinData, ItinStageString, NStages);
469
470      // Get string and operand cycle count
471      std::string ItinOperandCycleString;
472      unsigned NOperandCycles = 0;
473      std::string ItinBypassString;
474      if (ItinData) {
475        FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
476                                        NOperandCycles);
477
478        FormItineraryBypassString(Name, ItinData, ItinBypassString,
479                                  NOperandCycles);
480      }
481
482      // Check to see if stage already exists and create if it doesn't
483      unsigned FindStage = 0;
484      if (NStages > 0) {
485        FindStage = ItinStageMap[ItinStageString];
486        if (FindStage == 0) {
487          // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
488          StageTable += ItinStageString + ", // " + itostr(StageCount);
489          if (NStages > 1)
490            StageTable += "-" + itostr(StageCount + NStages - 1);
491          StageTable += "\n";
492          // Record Itin class number.
493          ItinStageMap[ItinStageString] = FindStage = StageCount;
494          StageCount += NStages;
495        }
496      }
497
498      // Check to see if operand cycle already exists and create if it doesn't
499      unsigned FindOperandCycle = 0;
500      if (NOperandCycles > 0) {
501        std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
502        FindOperandCycle = ItinOperandMap[ItinOperandString];
503        if (FindOperandCycle == 0) {
504          // Emit as  cycle, // index
505          OperandCycleTable += ItinOperandCycleString + ", // ";
506          std::string OperandIdxComment = itostr(OperandCycleCount);
507          if (NOperandCycles > 1)
508            OperandIdxComment += "-"
509              + itostr(OperandCycleCount + NOperandCycles - 1);
510          OperandCycleTable += OperandIdxComment + "\n";
511          // Record Itin class number.
512          ItinOperandMap[ItinOperandCycleString] =
513            FindOperandCycle = OperandCycleCount;
514          // Emit as bypass, // index
515          BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
516          OperandCycleCount += NOperandCycles;
517        }
518      }
519
520      // Set up itinerary as location and location + stage count
521      int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
522      InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages,
523                                    FindOperandCycle,
524                                    FindOperandCycle + NOperandCycles};
525
526      // Inject - empty slots will be 0, 0
527      ItinList[SchedClassIdx] = Intinerary;
528    }
529  }
530
531  // Closing stage
532  StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
533  StageTable += "};\n";
534
535  // Closing operand cycles
536  OperandCycleTable += "  0 // End operand cycles\n";
537  OperandCycleTable += "};\n";
538
539  BypassTable += " 0 // End bypass tables\n";
540  BypassTable += "};\n";
541
542  // Emit tables.
543  OS << StageTable;
544  OS << OperandCycleTable;
545  OS << BypassTable;
546}
547
548//
549// EmitProcessorData - Generate data for processor itineraries that were
550// computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
551// Itineraries for each processor. The Itinerary lists are indexed on
552// CodeGenSchedClass::Index.
553//
554void SubtargetEmitter::
555EmitItineraries(raw_ostream &OS,
556                std::vector<std::vector<InstrItinerary> > &ProcItinLists) {
557
558  // Multiple processor models may share an itinerary record. Emit it once.
559  SmallPtrSet<Record*, 8> ItinsDefSet;
560
561  // For each processor's machine model
562  std::vector<std::vector<InstrItinerary> >::iterator
563      ProcItinListsIter = ProcItinLists.begin();
564  for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
565         PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
566
567    Record *ItinsDef = PI->ItinsDef;
568    if (!ItinsDefSet.insert(ItinsDef))
569      continue;
570
571    // Get processor itinerary name
572    const std::string &Name = ItinsDef->getName();
573
574    // Get the itinerary list for the processor.
575    assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
576    std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
577
578    OS << "\n";
579    OS << "static const llvm::InstrItinerary ";
580    if (ItinList.empty()) {
581      OS << '*' << Name << " = 0;\n";
582      continue;
583    }
584
585    // Begin processor itinerary table
586    OS << Name << "[] = {\n";
587
588    // For each itinerary class in CodeGenSchedClass::Index order.
589    for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
590      InstrItinerary &Intinerary = ItinList[j];
591
592      // Emit Itinerary in the form of
593      // { firstStage, lastStage, firstCycle, lastCycle } // index
594      OS << "  { " <<
595        Intinerary.NumMicroOps << ", " <<
596        Intinerary.FirstStage << ", " <<
597        Intinerary.LastStage << ", " <<
598        Intinerary.FirstOperandCycle << ", " <<
599        Intinerary.LastOperandCycle << " }" <<
600        ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
601    }
602    // End processor itinerary table
603    OS << "  { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n";
604    OS << "};\n";
605  }
606}
607
608// Emit either the value defined in the TableGen Record, or the default
609// value defined in the C++ header. The Record is null if the processor does not
610// define a model.
611void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
612                                         const char *Name, char Separator) {
613  OS << "  ";
614  int V = R ? R->getValueAsInt(Name) : -1;
615  if (V >= 0)
616    OS << V << Separator << " // " << Name;
617  else
618    OS << "MCSchedModel::Default" << Name << Separator;
619  OS << '\n';
620}
621
622void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
623                                              raw_ostream &OS) {
624  char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ',';
625
626  OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n";
627  OS << "static const llvm::MCProcResourceDesc "
628     << ProcModel.ModelName << "ProcResources" << "[] = {\n"
629     << "  {DBGFIELD(\"InvalidUnit\")     0, 0, 0}" << Sep << "\n";
630
631  for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
632    Record *PRDef = ProcModel.ProcResourceDefs[i];
633
634    Record *SuperDef = 0;
635    unsigned SuperIdx = 0;
636    unsigned NumUnits = 0;
637    bool IsBuffered = true;
638    if (PRDef->isSubClassOf("ProcResGroup")) {
639      RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
640      for (RecIter RUI = ResUnits.begin(), RUE = ResUnits.end();
641           RUI != RUE; ++RUI) {
642        if (!NumUnits)
643          IsBuffered = (*RUI)->getValueAsBit("Buffered");
644        else if(IsBuffered != (*RUI)->getValueAsBit("Buffered"))
645          PrintFatalError(PRDef->getLoc(),
646                          "Mixing buffered and unbuffered resources.");
647        NumUnits += (*RUI)->getValueAsInt("NumUnits");
648      }
649    }
650    else {
651      // Find the SuperIdx
652      if (PRDef->getValueInit("Super")->isComplete()) {
653        SuperDef = SchedModels.findProcResUnits(
654          PRDef->getValueAsDef("Super"), ProcModel);
655        SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
656      }
657      NumUnits = PRDef->getValueAsInt("NumUnits");
658      IsBuffered = PRDef->getValueAsBit("Buffered");
659    }
660    // Emit the ProcResourceDesc
661    if (i+1 == e)
662      Sep = ' ';
663    OS << "  {DBGFIELD(\"" << PRDef->getName() << "\") ";
664    if (PRDef->getName().size() < 15)
665      OS.indent(15 - PRDef->getName().size());
666    OS << NumUnits << ", " << SuperIdx << ", "
667       << IsBuffered << "}" << Sep << " // #" << i+1;
668    if (SuperDef)
669      OS << ", Super=" << SuperDef->getName();
670    OS << "\n";
671  }
672  OS << "};\n";
673}
674
675// Find the WriteRes Record that defines processor resources for this
676// SchedWrite.
677Record *SubtargetEmitter::FindWriteResources(
678  const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
679
680  // Check if the SchedWrite is already subtarget-specific and directly
681  // specifies a set of processor resources.
682  if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
683    return SchedWrite.TheDef;
684
685  Record *AliasDef = 0;
686  for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end();
687       AI != AE; ++AI) {
688    const CodeGenSchedRW &AliasRW =
689      SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
690    if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
691      Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
692      if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
693        continue;
694    }
695    if (AliasDef)
696      PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
697                    "defined for processor " + ProcModel.ModelName +
698                    " Ensure only one SchedAlias exists per RW.");
699    AliasDef = AliasRW.TheDef;
700  }
701  if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
702    return AliasDef;
703
704  // Check this processor's list of write resources.
705  Record *ResDef = 0;
706  for (RecIter WRI = ProcModel.WriteResDefs.begin(),
707         WRE = ProcModel.WriteResDefs.end(); WRI != WRE; ++WRI) {
708    if (!(*WRI)->isSubClassOf("WriteRes"))
709      continue;
710    if (AliasDef == (*WRI)->getValueAsDef("WriteType")
711        || SchedWrite.TheDef == (*WRI)->getValueAsDef("WriteType")) {
712      if (ResDef) {
713        PrintFatalError((*WRI)->getLoc(), "Resources are defined for both "
714                      "SchedWrite and its alias on processor " +
715                      ProcModel.ModelName);
716      }
717      ResDef = *WRI;
718    }
719  }
720  // TODO: If ProcModel has a base model (previous generation processor),
721  // then call FindWriteResources recursively with that model here.
722  if (!ResDef) {
723    PrintFatalError(ProcModel.ModelDef->getLoc(),
724                  std::string("Processor does not define resources for ")
725                  + SchedWrite.TheDef->getName());
726  }
727  return ResDef;
728}
729
730/// Find the ReadAdvance record for the given SchedRead on this processor or
731/// return NULL.
732Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
733                                          const CodeGenProcModel &ProcModel) {
734  // Check for SchedReads that directly specify a ReadAdvance.
735  if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
736    return SchedRead.TheDef;
737
738  // Check this processor's list of aliases for SchedRead.
739  Record *AliasDef = 0;
740  for (RecIter AI = SchedRead.Aliases.begin(), AE = SchedRead.Aliases.end();
741       AI != AE; ++AI) {
742    const CodeGenSchedRW &AliasRW =
743      SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
744    if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
745      Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
746      if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
747        continue;
748    }
749    if (AliasDef)
750      PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
751                    "defined for processor " + ProcModel.ModelName +
752                    " Ensure only one SchedAlias exists per RW.");
753    AliasDef = AliasRW.TheDef;
754  }
755  if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
756    return AliasDef;
757
758  // Check this processor's ReadAdvanceList.
759  Record *ResDef = 0;
760  for (RecIter RAI = ProcModel.ReadAdvanceDefs.begin(),
761         RAE = ProcModel.ReadAdvanceDefs.end(); RAI != RAE; ++RAI) {
762    if (!(*RAI)->isSubClassOf("ReadAdvance"))
763      continue;
764    if (AliasDef == (*RAI)->getValueAsDef("ReadType")
765        || SchedRead.TheDef == (*RAI)->getValueAsDef("ReadType")) {
766      if (ResDef) {
767        PrintFatalError((*RAI)->getLoc(), "Resources are defined for both "
768                      "SchedRead and its alias on processor " +
769                      ProcModel.ModelName);
770      }
771      ResDef = *RAI;
772    }
773  }
774  // TODO: If ProcModel has a base model (previous generation processor),
775  // then call FindReadAdvance recursively with that model here.
776  if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
777    PrintFatalError(ProcModel.ModelDef->getLoc(),
778                  std::string("Processor does not define resources for ")
779                  + SchedRead.TheDef->getName());
780  }
781  return ResDef;
782}
783
784// Expand an explicit list of processor resources into a full list of implied
785// resource groups that cover them.
786//
787// FIXME: Effectively consider a super-resource a group that include all of its
788// subresources to allow mixing and matching super-resources and groups.
789//
790// FIXME: Warn if two overlapping groups don't have a common supergroup.
791void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
792                                           std::vector<int64_t> &Cycles,
793                                           const CodeGenProcModel &ProcModel) {
794  // Default to 1 resource cycle.
795  Cycles.resize(PRVec.size(), 1);
796  for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
797    RecVec SubResources;
798    if (PRVec[i]->isSubClassOf("ProcResGroup")) {
799      SubResources = PRVec[i]->getValueAsListOfDefs("Resources");
800      std::sort(SubResources.begin(), SubResources.end(), LessRecord());
801    }
802    else {
803      SubResources.push_back(PRVec[i]);
804    }
805    for (RecIter PRI = ProcModel.ProcResourceDefs.begin(),
806           PRE = ProcModel.ProcResourceDefs.end();
807         PRI != PRE; ++PRI) {
808      if (*PRI == PRVec[i] || !(*PRI)->isSubClassOf("ProcResGroup"))
809        continue;
810      RecVec SuperResources = (*PRI)->getValueAsListOfDefs("Resources");
811      std::sort(SuperResources.begin(), SuperResources.end(), LessRecord());
812      RecIter SubI = SubResources.begin(), SubE = SubResources.end();
813      RecIter SuperI = SuperResources.begin(), SuperE = SuperResources.end();
814      for ( ; SubI != SubE && SuperI != SuperE; ++SuperI) {
815        if (*SubI < *SuperI)
816          break;
817        else if (*SuperI < *SubI)
818          continue;
819        ++SubI;
820      }
821      if (SubI == SubE) {
822        PRVec.push_back(*PRI);
823        Cycles.push_back(Cycles[i]);
824      }
825    }
826  }
827}
828
829// Generate the SchedClass table for this processor and update global
830// tables. Must be called for each processor in order.
831void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
832                                           SchedClassTables &SchedTables) {
833  SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
834  if (!ProcModel.hasInstrSchedModel())
835    return;
836
837  std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
838  for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
839         SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
840    DEBUG(SCI->dump(&SchedModels));
841
842    SCTab.resize(SCTab.size() + 1);
843    MCSchedClassDesc &SCDesc = SCTab.back();
844    // SCDesc.Name is guarded by NDEBUG
845    SCDesc.NumMicroOps = 0;
846    SCDesc.BeginGroup = false;
847    SCDesc.EndGroup = false;
848    SCDesc.WriteProcResIdx = 0;
849    SCDesc.WriteLatencyIdx = 0;
850    SCDesc.ReadAdvanceIdx = 0;
851
852    // A Variant SchedClass has no resources of its own.
853    bool HasVariants = false;
854    for (std::vector<CodeGenSchedTransition>::const_iterator
855           TI = SCI->Transitions.begin(), TE = SCI->Transitions.end();
856         TI != TE; ++TI) {
857      if (TI->ProcIndices[0] == 0) {
858        HasVariants = true;
859        break;
860      }
861      IdxIter PIPos = std::find(TI->ProcIndices.begin(),
862                                TI->ProcIndices.end(), ProcModel.Index);
863      if (PIPos != TI->ProcIndices.end()) {
864        HasVariants = true;
865        break;
866      }
867    }
868    if (HasVariants) {
869      SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
870      continue;
871    }
872
873    // Determine if the SchedClass is actually reachable on this processor. If
874    // not don't try to locate the processor resources, it will fail.
875    // If ProcIndices contains 0, this class applies to all processors.
876    assert(!SCI->ProcIndices.empty() && "expect at least one procidx");
877    if (SCI->ProcIndices[0] != 0) {
878      IdxIter PIPos = std::find(SCI->ProcIndices.begin(),
879                                SCI->ProcIndices.end(), ProcModel.Index);
880      if (PIPos == SCI->ProcIndices.end())
881        continue;
882    }
883    IdxVec Writes = SCI->Writes;
884    IdxVec Reads = SCI->Reads;
885    if (!SCI->InstRWs.empty()) {
886      // This class has a default ReadWrite list which can be overriden by
887      // InstRW definitions.
888      Record *RWDef = 0;
889      for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end();
890           RWI != RWE; ++RWI) {
891        Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel");
892        if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
893          RWDef = *RWI;
894          break;
895        }
896      }
897      if (RWDef) {
898        Writes.clear();
899        Reads.clear();
900        SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
901                            Writes, Reads);
902      }
903    }
904    if (Writes.empty()) {
905      // Check this processor's itinerary class resources.
906      for (RecIter II = ProcModel.ItinRWDefs.begin(),
907             IE = ProcModel.ItinRWDefs.end(); II != IE; ++II) {
908        RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
909        if (std::find(Matched.begin(), Matched.end(), SCI->ItinClassDef)
910            != Matched.end()) {
911          SchedModels.findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"),
912                              Writes, Reads);
913          break;
914        }
915      }
916      if (Writes.empty()) {
917        DEBUG(dbgs() << ProcModel.ModelName
918              << " does not have resources for class " << SCI->Name << '\n');
919      }
920    }
921    // Sum resources across all operand writes.
922    std::vector<MCWriteProcResEntry> WriteProcResources;
923    std::vector<MCWriteLatencyEntry> WriteLatencies;
924    std::vector<std::string> WriterNames;
925    std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
926    for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) {
927      IdxVec WriteSeq;
928      SchedModels.expandRWSeqForProc(*WI, WriteSeq, /*IsRead=*/false,
929                                     ProcModel);
930
931      // For each operand, create a latency entry.
932      MCWriteLatencyEntry WLEntry;
933      WLEntry.Cycles = 0;
934      unsigned WriteID = WriteSeq.back();
935      WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
936      // If this Write is not referenced by a ReadAdvance, don't distinguish it
937      // from other WriteLatency entries.
938      if (!SchedModels.hasReadOfWrite(
939            SchedModels.getSchedWrite(WriteID).TheDef)) {
940        WriteID = 0;
941      }
942      WLEntry.WriteResourceID = WriteID;
943
944      for (IdxIter WSI = WriteSeq.begin(), WSE = WriteSeq.end();
945           WSI != WSE; ++WSI) {
946
947        Record *WriteRes =
948          FindWriteResources(SchedModels.getSchedWrite(*WSI), ProcModel);
949
950        // Mark the parent class as invalid for unsupported write types.
951        if (WriteRes->getValueAsBit("Unsupported")) {
952          SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
953          break;
954        }
955        WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
956        SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
957        SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
958        SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
959
960        // Create an entry for each ProcResource listed in WriteRes.
961        RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
962        std::vector<int64_t> Cycles =
963          WriteRes->getValueAsListOfInts("ResourceCycles");
964
965        ExpandProcResources(PRVec, Cycles, ProcModel);
966
967        for (unsigned PRIdx = 0, PREnd = PRVec.size();
968             PRIdx != PREnd; ++PRIdx) {
969          MCWriteProcResEntry WPREntry;
970          WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
971          assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
972          WPREntry.Cycles = Cycles[PRIdx];
973          // If this resource is already used in this sequence, add the current
974          // entry's cycles so that the same resource appears to be used
975          // serially, rather than multiple parallel uses. This is important for
976          // in-order machine where the resource consumption is a hazard.
977          unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
978          for( ; WPRIdx != WPREnd; ++WPRIdx) {
979            if (WriteProcResources[WPRIdx].ProcResourceIdx
980                == WPREntry.ProcResourceIdx) {
981              WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
982              break;
983            }
984          }
985          if (WPRIdx == WPREnd)
986            WriteProcResources.push_back(WPREntry);
987        }
988      }
989      WriteLatencies.push_back(WLEntry);
990    }
991    // Create an entry for each operand Read in this SchedClass.
992    // Entries must be sorted first by UseIdx then by WriteResourceID.
993    for (unsigned UseIdx = 0, EndIdx = Reads.size();
994         UseIdx != EndIdx; ++UseIdx) {
995      Record *ReadAdvance =
996        FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
997      if (!ReadAdvance)
998        continue;
999
1000      // Mark the parent class as invalid for unsupported write types.
1001      if (ReadAdvance->getValueAsBit("Unsupported")) {
1002        SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1003        break;
1004      }
1005      RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
1006      IdxVec WriteIDs;
1007      if (ValidWrites.empty())
1008        WriteIDs.push_back(0);
1009      else {
1010        for (RecIter VWI = ValidWrites.begin(), VWE = ValidWrites.end();
1011             VWI != VWE; ++VWI) {
1012          WriteIDs.push_back(SchedModels.getSchedRWIdx(*VWI, /*IsRead=*/false));
1013        }
1014      }
1015      std::sort(WriteIDs.begin(), WriteIDs.end());
1016      for(IdxIter WI = WriteIDs.begin(), WE = WriteIDs.end(); WI != WE; ++WI) {
1017        MCReadAdvanceEntry RAEntry;
1018        RAEntry.UseIdx = UseIdx;
1019        RAEntry.WriteResourceID = *WI;
1020        RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1021        ReadAdvanceEntries.push_back(RAEntry);
1022      }
1023    }
1024    if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1025      WriteProcResources.clear();
1026      WriteLatencies.clear();
1027      ReadAdvanceEntries.clear();
1028    }
1029    // Add the information for this SchedClass to the global tables using basic
1030    // compression.
1031    //
1032    // WritePrecRes entries are sorted by ProcResIdx.
1033    std::sort(WriteProcResources.begin(), WriteProcResources.end(),
1034              LessWriteProcResources());
1035
1036    SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1037    std::vector<MCWriteProcResEntry>::iterator WPRPos =
1038      std::search(SchedTables.WriteProcResources.begin(),
1039                  SchedTables.WriteProcResources.end(),
1040                  WriteProcResources.begin(), WriteProcResources.end());
1041    if (WPRPos != SchedTables.WriteProcResources.end())
1042      SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1043    else {
1044      SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1045      SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1046                                            WriteProcResources.end());
1047    }
1048    // Latency entries must remain in operand order.
1049    SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1050    std::vector<MCWriteLatencyEntry>::iterator WLPos =
1051      std::search(SchedTables.WriteLatencies.begin(),
1052                  SchedTables.WriteLatencies.end(),
1053                  WriteLatencies.begin(), WriteLatencies.end());
1054    if (WLPos != SchedTables.WriteLatencies.end()) {
1055      unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1056      SCDesc.WriteLatencyIdx = idx;
1057      for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1058        if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1059            std::string::npos) {
1060          SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1061        }
1062    }
1063    else {
1064      SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1065      SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(),
1066                                        WriteLatencies.begin(),
1067                                        WriteLatencies.end());
1068      SchedTables.WriterNames.insert(SchedTables.WriterNames.end(),
1069                                     WriterNames.begin(), WriterNames.end());
1070    }
1071    // ReadAdvanceEntries must remain in operand order.
1072    SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1073    std::vector<MCReadAdvanceEntry>::iterator RAPos =
1074      std::search(SchedTables.ReadAdvanceEntries.begin(),
1075                  SchedTables.ReadAdvanceEntries.end(),
1076                  ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1077    if (RAPos != SchedTables.ReadAdvanceEntries.end())
1078      SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1079    else {
1080      SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1081      SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(),
1082                                            ReadAdvanceEntries.end());
1083    }
1084  }
1085}
1086
1087// Emit SchedClass tables for all processors and associated global tables.
1088void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1089                                            raw_ostream &OS) {
1090  // Emit global WriteProcResTable.
1091  OS << "\n// {ProcResourceIdx, Cycles}\n"
1092     << "extern const llvm::MCWriteProcResEntry "
1093     << Target << "WriteProcResTable[] = {\n"
1094     << "  { 0,  0}, // Invalid\n";
1095  for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1096       WPRIdx != WPREnd; ++WPRIdx) {
1097    MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1098    OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1099       << format("%2d", WPREntry.Cycles) << "}";
1100    if (WPRIdx + 1 < WPREnd)
1101      OS << ',';
1102    OS << " // #" << WPRIdx << '\n';
1103  }
1104  OS << "}; // " << Target << "WriteProcResTable\n";
1105
1106  // Emit global WriteLatencyTable.
1107  OS << "\n// {Cycles, WriteResourceID}\n"
1108     << "extern const llvm::MCWriteLatencyEntry "
1109     << Target << "WriteLatencyTable[] = {\n"
1110     << "  { 0,  0}, // Invalid\n";
1111  for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1112       WLIdx != WLEnd; ++WLIdx) {
1113    MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1114    OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
1115       << format("%2d", WLEntry.WriteResourceID) << "}";
1116    if (WLIdx + 1 < WLEnd)
1117      OS << ',';
1118    OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1119  }
1120  OS << "}; // " << Target << "WriteLatencyTable\n";
1121
1122  // Emit global ReadAdvanceTable.
1123  OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1124     << "extern const llvm::MCReadAdvanceEntry "
1125     << Target << "ReadAdvanceTable[] = {\n"
1126     << "  {0,  0,  0}, // Invalid\n";
1127  for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1128       RAIdx != RAEnd; ++RAIdx) {
1129    MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1130    OS << "  {" << RAEntry.UseIdx << ", "
1131       << format("%2d", RAEntry.WriteResourceID) << ", "
1132       << format("%2d", RAEntry.Cycles) << "}";
1133    if (RAIdx + 1 < RAEnd)
1134      OS << ',';
1135    OS << " // #" << RAIdx << '\n';
1136  }
1137  OS << "}; // " << Target << "ReadAdvanceTable\n";
1138
1139  // Emit a SchedClass table for each processor.
1140  for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1141         PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1142    if (!PI->hasInstrSchedModel())
1143      continue;
1144
1145    std::vector<MCSchedClassDesc> &SCTab =
1146      SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1147
1148    OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
1149       << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1150    OS << "static const llvm::MCSchedClassDesc "
1151       << PI->ModelName << "SchedClasses[] = {\n";
1152
1153    // The first class is always invalid. We no way to distinguish it except by
1154    // name and position.
1155    assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1156           && "invalid class not first");
1157    OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
1158       << MCSchedClassDesc::InvalidNumMicroOps
1159       << ", 0, 0,  0, 0,  0, 0,  0, 0},\n";
1160
1161    for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1162      MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1163      const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1164      OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
1165      if (SchedClass.Name.size() < 18)
1166        OS.indent(18 - SchedClass.Name.size());
1167      OS << MCDesc.NumMicroOps
1168         << ", " << MCDesc.BeginGroup << ", " << MCDesc.EndGroup
1169         << ", " << format("%2d", MCDesc.WriteProcResIdx)
1170         << ", " << MCDesc.NumWriteProcResEntries
1171         << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1172         << ", " << MCDesc.NumWriteLatencyEntries
1173         << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1174         << ", " << MCDesc.NumReadAdvanceEntries << "}";
1175      if (SCIdx + 1 < SCEnd)
1176        OS << ',';
1177      OS << " // #" << SCIdx << '\n';
1178    }
1179    OS << "}; // " << PI->ModelName << "SchedClasses\n";
1180  }
1181}
1182
1183void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1184  // For each processor model.
1185  for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1186         PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1187    // Emit processor resource table.
1188    if (PI->hasInstrSchedModel())
1189      EmitProcessorResources(*PI, OS);
1190    else if(!PI->ProcResourceDefs.empty())
1191      PrintFatalError(PI->ModelDef->getLoc(), "SchedMachineModel defines "
1192                    "ProcResources without defining WriteRes SchedWriteRes");
1193
1194    // Begin processor itinerary properties
1195    OS << "\n";
1196    OS << "static const llvm::MCSchedModel " << PI->ModelName << "(\n";
1197    EmitProcessorProp(OS, PI->ModelDef, "IssueWidth", ',');
1198    EmitProcessorProp(OS, PI->ModelDef, "MinLatency", ',');
1199    EmitProcessorProp(OS, PI->ModelDef, "LoadLatency", ',');
1200    EmitProcessorProp(OS, PI->ModelDef, "HighLatency", ',');
1201    EmitProcessorProp(OS, PI->ModelDef, "ILPWindow", ',');
1202    EmitProcessorProp(OS, PI->ModelDef, "MispredictPenalty", ',');
1203    OS << "  " << PI->Index << ", // Processor ID\n";
1204    if (PI->hasInstrSchedModel())
1205      OS << "  " << PI->ModelName << "ProcResources" << ",\n"
1206         << "  " << PI->ModelName << "SchedClasses" << ",\n"
1207         << "  " << PI->ProcResourceDefs.size()+1 << ",\n"
1208         << "  " << (SchedModels.schedClassEnd()
1209                     - SchedModels.schedClassBegin()) << ",\n";
1210    else
1211      OS << "  0, 0, 0, 0, // No instruction-level machine model.\n";
1212    if (SchedModels.hasItineraries())
1213      OS << "  " << PI->ItinsDef->getName() << ");\n";
1214    else
1215      OS << "  0); // No Itinerary\n";
1216  }
1217}
1218
1219//
1220// EmitProcessorLookup - generate cpu name to itinerary lookup table.
1221//
1222void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) {
1223  // Gather and sort processor information
1224  std::vector<Record*> ProcessorList =
1225                          Records.getAllDerivedDefinitions("Processor");
1226  std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
1227
1228  // Begin processor table
1229  OS << "\n";
1230  OS << "// Sorted (by key) array of itineraries for CPU subtype.\n"
1231     << "extern const llvm::SubtargetInfoKV "
1232     << Target << "ProcSchedKV[] = {\n";
1233
1234  // For each processor
1235  for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
1236    // Next processor
1237    Record *Processor = ProcessorList[i];
1238
1239    const std::string &Name = Processor->getValueAsString("Name");
1240    const std::string &ProcModelName =
1241      SchedModels.getModelForProc(Processor).ModelName;
1242
1243    // Emit as { "cpu", procinit },
1244    OS << "  { \"" << Name << "\", (const void *)&" << ProcModelName << " }";
1245
1246    // Depending on ''if more in the list'' emit comma
1247    if (++i < N) OS << ",";
1248
1249    OS << "\n";
1250  }
1251
1252  // End processor table
1253  OS << "};\n";
1254}
1255
1256//
1257// EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1258//
1259void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1260  OS << "#ifdef DBGFIELD\n"
1261     << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1262     << "#endif\n"
1263     << "#ifndef NDEBUG\n"
1264     << "#define DBGFIELD(x) x,\n"
1265     << "#else\n"
1266     << "#define DBGFIELD(x)\n"
1267     << "#endif\n";
1268
1269  if (SchedModels.hasItineraries()) {
1270    std::vector<std::vector<InstrItinerary> > ProcItinLists;
1271    // Emit the stage data
1272    EmitStageAndOperandCycleData(OS, ProcItinLists);
1273    EmitItineraries(OS, ProcItinLists);
1274  }
1275  OS << "\n// ===============================================================\n"
1276     << "// Data tables for the new per-operand machine model.\n";
1277
1278  SchedClassTables SchedTables;
1279  for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1280         PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1281    GenSchedClassTables(*PI, SchedTables);
1282  }
1283  EmitSchedClassTables(SchedTables, OS);
1284
1285  // Emit the processor machine model
1286  EmitProcessorModels(OS);
1287  // Emit the processor lookup data
1288  EmitProcessorLookup(OS);
1289
1290  OS << "#undef DBGFIELD";
1291}
1292
1293void SubtargetEmitter::EmitSchedModelHelpers(std::string ClassName,
1294                                             raw_ostream &OS) {
1295  OS << "unsigned " << ClassName
1296     << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1297     << " const TargetSchedModel *SchedModel) const {\n";
1298
1299  std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog");
1300  std::sort(Prologs.begin(), Prologs.end(), LessRecord());
1301  for (std::vector<Record*>::const_iterator
1302         PI = Prologs.begin(), PE = Prologs.end(); PI != PE; ++PI) {
1303    OS << (*PI)->getValueAsString("Code") << '\n';
1304  }
1305  IdxVec VariantClasses;
1306  for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
1307         SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
1308    if (SCI->Transitions.empty())
1309      continue;
1310    VariantClasses.push_back(SCI->Index);
1311  }
1312  if (!VariantClasses.empty()) {
1313    OS << "  switch (SchedClass) {\n";
1314    for (IdxIter VCI = VariantClasses.begin(), VCE = VariantClasses.end();
1315         VCI != VCE; ++VCI) {
1316      const CodeGenSchedClass &SC = SchedModels.getSchedClass(*VCI);
1317      OS << "  case " << *VCI << ": // " << SC.Name << '\n';
1318      IdxVec ProcIndices;
1319      for (std::vector<CodeGenSchedTransition>::const_iterator
1320             TI = SC.Transitions.begin(), TE = SC.Transitions.end();
1321           TI != TE; ++TI) {
1322        IdxVec PI;
1323        std::set_union(TI->ProcIndices.begin(), TI->ProcIndices.end(),
1324                       ProcIndices.begin(), ProcIndices.end(),
1325                       std::back_inserter(PI));
1326        ProcIndices.swap(PI);
1327      }
1328      for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end();
1329           PI != PE; ++PI) {
1330        OS << "    ";
1331        if (*PI != 0)
1332          OS << "if (SchedModel->getProcessorID() == " << *PI << ") ";
1333        OS << "{ // " << (SchedModels.procModelBegin() + *PI)->ModelName
1334           << '\n';
1335        for (std::vector<CodeGenSchedTransition>::const_iterator
1336               TI = SC.Transitions.begin(), TE = SC.Transitions.end();
1337             TI != TE; ++TI) {
1338          OS << "      if (";
1339          if (*PI != 0 && !std::count(TI->ProcIndices.begin(),
1340                                      TI->ProcIndices.end(), *PI)) {
1341              continue;
1342          }
1343          for (RecIter RI = TI->PredTerm.begin(), RE = TI->PredTerm.end();
1344               RI != RE; ++RI) {
1345            if (RI != TI->PredTerm.begin())
1346              OS << "\n          && ";
1347            OS << "(" << (*RI)->getValueAsString("Predicate") << ")";
1348          }
1349          OS << ")\n"
1350             << "        return " << TI->ToClassIdx << "; // "
1351             << SchedModels.getSchedClass(TI->ToClassIdx).Name << '\n';
1352        }
1353        OS << "    }\n";
1354        if (*PI == 0)
1355          break;
1356      }
1357      if (SC.isInferred())
1358        OS << "    return " << SC.Index << ";\n";
1359      OS << "    break;\n";
1360    }
1361    OS << "  };\n";
1362  }
1363  OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n"
1364     << "} // " << ClassName << "::resolveSchedClass\n";
1365}
1366
1367//
1368// ParseFeaturesFunction - Produces a subtarget specific function for parsing
1369// the subtarget features string.
1370//
1371void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
1372                                             unsigned NumFeatures,
1373                                             unsigned NumProcs) {
1374  std::vector<Record*> Features =
1375                       Records.getAllDerivedDefinitions("SubtargetFeature");
1376  std::sort(Features.begin(), Features.end(), LessRecord());
1377
1378  OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1379     << "// subtarget options.\n"
1380     << "void llvm::";
1381  OS << Target;
1382  OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n"
1383     << "  DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1384     << "  DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n";
1385
1386  if (Features.empty()) {
1387    OS << "}\n";
1388    return;
1389  }
1390
1391  OS << "  InitMCProcessorInfo(CPU, FS);\n"
1392     << "  uint64_t Bits = getFeatureBits();\n";
1393
1394  for (unsigned i = 0; i < Features.size(); i++) {
1395    // Next record
1396    Record *R = Features[i];
1397    const std::string &Instance = R->getName();
1398    const std::string &Value = R->getValueAsString("Value");
1399    const std::string &Attribute = R->getValueAsString("Attribute");
1400
1401    if (Value=="true" || Value=="false")
1402      OS << "  if ((Bits & " << Target << "::"
1403         << Instance << ") != 0) "
1404         << Attribute << " = " << Value << ";\n";
1405    else
1406      OS << "  if ((Bits & " << Target << "::"
1407         << Instance << ") != 0 && "
1408         << Attribute << " < " << Value << ") "
1409         << Attribute << " = " << Value << ";\n";
1410  }
1411
1412  OS << "}\n";
1413}
1414
1415//
1416// SubtargetEmitter::run - Main subtarget enumeration emitter.
1417//
1418void SubtargetEmitter::run(raw_ostream &OS) {
1419  emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1420
1421  OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1422  OS << "#undef GET_SUBTARGETINFO_ENUM\n";
1423
1424  OS << "namespace llvm {\n";
1425  Enumeration(OS, "SubtargetFeature", true);
1426  OS << "} // End llvm namespace \n";
1427  OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1428
1429  OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
1430  OS << "#undef GET_SUBTARGETINFO_MC_DESC\n";
1431
1432  OS << "namespace llvm {\n";
1433#if 0
1434  OS << "namespace {\n";
1435#endif
1436  unsigned NumFeatures = FeatureKeyValues(OS);
1437  OS << "\n";
1438  unsigned NumProcs = CPUKeyValues(OS);
1439  OS << "\n";
1440  EmitSchedModel(OS);
1441  OS << "\n";
1442#if 0
1443  OS << "}\n";
1444#endif
1445
1446  // MCInstrInfo initialization routine.
1447  OS << "static inline void Init" << Target
1448     << "MCSubtargetInfo(MCSubtargetInfo *II, "
1449     << "StringRef TT, StringRef CPU, StringRef FS) {\n";
1450  OS << "  II->InitMCSubtargetInfo(TT, CPU, FS, ";
1451  if (NumFeatures)
1452    OS << Target << "FeatureKV, ";
1453  else
1454    OS << "0, ";
1455  if (NumProcs)
1456    OS << Target << "SubTypeKV, ";
1457  else
1458    OS << "0, ";
1459  OS << '\n'; OS.indent(22);
1460  OS << Target << "ProcSchedKV, "
1461     << Target << "WriteProcResTable, "
1462     << Target << "WriteLatencyTable, "
1463     << Target << "ReadAdvanceTable, ";
1464  if (SchedModels.hasItineraries()) {
1465    OS << '\n'; OS.indent(22);
1466    OS << Target << "Stages, "
1467       << Target << "OperandCycles, "
1468       << Target << "ForwardingPaths, ";
1469  } else
1470    OS << "0, 0, 0, ";
1471  OS << NumFeatures << ", " << NumProcs << ");\n}\n\n";
1472
1473  OS << "} // End llvm namespace \n";
1474
1475  OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1476
1477  OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1478  OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n";
1479
1480  OS << "#include \"llvm/Support/Debug.h\"\n";
1481  OS << "#include \"llvm/Support/raw_ostream.h\"\n";
1482  ParseFeaturesFunction(OS, NumFeatures, NumProcs);
1483
1484  OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1485
1486  // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1487  OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1488  OS << "#undef GET_SUBTARGETINFO_HEADER\n";
1489
1490  std::string ClassName = Target + "GenSubtargetInfo";
1491  OS << "namespace llvm {\n";
1492  OS << "class DFAPacketizer;\n";
1493  OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1494     << "  explicit " << ClassName << "(StringRef TT, StringRef CPU, "
1495     << "StringRef FS);\n"
1496     << "public:\n"
1497     << "  unsigned resolveSchedClass(unsigned SchedClass, const MachineInstr *DefMI,"
1498     << " const TargetSchedModel *SchedModel) const;\n"
1499     << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1500     << " const;\n"
1501     << "};\n";
1502  OS << "} // End llvm namespace \n";
1503
1504  OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1505
1506  OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
1507  OS << "#undef GET_SUBTARGETINFO_CTOR\n";
1508
1509  OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n";
1510  OS << "namespace llvm {\n";
1511  OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
1512  OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n";
1513  OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n";
1514  OS << "extern const llvm::MCWriteProcResEntry "
1515     << Target << "WriteProcResTable[];\n";
1516  OS << "extern const llvm::MCWriteLatencyEntry "
1517     << Target << "WriteLatencyTable[];\n";
1518  OS << "extern const llvm::MCReadAdvanceEntry "
1519     << Target << "ReadAdvanceTable[];\n";
1520
1521  if (SchedModels.hasItineraries()) {
1522    OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
1523    OS << "extern const unsigned " << Target << "OperandCycles[];\n";
1524    OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
1525  }
1526
1527  OS << ClassName << "::" << ClassName << "(StringRef TT, StringRef CPU, "
1528     << "StringRef FS)\n"
1529     << "  : TargetSubtargetInfo() {\n"
1530     << "  InitMCSubtargetInfo(TT, CPU, FS, ";
1531  if (NumFeatures)
1532    OS << Target << "FeatureKV, ";
1533  else
1534    OS << "0, ";
1535  if (NumProcs)
1536    OS << Target << "SubTypeKV, ";
1537  else
1538    OS << "0, ";
1539  OS << '\n'; OS.indent(22);
1540  OS << Target << "ProcSchedKV, "
1541     << Target << "WriteProcResTable, "
1542     << Target << "WriteLatencyTable, "
1543     << Target << "ReadAdvanceTable, ";
1544  OS << '\n'; OS.indent(22);
1545  if (SchedModels.hasItineraries()) {
1546    OS << Target << "Stages, "
1547       << Target << "OperandCycles, "
1548       << Target << "ForwardingPaths, ";
1549  } else
1550    OS << "0, 0, 0, ";
1551  OS << NumFeatures << ", " << NumProcs << ");\n}\n\n";
1552
1553  EmitSchedModelHelpers(ClassName, OS);
1554
1555  OS << "} // End llvm namespace \n";
1556
1557  OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
1558}
1559
1560namespace llvm {
1561
1562void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
1563  CodeGenTarget CGTarget(RK);
1564  SubtargetEmitter(RK, CGTarget).run(OS);
1565}
1566
1567} // End llvm namespace
1568