1//===-- UnwindAssembly-x86.cpp ----------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "UnwindAssembly-x86.h"
11
12#include "llvm-c/Disassembler.h"
13#include "llvm/Support/TargetSelect.h"
14
15#include "lldb/Core/Address.h"
16#include "lldb/Core/Error.h"
17#include "lldb/Core/ArchSpec.h"
18#include "lldb/Core/PluginManager.h"
19#include "lldb/Symbol/UnwindPlan.h"
20#include "lldb/Target/ExecutionContext.h"
21#include "lldb/Target/Process.h"
22#include "lldb/Target/RegisterContext.h"
23#include "lldb/Target/Thread.h"
24#include "lldb/Target/Target.h"
25#include "lldb/Target/UnwindAssembly.h"
26
27using namespace lldb;
28using namespace lldb_private;
29
30enum CPU {
31    k_i386,
32    k_x86_64
33};
34
35enum i386_register_numbers {
36    k_machine_eax = 0,
37    k_machine_ecx = 1,
38    k_machine_edx = 2,
39    k_machine_ebx = 3,
40    k_machine_esp = 4,
41    k_machine_ebp = 5,
42    k_machine_esi = 6,
43    k_machine_edi = 7,
44    k_machine_eip = 8
45};
46
47enum x86_64_register_numbers {
48    k_machine_rax = 0,
49    k_machine_rcx = 1,
50    k_machine_rdx = 2,
51    k_machine_rbx = 3,
52    k_machine_rsp = 4,
53    k_machine_rbp = 5,
54    k_machine_rsi = 6,
55    k_machine_rdi = 7,
56    k_machine_r8 = 8,
57    k_machine_r9 = 9,
58    k_machine_r10 = 10,
59    k_machine_r11 = 11,
60    k_machine_r12 = 12,
61    k_machine_r13 = 13,
62    k_machine_r14 = 14,
63    k_machine_r15 = 15,
64    k_machine_rip = 16
65};
66
67struct regmap_ent {
68    const char *name;
69    int machine_regno;
70    int lldb_regno;
71};
72
73static struct regmap_ent i386_register_map[] = {
74    {"eax", k_machine_eax, -1},
75    {"ecx", k_machine_ecx, -1},
76    {"edx", k_machine_edx, -1},
77    {"ebx", k_machine_ebx, -1},
78    {"esp", k_machine_esp, -1},
79    {"ebp", k_machine_ebp, -1},
80    {"esi", k_machine_esi, -1},
81    {"edi", k_machine_edi, -1},
82    {"eip", k_machine_eip, -1}
83};
84
85const int size_of_i386_register_map = sizeof (i386_register_map) / sizeof (struct regmap_ent);
86
87static int i386_register_map_initialized = 0;
88
89static struct regmap_ent x86_64_register_map[] = {
90    {"rax", k_machine_rax, -1},
91    {"rcx", k_machine_rcx, -1},
92    {"rdx", k_machine_rdx, -1},
93    {"rbx", k_machine_rbx, -1},
94    {"rsp", k_machine_rsp, -1},
95    {"rbp", k_machine_rbp, -1},
96    {"rsi", k_machine_rsi, -1},
97    {"rdi", k_machine_rdi, -1},
98    {"r8", k_machine_r8, -1},
99    {"r9", k_machine_r9, -1},
100    {"r10", k_machine_r10, -1},
101    {"r11", k_machine_r11, -1},
102    {"r12", k_machine_r12, -1},
103    {"r13", k_machine_r13, -1},
104    {"r14", k_machine_r14, -1},
105    {"r15", k_machine_r15, -1},
106    {"rip", k_machine_rip, -1}
107};
108
109const int size_of_x86_64_register_map = sizeof (x86_64_register_map) / sizeof (struct regmap_ent);
110
111static int x86_64_register_map_initialized = 0;
112
113//-----------------------------------------------------------------------------------------------
114//  AssemblyParse_x86 local-file class definition & implementation functions
115//-----------------------------------------------------------------------------------------------
116
117class AssemblyParse_x86 {
118public:
119
120    AssemblyParse_x86 (const ExecutionContext &exe_ctx, int cpu, ArchSpec &arch, AddressRange func);
121
122    ~AssemblyParse_x86 ();
123
124    bool get_non_call_site_unwind_plan (UnwindPlan &unwind_plan);
125
126    bool get_fast_unwind_plan (AddressRange& func, UnwindPlan &unwind_plan);
127
128    bool find_first_non_prologue_insn (Address &address);
129
130private:
131    enum { kMaxInstructionByteSize = 32 };
132
133    bool nonvolatile_reg_p (int machine_regno);
134    bool push_rbp_pattern_p ();
135    bool push_0_pattern_p ();
136    bool mov_rsp_rbp_pattern_p ();
137    bool sub_rsp_pattern_p (int& amount);
138    bool push_reg_p (int& regno);
139    bool mov_reg_to_local_stack_frame_p (int& regno, int& fp_offset);
140    bool ret_pattern_p ();
141    uint32_t extract_4 (uint8_t *b);
142    bool machine_regno_to_lldb_regno (int machine_regno, uint32_t& lldb_regno);
143    bool instruction_length (Address addr, int &length);
144
145    const ExecutionContext m_exe_ctx;
146
147    AddressRange m_func_bounds;
148
149    Address m_cur_insn;
150    uint8_t m_cur_insn_bytes[kMaxInstructionByteSize];
151
152    int m_machine_ip_regnum;
153    int m_machine_sp_regnum;
154    int m_machine_fp_regnum;
155
156    int m_lldb_ip_regnum;
157    int m_lldb_sp_regnum;
158    int m_lldb_fp_regnum;
159
160    int m_wordsize;
161    int m_cpu;
162    ArchSpec m_arch;
163    ::LLVMDisasmContextRef m_disasm_context;
164
165    DISALLOW_COPY_AND_ASSIGN (AssemblyParse_x86);
166};
167
168AssemblyParse_x86::AssemblyParse_x86 (const ExecutionContext &exe_ctx, int cpu, ArchSpec &arch, AddressRange func) :
169    m_exe_ctx (exe_ctx),
170    m_func_bounds(func),
171    m_cur_insn (),
172    m_machine_ip_regnum (LLDB_INVALID_REGNUM),
173    m_machine_sp_regnum (LLDB_INVALID_REGNUM),
174    m_machine_fp_regnum (LLDB_INVALID_REGNUM),
175    m_lldb_ip_regnum (LLDB_INVALID_REGNUM),
176    m_lldb_sp_regnum (LLDB_INVALID_REGNUM),
177    m_lldb_fp_regnum (LLDB_INVALID_REGNUM),
178    m_wordsize (-1),
179    m_cpu(cpu),
180    m_arch(arch)
181{
182    int *initialized_flag = NULL;
183    if (cpu == k_i386)
184    {
185        m_machine_ip_regnum = k_machine_eip;
186        m_machine_sp_regnum = k_machine_esp;
187        m_machine_fp_regnum = k_machine_ebp;
188        m_wordsize = 4;
189        initialized_flag = &i386_register_map_initialized;
190    }
191    else
192    {
193        m_machine_ip_regnum = k_machine_rip;
194        m_machine_sp_regnum = k_machine_rsp;
195        m_machine_fp_regnum = k_machine_rbp;
196        m_wordsize = 8;
197        initialized_flag = &x86_64_register_map_initialized;
198    }
199
200    // we only look at prologue - it will be complete earlier than 512 bytes into func
201    if (m_func_bounds.GetByteSize() == 0)
202        m_func_bounds.SetByteSize(512);
203
204    Thread *thread = m_exe_ctx.GetThreadPtr();
205    if (thread && *initialized_flag == 0)
206    {
207        RegisterContext *reg_ctx = thread->GetRegisterContext().get();
208        if (reg_ctx)
209        {
210            struct regmap_ent *ent;
211            int count, i;
212            if (cpu == k_i386)
213            {
214                ent = i386_register_map;
215                count = size_of_i386_register_map;
216            }
217            else
218            {
219                ent = x86_64_register_map;
220                count = size_of_x86_64_register_map;
221            }
222            for (i = 0; i < count; i++, ent++)
223            {
224                const RegisterInfo *ri = reg_ctx->GetRegisterInfoByName (ent->name);
225                if (ri)
226                    ent->lldb_regno = ri->kinds[eRegisterKindLLDB];
227            }
228            *initialized_flag = 1;
229        }
230    }
231
232   // on initial construction we may not have a Thread so these have to remain
233   // uninitialized until we can get a RegisterContext to set up the register map table
234   if (*initialized_flag == 1)
235   {
236       uint32_t lldb_regno;
237       if (machine_regno_to_lldb_regno (m_machine_sp_regnum, lldb_regno))
238           m_lldb_sp_regnum = lldb_regno;
239       if (machine_regno_to_lldb_regno (m_machine_fp_regnum, lldb_regno))
240           m_lldb_fp_regnum = lldb_regno;
241       if (machine_regno_to_lldb_regno (m_machine_ip_regnum, lldb_regno))
242           m_lldb_ip_regnum = lldb_regno;
243   }
244
245   m_disasm_context = ::LLVMCreateDisasm(m_arch.GetTriple().getTriple().c_str(),
246                                          (void*)this,
247                                          /*TagType=*/1,
248                                          NULL,
249                                          NULL);
250}
251
252AssemblyParse_x86::~AssemblyParse_x86 ()
253{
254    ::LLVMDisasmDispose(m_disasm_context);
255}
256
257// This function expects an x86 native register number (i.e. the bits stripped out of the
258// actual instruction), not an lldb register number.
259
260bool
261AssemblyParse_x86::nonvolatile_reg_p (int machine_regno)
262{
263    if (m_cpu == k_i386)
264    {
265          switch (machine_regno) {
266              case k_machine_ebx:
267              case k_machine_ebp:  // not actually a nonvolatile but often treated as such by convention
268              case k_machine_esi:
269              case k_machine_edi:
270              case k_machine_esp:
271                  return true;
272              default:
273                  return false;
274          }
275    }
276    if (m_cpu == k_x86_64)
277    {
278          switch (machine_regno) {
279              case k_machine_rbx:
280              case k_machine_rsp:
281              case k_machine_rbp:  // not actually a nonvolatile but often treated as such by convention
282              case k_machine_r12:
283              case k_machine_r13:
284              case k_machine_r14:
285              case k_machine_r15:
286                  return true;
287              default:
288                  return false;
289          }
290    }
291    return false;
292}
293
294
295// Macro to detect if this is a REX mode prefix byte.
296#define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48)
297
298// The high bit which should be added to the source register number (the "R" bit)
299#define REX_W_SRCREG(opcode) (((opcode) & 0x4) >> 2)
300
301// The high bit which should be added to the destination register number (the "B" bit)
302#define REX_W_DSTREG(opcode) ((opcode) & 0x1)
303
304// pushq %rbp [0x55]
305bool AssemblyParse_x86::push_rbp_pattern_p () {
306    uint8_t *p = m_cur_insn_bytes;
307    if (*p == 0x55)
308      return true;
309    return false;
310}
311
312// pushq $0 ; the first instruction in start() [0x6a 0x00]
313bool AssemblyParse_x86::push_0_pattern_p ()
314{
315    uint8_t *p = m_cur_insn_bytes;
316    if (*p == 0x6a && *(p + 1) == 0x0)
317        return true;
318    return false;
319}
320
321// movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5]
322// movl %esp, %ebp [0x8b 0xec] or [0x89 0xe5]
323bool AssemblyParse_x86::mov_rsp_rbp_pattern_p () {
324    uint8_t *p = m_cur_insn_bytes;
325    if (m_wordsize == 8 && *p == 0x48)
326      p++;
327    if (*(p) == 0x8b && *(p + 1) == 0xec)
328        return true;
329    if (*(p) == 0x89 && *(p + 1) == 0xe5)
330        return true;
331    return false;
332}
333
334// subq $0x20, %rsp
335bool AssemblyParse_x86::sub_rsp_pattern_p (int& amount) {
336    uint8_t *p = m_cur_insn_bytes;
337    if (m_wordsize == 8 && *p == 0x48)
338      p++;
339    // 8-bit immediate operand
340    if (*p == 0x83 && *(p + 1) == 0xec) {
341        amount = (int8_t) *(p + 2);
342        return true;
343    }
344    // 32-bit immediate operand
345    if (*p == 0x81 && *(p + 1) == 0xec) {
346        amount = (int32_t) extract_4 (p + 2);
347        return true;
348    }
349    // Not handled:  [0x83 0xc4] for imm8 with neg values
350    // [0x81 0xc4] for imm32 with neg values
351    return false;
352}
353
354// pushq %rbx
355// pushl $ebx
356bool AssemblyParse_x86::push_reg_p (int& regno) {
357    uint8_t *p = m_cur_insn_bytes;
358    int regno_prefix_bit = 0;
359    // If we have a rex prefix byte, check to see if a B bit is set
360    if (m_wordsize == 8 && *p == 0x41) {
361        regno_prefix_bit = 1 << 3;
362        p++;
363    }
364    if (*p >= 0x50 && *p <= 0x57) {
365        regno = (*p - 0x50) | regno_prefix_bit;
366        return true;
367    }
368    return false;
369}
370
371// Look for an instruction sequence storing a nonvolatile register
372// on to the stack frame.
373
374//  movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0]
375//  movl %eax, -0xc(%ebp)  [0x89 0x45 0xf4]
376bool AssemblyParse_x86::mov_reg_to_local_stack_frame_p (int& regno, int& rbp_offset) {
377    uint8_t *p = m_cur_insn_bytes;
378    int src_reg_prefix_bit = 0;
379    int target_reg_prefix_bit = 0;
380
381    if (m_wordsize == 8 && REX_W_PREFIX_P (*p)) {
382        src_reg_prefix_bit = REX_W_SRCREG (*p) << 3;
383        target_reg_prefix_bit = REX_W_DSTREG (*p) << 3;
384        if (target_reg_prefix_bit == 1) {
385            // rbp/ebp don't need a prefix bit - we know this isn't the
386            // reg we care about.
387            return false;
388        }
389        p++;
390    }
391
392    if (*p == 0x89) {
393        /* Mask off the 3-5 bits which indicate the destination register
394           if this is a ModR/M byte.  */
395        int opcode_destreg_masked_out = *(p + 1) & (~0x38);
396
397        /* Is this a ModR/M byte with Mod bits 01 and R/M bits 101
398           and three bits between them, e.g. 01nnn101
399           We're looking for a destination of ebp-disp8 or ebp-disp32.   */
400        int immsize;
401        if (opcode_destreg_masked_out == 0x45)
402          immsize = 2;
403        else if (opcode_destreg_masked_out == 0x85)
404          immsize = 4;
405        else
406          return false;
407
408        int offset = 0;
409        if (immsize == 2)
410          offset = (int8_t) *(p + 2);
411        if (immsize == 4)
412             offset = (uint32_t) extract_4 (p + 2);
413        if (offset > 0)
414          return false;
415
416        regno = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit;
417        rbp_offset = offset > 0 ? offset : -offset;
418        return true;
419    }
420    return false;
421}
422
423// ret [0xc9] or [0xc2 imm8] or [0xca imm8]
424bool
425AssemblyParse_x86::ret_pattern_p ()
426{
427    uint8_t *p = m_cur_insn_bytes;
428    if (*p == 0xc9 || *p == 0xc2 || *p == 0xca || *p == 0xc3)
429        return true;
430    return false;
431}
432
433uint32_t
434AssemblyParse_x86::extract_4 (uint8_t *b)
435{
436    uint32_t v = 0;
437    for (int i = 3; i >= 0; i--)
438        v = (v << 8) | b[i];
439    return v;
440}
441
442bool
443AssemblyParse_x86::machine_regno_to_lldb_regno (int machine_regno, uint32_t &lldb_regno)
444{
445    struct regmap_ent *ent;
446    int count, i;
447    if (m_cpu == k_i386)
448    {
449        ent = i386_register_map;
450        count = size_of_i386_register_map;
451    }
452    else
453    {
454        ent = x86_64_register_map;
455        count = size_of_x86_64_register_map;
456    }
457    for (i = 0; i < count; i++, ent++)
458    {
459        if (ent->machine_regno == machine_regno)
460            if (ent->lldb_regno != -1)
461            {
462                lldb_regno = ent->lldb_regno;
463                return true;
464            }
465    }
466    return false;
467}
468
469bool
470AssemblyParse_x86::instruction_length (Address addr, int &length)
471{
472    const uint32_t max_op_byte_size = m_arch.GetMaximumOpcodeByteSize();
473    llvm::SmallVector <uint8_t, 32> opcode_data;
474    opcode_data.resize (max_op_byte_size);
475
476    if (!addr.IsValid())
477        return false;
478
479    const bool prefer_file_cache = true;
480    Error error;
481    Target *target = m_exe_ctx.GetTargetPtr();
482    if (target->ReadMemory (addr, prefer_file_cache, opcode_data.data(), max_op_byte_size, error) == -1)
483    {
484        return false;
485    }
486
487    char out_string[512];
488    const addr_t pc = addr.GetFileAddress();
489    const size_t inst_size = ::LLVMDisasmInstruction (m_disasm_context,
490                                                      opcode_data.data(),
491                                                      max_op_byte_size,
492                                                      pc, // PC value
493                                                      out_string,
494                                                      sizeof(out_string));
495
496    length = inst_size;
497    return true;
498}
499
500
501bool
502AssemblyParse_x86::get_non_call_site_unwind_plan (UnwindPlan &unwind_plan)
503{
504    UnwindPlan::RowSP row(new UnwindPlan::Row);
505    int non_prologue_insn_count = 0;
506    m_cur_insn = m_func_bounds.GetBaseAddress ();
507    int current_func_text_offset = 0;
508    int current_sp_bytes_offset_from_cfa = 0;
509    UnwindPlan::Row::RegisterLocation initial_regloc;
510    Error error;
511
512    if (!m_cur_insn.IsValid())
513    {
514        return false;
515    }
516
517    unwind_plan.SetPlanValidAddressRange (m_func_bounds);
518    unwind_plan.SetRegisterKind (eRegisterKindLLDB);
519
520    // At the start of the function, find the CFA by adding wordsize to the SP register
521    row->SetOffset (current_func_text_offset);
522    row->SetCFARegister (m_lldb_sp_regnum);
523    row->SetCFAOffset (m_wordsize);
524
525    // caller's stack pointer value before the call insn is the CFA address
526    initial_regloc.SetIsCFAPlusOffset (0);
527    row->SetRegisterInfo (m_lldb_sp_regnum, initial_regloc);
528
529    // saved instruction pointer can be found at CFA - wordsize.
530    current_sp_bytes_offset_from_cfa = m_wordsize;
531    initial_regloc.SetAtCFAPlusOffset (-current_sp_bytes_offset_from_cfa);
532    row->SetRegisterInfo (m_lldb_ip_regnum, initial_regloc);
533
534    unwind_plan.AppendRow (row);
535
536    // Allocate a new Row, populate it with the existing Row contents.
537    UnwindPlan::Row *newrow = new UnwindPlan::Row;
538    *newrow = *row.get();
539    row.reset(newrow);
540
541    const bool prefer_file_cache = true;
542
543    Target *target = m_exe_ctx.GetTargetPtr();
544    while (m_func_bounds.ContainsFileAddress (m_cur_insn) && non_prologue_insn_count < 10)
545    {
546        int stack_offset, insn_len;
547        int machine_regno;          // register numbers masked directly out of instructions
548        uint32_t lldb_regno;        // register numbers in lldb's eRegisterKindLLDB numbering scheme
549
550        if (!instruction_length (m_cur_insn, insn_len) || insn_len == 0 || insn_len > kMaxInstructionByteSize)
551        {
552            // An unrecognized/junk instruction
553            break;
554        }
555        if (target->ReadMemory (m_cur_insn, prefer_file_cache, m_cur_insn_bytes, insn_len, error) == -1)
556        {
557           // Error reading the instruction out of the file, stop scanning
558           break;
559        }
560
561        if (push_rbp_pattern_p ())
562        {
563            row->SetOffset (current_func_text_offset + insn_len);
564            current_sp_bytes_offset_from_cfa += m_wordsize;
565            row->SetCFAOffset (current_sp_bytes_offset_from_cfa);
566            UnwindPlan::Row::RegisterLocation regloc;
567            regloc.SetAtCFAPlusOffset (-row->GetCFAOffset());
568            row->SetRegisterInfo (m_lldb_fp_regnum, regloc);
569            unwind_plan.AppendRow (row);
570            // Allocate a new Row, populate it with the existing Row contents.
571            newrow = new UnwindPlan::Row;
572            *newrow = *row.get();
573            row.reset(newrow);
574            goto loopnext;
575        }
576
577        if (mov_rsp_rbp_pattern_p ())
578        {
579            row->SetOffset (current_func_text_offset + insn_len);
580            row->SetCFARegister (m_lldb_fp_regnum);
581            unwind_plan.AppendRow (row);
582            // Allocate a new Row, populate it with the existing Row contents.
583            newrow = new UnwindPlan::Row;
584            *newrow = *row.get();
585            row.reset(newrow);
586            goto loopnext;
587        }
588
589        // This is the start() function (or a pthread equivalent), it starts with a pushl $0x0 which puts the
590        // saved pc value of 0 on the stack.  In this case we want to pretend we didn't see a stack movement at all --
591        // normally the saved pc value is already on the stack by the time the function starts executing.
592        if (push_0_pattern_p ())
593        {
594            goto loopnext;
595        }
596
597        if (push_reg_p (machine_regno))
598        {
599            current_sp_bytes_offset_from_cfa += m_wordsize;
600            if (nonvolatile_reg_p (machine_regno) && machine_regno_to_lldb_regno (machine_regno, lldb_regno))
601            {
602                row->SetOffset (current_func_text_offset + insn_len);
603                if (row->GetCFARegister() == m_lldb_sp_regnum)
604                {
605                    row->SetCFAOffset (current_sp_bytes_offset_from_cfa);
606                }
607                UnwindPlan::Row::RegisterLocation regloc;
608                regloc.SetAtCFAPlusOffset (-current_sp_bytes_offset_from_cfa);
609                row->SetRegisterInfo (lldb_regno, regloc);
610                unwind_plan.AppendRow (row);
611                // Allocate a new Row, populate it with the existing Row contents.
612                newrow = new UnwindPlan::Row;
613                *newrow = *row.get();
614                row.reset(newrow);
615            }
616            goto loopnext;
617        }
618
619        if (mov_reg_to_local_stack_frame_p (machine_regno, stack_offset) && nonvolatile_reg_p (machine_regno))
620        {
621            if (machine_regno_to_lldb_regno (machine_regno, lldb_regno))
622            {
623                row->SetOffset (current_func_text_offset + insn_len);
624                UnwindPlan::Row::RegisterLocation regloc;
625                regloc.SetAtCFAPlusOffset (-row->GetCFAOffset());
626                row->SetRegisterInfo (lldb_regno, regloc);
627                unwind_plan.AppendRow (row);
628                // Allocate a new Row, populate it with the existing Row contents.
629                newrow = new UnwindPlan::Row;
630                *newrow = *row.get();
631                row.reset(newrow);
632                goto loopnext;
633            }
634        }
635
636        if (sub_rsp_pattern_p (stack_offset))
637        {
638            current_sp_bytes_offset_from_cfa += stack_offset;
639            if (row->GetCFARegister() == m_lldb_sp_regnum)
640            {
641                row->SetOffset (current_func_text_offset + insn_len);
642                row->SetCFAOffset (current_sp_bytes_offset_from_cfa);
643                unwind_plan.AppendRow (row);
644                // Allocate a new Row, populate it with the existing Row contents.
645                newrow = new UnwindPlan::Row;
646                *newrow = *row.get();
647                row.reset(newrow);
648            }
649            goto loopnext;
650        }
651
652        if (ret_pattern_p ())
653        {
654            // we know where the end of the function is; set the limit on the PlanValidAddressRange
655            // in case our initial "high pc" value was overly large
656            // int original_size = m_func_bounds.GetByteSize();
657            // int calculated_size = m_cur_insn.GetOffset() - m_func_bounds.GetBaseAddress().GetOffset() + insn_len + 1;
658            // m_func_bounds.SetByteSize (calculated_size);
659            // unwind_plan.SetPlanValidAddressRange (m_func_bounds);
660            break;
661        }
662
663        // FIXME recognize the i386 picbase setup instruction sequence,
664        // 0x1f16:  call   0x1f1b                   ; main + 11 at /private/tmp/a.c:3
665        // 0x1f1b:  popl   %eax
666        // and record the temporary stack movements if the CFA is not expressed in terms of ebp.
667
668        non_prologue_insn_count++;
669loopnext:
670        m_cur_insn.SetOffset (m_cur_insn.GetOffset() + insn_len);
671        current_func_text_offset += insn_len;
672    }
673
674    // Now look at the byte at the end of the AddressRange for a limited attempt at describing the
675    // epilogue.  We're looking for the sequence
676
677    //  [ 0x5d ] mov %rbp, %rsp
678    //  [ 0xc3 ] ret
679    //  [ 0xe8 xx xx xx xx ] call __stack_chk_fail  (this is sometimes the final insn in the function)
680
681    // We want to add a Row describing how to unwind when we're stopped on the 'ret' instruction where the
682    // CFA is no longer defined in terms of rbp, but is now defined in terms of rsp like on function entry.
683
684    uint64_t ret_insn_offset = LLDB_INVALID_ADDRESS;
685    Address end_of_fun(m_func_bounds.GetBaseAddress());
686    end_of_fun.SetOffset (end_of_fun.GetOffset() + m_func_bounds.GetByteSize());
687
688    if (m_func_bounds.GetByteSize() > 7)
689    {
690        uint8_t bytebuf[7];
691        Address last_seven_bytes(end_of_fun);
692        last_seven_bytes.SetOffset (last_seven_bytes.GetOffset() - 7);
693        if (target->ReadMemory (last_seven_bytes, prefer_file_cache, bytebuf, 7, error) != -1)
694        {
695            if (bytebuf[5] == 0x5d && bytebuf[6] == 0xc3)  // mov, ret
696            {
697                ret_insn_offset = m_func_bounds.GetByteSize() - 1;
698            }
699            else if (bytebuf[0] == 0x5d && bytebuf[1] == 0xc3 && bytebuf[2] == 0xe8) // mov, ret, call
700            {
701                ret_insn_offset = m_func_bounds.GetByteSize() - 6;
702            }
703        }
704    } else if (m_func_bounds.GetByteSize() > 2)
705    {
706        uint8_t bytebuf[2];
707        Address last_two_bytes(end_of_fun);
708        last_two_bytes.SetOffset (last_two_bytes.GetOffset() - 2);
709        if (target->ReadMemory (last_two_bytes, prefer_file_cache, bytebuf, 2, error) != -1)
710        {
711            if (bytebuf[0] == 0x5d && bytebuf[1] == 0xc3) // mov, ret
712            {
713                ret_insn_offset = m_func_bounds.GetByteSize() - 1;
714            }
715        }
716    }
717
718    if (ret_insn_offset != LLDB_INVALID_ADDRESS)
719    {
720        // Create a fresh, empty Row and RegisterLocation - don't mention any other registers
721        UnwindPlan::RowSP epi_row(new UnwindPlan::Row);
722        UnwindPlan::Row::RegisterLocation epi_regloc;
723
724        // When the ret instruction is about to be executed, here's our state
725        epi_row->SetOffset (ret_insn_offset);
726        epi_row->SetCFARegister (m_lldb_sp_regnum);
727        epi_row->SetCFAOffset (m_wordsize);
728
729        // caller's stack pointer value before the call insn is the CFA address
730        epi_regloc.SetIsCFAPlusOffset (0);
731        epi_row->SetRegisterInfo (m_lldb_sp_regnum, epi_regloc);
732
733        // saved instruction pointer can be found at CFA - wordsize
734        epi_regloc.SetAtCFAPlusOffset (-m_wordsize);
735        epi_row->SetRegisterInfo (m_lldb_ip_regnum, epi_regloc);
736
737        unwind_plan.AppendRow (epi_row);
738    }
739
740    unwind_plan.SetSourceName ("assembly insn profiling");
741    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
742    unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolYes);
743
744    return true;
745}
746
747/* The "fast unwind plan" is valid for functions that follow the usual convention of
748   using the frame pointer register (ebp, rbp), i.e. the function prologue looks like
749     push   %rbp      [0x55]
750     mov    %rsp,%rbp [0x48 0x89 0xe5]   (this is a 2-byte insn seq on i386)
751*/
752
753bool
754AssemblyParse_x86::get_fast_unwind_plan (AddressRange& func, UnwindPlan &unwind_plan)
755{
756    UnwindPlan::RowSP row(new UnwindPlan::Row);
757    UnwindPlan::Row::RegisterLocation pc_reginfo;
758    UnwindPlan::Row::RegisterLocation sp_reginfo;
759    UnwindPlan::Row::RegisterLocation fp_reginfo;
760    unwind_plan.SetRegisterKind (eRegisterKindLLDB);
761
762    if (!func.GetBaseAddress().IsValid())
763        return false;
764
765    Target *target = m_exe_ctx.GetTargetPtr();
766
767    uint8_t bytebuf[4];
768    Error error;
769    const bool prefer_file_cache = true;
770    if (target->ReadMemory (func.GetBaseAddress(), prefer_file_cache, bytebuf, sizeof (bytebuf), error) == -1)
771        return false;
772
773    uint8_t i386_prologue[] = {0x55, 0x89, 0xe5};
774    uint8_t x86_64_prologue[] = {0x55, 0x48, 0x89, 0xe5};
775    int prologue_size;
776
777    if (memcmp (bytebuf, i386_prologue, sizeof (i386_prologue)) == 0)
778    {
779        prologue_size = sizeof (i386_prologue);
780    }
781    else if (memcmp (bytebuf, x86_64_prologue, sizeof (x86_64_prologue)) == 0)
782    {
783        prologue_size = sizeof (x86_64_prologue);
784    }
785    else
786    {
787        return false;
788    }
789
790    pc_reginfo.SetAtCFAPlusOffset (-m_wordsize);
791    row->SetRegisterInfo (m_lldb_ip_regnum, pc_reginfo);
792
793    sp_reginfo.SetIsCFAPlusOffset (0);
794    row->SetRegisterInfo (m_lldb_sp_regnum, sp_reginfo);
795
796    // Zero instructions into the function
797    row->SetCFARegister (m_lldb_sp_regnum);
798    row->SetCFAOffset (m_wordsize);
799    row->SetOffset (0);
800    unwind_plan.AppendRow (row);
801    UnwindPlan::Row *newrow = new UnwindPlan::Row;
802    *newrow = *row.get();
803    row.reset(newrow);
804
805    // push %rbp has executed - stack moved, rbp now saved
806    row->SetCFAOffset (2 * m_wordsize);
807    fp_reginfo.SetAtCFAPlusOffset (2 * -m_wordsize);
808    row->SetRegisterInfo (m_lldb_fp_regnum, fp_reginfo);
809    row->SetOffset (1);
810    unwind_plan.AppendRow (row);
811
812    newrow = new UnwindPlan::Row;
813    *newrow = *row.get();
814    row.reset(newrow);
815
816    // mov %rsp, %rbp has executed
817    row->SetCFARegister (m_lldb_fp_regnum);
818    row->SetCFAOffset (2 * m_wordsize);
819    row->SetOffset (prologue_size);     /// 3 or 4 bytes depending on arch
820    unwind_plan.AppendRow (row);
821
822    newrow = new UnwindPlan::Row;
823    *newrow = *row.get();
824    row.reset(newrow);
825
826    unwind_plan.SetPlanValidAddressRange (func);
827    unwind_plan.SetSourceName ("fast unwind assembly profiling");
828    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
829    unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
830    return true;
831}
832
833bool
834AssemblyParse_x86::find_first_non_prologue_insn (Address &address)
835{
836    m_cur_insn = m_func_bounds.GetBaseAddress ();
837    if (!m_cur_insn.IsValid())
838    {
839        return false;
840    }
841
842    const bool prefer_file_cache = true;
843    Target *target = m_exe_ctx.GetTargetPtr();
844    while (m_func_bounds.ContainsFileAddress (m_cur_insn))
845    {
846        Error error;
847        int insn_len, offset, regno;
848        if (!instruction_length (m_cur_insn, insn_len) || insn_len > kMaxInstructionByteSize || insn_len == 0)
849        {
850            // An error parsing the instruction, i.e. probably data/garbage - stop scanning
851            break;
852        }
853        if (target->ReadMemory (m_cur_insn, prefer_file_cache, m_cur_insn_bytes, insn_len, error) == -1)
854        {
855           // Error reading the instruction out of the file, stop scanning
856           break;
857        }
858
859        if (push_rbp_pattern_p () || mov_rsp_rbp_pattern_p () || sub_rsp_pattern_p (offset)
860            || push_reg_p (regno) || mov_reg_to_local_stack_frame_p (regno, offset))
861        {
862            m_cur_insn.SetOffset (m_cur_insn.GetOffset() + insn_len);
863            continue;
864        }
865
866        // Unknown non-prologue instruction - stop scanning
867        break;
868    }
869
870    address = m_cur_insn;
871    return true;
872}
873
874
875
876
877
878
879//-----------------------------------------------------------------------------------------------
880//  UnwindAssemblyParser_x86 method definitions
881//-----------------------------------------------------------------------------------------------
882
883UnwindAssembly_x86::UnwindAssembly_x86 (const ArchSpec &arch, int cpu) :
884    lldb_private::UnwindAssembly(arch),
885    m_cpu(cpu),
886    m_arch(arch)
887{
888}
889
890
891UnwindAssembly_x86::~UnwindAssembly_x86 ()
892{
893}
894
895bool
896UnwindAssembly_x86::GetNonCallSiteUnwindPlanFromAssembly (AddressRange& func, Thread& thread, UnwindPlan& unwind_plan)
897{
898    ExecutionContext exe_ctx (thread.shared_from_this());
899    AssemblyParse_x86 asm_parse(exe_ctx, m_cpu, m_arch, func);
900    return asm_parse.get_non_call_site_unwind_plan (unwind_plan);
901}
902
903bool
904UnwindAssembly_x86::GetFastUnwindPlan (AddressRange& func, Thread& thread, UnwindPlan &unwind_plan)
905{
906    ExecutionContext exe_ctx (thread.shared_from_this());
907    AssemblyParse_x86 asm_parse(exe_ctx, m_cpu, m_arch, func);
908    return asm_parse.get_fast_unwind_plan (func, unwind_plan);
909}
910
911bool
912UnwindAssembly_x86::FirstNonPrologueInsn (AddressRange& func, const ExecutionContext &exe_ctx, Address& first_non_prologue_insn)
913{
914    AssemblyParse_x86 asm_parse(exe_ctx, m_cpu, m_arch, func);
915    return asm_parse.find_first_non_prologue_insn (first_non_prologue_insn);
916}
917
918UnwindAssembly *
919UnwindAssembly_x86::CreateInstance (const ArchSpec &arch)
920{
921    const llvm::Triple::ArchType cpu = arch.GetMachine ();
922    if (cpu == llvm::Triple::x86)
923        return new UnwindAssembly_x86 (arch, k_i386);
924    else if (cpu == llvm::Triple::x86_64)
925        return new UnwindAssembly_x86 (arch, k_x86_64);
926    return NULL;
927}
928
929
930//------------------------------------------------------------------
931// PluginInterface protocol in UnwindAssemblyParser_x86
932//------------------------------------------------------------------
933
934ConstString
935UnwindAssembly_x86::GetPluginName()
936{
937    return GetPluginNameStatic();
938}
939
940
941uint32_t
942UnwindAssembly_x86::GetPluginVersion()
943{
944    return 1;
945}
946
947void
948UnwindAssembly_x86::Initialize()
949{
950    PluginManager::RegisterPlugin (GetPluginNameStatic(),
951                                   GetPluginDescriptionStatic(),
952                                   CreateInstance);
953}
954
955void
956UnwindAssembly_x86::Terminate()
957{
958    PluginManager::UnregisterPlugin (CreateInstance);
959}
960
961
962lldb_private::ConstString
963UnwindAssembly_x86::GetPluginNameStatic()
964{
965    static ConstString g_name("x86");
966    return g_name;
967}
968
969const char *
970UnwindAssembly_x86::GetPluginDescriptionStatic()
971{
972    return "i386 and x86_64 assembly language profiler plugin.";
973}
974